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Any practitioner will tell you that accounting data is difficult to model. When, for instance, building a

regression, you will find that data is plagued with influential cases capable of distorting estimation. Moreover,

heteroscedasticity, fat tails and asymmetric distributions make your P -values meaningless. When trying to

use the usual recipes to sort out some of these problems, you will find that most of the remedies simply do

not work. Indeed, it is difficult to make any sense of accounting data.

Yet, accounting data is not unpredictable. It obeys clearly defined rules. Once these rules are understood,

it becomes possible to use accounting variables in parametric models, either in the form of ratios or directly

as raw numbers.

The goal of this note is to facilitate the understanding of the characteristics of accounting data so that it

can be used in statistical models. Specific guidelines are offered on how to transform ratios into well-behaved

variables, how to deal with non-proportionality, how to accurately model firm size, how to model Earnings

and how to solve other difficulties.

Accounting Numbers are Multiplicative

Accounting data is the numerical information found in annual reports of firms. Reports contain sets of

accounts (the Profit and Loss Account, the Balance Sheet and others) and item in these sets will report on a

specific magnitude. The volume of sales of the year, for instance, is reported in the item Sales. Magnitudes

found in sets of accounts are the raw material for financial analysis. But before being of any use, these

numbers must be combined to form ratios. Typically, two numbers from the same report, say Earnings and

Net Worth, may be chosen as the numerator and denominator of a ratio. Most accounting data used in

statistical models is in the form of ratios.

It is impossible to understand the statistical characteristics of ratios without understanding first the

characteristics of the numbers they are made of and the way they interact. Therefore, the first section of

this note is devoted to such numbers.

1 The first and most important fact about numbers found in accounts is that they cannot be described

as resulting from the type of random mechanism that leads to Normal variables. Normal variables stem

from additive random mechanisms: an observed distribution is the result of adding a large number of other

distributions. For instance, the distribution of weight in adults stems from adding the probabilities associated

with genetic effects, eating habits and other effects. In the limit, any addition of probability distributions,

no matter which, leads to the Normal distribution (the Central Limit theorem).

Obviously, in an additive mechanism, each intervening effect may lead to an increase or to a decrease

in the likelihood associated with the resulting event. Adequate eating habits may, for instance, be able to
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balance a genetic pre-disposition to put on weight, lowering the expected weight.

2 The mechanism generating accounting numbers is different: effects always reinforce each other. This

is because such effects are, in this case, every individual transaction contributing to a reported magnitude.

Indeed, each transaction contributing to the amount reported as, say, Total Sales for a given period, is itself

a random event. It contributes to the reported number, not in a manner which could lead to either an

increase or decrease in Total Sales, but by accumulation only.

Accumulations of random events lead to multiplicative, as opposed to additive variables, because the

likelihood of realisations is conditional on the occurrence of a chain of previous events, not on any free

interaction of influences, some positive, others negative. Such likelihood thus stems from multiplying rather

than adding probabilities.

3 Multiplicative distributions are easy to recognise. They are skewed, exhibiting long tails towards positive

values. As a consequence, some of the observations in a sample are likely to exhibit very large magnitudes

in comparison with others, thus giving the impression of being outliers.

Contrasting with additive distributions where skewness and kurtosis are independent, in mechanisms of

the multiplicative type both statistics are manifestations of a unique, underlying phenomenon, variability.

Therefore, highly volatile variables exhibit markedly skewed and leptokurtic distributions whereas those

where variability is small have almost symmetrical, non-kurtoptic distributions.

4 Accumulation is just one amongst several processes leading to multiplicative numbers. Any variable

where magnitude x is, in average, proportional to changes dx, will exhibit a multiplicative distribution. The

natural form1 in the origin of such type of variable is

dx

x
= x̂dτ + dz (1)

where x̂ is an expected percent change, τ is the variable supposed to drive changes in x, dz is a small random

disturbance and x̂dτ is supposed to be independent of τ . Therefore, in this type of variable, percent changes

are additive. What approaches normality as a limit is percent change, not absolute change.

The mechanism depicted in (1) is known as the “Gibrat’s Law of Proportionate Effect”. It leads to

lognormal distributions, that is, distributions where the logarithm of observations is Normal, or to other

types of multiplicative distribution. Multiplicative, proportionate, exponential and lognormal are terms

variously used to designate the family of skewed distributions with its origin in (1). Aitchison and Brown

(1957) describe the lognormal distribution.

5 Sales, Earnings, Assets and other accounting aggregates are since long known, in domains such as In-

dustrial Economics and others, to be multiplicative, i.e., broadly lognormal. In spite of this, until recently

the accounting literature has discarded lognormality in accounting data as incompatible with sound rea-

soning while quoting the influential fallacy introduced by Eisenbeis (1977),2 or the fact that some ratios

are apparently Normal, or even the existence of negative values in some accounts. Excessive skewness and

other characteristics of multiplicative variables were interpreted as distortions of normality or, in the case of

ratios, as a side effect of non-proportionality (Barnes, 1982). In the Accounting research domain, the case

for multiplicative mechanisms was made by McLeay (1986) and Trigueiros (1995).

6 The peculiar characteristics of lognormal variables must be borne in mind in any context involving

the manipulation of these variables or their ratios. Lognormality cannot be treated as a simple departure

from normality. For coefficients of variation3 beyond 0.25, skewness and kurtosis are so severe that most

observations concentrate in a small region with only a few extreme values spreading out over a wide range.

No parametric tool is robust enough to avoid severe distortion when such data is used.
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7 Statistical models try to find functional forms that are capable of reflecting relationships amongst effects.

Descriptions of the inter-relationships amongst effects greatly differ between additive and multiplicative

variables. For additive data, distributions are preserved when variables are added or subtracted. This is not

the case for multiplicative data where distributions are preserved when variables are multiplied or divided.

The addition or subtraction of two Normal variables will be Normal; the product or ratio of two lognormal

variables will be lognormal. The simplest additive formulation would be

x = x̂+ z (2)

where x is explained as effect x̂, the expectation, plus a random deviation z. The multiplicative equivalent

would be

logx = x̂+ z or x = Xw (3)

where x is now explained as the product of a constant magnitude, X , by a random factor w.

8 The likelihood that x may stretch beyond two or three standard deviations above or below x̂ is very

small. Therefore, in general, additive variables describe deviations from an average magnitude but they are

unable to describe large differences in magnitude. By contrast, in the case of multiplicative formulations,

the exponential nature of w leads to likely values of x over a much wider range. The volume of sales of

United Biscuits, a firm in the 95th size percentile of its industry, is about 500 times that of firms in the 5th

size percentile. Additive observations would never be able to model such huge discrepancies. This is why

lognormality often denotes size influence whereas normality generally denotes a size-free variable.

How to Use Financial Ratios in Statistical Models

The existence of a common size influence in magnitudes reported in the accounts of firms led to the use of

ratios. Ratios such as Return on Equity, Interest Cover, Debt to Net Worth and many others, are widely used

by managers, practitioners and analysts. They control for this common effect of size so that comparisons

may be made.

9 Where accounting numbers are lognormal, then ratios should be lognormal as well. But some ratios show

unexpected characteristics, which make them difficult to use in statistical models. For instance, although

most ratios are indeed lognormal, Total Debt to Total Assets, Net Worth to Total Assets and others are

apparently Normal. Current Assets to Total Assets is negatively skewed (see, e.g., So, 1987). How is this

possible?

The reason is straightforward. Accounting identities preclude some ratios from taking on all the values a

skewed distribution would allow. This constraining effect is clearly observable when plotting, on a logarithmic

scale, the two components of a ratio. Figure 1 shows, on the left, the effect of a constraint imposed by Total

Assets on the spread of Net Worth and, on the right, a relationship where accounting identities play no role.

10 Adequate transformations can take into account constraining mechanisms yielding unconstrained ratios.

For example, any ratio where the numerator cannot be larger than the denominator, i.e.,

xi
∑

xi
(4)

can be transformed into the corresponding, unconstrained, ratio

xi

(
∑

xi)− xi
. (5)
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Figure 1: Scatter-plots of constrained (left) and unconstrained (right) bivariate distributions.

Case Ratio Example Transformation Boundaries

No to use of the ratio

1 R = Y/X Current Ratio logR 0,∞

2 R = (X − Y )/X Sales Margin log(1 −R) −∞, 1

3 R = (Y −X)/X Change in Capital

Employed log(1 +R) −1,∞

4 R = (Y +X)/X Interest Cover log(R − 1) 1,∞

5 R = X/(Y +X) Liabilities Ratio log(1/R− 1) 0, 1

6 R = X/(Y −X) Leverage Ratio log(1/R+ 1) 0,∞

Table 1: Transformations for constrained ratios (McLeay and Trigueiros, 2003).

The unconstrained ratio corresponding to the ratio Fixed Assets to Total Assets (FA/TA) is the ratio

FA/CA where CA = TA − FA. The information contained in both ratios is the same. The difference

between them is just functional.

11 Table 1 summarises transformations able to bring ratios affected by several types of constraints into

parametric behaviour. Ratios where there is no constraint are lognormal.

12 Awareness of constraining mechanisms and the way they affect ratios removes one major obstacle in

understanding and using financial ratios. But not all is explained. A fact that remains unaccounted for is

the existence of fat tails (leptokurtosis) in the logarithms of all types of ratios, that is, even after appropriate

transformations are applied. Such leptokurtosis, though, is not severe and may, in most cases, be ignored.

The following section discusses the distribution of accounting flows (differences such as Earnings) which

may take on negative values thus posing particular difficulties to modeling.
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Likelihood

Earnings0
Figure 2: The density function of Earnings is a juxtaposition of two lognormals.

The Distribution of Earnings

The literature on the distribution of ratios seems to consider profits as additive, albeit not necessarily Normal

(McLeay, 1986; Tippett, 1990; amongst others). Probably this is because authors focus on profitability ratios,

not on profits figures.

13 Profitability ratios basically express percent changes in Net Worth. Authors believe that a ratio of the

form dx/x should approach normality since lognormal x lead to Normal dx where dx are small disturbances.

However, in order to qualify as a small disturbance, dx must be really small when compared with x. Now,

for most numbers taken from sets of accounts, this is simply not the case. Flows such as changes in Net

Worth are not small enough to qualify as a disturbance, not least when compared with the respective stock.

Annual Sales, in spite of being a flow, often is larger than stocks such as Fixed Assets, e.g., in high turnover

industries. Accounting flows should not be viewed as typical dx. Actually, they are not that different from

stocks, both being large accumulations. Thus profitability and other ratios are indeed multiplicative.

14 Numbers that may take on negative values are simply the result of subtracting positive-only accumula-

tions. A magnitude reported as Earnings is obtained by subtracting the different types of costs and expenses

from Revenues. The distribution of these variables should therefore stem from subtracting lognormal dis-

tributions. The task of analytically determining such distributions is not easy as it requires working out

the logarithm of a subtraction. There is however a fact that simplifies analysis. Costs and Revenues are

correlated because both are influenced by the same effect, size. When correlation is taken into account it

becomes possible to approximate analytically the distribution of flows. It turns out that, for conditions

typically found in industries, such distribution is not unique. Rather, it is a juxtaposition of two approx-

imately lognormal density functions, one for positive and the other for negative values, the latter being a

mirror-image of the lognormal as depicted in figure 2. Simulation confirms this result.

15 Ratios formed with such distributions may be markedly two-tailed, giving the impression that they are

near symmetry. Fat-tailed distributions such as Student’s t or Cauchy’s may indeed fit them closely (McLeay,

1986). It should be made clear, however, that the hypothesis of additive distributions leads to unreasonable

conclusions. The reporting of immaterial values must be less likely than that of size-related values. The

5



probability density of Earnings, for instance, must decrease when approaching zero and then increase again

after passing through zero into negative values as predicted by Figure 2. This is because losses, as well as

profits, must be proportionate to size. Additive distributions would imply that the reporting of immaterial

profits or losses is more likely than that of material losses.

Ratios are multiplicative no matter their components’ type, stocks or flows. When the ratio is constrained

by some accounting identity, an appropriate transformation will bring it back to a standard behaviour.

Specifically, profitability ratios will benefit from transformation no. 3 in Table 1. Indeed, most commonly

found situations involving negative flows are solved simply by using this or other transformation. As for

ratios where the denominator, not just the numerator, may take on negative values, it seems as though there

is no other choice but to consider two populations, one for positive and the other for negative denominators.

This, after all, is how practitioners deal with such ratios.

How to Account for Non-Proportionality in Ratios

Measurement using ratios requires proportionality between components. If the natural relationship between

ratio components y and x is of the form y = a + bx (non-proportional) rather than y = bx (proportional),

then the measurement will be misleading as y/x cannot have constant standards or norms (see, e.g., Lev

and Sunder, 1979). Evidence on non-proportionality in some specific ratios is provided by Sudarsanam and

Taffler (1995) and others.

16 How to overcome problems posed by non-proportionality? The Law of Proportionate Effect acknowledges

that changes dx in (1) may be proportional, not to x itself, but to x − δ. In this case, the natural form

governing the generation of reported magnitudes will be

dx

x− δ
= x̂dτ + dz (6)

instead of (1). Where δ is constant, conditions leading to lognormal x in (1) generate, in (6), distributions

known as three-parametric lognormal with threshold δ (Aitchison and Brown, 1957). Three-parametric

lognormal density functions are simply the result of displacing lognormal distributions by δ (figure 3). In a

time series, for instance, the existence of fixed costs may lead to a constant displacement in the distribution

of Operating Costs.

17 In order to cope with non-proportionality, one of the following ratios should be used

y − δy
x

or
y

x− δx
(7)

for, respectively, three-parametric lognormal numerators or denominators. Thresholds are δy or δx. Indeed,

there exists a value of such δ for which the above, non-proportional, ratios become proportional.

18 How damaging thresholds are for the ratio measurement? Due to the exponential character of (6),

reported magnitudes may attain values many times larger than the threshold and, in such case, x− δx ≈ x.

Non-proportionality is significant only where magnitudes are not much larger than δ, for example, in the

time-series context. Indeed, comparatively large size-independent thresholds are plausible only in such

context. Observations, in a time-series, have their origin in the same object, one firm in different periods.

Values which are constant inside firms, such as fixed costs, may create comparatively large thresholds. In

cross-section, as observations have their origin in different objects, size-independent thresholds would require

the existence of industry-wide ‘fixed costs’. Since such costs should allow for the survival of small firms,
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Value

Probability Density

0 delta

Three-Parametric

Two-Parametric

Figure 3: The lognormal (solid line) and the three-parametric distributions (dashed line).

they must be small. An industry-wide cost of £4m for food manufacturers in the UK would be only 0.2% of

United Biscuits’ revenues, but it would equal or exceed the turnover of the 5% smaller firms in the industry.

19 Fixed costs are also likely to generate size-related thresholds, namely in cross section where large firms

have large fixed costs and small firms have small fixed costs. In this case δ is similar to any other accounting

variable. According to (6), x will be larger than expected for comparatively large δ, (e.g., the case of large

firms) and x̂ is not constant. As a consequence, size-related thresholds do distort ratio measurement.

Notice that the problem, in this case, is not any displacement in the distribution of ratio components.

Since δ are small for small x and large for large x, distributions are not displaced. The problem is non-

linearity in their relationship.

20 Size-related thresholds require the use of ratios of the type

y

xβ
. (8)

For a specific value of β, the ratio will have a constant standard thus allowing measurement. On a logarithmic

scale, the functional form of such measurement is

log y − β log x = r̂ + z (9)

where r̂ is the logarithm of the ratio standard and z is the observed deviation from that standard. (9) is

similar to a regression. The slope, β, is approximate to the unit in the case of strict proportionality. Slopes

smaller than 1 denote a negative δ. In cross-section, they bias large firm’s ratios downwards, mimicking scale

effects.

21 How should the two types of δ just outlined (constant and size-related) be estimated? The ratio Fixed

Assets (FA) to Current Assets (CA) is now used in a cross-section example. Five models of ratio, as

follows, are compared. Each model is presented together with its logarithmic counterpart as multiplicative

formulations require logarithmic scaling prior to coefficient estimation. Figure 4 shows, on a logarithmic

scale, how the usual ratio (solid line) compares with each model. Figure 5 is a replica of Figure 4 on the

original scale (only the region near the origin is displayed).
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Log CA

Log FA

Log CA

Log FA

Log CA

Log FA

Model 2

Log CA

Log FA
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Model 5
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Figure 4: The usual ratio (solid line) compared, on a logarithmic scale, with the slope ratio (Model 2),

threshold ratios (Models 3 and 4), and the threshold plus slope ratio (Model 5).
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Figure 5: The usual ratio (solid line) compared with the slope ratio (Model 2), threshold ratios (Models 3

and 4), and the threshold plus slope ratio (Model 5).
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Model 1: The usual ratio, no correction introduced. This ratio requires the estimation of one pa-

rameter, the standard. In cross-section, an appropriate standard is the median of the distribution of

the ratio (on a logarithmic scale, µ). Therefore,

FA

CA
= 10µw or log FA = µ+ logCA + z (10)

with z being a random disturbance and w = 10z. When the distribution of CA and FA are nearly

lognormal, the standard may be estimated by subtracting the averages of logFA and logCA. However,

since a significant threshold in the distribution of CA is ignored, such standard will be misleading.

Model 2: A ratio with a size-related threshold in the denominator. This ratio may control for e-

conomies of scale and other non-linearities. It requires the estimation of two parameters, the standard

(µ in logarithms) and the slope β as in (8). A regression similar to (9) may be used to estimate both:

log FA = µ+ β logCA + z corresponding to the ratio
FA

CAβ
= 10µw (11)

Graphically, this ratio is a straight line on a logarithmic scale and, as mentioned, it is non-linear on

an ordinary scale. A simple least-squares regression may estimate the standard and β.

Model 3: Constant threshold in the denominator, jointly estimated parameters. This ratio cor-

rects for a constant threshold but in such a way that the standard is corrected as well. It requires the

estimation of two parameters: the standard (µ in logarithms) and δ, the constant threshold. Both are

estimated using

log FA = µ+ log(CA− δ) + z corresponding to the ratio
FA

CA− δ
= 10µw. (12)

Graphically, this ratio is non-linear on a logarithmic scale and a straight line on an ordinary scale.

Model 4: The threshold ratio with independently estimated parameters. In this case there is only

one degree of freedom, µ, the logarithm of the ratio standard. The constant threshold of the distribution

of CA, d, is estimated prior to that of the standard. µ is thus estimated using

log FA = µ+ log(CA− d) + e corresponding to the ratio
FA

CA− d
= 10µw. (13)

Graphically, the model is non-linear and parallel with model 3 on a logarithmic scale and a straight

line on an ordinary scale. This ratio probably is the most useful as non-proportionality is accounted

for albeit converging with the usual ratio for medium-sized and large firms.

Model 5: Ratio with both constant and size-dependent thresholds. This ratio requires the estima-

tion of three parameters, µ, β and δ, using

log FA = µ+ β log(CA− δ) + z corresponding to
FA

(CA− δ)β
= 10µw. (14)

Graphically, the ratio is a mixture of models 2 and 3.

The independent estimation of a constant threshold (model 4) may be carried out using any of the avail-

able procedures to detect three-parametric lognormality in distributions. In this example, δCA = −£320, 000

is estimated using the procedure suggested by Royston (1982).4 The joint estimation of δ and the ratio stan-

dard (models 3 and 5) may be carried out using iterative least-squares algorithms.
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Model µ β δ R2 Skewness Kurtosis

1 -0.46 72% 0.27 2.18

2 -0.21 0.94 76% 0.07 1.30

3 -0.49 -£528,000 78% -0.12 1.19

4 -0.46 -£320,000 76% -0.12 1.78

5 -0.40 0.99 -£403,000 78% -0.12 1.19

Table 2: Parameters and statistics obtained with the five models.

TESCO PLC Results

1983–1987 Regression Threshold Ratio

Model used for estimation Costs = a+ b Sales + z log Sales = µ+ log(Costs− δ) + z

Estimated coefficients: a = £149m, b = 0.91 (R2 = 99%) µ = 0.036, δ = £125m (R2 = 99%)

Functional form obtained:
Costs −£149m

Sales
= 0.91

Costs −£125m

Sales
= 0.92

Table 3: Estimating Fixed Costs with a regression and a threshold ratio.

Table 2 shows the variability explained (R2) by each of the five ratios. Skewness and kurtosis of residuals

on a logarithmic scale (z) is also displayed. As can be seen, by allowing β into model 2, R2 approaches

the variability explained by constant thresholds (models 3 and 4). Once δ is accounted for, β returns to an

estimated value of nearly 1 (model 5).

22 The second example is taken from Steele (1989). It shows how to correct for non-proportionality in time

series. During the period 1983–1987, Operating Costs and Sales of TESCO, a retailer, are

Year 1983 1984 1985 1986 1987

Operating Costs £2,211m £2,518m £2,911m £3,216m £3,407m

Sales £2,276m £2,594m £3,000m £3,355m £3,593m

Ratio 97.15% 97.07% 97.03% 95.85% 94.84%

Regressions where Operating Costs explains Sales are traditionally used to estimate Fixed Costs (the

intercept term). Table 3 shows the functional forms used and the results obtained by a regression and by the

threshold ratio. Estimates are clearly different in spite of the fact that the relationship is almost deterministic

(R2 = 99%). The slope of the regression, b = 0.91, is thus near the standard of the ratio, 10µ = 0.92. Should

the correlation between Sales and Operating Costs be smaller, then b would be clearly smaller than 10µ.

In the limit, for a correlation approaching zero, b would also become zero and a, the supposed estimate of

Fixed Costs, would equal the expected value of Operating Costs. Regressions are thus inadequate for the

task. They introduce in the estimation the spurious effect of correlation. By contrast, the threshold ratio

correctly explains Fixed Costs as a displacement in the distribution of Operating Costs.

How to Model Firm Size

Firm size is often chosen as a substitute for numerous theoretical constructs, ranging from risk to liquidity

or even political costs. Size is also an ingredient of its own in many theoretical models. In spite of this

widespread use, size has remained a poorly defined concept. Where the use of size is required by theory,

empirical studies typically revert to using proxies such as Total Assets, Market Capitalisation or Sales (see,

e.g., Bujaki and Richardson, 1997).
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23 The multiplicative character of magnitudes reported in accounts suggests, as stressed before, that the

generation of their distribution is driven by size. It is indeed possible to deduce a simple and effective

definition of firm size from the two following assumptions: first, reported magnitudes broadly obey the

Gibrat’s Law of Proportionate Effect; second, financial ratios do remove the effect of size.

24 In order for ratios to be effective, the likelihood of observed discrepancies in relation to the standard

must be independent of size. For instance, the Return on Assets ratio is useless if an increase or decrease

of 2% has different meanings for small and large firms. The probability distribution of ratios must therefore

be homeoscedastic in terms of size. This implies, in the general case, that percent changes in both the

numerator and denominator must be size-independent. As mentioned, variables where percent changes are

size-independent are said to obey the Gibrat’s Law of Proportionate Effect. Indeed, the widespread use of

ratios agrees with the fact that reported numbers are multiplicative.

It was also mentioned that multiplicative mechanisms lead to broadly lognormal distributions. In fact,

observed x generated as in (1) may be described functionally as

x = X [1 + x̂]τ+z for discrete τ or x = X exp[x̂τ + z] for continuous τ . (15)

where τ is the variable which drives changes in x, x̂ is a logarithmic expectation and z is a random increment.

The level X is the value of x for τ = 0. It may be demonstrated that only where continuous compounding

is assumed, as in the right-hand side of (15), may ratios be validly used.5

25 As for the second assumption mentioned above, that of ratio y/x eliminating the effect of size, it leads

to the requirement that the numerator y and denominator x should both be generated under the effect of

equal rates of change (ŷ = x̂). In fact, where ŷ 6= x̂, the ratio standard would not be constant, showing a

rate of change of ŷ/x̂ with τ . This requirement importantly suggests that, not just y and x but the other

numbers found in a specific annual report, are generated under the effect of the same rate of change. Since

the validity of the ratio method rests on the validity of several, widely used ratios, not just on one or two

cases, and given that numbers used to form one of such ratios are also used to form other ratios, then

there must exist a common source of variability underlying numbers reported in the accounts of a firm in a

given year. Where numbers x1, x2, · · · , xk, · · · all belong to a specific annual report, this assumption leads

to x̂1 = x̂2 = · · · = x̂k = · · ·. It is possible to show that such unique source of variability possesses the

attributes of size.6

26 How can size be estimated from this unique rate of change? A specific annual report, say, report j, is

characterised by what value τ assumes. xk, the magnitude reported by item k, is explained as

xk = Xk exp[x̂jτ + z], (16)

where x̂jτ is the effect of size (the same for all items reported in j). In an additive form,

log xk = µk + σj + z (17)

where µk = logXk and σj = x̂jτ . Formulation (17) is basically an Analysis of Variance, i.e., a type of linear

model aimed at explaining variability in terms of membership of discrete classes. Specifically, in (17) log xk

is explained by its membership of two classes, the item class, µk, and the annual report class, σj . The item

class is a fixed (deterministic) effect, as it denotes the fact that k is a specific item amongst those in the

sets of accounts reported by firms. These accounts are indeed fixed in number and in type. By contrast, the

annual report’s class is a random effect: it denotes the fact that j is one of the (randomly selected) annual
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reports in the sample. Each of these two classes possesses levels, namely, there can be as many levels of k as

items in the sets of accounts; there can be as many levels of j as different reports in the sample.

27 In cross section, µk is the expected value of logarithmic magnitudes reported in item k. It is estimated

as the mean of k calculated using all the annual reports in the sample. Thus, in this case, Xk in (16) is

the median of magnitudes reported in k. The size effect, σj , is the expected log xk − µk for numbers in j

and its estimation is straightforward: given N numbers, all of them reported in j, (17) is first applied to

each of these numbers. The N formulations obtained are then added. Since σj is the same in all of these

formulations, it is possible to write

σj =
1

N

N
∑

k=1

(log xk − µk)−
1

N

N
∑

k=1

zk.

Any source of variability common to all log xk in j is, by construction, accounted for by σj . Therefore, even

where correlation amongst some z may exist, the term

1

N

N
∑

k=1

zk

should tend to zero with an increasing N , leading to

estimate of σj =
1

N

N
∑

k=1

(log xk − µk) . (18)

An estimated size may thus be obtained simply by averaging the logarithms of appropriately adjusted

magnitudes drawn from the firm’s actual report. Exact confidence intervals for σj can also be obtained, the

corresponding standard errors being t-distributed with N − 1 degrees of freedom.

28 The estimation of σj faces two obvious difficulties. First, xk in (18) cannot be randomly drawn from

all possible accounts because items such as Earnings, being a subtraction, may take on negative values and

cannot be transformed into logarithms. This pre-selection of items introduces a bias in the estimation of

size. Second, inside each annual report, some z are correlated. This increases the standard error.

In practice, size can be estimated with good accuracy as an average of the logarithms of positive-only mag-

nitudes found in items such as Cash and Short Term Investments, Receivables, Total Inventories, Property,

Plant and Equipment (net), Common Equity, Number of Employees, Net Sales or Revenues, Cost of Goods

Sold (excluding Depreciation), Depreciation, Depletion and Amortisation of the year, Interest Expense on

Debt and others.

29 It may be argued that magnitudes reported in the accounts of firms may possess two or three size

dimensions, not just one. Notwithstanding the cases of recently formed firms or other less general cases, the

hypothesis of size being multi-dimensional seems difficult to sustain.7

Tools for the Graphical Examination of Accounting Data

The superior degree of definition brought about by (17) allows a focused examination of the statistical char-

acteristics of reported numbers while providing a basis upon which improvements in financial measurement

may be carried out. Indeed, (17) has suggested how to estimate size. Once an accurate size measurement is

available, it is possible to create ratios capable of removing just size, or to seek a precise description of the

co-variance structure of accounting data.
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30 This section describes one such improvement, the Rotated Residual Plot (RRP), aimed at increasing the

usefulness of ratios. Notice first that z in (17) is the logarithm of a ratio in which the denominator is size

and the numerator is the deviation of the magnitude reported in item k from expectation. Such ratio thus

reflects the proportion by which reported magnitudes diverge from expected in firms of that size. The z are,

in fact, size-free Cash, Receivables, Inventories and so on.

Since pairs of numbers convey two-dimensional information and ratios are just one variable, when ratios

are used instead of their components some information is lost. Not only information about size. Ratios also

discard size-free information potentially useful. Given (17), the size-free information conveyed by the ratio

y/x can be written in logarithms as the subtraction

zy − zx = log
y

x
− µy/x, (19)

Two axes, Y and X , are now defined so that zy is measured along the Y -axis and zx is measured along the X-

axis. All the size-free information conveyed by the ratio components will be represented by a point, {zy, zx}.

A 45o, anti-clockwise rotation is now applied to Y and X . Such rotation is performed by transformation
[

1 1

1 −1

]

(20)

After rotation, the new X-axis measures zy − zx and the new Y -axis measures zy + zx. As mentioned,

(19), zy − zx is, in logarithms, the information evidenced by y/x. Since the new Y -axis is orthogonal to the

ratio, all the size-free information not evidenced by the ratio will be evidenced by the new Y -axis, that is,

by zy + zx. On an ordinary scale, zy + zx is the ratio xy/s2. Its denominator, s2, is the squared effect of

size (σ = log s). Ratios y/x and xy/s2 thus evidence the two orthogonal dimensions of the same size-free

information. Ratio xy/s2 is thus a complement for y/x.

31 Is this new type of ratio potentially interesting? Ratios remove size in two ways (Lev and Sunder, 1979):

• Explicitly, when the denominator is selected simply because it is a good proxy for size. Ratios explicitly

removing size are meant to measure whether a particular magnitude is large or small when compared

with the size of the firm.

• Implicitly, when the denominator of the ratio is selected so as to produce a desired contrast with the

numerator. Ratios remove size implicitly when they are meant to compare a magnitude with another

magnitude, irrespective of size.

Though, in practice, the separation between these functions is not always distinct, some ratios are clearly

meant to remove size explicitly, while the majority is meant to evidence a contrast, removing size only

implicitly. For example, in the two ratios Working Capital to Total Assets and Current Assets to Current

Liabilities, the former assesses liquidity by comparing Working Capital with a proxy for size, while the latter

compares short-term assets with short-term liabilities, regardless of size. The complement xy/s2 removes

size explicitly. When used alone, its usefulness will be circumscribed to specific instances. But when used

together with the ratio it may become useful as discussed next.

32 The Rotated Residual Plot (RRP) is a scatter-plot in which the X-axis shows (on a logarithmic scale)

deviations of y/x from the industry median. This axis thus evidences how a characteristic of the firm, such as

liquidity or profitability, compares with the industry norm. The Y -axis shows, also in logarithms, deviations

of xy/s2 from the industry median. Recall that the RRP is a rotation of scatter-plot of zy with zx. As seen,

this leads to a new X-axis showing zy − zx and a new Y -axis showing zy + zx.
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Figure 6: On the left, EBIT/NW and size during five years (marks 3 to 7). On the right, the RRP.

33 The following example uses the RRP to examine profitability of Food Manufacturers in the UK. The

ratio to be used is Earnings Before Interest and Tax (EBIT ) to Net Worth (NW ), supposed to evidence

efficiency of the firm’s worth (percent profit generated by unit worth). The sample contains the reports of

food manufacturers during five years. An estimated size, σ = log s, is first obtained by averaging, inside

each annual report, the logarithms of six magnitudes previously mean-adjusted year by year. Specifically,

σ = 1/6 (log Sales + logWages

+ logNumber of Employees + logDebtors

+ logCurrent Liabilities + logCurrent Assets).

(21)

Next, the Y and X coordinates in the RRP are calculated. If

zebit = logEBIT − logEBIT − σ, and znw = logNW − logNW − σ, (22)

then the two axes of the RRP are:

Y = zebit + znw and X = zebit − znw (23)

logEBIT and logNW are industry averages.

34 Figure 6 shows the RRP of two firms together with the corresponding time-histories of EBIT to NW

and σ = log s. The X-axis of the RRP shows, in logarithms, percent deviations from the average profitability

in the industry. The Y -axis shows, on the same scale, how Earnings and Net Worth diverge from expected

for size. The nearer a firm is to the centre of the RRP, the less it diverges from the industry norms for

profitability and size. The first quadrant of the RRP shows firms with both Earnings and Net Worth above

the average for size. The second quadrant means Net Worth above the average for size but Earnings below
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average, and so on. Trajectories parallel to the Y -axis show firms growing in capital and in profits but not in

efficiency. Trajectories parallel to the X-axis show firms gaining to the industry in efficiency while keeping

capital in line with size.

The RRP is interesting because unfavourable, as well as favourable positions, are clearly evidenced as

problems of size, not just efficiency. During the initial three years of the period, CAMPBELL increased its

proportion of Net Worth to size. Since EBIT also increased in the same proportion, the ratio was blind to

this anomaly and only denounced the plunge in efficiency that ensued. During the same period, profitability

at NESTLE increased relative to the industry. The RRP says as much but also points out that such gain

was obtained purely by an increase in efficiency. The proportion of Net Worth and Earnings to size was kept

near the industry average.

Concluding Remarks

Accounting data obeys a set of simple rules. The first rule states that, since reported numbers and ratios are

multiplicative, logarithmic transformations should be used to bring data to a proper additive behaviour. The

second rule explains that accounting identities often distort otherwise perfectly multiplicative distributions

of ratios into unexpected shapes. Such identities should be accounted for prior to logarithmic transformation.

The third rule explains the different ways to account for non-proportionality in ratios. The fourth rule states

that numbers in a specific report are generated under the influence of size, being thus possible to obtain a

size estimate just by averaging several of these numbers, conveniently adjusted. The distribution of Earnings

and the development of two-dimensional tools for analysis were also discussed.

It is important to always bear in mind two important facts about ratios. First, besides those distribution-

related difficulties which were addressed in this note, the use of ratios requires caution in order to avoid other,

well-documented limitations: ratios produce ambiguous results when denominators, not only numerators,

may take on negative values; ratios are sensitive to atypical magnitudes (numbers from the Profit and Loss

account must be corrected for reported periods different from one year; accounts from the Balance Sheet

may be distorted by seasonal effects).

The second important fact is that, notwithstanding the above limitations, ratios do not deserve the

negative image conveyed by scientific journals and text-books. In spite of their widespread use, ratios are

regarded with scepticism by scholars and are described as some primitive tradition with no scientific support.

One major cause of such scepticism is the mentioned diversity in statistical distributions. Another is the fact

that some reported numbers may take on negative values, which is difficult to reconcile with multiplicative

behaviour. The note has addressed these two difficulties.

It may be asked why so many contributions to the literature have led to a pessimistic view of ratios and

accounting data in general. Reasons seem to relate to an apparent lack of theoretical drive, probably fed by

an a priori conviction that accounting data should be complex and full of exceptions, just as the production

of such data is indeed complex and full of exceptions. It is expected that, by using suggestions from this

note, researchers and practitioners may find that such a priori conviction is, after all, a tradition with no

scientific support.
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Notes

1. Natural forms describe mechanisms rather than observations. They are often expressed as differential

or as difference equations.

2. Eisenbeis (1977) mistakenly stated that ‘log-transformed variables give less weight to equal percentage

changes in a variable where the values are large than when they are smaller. The implication would

be that one does not believe that there is as much difference between a $1 billion and a $2 billion size

firms as there is between a $1 million and a $2 million size firms. The percentage difference in the log

will be greater in the latter than in the former case’ (p. 877). Eisenbeis’ pitfall is that the calculation

of proportions of the log-transformed measurement is equivalent to calculating proportions twice. This
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inappropriate warning against logarithmic transformations gave support at the time to the use of ad

hoc techniques such as those proposed by Frecka and Hopwood (1983).

3. The coefficient of variation is the standard deviation expressed as a fraction of expected value.

4. Royston uses trial and error to find out which δ maximises the parameter W in the Shapiro and Wilk’s

test of normality.

5. (1) may not necessarily lead to (15). Indeed, the simplest formulation generated by (1) is

xk = Xk exp[(rj −
σ2

2
)τ + z], (24)

rather than (15). Since the compounding effect is now influenced by σ, the standard deviation of z,

not just by size, variables obeying (24) are non-proportional and cannot be used to form ratios. If,

however, x̂1 = x̂2 = · · · is interpreted as an equality of continuously compounding rates of change, then

a proportional mechanism is obtained.

6. Consider two annual reports, b and a. These reports are realisations of the same x1, x2, · · · and changes

from a to b may be written

dx1 = x1b − x1a dx2 = x2b − x2a · · · (25)

Thus, from (1), it is possible to express magnitudes reported in b in terms of those in a as

x1b = x1a(1 + rba) x2b = x2a(1 + rba) · · · (26)

where rba is the percent change whereby any magnitude reported by a specific item in b differs from

the magnitude reported by the corresponding item in a. Therefore, structurally at least, if one item

is larger in b than in a, it follows that the other items in b will also be larger than the corresponding

items in a and conversely. If, say, Current Assets is larger in b than the corresponding Current Assets

in a, then Sales will also be larger in b than in a and so on. It is thus possible to say without ambiguity

that set b is, as a whole, larger or smaller than set a. Now if it is possible to rank by size two annual

reports, then it is possible to rank by size any number of reports. The common source of variability in

x1, x2, · · ·, thus possesses the attribute of a size measurement.

7. While financial statements of large firms contain reported numbers that are many orders of magnitude

larger than those reported in the accounts of small firms, inside each annual report magnitudes do not

differ by as much. Yet, more than one size dimension would imply that, routinely, not in exceptional

cases only, numbers with six or more digits should be found in the same report together with numbers

with two or one digit. A ratio formed from items from non-agreeing dimensions would exhibit typical

magnitudes of billions as well as micros. Such a ratio may indeed occur but only as the result of

conditions not applicable generally. The fact that microscopic ratios or very large ratios are atypical,

shows that items from the same annual report share, in general, a unique size influence. There are other

reasons to support the conviction that each firm’s actual size greatly influences the overall magnitude

of numbers reported in its accounts. If variables such as Earnings were not closely related to size, then

profitability and dividend yield would be diluted by any increase in size and firms would avoid growing.
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