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Abstract

Accounting academics have often considered the widespread use

of �nancial ratios as somehow intriguing. The paper investigates the

consequences of assuming that ratios can be validly used by analysts,

comparing the ensuing conclusions with those of other authors. In the

light of this methodology, some major objections in relation to the ratio

method emerge as less relevant or inadequate. This, in turn, suggests

that users of ratios may be acting more rationally than previously

thought.
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1 Introduction

The academic community has remained largely sceptical about the validity

of �nancial ratios, contending that their use stems from routine rather than

from rational consideration. Indeed, in an early contribution to this topic,

Horrigan (1965) remarked that �nancial ratios were referred to in text books

in almost apologetic tones as though their expected utility were extremely

low. Horrigan's response to this situation, however, was to seek to dissipate

such doubts by describing the statistical characteristics of some widely used

ratios in order to demonstrate that they may be useful. Following Horrigan's

optimistic review, subsequent empirical research revealed some promising

applications of �nancial ratio analysis. Beaver (1966) and Altman (1968),

for example, showed that ratios have the potential to predict bankruptcy.

A few years later, however, the scepticism returned, with authors such as

Deakin (1976) noticing that the empirical frequency distributions of ratios

appear to vary widely and, as a result, questioning the validity of analytical

methods which assumed the normality of ratio data. This prompted Frecka

& Hopwood (1983) and others to propose ad hoc techniques such as the trim-

ming of outliers to deal with the unduly in
uential values present in samples

of �nancial ratios, techniques which re
ected the apparently widespread be-

lief that there were no general rules underpinning the ratio method.

Adding to the growing doubt concerning the validity of �nancial ratio

analysis, Lev & Sunder (1979) raised some fundamental questions as to

whether the use of ratios is motivated by well-founded considerations or

whether, in contrast, it is merely a tradition. These authors concluded that

almost all of the assumptions required for valid ratio analysis are likely to be

violated in practice. Whittington (1980) also uncovered cases where ratios

seem not to be up to the task but distinguished the normative application

of ratios from their less-acceptable use in prediction.

Both Lev & Sunder (1979) and Whittington (1980) stressed that valid

measurement using ratios requires proportionality between the components

(i.e., Y = bX). Since such an assumption seems to be too restrictive, these

authors advocated a two parameter regression model (Y = a+ bX), or sim-

ilar functional form, rather than the single parameter ratio model. Barnes

(1982) went further, suggesting that non-proportionality is also in the ori-

gin of the skewness often found in the distributions of ratios. The prevailing

scepticism about the usefulness of �nancial ratios deepened further when

Tippett (1990) claimed that ratios such as those used as standards to per-

form comparisons (industry norms, benchmarks and others) were intrinsi-
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cally unstable, drifting upwards or downwards over time.

Rather than seeking the outright condemnation of the ratio method,

other authors have tried to understand why �nancial ratios are so widely

used. McLeay (1986a), for instance, has demonstrated that a fuller under-

standing of ratios can be achieved by taking account of the behaviour of

the variables from which �nancial ratios are constructed, particularly where

�rm size plays an important part. At the same time, some limiting case

theoretical ratio models which allow for exponential growth in accounting

variables were identi�ed (McLeay, 1986b). Trigueiros (1995) o�ered a simple

explanation for the diversity of statistical distributions found in ratios and

pointed out that the multiplicative

1

character of accounting numbers sug-

gests the existence of a statistical e�ect which is common to all of the �gures

reported in a particular set of accounts but which varies both through time

and across �rms. This was further expanded in Trigueiros (1997) where such

e�ect was presented as the manifestation of the pervasive in
uence of �rm

size on the magnitudes of accounting numbers and where it was also shown

that non-proportionality may not necessarily be damaging for ratio analysis.

This paper investigates the premise that the ratio method is valid, com-

paring the ensuing conclusions with those of other authors. Such comparison

suggests that the ratio method is basically sound
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and that the published

objections in relation to the use of ratios may be attributed to unduly re-

strictive assumptions or to poor attention to the context where ratios are

used. The paper also shows that �rm size is a well-de�ned variable implicit

in the concept of proportionality and that the multiplicative character of

accounting variables is not just supported by empirical observation but is

a prerequisite of valid ratio usage. The supposed drift found by Tippett

(1990) in ratios is also discussed. Finally, the paper proposes new statistical

models arguably capable of better portraying the behaviour of accounting

numbers together with a new interpretation of accounting di�erences and

negative values.

2 The Two Postulates of Ratio Analysis

Ratios present one number as a representation of another, scaled up or down

by a given factor. The Interest Cover ratio, for instance, is intended to show

the number of times Earnings is greater than Interest; the Sales Margin

ratio aims at expressing Earnings, the numerator, as a fraction of Sales, the

denominator and so on.
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Financial analysis is just one of the many tasks where scaling is used.

Maps and other models, for instance, are also governed by a ratio show-

ing the number of times any measurement in the representation is smaller

than in reality. It is not surprising, therefore, that the �rst and most basic

postulate of ratio analysis, the same as that governing maps, simply states

that the scaling factor should remain constant. In maps, a constant scal-

ing factor is applied to all measurements so that small objects are depicted

as proportionally small representations and large objects are depicted as

proportionally large representations. In ratio analysis, ratios are supposed

to have the same �nancial meaning no matter the size of the �rm being

analysed.

It should be recognised, however, that the requirements of �nancial anal-

ysis stretch beyond those of scaling. First, in ratio analysis, the scaling factor

is not a convention as in maps. Rather, it is supposed to re
ect some pre-

existing reality or standard: the natural relationship between two accounting

variables (a norm), a benchmark, a goal to attain, a prediction
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or a ratio

taken from a previous period. Second, in ratio analysis, any discrepancy

that may be observed in relation to this pre-existing standard is considered

as valuable information

4

whereas in maps it is discarded as an error.

What makes �nancial ratios potentially invalid is this comparison that

is made with a pre-existing standard.
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If, for instance, the natural rela-

tionship between the numerator and the denominator of a ratio, although

pre-supposed to be a simple scale, actually cannot be so, then such ratio

is indeed invalid since the information it conveys is misleading. The tradi-

tional approach has been to question the validity of �nancial ratios on these

grounds, i.e., that a natural scale between the numerator and the denomi-

nator of the ratio may not exist. Unfortunately, rather than investigating

the existence or not of natural scales, the extant literature has adopted a

more stringent stance, that of searching for expected ratios that are also

the natural scale between the numerator and the denominator. This extra

requirement, unduly restrictive, was implicitly taken in when authors inad-

equately attempted to describe �nancial ratios using statistical models of

the additive type. It led to a great deal of pessimism about the validity of

ratios because no plausible random mechanism has been found such that

its expected ratio is independent from the magnitudes of the components of

that ratio.
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Another negative consequence of this assumption was that an important

postulate of valid ratio usage remained concealed as authors improperly

incorporated it into such additive assumption. This postulate requires that
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observed discrepancies in relation to the standard should be independent of

the size of the �rm. Speci�cally, for a given ratio, the likelihood of observing

a discrepancy of, say, 1%, in relation to the norm, must be the same for small

and large �rms. Should this not be the case, then the relevance of a 1%

over-performance or under-performance would vary, depending on the size

of the �rm. This too would render ratios useless. Another basic postulate of

ratio analysis is therefore homeocedasticity, that is, the distribution of the

measurement must be independent of size.

Lev & Sunder (1978) have discussed analytical models of ratios where

this postulate is violated. In one such instance they comment that `since

the deviations [from the norm] are [expected to be] small for large �rms and

large for small �rms [thence] the formation of ratios and their comparison

to other [...] ratios does not provide an adequate means of control for size'

(p. 191). Not just Lev & Sunder but also other authors have came across

instances of this postulate. Invariably, they have labelled them as cases of

model mis-speci�cation rather than as potential sources of invalidity of ra-

tios in their own right. Such labelling, however, is based on the premise that

only expected values should be used as ratio standards and norms. Where

a standard is not an expected ratio, or when it has a �nancial rather than

statistical meaning (benchmarks, predictions), the homeoscedastic condi-

tion cannot be taken as the consequence of a model's correct speci�cation.

Therefore, two postulates of ratio validity, not one, should be investigated

separately.

In order to avoid unwanted assumptions, this section �rst derives the

natural form of proportionality. Natural forms describe general mechanisms

or structures rather than observed behaviour. They are often expressed as

di�erential equations and the paper uses uppercase letters in variables to

signal their use.

2.1 First Postulate: Proportionality and Firm Size

A contradiction often found in papers on the validity of ratios is that, while

no proper de�nition of size is o�ered, conclusions invariably stress that ratios

must fail to remove the e�ect of size from the �nancial measurement. If

authors do not de�ne size, how can they assert that ratios fail to remove

it? This section aims at �nding out what ratios actually are capable of

removing. After all, this is the question that must be answered at the start

of any argument about the usefulness of ratios. It is shown here that the

�rst postulate of ratio analysis, proportionality, implies the existence of a
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well-de�ned variable with the attributes of size and that this new variable is

plausible i.e., it is natural to suppose its existence in the case of accounting

variables.

It was mentioned that the most basic condition for the valid use of �-

nancial ratios is proportionality between the numerator of the ratio, Y; and

the denominator, X; so that Y=X , the scaling factor, is constant (Whit-

tington, 1980). Authors typically illustrate the concept of proportionality

by referring to its two pre-requisites, namely linearity and the absence of an

`intercept term'
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in the relationship between Y andX . These pre-requisites,

however, emphasise the relationship between Y and X but they are less ef-

fective in showing how changes in Y (across �rms or in the same �rm for

di�erent periods) relate to the corresponding changes in X . Yet, a thor-

ough understanding of ratios requires a dynamic approach where changes

are also included in the analysis. This can be achieved by using the di�er-

ential equivalent to Y=X = Constant. When Y is proportional to X , the

rate of change of Y with respect to X is also constant and similar to the

ratio itself. For ratios to be valid, therefore, the following must hold:

Y

X

=

dY

dX

where dY; dX are any related changes or di�erences observed in Y and

X .
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This formulation fully encompasses the earlier de�nition, having the

advantage of highlighting potentially interesting facets of proportionality.

For instance, by re-arranging terms, the above becomes

dY

Y

=

dX

X

: (1)

Equality (1) shows that the implicit condition of proportionality is scale in-

variance, whereby the relative changes in Y are equal to the relative changes

in X . For instance, when comparing �rms in cross-section, if the Current

Assets �gure is many times larger in one �rm than in another, then this

should also be the case for Current Liabilities. Similarly, in a time-series

analysis, (1) implies that variables eligible as components of a ratio should

grow at the same rate. If, say, Sales grows by 12% during a given year then

Earnings should also grow by 12% during that year.

Remember that (1) describes a mechanism, not realisations. So long as

a mechanism underlying reported numbers predicts that dY=Y is similar

to dX=X , proportionality is veri�ed irrespective of the observed di�erences
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between Y and X . As already stressed, without pre-supposing scale invari-

ance it would be impossible, using ratio analysis, to arrive to any reliable

conclusion about the �nancial characteristics of �rms. For example, unless

it is postulated that relative changes across �rms of any sizes are the same

for Current Assets and Current Liabilities, it would not be possible to infer

whether a Current Ratio above the norm in a large �rm is attributable to

the liquidity of that particular �rm or is just a characteristic of large �rms.

Scale invariance importantly suggests that numbers taken from the same

set of accounts are in
uenced by the same e�ect. In fact, for each valid

ratio, two of the items reported in a set of accounts (the numerator and

the denominator of that ratio) are structurally linked by (1), sharing the

same source of variability. Since the validity of the ratio method rests on

the validity of several, widely used ratios, not just on one or two isolated

cases, and given that items used to form one of such ratios are often used

to form other ratios as well, it follows that there must exist a common

source of variability underlying several of the items found in published sets

of accounts.

Sales, for instance, is used by analysts to form Margin, Turnover and

Pro�tability ratios together with variables such as Total Assets, Cost of

Goods Sold or Gross Pro�ts. Equality (1) thus requires that relative di�er-

ences or changes observed in those variables are the same as in Sales. Total

Assets is used to form Leverage ratios thus extending this requirement to

Net Worth or Long term Debt. Since the subtraction of two variables pre-

serves common relative changes, Total Liabilities (Total Assets minus Net

Worth) also has to obey the same requirement. Cost of Goods Sold, in

turn, extends it to Inventory via the popular Inventory Turnover ratio; Net

Worth, being the denominator of Return on Equity ratios, extends it to Net

Income, thence to Dividends and Interest Expense. Indeed, it may be di�-

cult to identify aggregate items from accounting reports that analysts never

combine with other items to form several, popular ratios, or that are not

forced by accounting identities to change at the same rate as other items.

9

In short, if all useful ratios, formed with N di�erent items X

1

; � � �X

N

,

are postulated to be proportional, then

dX

1

X

1

=

dX

2

X

2

= � � � =

dX

N

X

N

: (2)

This extended condition of scale invariance is indeed a consequence of the

assumption that the ratio method as a whole is valid. It clearly suggests, as
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mentioned, the existence of a common source of variability in numbers from

the same set of accounts.

It is now easy to show that such common source of variability possesses

the attribute of a size measurement. Consider two sets of accounts, b and

a, issued by the same �rm in di�erent periods (the time series context) or

by two di�erent �rms in the same year (the cross section context). b and a

may be viewed as two realisations of the same N variables X

1

; � � �X

N

and,

in (2), di�erences between them are written

dX

1

= X

1b

�X

1a

.

.

.

dX

N

= X

Nb

�X

Na

thus, using (2), it is possible to express items in the set of accounts b in

terms of items in the set of accounts a as

X

1b

= X

1a

(1 + r

ba

)

.

.

.

X

Nb

= X

Na

(1 + r

ba

)

where r

ba

is the common relative di�erence by which an item in b di�ers

from the corresponding item in a. Therefore, structurally at least, if one

item is larger in b than in a, it follows that any other item will also be larger

in b than in a and conversely. If, say, Current Assets is larger in b than the

corresponding Current Assets in a, then Sales as in b will also be larger than

the Sales �gure reported in a and so on. It is thus possible to say without

ambiguity that the set of accounts b is, as a whole, larger or smaller than

a. This possibility of comparing the size of two sets of accounts makes it

possible to rank by size, without ambiguities other than those created by

identical sets, not two but any collection a; b; : : : ; j; : : : of sets of accounts.

The existence of a size measurement underlying the postulate of propor-

tionality is thus demonstrated. If ratios are valid it should be possible (by

applying statistical sampling and modelling techniques) to estimate the rel-

ative sizes of �rms and the corresponding con�dence intervals. For instance,

a continuous size measurement may be constructed by postulating a suitable

unit size set, X

1

; � � �X

N

and then measuring the size S

j

= 1 + r

j

speci�c to

the j

th

set of accounts against this unit. Such measurement would show how

many times the �rm publishing the j

th

set of accounts is larger or smaller

than the unit.
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In such case the formulation describing the k

th

item is

X

k

= X

k

S

j

(3)

where the level X

k

is the value of item k in the unit set and S

j

= 1 + r

j

,

the size of the j

th

set of accounts, is the number of times an item in j is

larger or smaller than its level. Ratios formed from two such items remove

the common factor, S

j

, while uncovering the number of times by which

their components di�er in the unit set. It may also be concluded that

proportionality directly leads to the modelling of accounting variables as

the product of a constant level by a size factor.

It was mentioned that authors often voiced reservations about the ability

of ratios to fully remove size. The reasoning just presented suggests that,

actually, it is the opposite problem (that of ratios removing more than just

size) that is more likely to occur. Size is what all ratios remove by virtue

of the common origin of components. An individual ratio, however, will

also remove any multiplicative e�ect that is present in its numerator and

denominator but not in all the other items of that set of accounts. Suppose,

for instance, that Current Assets and Current Liabilities both re
ect, not

just the e�ect of size (caused by the fact that these items are taken from the

same set of accounts), but also an e�ect speci�c to liquid funds only. In such

case, the Current ratio is the result of removing, not just size, but also this

liquid funds e�ect. One practical consequence of this is that ratios aiming

speci�cally at removing size should be formed with care lest potentially

interesting in
uences are lost.

It may be argued that proportionality is probably veri�ed within speci�c

clusters of items but not necessarily amongst them all. In other words, a

set of accounts may possess two or three size dimensions, not just one.

Notwithstanding the cases of recently formed �rms, �rms in �nancial distress

or other less general cases, the hypothesis of size being multi-dimensional

seems di�cult to sustain. In fact, while �nancial statements of large �rms

contain reported numbers that are many orders of magnitude larger than

those reported in the accounts of small �rms, inside each set of accounts

items do not di�er by as much: one item that is, say, one million times

larger or smaller than other items is an exception, not the rule. Yet, more

than one size dimension would lead routinely, not in exceptional cases only,

to numbers with six or more digits together with numbers with two or one

digit. This would also render the principle of materiality as impossible to

apply.
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Should more than one size dimension exist, then a ratio formed with

items belonging to non-agreeing dimensions would exhibit typical magni-

tudes similar to those of raw items or their reciprocals, i.e., billions as well

as micros. Again, such a ratio may indeed occur but only as the result

of conditions not applicable generally. The fact that, after many years of

experimentation with ratios of all types, microscopic or very large ratios

are considered as atypical, clearly shows that items from the same set of

accounts share, in general, a unique size in
uence.

There are also compelling economic reasons to support the conviction

that each �rm's actual size greatly in
uences the overall magnitude of num-

bers reported in its accounts. If variables such as Earnings were not closely

related to size, then pro�tability and dividend yield might be diluted by any

increase in size and �rms would carefully avoid growing.

Indeed, scale invariance should be regarded, not just as a way of high-

lighting what ratios are supposed to remove, but as a means of improving

the theoretical foundations necessary to correctly model accounting data. In

fact, equality (2) captures two essential characteristics of accounting vari-

ables. First, it cannot be denied that accounting numbers taken from the

same set of accounts are generated under the same size in
uence as indi-

cated by (2). Second, the generation of accounting numbers is a process of

accumulation, thus obeying a multiplicative law of probabilities consistent

with the proportionate nature of changes as described in (1) or in (2).

As an introduction to the following section it may be mentioned that

scale invariance also suggests the need to consider, not just proportionality

but another postulate of valid ratio analysis. In (3), proportionality simply

ensues from S

j

being independent from the level factor X

k

. If (3) is veri�ed,

then any S

j

, no matter which, will lead to ratios obeying the traditional

postulate of ratio validity. Indeed, proportionality is veri�ed even if S

j

evolves in such a way as to make ratio analysis meaningless. This is basically

is why another postulate is required.

2.2 Second Postulate: Exponential Changes

It was mentioned that the existence of the scaling factor is not su�cient

to bring about valid ratios. The measurement using ratios (i.e., the dif-

ference between the observed ratio and the standard) must also be size-

independent. As a corollary, relative changes in components of ratios are

required to be size-independent too.
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Variables where relative changes are

size-independent are said to obey the Gibrat's Law, the source of the family
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of multiplicative processes where relative, rather than absolute changes are

homogeneous.

In order to illustrate the practical consequences of this postulate it is

necessary to model, not just di�erences or changes, but the joint evolution

of accounting variables under the in
uence of �rm size. Since the label j,

introduced in the previous section in relation to sets of accounts, is insu�-

cient to characterise an evolution, a new variable, � , is now introduced. It is

thus supposed that, in principle, ratio components are a function of � and,

from (2), the mechanism driving relative changes in the k

th

item may be

expressed as

dX

k

X

k

= r

j

d� (4)

where r

j

d� is the same for items from the j

th

set of accounts so that scale

invariance is veri�ed. In the analysis of time series r

j

is an instantaneous

rate of growth of X

k

in instant � . In cross section, � is simply a scaling

parameter since r

j

may directly measure how far a set of accounts is from

another set taken as the reference.

Mechanisms such as (4) may generate many types of variables. Where,

for instance, r

j

decreases in proportion to X

k

, that is, where r

j

= �

k

=X

k

with �

k

expressing the constant rate of change of X

k

with � , then the re-

sulting variable evolves linearly with � . Formulations such as

x

k

= �

k

�

would be, in this case, a solution of (4). Although x

k

is scale invariant, the

second postulate of valid ratio usage is violated as relative changes in the

variable decrease with � i.e., r

j

= 1=� and it is �

k

, not r

j

, that remains

constant.

As mentioned, the two postulates of ratio analysis are veri�ed where

r

j

d� is independent of � . In this case any x

k

evolving exponentially with � ,

e.g.,

x

k

= X

k

[1 + r

j

]

�

for discrete � or x

k

= X

k

exp[r

j

� ] for continuous � (5)

is a solution of (4). The level X

k

is the value of x

k

for � = 0.

Notice that (5) is a version of (3) as X

k

relates solely to the item consid-

ered whereas the size multiplier (which, in this example is either [1+ r

j

]

�

or

exp[r

j

� ]) relates solely to the set of accounts considered. In contrast to (3),

however, �rm size is no longer unde�ned. Rather, it evolves in a speci�c,

exponential way.
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Where ratios are valid, therefore, the magnitudes of accounting numbers

are described in a way that is similar to amounts accruing interest r over a

period � . Numbers taken from the same set of accounts, being under the

same size in
uence, are portrayed as di�erent magnitudes accruing the same

`rate of interest' over the same period. Across sets of accounts belonging

to large and small �rms, numbers are portrayed as similar magnitudes that

have earned high or low `rates of interest' respectively.

Examples of the two di�erent contexts of ratio analysis (i.e., in time series

analysis and in inter-�rm comparison) are now given. In time series analysis,

the interpretation of (5) is straightforward, � measuring a sequence starting

when the components of ratio y=x assume the value of the corresponding

item in the unit set, i.e., y = Y ; x = X . Growth rates observed in y and x,

r

y

; r

x

respectively, should be viewed as realisations of the same underlying

growth rate r so that scale invariance is veri�ed.

Suppose that, in a given year, the reported Sales �gure is $1,000 and

Earnings is $100, then pro�tability is 10%. If Sales grows by r (the same as

the �rm) but Earnings grows by only r�n, then, after a period of length � ,

Earnings = 100 exp[(r� n)� ] = 100 exp[r� ] exp[�n� ]

and

Sales = 1; 000 exp[r� ]

and the ratio decreases by exp[�n� ]. Not only is the ratio insensitive to the

magnitudes of Sales or Earnings in the previous period, its decrease is also

insensitive to the growth rate r. No matter small or large the growth of the

�rm may be, the change in Sales Margin is the same. The two postulates of

the ratio method are thus veri�ed. Moreover, if the disturbance �n occurs

during more than one period, the ratio will decrease by exp[�n] after one

year, by exp[�2n] after two years and so on. That is, the disturbance accrues

over time and it is possible to compare ratios relating to periods of di�erent

lengths just by accounting for such di�erences.

Other types of exponentiation, namely discrete, would produce simi-

lar results. By contrast, where components of ratios are governed by non-

exponential processes, proportionality is veri�ed but the measurement is

size-dependent and disturbances do not accrue over time. For example, in

a linear process, the e�ect of a disturbance w in Earnings

Earnings = 100 �

E

�w
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while

Sales = 1; 000 �

S

�;

would make the measurement of pro�tability dependent on �

S

and �

E

, the

rates of growth of Sales and Earnings. Moreover, this e�ect would be in-

dependent of the time elapsed, a decline in Earnings of, say, 1% per year

leading to a reduction of 1% in the ratio, regardless of the length of the pe-

riod. For linear albeit additive disturbances, a reduction of �n in Earnings

in a given year,

Earnings = 100 �

E

� � n

while

Sales = 1; 000 �

S

�

would lead to a reduction n=(��

S

) in the ratio. Any slow down in Sales

would amplify Sales Margin whereas any acceleration would subdue it.

In cross-section analysis, an intuitive meaning may also be given to r

and � . In this case � measures the dispersion of size.

11

Industries where

�rms range from the very small to the very large exhibit high � whereas

those where size is homogeneous exhibit low � . Accordingly, r

y

and r

x

are

the distance between the realisation of y or x and the corresponding median

Y or X . As in the previous example, observed r

y

; r

x

may di�er but they

should be viewed as realisations of a common, underlying r so that scale

invariance is veri�ed.

The ratio of the medians, Y=X , is the median ratio, being also the natural

scaling factor between y and x. If, for example, the median Sales in a given

industry is $1,000 and for Earnings it is $100 whereas, for �rm A, both Sales

and Earnings are r standard deviations above or below this norm, then

Earnings

A

= 100 exp[r� ]

and

Sales

A

= 1; 000 exp[r� ]:

Now consider �rm B which is more pro�table, the same volume of Sales

generating Earnings n standard deviations above A, i.e.,

Earnings

B

= 100 exp[(r + n)� ] = Earnings

A

exp[n� ]

whereas

Sales

B

= Sales

A

:

13



Again, not only is the ratio independent of the magnitudes of its components,

the di�erence in pro�tability between B and A, which is shown above to be

exp[n� ], is also independent of r. Moreover, this di�erence in pro�tability

also `accrues' with the dispersion of size. It is possible, therefore, to compare

changes in pro�tability across industries exhibiting distinct size patterns. By

contrast, where ratio components evolve linearly with size, the traditional

pre-requisite for the validity of ratios is satis�ed but the measurement is

in
uenced by the size of the �rm and by the value of the norm.

It is thus demonstrated that the existence of a scaling factor is not suf-

�cient to grant valid ratios. Components must also be exponential and, in

that case, �rm size may be expressed as a constant rate of change. The mul-

tiplicative character of accounting variables, largely supported by evidence,

seems to validate this second postulate. Indeed, the Gibrat's law is widely

accepted as a simpli�ed mechanism capable of broadly describe how posi-

tive accounting numbers are generated. The following section shows that

the consideration of randomness may not necessarily a�ect these �ndings.

3 Ratios of Random Variables

So far the paper has derived formulations leading to valid ratios, namely

where both components of the ratio are driven by the same, constant rate

of change. Although deviations from norms were included in the discussion,

they were treated as isolated cases, not as random deviations. When explic-

itly considering randomness, some new questions must be addressed. This

section �rst shows that random variables can be scale invariant. Then the

statistical characteristics of �rm size are outlined. Finally, the problem of

di�erences or negative components is addressed.

3.1 Random Scale Invariance

The characteristics of (5) leading to valid ratios can easily be replicated in

a random context. Suppose, for instance, that the observed behaviour of

accounting variable x

k

may be described as

x

k

= X

k

exp[r

j

� + Z]; (6)

where r

j

is the expected continuously compounding rate of change denoting

the e�ect of �rm size and Z is the random component. According to (6),

accounting variables are lognormal and, as before, any item taken from the

14



j

th

set of accounts will exhibit the same logarithmic expectation r

j

so that

scale invariance is veri�ed.

Ratios of such variables could be validly used. The problem with (6)

is that this form cannot be derived from (4) with generality. Indeed, the

simplest random generalisation of (4) would lead to descriptions such as

x

k

= X

k

exp[(r

j

�

�

2

2

)� + Z]; (7)

rather than to (6). Since the compounding e�ect is now in
uenced by the

standard deviation � of Z, not just by size, it follows that variables governed

by (7) would not be proportional in spite of obeying (1). It is concluded

therefore that (1) cannot express scale invariance with generality, namely in

the case of random variables.

Formulations such as (1) fail to portray random proportionality because

they pre-suppose that changes dY or dX are smooth

12

whereas smoothness

cannot be postulated for random changes. There are, however, components

of random mechanisms that evolve smoothly and scale invariance may arise

from a smooth e�ect that co-exists with random e�ects. Indeed, the question

here is not whether random scale invariance is possible but how it should be

expressed structurally. Random proportionality must be possible since, e.g.,

for lognormal variables, a natural scaling factor, the median of the ratio,

does exist. Actually, the median is often used as a norm in ratio analysis

(Lev & Sunder, 1979).

The correct formulation of random scale invariance may be found by

identifying mechanisms that lead to (6) rather than to (7). However, it may

be easier to simply answer the question of how (1) should be transformed so

as to become insensitive to the variance and covariance of Y and X . If, for

instance, (1) is transformed so as to portray the equality of two continuously

compounding rates of change, a mechanism portraying random proportio-

nality is obtained. Recall that r

j

relates to the corresponding continuously

compounding rate by the transformation log(r

j

+ 1). When this is applied

to both sides of (1) it becomes

log

Y + dY

Y

= log

X + dX

X

which may be abridged to

d logY = d logX: (8)
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It is easy to verify that the above is indeed a quite general formulation of

scale invariance.

13

It applies to deterministic as well as random variables,

either continuous or discrete. In the deterministic case and in most practi-

cal applications, the di�erence between (8) and (1) is of lesser importance.

Where structural descriptions are required, however, only (8) is guaranteed

to portray the equality of two rates of change capable of generating propor-

tional variables.

Di�erences between (8) and (1) are now illustrated within the framework

proposed by Tippett (1990), who used Stochastic Calculus,

14

to study the

ratios of some continuous-time Markov processes, concluding that ratios will

necessarily drift over time. Here, by contrast, it is found that ratios may

not drift.

Suppose that components y and x of a ratio are governed by stochastic

di�erential equations consistent with (8), i.e.,

d log y = s

j

d� + �

y

dz

y

and d logx = s

j

d� + �

x

dz

x

(9)

where d log y and d logx stem from a deterministic e�ect, s

j

d� plus a stochas-

tic e�ect, �

y

dz

y

or �

x

dz

x

, speci�c to y or x.
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The deterministic e�ect is

supposed to model the pervasive in
uence of �rm size, being the same for

items from the j

th

set of accounts so that scale invariance is veri�ed, and

is further assumed to be constant throughout the generative period so that

changes are also size-independent. The summation of all d� , � , re
ects the

length of the accounting period during which the generation of j takes place.

Using the Itô lemma

16

to exponentiate (9) the trivial result is

dy

y

= (s

j

+

�

2

y

2

)d� + �

y

dz

y

and

dx

x

= (s

j

+

�

2

x

2

)d� + �

x

dz

x

which, after integration, yields

y = Y exp(s

j

� + Z

y

) and x = X exp(s

j

� + Z

x

) (10)

where levels Y , X are initial values and Z

y

;Z

x

are Wiener processes with

variances �

y

� , �

x

� respectively. y and x, therefore, stem from the expo-

nentiation of Brownian motions, being accordingly known as exponential or

geometric Brownian motions. Notice how (10) is simply the stochastic ver-

sion of (3), (5) or (6), preserving those characteristics whereby the postulates

of ratio analysis are veri�ed. Ratios of such variables evolve as

y

x

=

Y

X

expZ ; (11)
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Exponential Brownian Dol�eans exponential

Motion (Tippett, 1990)

d log x sd� + dz (r� �

2

=2)d� + dz

dx=x (s+ �

2

=2)d� + dz rd� + dz

x X exp(s� + Z) X exp[(r� �

2

=2)� + Z]

E(x) X exp[(s+ �

2

=2)� ] X exp(r�)

ratio R expZ R exp[(�

2

y

� �

2

x

)�=2 + Z]

E(ratio) R exp[(�

2

r

=2)� ] R exp[(�

2

y

� ��

y

�

x

)� ]

Table 1: Simpli�ed formulations tested for valid ratios in this paper and in

Tippett (1990). Z has an expanding variance.

not only removing s

j

� , the e�ect of size, but also exhibiting no inherent

drift. Z is also a Wiener process with variance (�

2

y

+ �

2

x

� 2 � �

y

�

x

) � , �

being a (residual) correlation coe�cient between z

y

and z

x

.

Table 1 shows the di�erences between the generative mechanism used

in this example and that in Tippett (1990).
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Thus the apparent drift in

ratios is just a consequence of the choice of the model.

It may be helpful to note that ratios of Markov processes, albeit valid,

are useless except in the short-term. This is because the ratio method re-

quires a comparison (in this context between values in di�erent periods) and

any such comparison using Markov processes carries no information at all

except in the one-period comparison, in which case drifts would be negligi-

ble. In the analysis of Markov series, therefore, the existence of drifts would

not make matters any worse than they are already. Moreover, by de�ni-

tion, non-stationary variables should drift over time irrespective of being

ratios (in exponential Brownian motions the drift stems from the combined

e�ect of an expanding variance and the exponentiation). In short, Tippett's

(1990) choice of context and model, and the subsequent criticism of the ratio

method, illustrates the potential danger of an a priori exclusion from the

reasoning of the possibility that ratios may be valid.

In summary, the validity of the ratio method is indeed plausible in the

case of random variables. When modelling the e�ect of size on the gener-

ation of accounting numbers, continuous compounding should be preferred

to formalisms aimed at describing sampling processes, as appropriate. The

widely used exponential Brownian motion adheres to such requirement. The

following section discusses the modelling of �rm size, showing how to inter-

pret it as a statistical e�ect.
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3.2 Multiplicative Formulations and Size

Sales, Earnings, Assets and other accounting variables are routinely viewed,

in domains such as Industrial Economics, as multiplicative, i.e., broadly

lognormal. In spite of this, until recently the accounting literature has dis-

carded lognormality as incompatible with sound reasoning while quoting

the in
uential fallacy introduced by Eisenbeis (1977),

18

or the fact that

some ratios are Normal, or even the distinction between accounting stocks

and 
ows. Excessive skewness and other characteristics of multiplicative

variables were interpreted as distortions of normality or as a side e�ect of

non-proportionality (Barnes, 1982).

The case for multiplicative mechanisms was made by McLeay (1986b),

where it was explained that, in variables which are accumulations of sim-

ilar transactions, lognormality is the natural assumption. Tippet (1990)

followed, using multiplicative forms in the time domain. This section shows

that lognormality is indeed important, not only because it provides the ap-

propriate viewpoint to study ratios. More than that, lognormality entails

the assumption that �rm size is a pervasive statistical e�ect present in ac-

counting numbers.

First, recall why accounting variables cannot be described as resulting

from the kind of additive process that underlies Normal variables. Whilst

each transaction contributing to the amount reported as, say, Total Sales

for a given period is itself a random event, an individual transaction con-

tributes to the reported aggregate not in a manner which could lead to either

an increase or decrease in Total Sales, but by accumulation only. Accumu-

lations of random events tend to be multiplicative, as opposed to additive,

because the likelihood of realisations is conditional on the occurrence of a

chain of several previous events. Such likelihood thus stems from multiply-

ing, rather than adding probabilities. Other economic phenomena such as

wealth or stock prices are also multiplicative but nowhere are reasons for

this behaviour so neatly evident as in the case of Sales, Assets and other

accounting numbers. The di�erence between accounting stocks and 
ows

or the existence of accounting numbers that may take on negative values

should not be viewed as capable of undermining the above reasoning, as

explained in the following section.

Descriptions of the inter-relationships amongst e�ects greatly di�er be-

tween additive and multiplicative variables. For additive data, distribu-

tions are preserved when variables are added or subtracted. This is not the

case for multiplicative data where distributions are preserved when variables

18



are multiplied or divided. Accordingly, the simplest additive formulation is

x = � + Z, where x is explained as an e�ect � (the expectation), plus a

random deviation, Z while the multiplicative equivalent is x = Xw, where

a realisation of x is explained as the product of a level, X , and a random

factor w.

The likelihood that x may stretch beyond two or three standard de-

viations above or below � is very small. Therefore, in general, additive

formulations may describe deviations from an average size but they are in-

adequate to describe large di�erences in size. By contrast, in the case of

multiplicative formulations, the exponential nature of w leads to likely val-

ues of x over a much wider range. This is why lognormality (or other forms

of multiplicative behaviour) often denotes a size in
uence whereas normality

generally denotes a size-free variable. In turn, the presence of size means a

population where growth is in progress, whereas size-free variables denote a

stable population where growth is no longer observed. It is thus somehow

contradictory to accept, as some authors actually do, that accounting num-

bers are lognormal but, at the same time, failing to model the corresponding

in
uence of size on those numbers.

The examination of conditions for the valid use of ratios has the advan-

tage of leading naturally to formulations where �rm size is present. In the

case of the two ratio components y and x from the j

th

set of accounts, (6)

may be written in logarithmic form as

log y = �

y

+ s

j

� + Z

y

and logx = �

x

+ s

j

� + Z

x

(12)

where �

x

= logX and �

y

= logY . The above are known as components of

variance formulations of the mixed model type. They account for di�erences

in relation to the expectation where such di�erences are introduced by dis-

crete sources of variability. The e�ect of �rm size, s

j

� is, for both models,

the random e�ect and �

y

, �

x

are the �xed e�ects.

It was mentioned that the simplest additive formulation, x = � + Z,

describes deviations in relation to �. When x is explained, not only by the

expected value but also by d, a component of the variance of x, then the

ensuing model, x = � + d

j

+ Z is similar to those in (12) where d

j

is the

expected deviation from � introduced by the j

th

level of d. If, as in (12),

the same e�ect is present in two variables, it is possible to remove it from

measurement by subtracting variables. Size, therefore, plays the role of a

component of the variance of the logarithms of accounting variables. The

di�erent sets of accounts that may be considered in a given sample are the

levels of such e�ect.
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Components of variance are distinct from other, better known models,

namely those incorporating co-variances. In the face of existing research

where it was insisted that co-variance terms should be included in the mod-

elling of the logarithms of accounting variables, it is important to state

clearly that there is no theoretical underpinning supporting the generalised

use of co-variances in this context and that such use would be, in most of

the cases, inadequate.

19

Ratios formed with components obeying (6) may be used validly under

broad conditions. In a cross section comparison the median of the ratio

(which can be estimated by the geometric mean) is the scaling factor for

y=x and the measurement is also size-independent. In a time series anal-

ysis it makes no di�erence whether Y=X is the ratio in a previous period,

a benchmark, or a prediction: the measurement will obey or not the sec-

ond postulate depending solely on the nature of the processes Z

y

, Z

x

. In

practice, an expanding variance and other types of non-stationarity often

found in accounting series (Wu, Kao & Lee, 1996), may dissuade analysts

from comparing values separated by more than one year. As stressed, this

limitation is caused by non-stationarity, not by ratios.

The superior degree of de�nition brought about by (12) may allow a more

focused discussion of the statistical characteristics of reported numbers while

providing a basis upon which improvements may be built. For instance,

(12) clearly suggests how to estimate the size of a �rm based on a given

set of accounts. Once size has been estimated, it is possible to create ratios

capable of removing just size, or to seek a precise description of the co-

variance structure of accounting variables. The following section explains

how accounting di�erences and negative values should be viewed.

3.3 The Distribution of Ratios

One major source of scepticism regarding the usefulness of ratios has been

the diversity of their statistical distributions: some ratios are broadly Nor-

mal, others are skewed positively or negatively.

20

McLeay (1986b) proposed

a framework for understanding the distribution of ratios where components

are supposed to be either multiplicative (accumulations) or additive (dif-

ferences). The diverse distributions found in ratios would stem from the

di�erent combinations of these two cases. Tippett (1990) adhered to this

view. Trigueiros (1995) contended that all accounting variables should be

viewed as multiplicative, i.e., positively skewed, showing how apparently

normal or negatively skewed distributions stem from the bounding e�ect of
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Ratio Example Transformation Boundaries

to use of the ratio

R = Y=X Current Ratio logR 0;1

R = (X � Y )=X Sales Margin log(1� R) �1; 1

R = (Y �X)=X Change in Capital

Employed log(1 + R) �1;1

R = (Y +X)=X Interest Cover log(R� 1) 1;1

R = X=(Y +X) Liabilities Ratio log(1=R� 1) 0; 1

R = X=(Y �X) Leverage Ratio log(1=R+ 1) 0;1

Table 2: Some transformations of �nancial ratio based on accounting iden-

tities where Y and X are lognormal, positive only variables.

accounting identities (which preclude, for example, the ratio Total Debt to

Total Assets from spreading out beyond the value of 1). The same author

has provided transformations (table 2) able to bring these bounded ratios

back to their multiplicative behaviour.

At present, papers generally incorporate the intuition that distributions

of ratios may be in
uenced by accounting identities, but the suggestion

that all accounting variables should be viewed as multiplicative has not

been taken up. Instead, authors still adhere to the framework proposed by

McLeay (1986b). For instance, Cooke & Tippett (2000) incorporate into

their valuation models the bounding e�ect of accounting identities as pro-

posed by Trigueiros (1995). McLeay (1997) and McLeay & Omar (2000)

present sets of transformations based on bounding e�ects without aban-

doning the distinction between the two types of variables, additive and

multiplicative. This section discusses the distribution of 
ows and other

accounting di�erences inclusive of those that may take on negative values.

Authors seem to believe that a ratio of the form dx=x, such as the

ratio expressing relative changes in Capital and others of the same type,

should approach normality. This belief is based on the known fact that

lognormal x may lead to Normal dx. However, this is so only where dx

are small in comparison to x. Now, for accounting data this is simply not

the case. Accounting di�erences or 
ows such as changes in Capital lead to

multiplicative ratios because, in most instances, these 
ows are not small by

any possible measure, not least when compared with the respective stock.

Accounting di�erences should not be viewed as a typical `dx'. Actually,

they are not much di�erent from stocks, both being large accumulations.
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Figure 1:

Annual Sales, for instance, in spite of being a 
ow, often is larger than

stocks such as Fixed Assets, e.g., in high turnover industries.

Similarly, numbers that may take on negative values should not be

viewed as possessing additive, nearly normal distributions, but simply as

subtractions of synchronised accumulations, i.e., as the result of subtracting

two lognormal, positive{only, variables, both generated under the e�ect of

the same �rm's size. The density function of one such subtraction is easy

to simulate using (12). It turns out that such distribution is not unique.

Rather, it is a juxtaposition of two approximately lognormal density func-

tions, one for positive and the other for negative values, as depicted in

�gure 1.

The assumption of a Normal or similar distribution would imply that the

reporting of immaterial pro�ts or losses should be more likely than that of

material losses. In general, however, losses, as well as pro�ts, are proportion-

ate to the size of the �rm thus the reporting of immaterial losses is indeed

less likely than that of size-related losses. That is, the probability density

of pro�ts must decrease and then increase again after passing through zero.

Actually, this is what the simulated distributions in �gure 1 predict. By

contrast, Normal and related distributions are unable to account for the

speci�c behaviour of small numbers.

The consequences for ratio analysis are that, in general, ratios are mul-

tiplicative no matter their components' type, stocks or 
ows. When the

numerator of the ratio is linked by some accounting identity to its denom-

inator, the appropriate transformation (Table 2) will bring the ratio back
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to a standard behaviour. As for ratios where the numerator may take on

negative values, it seems as though there is no other choice but to examine

two di�erent populations, one for positive and the other for negative real-

isations. This, after all, is how practitioners generally deal with negative

ratios (Lev & Sunder, 1998).

To conclude, most accounting numbers should be viewed as accumula-

tions. Flows such as Earnings and other variables where negative cases are

possible simply re
ect the subtraction of two accumulations driven by the

same in
uence of size. Their statistical behaviour is broadly multiplicative,

negative values being distributed in a way that resembles the mirror{image

of a lognormal density function.

4 Conclusions

Only after understanding the reasons for the success of �nancial ratios can

their limitations be put into a proper perspective. Accordingly, this study

has examined two postulates underlying valid ratio analysis, extracting from

them a set of conclusions, summarised as follows:

� the components of ratios are scale invariant (proportional) and are

generated under homogeneous relative growth;

� the e�ect of �rm size is an expected continuously compounding rate

of change speci�c to each set of accounts;

� 
ows or other di�erences stem from subtracting two multiplicative

variables, both in
uenced by the same size e�ect;

These conclusions constitute a foundation as they provide a simpli�ed model

of the behaviour of accounting variables upon which improvements may be

built.

In setting out the above insights into the theoretical foundations of the

ratio method, the paper has addressed the question as to whether the use

of �nancial ratios is motivated by tradition rather than by well-founded

considerations. It is our conclusion that, in spite of their simplicity, ratios

are governed by an explicit set of conditions and, moreover, they require

data of the type that has been shown to characterise the �gures reported in

company accounts.

Given this, it may then be asked why so many previous contributions to

the literature on �nancial ratios have led to such a pessimistic view of ratio
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analysis. Reasons seem to relate to an apparent lack of theoretical drive

in the part of most authors, probably fed by the conviction that account-

ing data is too complex, being impossible to �nd regularities there. These

authors, typically, neither accept the working hypothesis that ratios may

be valid nor produce other hypotheses, thus remaining stuck in a sceptical

trap or at the mercy of assumptions whose implications they do not seem

fully aware of. In both cases conclusions are hampered by such scarcity or

inadequacy of assumptions.

It is by no means a coincidence that scepticism about the usefulness

of ratios usually goes hand in hand with other manifestations of scepticism,

namely about the possibility of de�ning �rm size exactly. By contrast, e�orts

to understand why ratios are useful have led to a clearer view of other related

subjects, speci�cally the role that �rm size plays on the generation of those

numbers.

The lack of theoretical drive leads, in turn, to the di�culty in distin-

guishing what is truly damaging for the �nancial measurement from what is

negligible. Typical examples are the concern about `intercept terms' or that

with drifts in the time domain. The often-quoted statement that almost all

of the assumptions required for valid ratio analysis are likely to be violated

in practice (Lev & Sunder, 1979), should be viewed in the same light. The

statement is surely correct but it might as well be applied to Newton's Laws

of Motion and to many other models considered as good approximations in

normal circumstances. Distortion, in spite of its presence in mathematical

models, may have a negligible e�ect on measurement.

Moreover, assumptions may be violated without invalidating a method-

ology. When weighing inaccuracy against the ability to provide an intuitive

interpretation with a parsimonious model, it may well be that such a trade-

o� could prove to be largely favourable to the less accurate methodology.

This kind of trade-o� is particularly relevant to the ratio method. Ratios,

having just one degree of freedom, are able to measure deviations from con-

stant proportions. The condition of proportionate growth, rather than a

limitation, is a direct consequence of this: one unique parameter is only

able to deal with scale invariant changes, i.e., the modelling of the common

changes of both components. Now, by providing deviations from norms and

nothing else, ratios o�er in a succinct form the information that �nancial an-

alysts seek. Conversely, analysts would �nd it di�cult to use models where

the relevant information is scattered in several parameter values.

Thus, to conclude, the challenge facing research into �nancial ratio anal-

ysis is not how to increase the complexity of models. Rather, it is how
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to take account of the limitations of the parsimonious ratio model without

changing the speci�c characteristics of the measurement.
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6 Notes

1. `Multiplicative', `proportionate', `exponential' and `lognormal' are terms

variously used in the literature on the growth of �rms to designate a

family of skewed distributions related to proportionate growth (the

Gibrat Law).

2. The statement stresses that, notwithstanding the potential to mislead
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in well known cases such as in the presence of seasonality or where

both the numerator and the denominator may take on negative values,

ratios have no general source of invalidity associated with their use.

3. When ratios are used to make predictions (Whittington 1980), a com-

parison also takes place, the object of interest being an observed dis-

crepancy as well. For instance, when predicting Pro�ts using the Pro�t

Margin ratio, the reference is the margin taken as the norm and the dis-

crepancy is the proportion of predicted Pro�ts which is not explained

by Sales.

4. That is, ratio analysis entails a measurement.

5. Only measurements are valid or invalid, the problem of the validity

of ratios being thus circumscribed to cases involving a comparison.

Indeed, any �nancial indicator whose full interpretation would not

require a comparison, thus being a fundamental magnitude in its own

right, would be neither valid nor invalid.

6. Scaling factors are multipliers by de�nition and will not easily yield

to the role of expected values which, also by de�nition, are additions.

The expected ratio of two Normal variables, for instance, depends on

the magnitudes of components. The expected ratio of two lognor-

mal variables depends on the variance and co-variance of components.

The case, documented in Lev & Sunder (1979) and other authors, of

an error term whose variance is proportional to the square of the nu-

merator of the ratio, would lead to homeoskedastic, constant ratios

but this transformation bears no resemblance to the way accounting

numbers are generated.

7. This term, borrowed from texts on linear regression, is often found in

texts on the vlidity of ratios.

8. Lev & Sunder (1978, p. 190) implicitly refer to this formulation when

they notice that ratios assess both the marginal and the average e�ect

of a change in Y on X .

9. Williamson (1984), for instance, identi�ed 11 ratios used by Fortune

500 companies as part of their annual reports. Sales appears in 4 of

these ratios, Total Assets in 3, Net Income and Operating Income in

2. Amongst this set of 11 ratios, only 2 do not share components with

other ratios.

27



10. Using the expansion

df(y; x) =

@f

@x

dx+

@f

@y

dy;

changes d (y=x) experienced by the ratio y=x may be expressed as

d

y

x

=

y

x

�

dy

y

�

dx

x

�

and the existence of actual discrepancies in relation to the scaling

factor implies, in the general case, that

dy

y

6=

dx

x

:

This, together with the postulate that valid ratios are size-indepen-

dent, leads to the conclusion that d (y=x) is size-independent with

generality where both dy=y and dx=x are size-independent. The case

where dy=y � dx=x is size-independent but individual dy=y and dx=x

are size-related, although worth examining, lacks generality.

11. The role of � in cross section and in time series is thus made similar.

In both cases � allows for comparisons between cases where the time

elapsed or the dispersion are not the same.

12. Smoothness of dY or dX is what allows extrapolation amongst con-

tiguous values of Y or X . Extrapolation, in turn, is required to make

dY and dX as small as desired. Such requirement, called in�nitesimal

convergence is the basic postulate of Calculus.

13. The increase in generality brought about by (8) in relation to (1)

mirrors that obtained by the use of the geometric mean as a summary

measure in order to overcome adverse distribution conditions.

14. Stochastic Calculus is an analytical technique applicable to continu-

ous time Markov processes (di�usions). In spite of being non-dif-

ferentiable, these processes nevertheless allow, in most of the cases

with practical interest, the manipulation of the stochastic equivalent

to di�erential equations.

15. Random terms dz

y

; dz

x

are limits of increments of Wiener processes

Z

y

;Z

x

as the time interval approaches d� . For practical purposes
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dz

y

= Z

y

p

d� and dz

x

= Z

x

p

d� where Z

y

and Z

x

are time-independent

standard Normal random variables. Wiener processes are zero mean,

time-independent Normally distributed continuous Markov processes.

16. The Itô lemma is the tool of Stochastic Calculus. Given a stochastic

function F (x; t), the total derivative may be calculated using

dF =

@F

@t

dt+

@F

@x

dx+

1

2

@

2

F

@x

2

(dx)

2

:

Readers may �nd a useful introductions in the context of Financial

Economics in Campbell, Lo and MacKinley (1997, pp. 339{349).

17. Another example where the distinction between processes in table 1

is relevant is the pricing of options when the variance of the underly-

ing security is estimated using sampled returns whereas pricing mod-

els are developed on the basis of continuously compounded returns.

Where sampled returns dP=P equate �d� + �dz, this is equivalent to

d logP = (�� 1=2�

2

)d� + �dz, where the corresponding continuously

compounded returns d logP are explained in terms of parameters �; �

used in the previous process, which were estimated from the data (see,

e.g., Campbell, Lo & MacKinley, 1997, p. 962).

18. Eisenbeis (1977) mistakenly stated that `log-transformed variables give

less weight to equal percentage changes in a variable where the val-

ues are large than when they are smaller [...thus] the implication [of

using a logarithmic transformation] would be that one does not be-

lieve that there is as much di�erence between a $1 billion and a $2

billion size �rms as there is between a $1 million and a $2 million size

�rms. The percentage di�erence in the log will be greater in the latter

than in the former case' (p. 877). Eisenbeis' pitfall is that the calcula-

tion of proportions of the log-transformed measurement is equivalent

to calculating proportions twice. This inappropriate warning against

logarithms gave support at the time to the use of ad hoc techniques

such as those proposed by Frecka & Hopwood (1983), and may have

dissuaded researchers from attempting to �t adequate models to the

distribution of ratios.

19. When logarithmic co-variances are used (Tippett, 1990; Cooke & Tip-

pett 2000) it is pre-supposed that the relationship between two ac-

counting variables cannot be linear except in singular cases. Although
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some relationship between accounting variables may indeed be non-

linear, the assumption that all relationships must be non-linear would

be unnecessarily restrictive.

20. It may be mentioned, amongst many other examples, that So (1987)

did not �nd positive skewness in the ratios Total Debt to Total Assets

(TD=TA), Net Worth to Total Assets (NW=TA) and Current Assets

to Total Assets (CA=TA), the latter even being negatively skewed.

Watson (1990) also noticed that ratios TD=TA and NW=TA were

symetrical. See e.g., Trigueiros (1995) for a review.
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