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Introduction

This study develops a statistical basis for �nancial statement analysis. It introduces a uni�ed view

able to clarify issues widely discussed in the accounting literature: The validity of ratios, the observed

variety of their statistical distributions, how to overcome their known drawbacks when used as input

variables in statistical models. It is based on the observation of the cross-sectional characteristics of a

large set of �nancial statements from �rms in the UK.

The validity of ratios in �nancial statement analysis: Accounting reports are an important

source of information for managers, investors and �nancial analysts. Ratios are the usual instruments

for extracting this information. They are supposed to control for the e�ect of size and to highlight

some noteworthy features of the �rm. However, the widespread use of ratios in �nancial statement

analysis has been frequently criticised in the accounting literature. The main sources of concern are the

possible existence of functional relations between the numerator and the denominator of ratios which

may be non-proportional or non-linear. In both cases, ratios would introduce a bias when controlling

for size. Whittington (1980) [30] discusses this subject. A recent review of the published research and

discussions can be found in Berry and Nix (1991) [4].

Ratios as input variables for statisticalmodelling: Statistical techniques are also used to extract

information from databases gathering accounting reports and related outcomes. The goal is to construct

models suitable for prediction or for isolating the main features of the �rm. An early model is that of

Beaver (1966) [3] who used accounting ratios to predict �nancial distress. Many researchers followed

him, using more sophisticated tools. Linear Regressions and Fisher's Multiple Discriminant Analysis are

the most popular algorithms. Logistic Regression can also be found in some studies. Foster (1986) [15]

o�ers a review of the modelling practice involving �nancial statements.

The use of ratios in statistical models seems to be an extrapolation of their use in �nancial statement

analysis. However, there are di�culties involved in using ratios as statistical variables. Firstly, the

distribution of ratios is of many di�erent sorts: Most ratios exhibit strong positive skewness, but

some are Gaussian or even negatively skewed. Hitherto, no explanation has been given to this variety.

Secondly, ratios exhibit heteroscedasticity and cases which are severely in
uential. Finally, it is di�cult

to decide which ratio should be selected for a given task. As N accounting items can generate up to

N

2

� N ratios, some research seems to get lost in a proli�c use of all sorts of combinations of items.

Chen and Shimerda [8] (1981) review this topic.

In order to overcome the above problems, accounting modelling practice rely on general-purpose

recipes: Improvements in normality are sought by pruning out tails and empirically trying di�erent

transformations. It's commonpractice to mix up in the same model square root and log transformations.
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Heteroscedasticity is treated as a separate phenomenon and requires further manipulation, typically a

weighting of cases. Finally, the multicolinearity generated by the excess of variables is also viewed as

an accident in its own right so that the measures recommended for general cases are applied | A few

Principal Components are extracted and used instead of the original variables. The model parameters,

after this pruning, scaling and rotating, are di�cult to interpret.

The basis of this study: We argue that any attempt to build a basis for �nancial statement analysis

and statistical modelling by looking into �nancial ratios is not likely to succeed. Ratios are bivariate

relations. Their behaviour is determined by that of their components, plus the interaction between

them. In this study we begin by the opposite end. We show that the nature of accounting information

becomes greatly clari�ed after explaining the cross-sectional behaviour of raw accounting numbers.

And when doing so, also the problems quoted above | non-proportionality, transformations versus the

prunning of outliers, heteroscedasticity, multicolinearity | are solved.

Contents: Chapter 1 introduces the data. Then, it empirically assesses the statistical nature of raw

accounting numbers. Both individual industries and overall samples are examined. It is shown that

raw data, unlike ratios, have a regular and predictable distribution.

Chapter 2 studies the regularities devised in chapter 1 and extracts the most immediate consequences

for the modelling of accounting relations. The existence of outliers and heteroscedasticity in statistical

models is explained. The use of regressions instead of ratios is discussed.

Chapter 3 examines the joint behaviour of more than one item. It is shown that items belonging

to the same report share most of their variability. This chapter also discusses the statistical nature of

items which are a subtraction of two items.

Chapter 4 examines the main sources of concern regarding the validity of ratios. New models, which

are extensions of ratios able to account for non-linearity and non-proportionality, are introduced.

Chapter 5 studies the distribution of ratios. The main rules governing their cross-sectional behaviour

are described. Consequences for the statistical modelling of accounting data are extracted.

Chapter 6 is about size and industrial grouping as the main sources of variability present in the

data. A method for isolating size as a statistical e�ect is developed and discussed. The homogeneity

and complexity of some industrial groups are also assessed.

Finally, chapter 7 studies the content on information of ratios. Given the two components of a ratio,

it is shown that all the size-adjusted information conveyed by them can be expressed in terms of the

ratio itself plus a remainder. This chapter shows that such a remainder contains, in some cases, valuable

information for �nancial statement analysis.
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Chapter 1

The Distribution of Raw Accounting

Numbers

Accounting numbers, as found in databases containing collections of annual reports of �rms, can be

viewed as statistical variables. Each �rm is a case. For a given item, say, Fixed Assets or Sales, a

particular collection of �rms forms a cross-sectional sample.

In this chapter we show that the probability density function governing raw accounting numbers is

much more predictable and regular than the one of ratios. The lognormal distribution emerges as a

general characteristic of the observed items. We also explore several other distributions and we show

that they are not plausible. In order to assess the importance of the results of the performed tests

we compare them with simulated ones. We also examine individually the few cases of departures from

lognormality.

We use data from British �rms belonging to 14 industrial groups in four broad areas: Engineering,

Processing, Textiles and Food Manufacturers. Both individual industries and overall samples are ex-

amined. Our study contemplates a period of �ve years (1983-1987) but it is a cross-sectional study:

Each year is studied individually.

Previous research: Since practitioners use ratios, not the raw data, the statistical properties of items

received little attention in the literature. Ratios, of course, have been the object of a much bigger e�ort.

Horrigan [18] (1965) is an early work on this subject. He analyzed 17 ratios for 50 companies over the

period 1948-57 reporting positive skewness. Horrigan explained it as a result of e�ective lower limits

of zero. O'Connor [25] (1973) discovered that for all his 10 ratios in a set of 127 companies during the

period 1950-66, skewness prevailed once again. Also Bird and McHugh [5] (1976) analyzed 5 ratios for

118 �rms over the period 1967-71 in Australia �nding positive skewness. But they considered it as an

accident and implicitly suggested the pruning or winsorizing of distributions until achieving normality.

The Deakin study [10] (1976) is frequently quoted. It showed that the positive skewness could not

be ignored in his sample of 11 ratios for the period 1955-73. He concluded that

...\as a result of this analysis it would appear that assumptions of normality for �nancial

ratios would not be tenable except in the case of the Total Debt to Total Assets ratio."

The Bougen and Drury study [6] (1980) was based on UK. �rms. It collected data on 700 industrial �rms

(1975) and analyzed 7 ratios, concluding that skewness could not be ignored. Also Buijink [7] (1984)
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reported the persistency of skewness over a large period. Barnes [2] (1982) argued that skewness on ratios

could be the result of deviations from proportionality between the numerator and the denominator.

Frecka and Hopwood [16] (1983) extended Deakin's 1976 study for a longer period and reported similar

�ndings. They also tried to achieve normality by applying square root transformations and pruning

the remaining outliers, proposing such procedure as a way of dealing with the problem of deviations

from normality. Ezzamel and Mar-Molinero wrote a recent report (1990) on the distribution of ratios

using UK data [13]. These authors also investigate the e�ects of a family of transformations in the

distribution of ratios.

Two studies by McLeay [23] [24] (1986) refer to items, not to ratios. McLeay distinguishes two

broad classes of items: Sums of similar transactions, whose sign remains the same; and di�erences,

which could be of either sign or zero. McLeay argues that the former ones ought to be lognormal since

they are related to the size of the �rm which could be a stochastic process governed by the Gibrat law

(see section 1.4.2 and 4.1). McLeay accepts a qualitative di�erence between these two families of items.

1.1 The Method

In order to test the lognormality of accounting items we use a logarithmic transformation. We then apply

to the transformed data the Shapiro-Wilk test of normality in an improved version due to Royston [26]

(1982). This test can cope with large or small sample sizes and is recommended as a superior omnibus

test. It has been used by Ezzamel, Mar-Molinero and Beecher [13] (1987) to test the normality of ratios.

Berry and Nix [4] (1991, p. 110) discuss it in more detail. The Shapiro-Wilk test yields a statistic, W ,

ranging from zero to one. Values of W approaching 1 mean increasing normality. The signi�cance, P ,

of W is the probability of obtaining such a W when the population is Gaussian.

The transformation we apply to an item called x isn't just the log of x. The lognormal distribution

can have three parameters: The log mean and standard deviation, corresponding to the Gaussian ones,

plus a third parameter accounting for overall displacements of the distribution. When a displacement

of x, say x� �, and not x itself, is Gaussian after a log transformation, the distribution of x is known as

Three-Parameter Lognormal. The range of x is thus � < x <1. The usual, two-parametric, lognormal

distribution can be seen as a special case for which � = 0. Since � is a lower bound for x, it is known

as the threshold of the distribution. An introduction to the lognormal distribution can be found in

Aitchison and Brown [1] (1957).

Lognormal distributions often are three-parametric. Thresholds play an important role in the un-

derstanding of non-proportionality in ratios, as we shall see in section 4.3.

Estimating the threshold: Some procedures available to estimate � are also described by Aitchison

and Brown. In our case, � is estimated using a modi�ed version of the procedure suggested by Roys-

ton [26] (pp. 123). His method consists of discovering by trial which � maximizes the Shapiro-Wilk's

W . In our case, the threshold is estimated as the smallest � able to attain a signi�cant W .

Figure 1 shows two examples. The signi�cance, P , of W , improves when we subtract a constant

small � to all observations in a three-parametric distribution, before transforming the data. By trying

increasing � we �nd an optimal W or P (W ). In the case displayed on the right, � = 400 is the value

beyond which P (W ) no longer improves. Royston takes this � = 400 as the third parameter to introduce

in the log transformation. On the left, we see how a small � of �90 enhances the lognormality of Working

Capital. We found sharp optimal values for W , making it possible to estimate � in this way. However,
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as referred to above, the use of simulated thresholds showed us that the � estimated by the Royston

method are too large. To avoid over-estimation, thresholds must be estimated as the smallest � able to

render the sample two-parametric: P (W ) � 0:05. Figure 1 also shows values for thresholds estimated

in this way.

Notice that the use of � cannot be considered as similar to the practice of adding a constant to all

the cases in a sample to avoid negative-valued cases. Here, we don't allow � to change the sign of cases.

1.2 Items and Industrial Groups Examined

We examined 18 items. They are listed in table 1 (page 14). There are 11 items from the Balance

Sheet, 5 from the Pro�t and Loss Account, 1 from the Sources and Applications of Funds statement,

and one which is not standard. These items are frequent as components of ratios. The selection of

EX (Operating Expenses less Wages), is intended to get a picture of the cost structure of �rms, using

disclosed data. The inclusion of N (Number of Employees) concerns �ndings discussed later on: This

variable conveys important information regarding the classi�cation of industrial groups. It is also useful

to compare accounting items with non-accounting variables exhibiting similar statistical behaviour.

In our study this set of selected items can be divided in two groups.

1. Those having only positive-valued cases, as Sales or Inventory.

2. Those items which can have both positive and negative-valued cases in the same sample, as

Earnings and Working Capital. In this group we perform, when possible, two tests of lognormality:

(a) Using only the positive-valued cases in each sample, and

(b) using only the absolute value of the negative-valued cases. For small samples this test wasn't

carried out since the number of cases was too small.

The reason for performing separated tests is that cross-sections of positive and negative-valued cases

shouldn't be mixed up in the same sample as they represent di�erent situations. Lev and Sunder [22]

(1978, p. 201) explain in detail the reasons for avoiding such mixed samples.

It seems as if, by testing the sets of positive and negative-valued cases separately, we break the

continuity of the sample and lose the information describing the passing through the zero value. In

fact, we lose nothing by using these split samples in cross-sectional studies. Cross-sections are not about

the time-history of one unique object. They are about many objects at the same instant in time. In

section 3.2 we discuss in more detail the applicability of these split cross-sectional samples.

The groups: All companies quoted on the London Stock Exchange are classi�ed into industrial groups

according to the Stock Exchange Industrial Classi�cation (SEIC). The tested samples were drawn from

the Micro-EXSTAT database of company �nancial information provided by EXTEL Statistical Services

Ltd, which covers the top 70% of UK industrial companies. We selected 14 manufacturing groups (see

table 2 on page 14). This set of industries is the one examined by Sudarsanam and Ta�er [29] (1985)

in their study of the separability of industries, based on accounting information.

Two kinds of samples were examined:

All Groups Together, in which the 14 industrial groups are gathered in one unique sample.

One Industry at a Time, for samples of only one industrial group.
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Figure 1: The signi�cance, (P ), of the Shapiro-Wilk's W for varying deltas. In these two cases we

would accept a three-parametric lognormal distribution with � � �20 (left) and � � 2000 (right).

TA Total Assets NW Net Worth

FA Fixed Assets DEBT Long Term Debt

D Debtors C Creditors

CA Current Assets CL Current Liabilities

I Inventory TC Total Capital Employed

WC Working Capital

EX Operating Expenses less Wages S Sales

EBIT Earnings Before Interest and Tax W Wages

OPP Operating Pro�t

FL Gross Funds From Operations N Number of Employees

Table 1: List of accounting items examined by this study and their abbreviations.

PROCESSING: 14 Building Materials 32 Metallurgy

54 Paper and Packing 68 Chemicals

ENGINEERING: 19 Electrical 22 Industrial Plants

28 Machine Tools 35 Electronics

41 Motor Components

TEXTILES: 59 Clothing 61 Wool

62 Miscellaneous Textiles 64 Leather

FOOD: 49 Food Manufacturers

Table 2: List of the industrial groups examined by this study and their SEIC number.
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Each test is performed �ve times for reports from 1983 to 1987. None of the companies present in the

database was excluded.

1.3 Results

In this section we display the results of testing the lognormal hypothesis for two kinds of samples.

Firstly, the large ones containing all the 14 industries together. Secondly, the small ones drawn from

one industry at a time. These two groups of tests represent two possible levels of homogeneity worth

exploring. One single group, if homogeneous, yields homogeneous samples. Two or three groups, each

of them homogeneous, can yield samples which are severely non-homogeneous. But 14 groups in the

same sample, all of them sharing a common attribute, are likely to apportion random e�ects rather than

�xed ones, as the grouping acts as a random variable itself. In that case, a second level of homogeneity

could be attained by gathering all industries in one sample. The examination of such overall samples

is interesting as they represent the common attribute they share.

1.3.1 All Groups Together

The large samples mentioned above are now examined. The common attribute to consider here as a

possible source of homogeneity is the industrial character of all the gathered �rms.

Positive-valued cases: In tables 3 on page 15 and 4 on page 16, we display the number of cases in

each sample and the statistics obtained when applying the Shapiro-Wilk test, along with some usual

measures of normality (kurtosis and skewness) to the 13 positive-valued accounting items and to the

positive values of the 4 items having both positive and negative cases. We also included Long Term Debt

for which only the non-zero cases were selected. When nothing is said, items yielded non signi�cant

departures from two-parametric lognormality. When there is a signi�cant departure, the signi�cance

is displayed. In all the signi�cant departures observed, the introduction of a small threshold made it

vanish.

The results show that 11 of the 18 items are two-parametric lognormal during the period 1983-

1987. Sales and Operating Expenses less Wages, Net Worth, Debtors, Fixed Assets, Inventory and

Total Capital Employed, along with the positive-valued cases of Earnings, Operating Pro�t, Long Term

Debt and Working Capital, are persistently two-parametric. The remaining 7 variables are either two-

parametric or three-parametric depending on the year. None is persistently three-parametric during

�ve years.

The values that the threshold, �, assumes whenever a three-parametric transformation is required,

are near the smallest case in the sample. The skewness and the kurtosis of raw data is so high that its

computation causes problems. After the log transformation, the skewness stabilizes. However, all the

samples exhibit, after transformed, some residual leptokurtosis.

Negative-valued cases: We also checked the negative values of items having both positive and

negative-valued cases. We selected the set of negative cases and then we applied logs to their absolute

values. Table 5 (page 17) shows the results. Operating Pro�t and Working Capital are two-parametric

for the whole period. Earnings and Gross Funds From Operations are, in one or two years, three-

parametric.
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Item Year 1983 1984 1985 1986 1987

N. Cases 555 649 677 702 688

Sales SKEW 0.058 -0.035 0.126 0.107 -0.08

KURT 0.765 0.842 0.604 0.39 0.854

W 0.982 0.983 0.984 0.983 0.982

P (W )

best W

Net SKEW 0.174 0.163 0.253 0.289 0.289

Worth KURT 0.468 0.402 0.255 0.263 0.353

W 0.987 0.985 0.984 0.983 0.983

P (W )

best W

Wages SKEW 0.322 0.246 0.384 0.35 0.239

KURT 0.177 0.252 0.067 0.091 0.266

W 0.978 0.984 0.975 0.977 0.98

P (W ) 0.015 0.001 0.01 0.02

best W 0.988 0.988 0.989 0.981

Inventory SKEW -0.089 -0.117 0.019 -0.202 -0.302

KURT 0.69 0.577 0.572 1.217 1.331

W 0.985 0.986 0.989 0.986 0.985

P (W )

best W

Debtors SKEW 0.052 -0.003 0.066 0.126 -0.036

KURT 0.309 0.411 0.386 0.318 0.76

W 0.984 0.987 0.986 0.987 0.991

P (W )

best W

Creditors SKEW 0.285 0.176 0.236 0.242 0.196

KURT 0.307 0.331 0.356 0.289 0.369

W 0.978 0.983 0.981 0.979 0.982

P (W ) 0.014 0.06 0.006

best W 0.985 0.985

Fixed SKEW 0.097 0.177 0.119 0.124 0.159

Assets KURT 0.421 0.11 0.114 0.113 -0.008

W 0.988 0.983 0.984 0.987 0.984

P (W )

best W

Total SKEW 0.301 0.351 0.404 0.343 0.425

Assets KURT 0.546 0.276 0.228 0.349 0.309

W 0.983 0.979 0.978 0.979 0.978

P (W ) 0.01 0.005 0.01 0.005

best W 0.985 0.987 0.983 0.984

Current SKEW 0.237 0.349 0.056 0.295 0.345

Assets KURT 0.372 0.374 1.84 0.345 0.48

W 0.982 0.984 0.985 0.98 0.979

P (W ) 0.03 0.02

best W 0.985 0.985

Table 3: Lognormality of all groups together. First table. \best W" shows the value of Shapiro-Wilk's

W after introducing an appropriate threshold.
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(cont.) 1983 1984 1985 1986 1987

Current SKEW 0.26 0.155 0.21 0.273 0.262

Liabilities KURT 0.366 0.446 0.462 0.36 0.417

W 0.979 0.983 0.984 0.981 0.982

P (W ) 0.026 0.04

best W 0.986 0.988

Number SKEW 0.171 0.191 0.283 0.221 0.159

of KURT 0.282 0.181 0.187 0.251 0.346

Employees W 0.981 0.982 0.98 0.981 0.981

P (W ) 0.02 0.04 0.05

best W 0.985 0.985 0.983

Expenses SKEW 0.093 -0.108 -0.043 0.012 -0.124

KURT 0.327 0.738 0.742 0.29 0.641

W 0.981 0.986 0.988 0.985 0.984

P (W )

best W

Total SKEW 0.28 0.156 0.322 0.338 0.34

Capital KURT 0.35 0.449 0.126 0.18 0.282

Employed W 0.9828 0.9854 0.9819 0.9823 0.9815

P (W )

best W

EBIT SKEW -0.061 0.094 0.165 0.232 0.305

KURT 0.678 0.244 0.409 0.402 0.451

W 0.9846 0.9887 0.9841 0.9854 0.9823

P (W )

N. Cases 514 606 629 645 641

Operating SKEW -0.097 -0.053 -0.13 0.128 0.176

Pro�t KURT 0.68 0.36 0.81 0.215 0.469

W 0.9898 0.9918 0.9854 0.9843 0.9848

P (W )

N. Cases 497 589 615 627 619

Long Term SKEW -0.106 -0.049 0.029 -0.01 -0.059

Debt KURT 0.095 -0.023 -0.101 -0.15 -0.016

W 0.9868 0.9842 0.9839 0.9857 0.985

P (W )

N. Cases 358 439 479 518 510

Gross Funds SKEW 0.084 0.049 0.228 0.176 0.1

From KURT 0.492 0.448 0.286 0.4 0.938

Operations W 0.9867 0.9872 0.9842 0.9833 0.98

P (W ) 0.026

N. Cases 527 625 647 666 650

Working SKEW -0.093 0.215 0.103 0.061 0.288

Capital KURT 0.487 -0.062 0.532 0.269 0.311

W 0.9926 0.9839 0.9881 0.9850 0.9807

P (W ) 0.052

N. Cases 505 587 610 641 626

Table 4: Lognormality of all groups together. Second table. \best W" shows the value of Shapiro-

Wilk's W after introducing an appropriate threshold. When the number of cases is di�erent from the

one displayed in previous table, it is signaled here.
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1.3.2 One Industry at a Time

The lognormality of our set of items cannot be rejected for samples drawn from one industry. The

detailed results of applying the Shapiro-Wilk test to all samples | the eighteen observed items for

fourteen industries during �ve years | can be found in appendix (tables 24 to 29, on pages 89 to 94).

Here we present two condensed tables.

Positive-valued items by industry: For the selected 14 industries, 13 positive-valued items were

checked for lognormality with the Shapiro-Wilk test. This procedure was repeated for �ve years (1983-

1987). Therefore the number of di�erent samples tested was 910. Lognormality was observed for

the generality of cases. A total of 793 samples (87.1%) yielded two-parametric lognormality. Table 6

on page 17 shows, by industry and by item, the number of departures during the considered period.

As an example, the value 2 in column \FA" and raw \Building Mat.", means that departures from

two-parametric lognormality were observed twice in �ve years for Fixed Assets, in the Building Mate-

rials group.

Only in one case (Wages in the Electronics industry) we obtained a persistent P < 0:05 for all

the �ve years. Electronics is also the group having more such cases (almost 40%). Next comes Food

Manufacturers and Industrial Plants with more than 30%. Groups like Paper & Packing, Chemicals,

Machine Tools, Building Materials and Clothing have less than 10% of departures. Miscellaneous

Textiles, Wool, Motor Components, Leather and Metallurgy have no departures at all.

Positive values of items having both positive and negative cases by industrial group: In

this paragraph we report on the behaviour of the positive values of four items having both positive and

negative cases like Working Capital or Earnings. We also include one item, Long Term Debt, for which

only the non-zero cases were selected. That makes a total of 350 samples to be tested: Five variables

for the same fourteen industries during a period of �ve years.

A total of 311 samples (88.9%) yielded no signi�cant departure from the two-parametric lognormal

hypothesis. The results by industrial group and by item are similar to those of the previous paragraph

(see table 7, page 17). Again, items had a more homogeneous behaviour than industrial groups.

Negative values of items having both positive and negative cases by industrial group: It is

impossible to test the lognormality of all industries when considering absolute values of negative cases.

The size of the resulting samples is too small. Only two groups were large enough to provide enough

negative cases and they were two-parametric lognormal.

Departures from the two-parametric hypothesis: We measured the number of times a signi�cant

departure from a two-parametric lognormal distribution was observed in a given sample for the period

of �ve years. In 69% of the tests performed in samples having only positive values there is no departure

at all during the �ve-years period. One departure or two can be observed in 21% of the cases. Three

departures only occur in 5% of the cases, and four in 3% of the cases. As mentioned before, only once

(Wages of the Electronics industry) the departure from the two-parametric assumption occurs during

the whole period of �ve years. In appendix (page 88), we display the results in detail.

Tables 6 and 7 show that the industrial grouping mostly determines whether a sample is two or

three-parametric lognormal. The item being examined is less important than the industry in explaining

signi�cant thresholds.
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Item Statistic 1983 1984 1985 1986 1987

EBIT W 0.9572 0.9838 0.988 0.951 0.946

sig W 0.042 0.048

N. Cases 40 42 48 57 47

Operating Pro�t W 0.9537 0.9851 0.9925 0.9686 0.9596

sig W

N. Cases 57 58 62 74 69

Gross Funds From Operations W 0.9594 0.9649 0.9792 0.9066 0.9644

sig W 0.005

N. Cases 27 24 30 36 38

Working Capital W 0.9640 0.9743 0.9647 0.9678 0.9609

sig W

N. Cases 50 61 67 61 62

Table 5: Results of applying the Shapiro-Wilk test to the absolute values of negative cases. All groups

together. Departures from the two-parametric assumption have sig W < 0:05.

Industry / Items S CL TA N TC CA EX W C NW D I FA Total by Ind.

Leather

Metallurgy

Motor Compon.

Misc. Textiles

Wool

Clothing 1 1 2

Building Mat. 1 2 3

Machine Tools 1 1 1 1 4

Chemicals 3 1 1 1 6

Paper & Pack. 1 1 3 2 7

Electrical 1 3 2 4 2 1 2 3 18

Food Manufac. 4 3 3 2 2 4 2 4 1 25

Ind. Plants 4 2 2 3 2 1 1 1 2 2 2 1 2 25

Electronics 3 3 3 4 2 2 5 1 2 2 27

Total by Item 14 11 11 10 10 9 9 9 8 8 7 6 5 117

Table 6: Number of samples yielding a signi�cant departure from two-parametric lognormality during

�ve years, by industry and by item. Items having only positive values.

Industry / Items EBIT OPP WC DEBT FL Total by Ind.

Machine Tools

Misc. Textiles

Metallurgy

Leather

Electrical 1 1

Paper & Pack. 1 1

Building Mat. 1 1 2

Wool 1 1 2

Motor Compon. 1 1 2

Clothing 1 2 3

Chemicals 2 1 3

Electronics 2 2 2 1 7

Ind. Plants 1 2 2 1 1 7

Food Manufac. 2 1 1 4 3 11

Total by Item 6 6 7 9 11 39

Table 7: Number of samples yielding a signi�cant departure from two-parametric lognormality during

�ve years, by industry and by item. Items having positive and negative values.
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Square Cubic Fourth Sixth Eighth Log

Item Root Root Root Root Root

SALES Skewness 3.59 2.43 1.86 1.32 1.07 0.412

Kurtosis 15.8 7.97 4.93 2.62 1.76 0.091

Shapiro-Wilk's W 0.627 0.778 0.847 0.904 0.926 0.968

WAGES Skewness 4 2.84 2.26 1.7 1.45 0.777

Kurtosis 19.4 10.2 6.61 3.82 2.72 0.488

Shapiro-Wilk's W 0.56 0.711 0.785 0.851 0.879 0.94

Table 8: Comparing root transformations with the log one. Electronics, 1985.

Departures from the lognormal hypothesis: Twenty tests yielded a very small signi�cance of

W , denoting severe departures from lognormality. These bad samples didn't improve with the three-

parametric transformation. We examined each one of them (see �gure 28 in appendix). Seven of these

samples had extreme outliers, clearly erratic. The other 13 were non-homogeneous, showing two or three

clusters of �rms. The non-homogeneous samples occur in two industries only | Food Manufacturers

and Electronics | mainly a�ecting Sales, Wages, and the Number of Employees.

Our results suggest that, for small samples, lognormality is conditional on the homogeneity of the

industry. The underlying stochastic mechanism determining the distribution of raw data has a trend

towards lognormality, even when a particular sample is non-homogeneous.

1.4 Other Possible Parameterization

The logarithmic transformation can be viewed as a way of controlling for the skewness in a distribution.

It makes sense to ask if the reduction in skewness achieved with logs is the appropriate one. In case less

reduction is required we should use a square root or another root. In case more reduction is required

we should use the Pareto distribution or another of its class.

1.4.1 Root Transformations

We tested a scale of roots progressively approaching the e�ect of a log transformation. For each of

them we measured the skewness, kurtosis and W . Table 8 shows the results for two particularly badly-

behaved groups. The signs of normality increase with increasing roots, achieving much better values

with logs. In �gure 2 (page 8) we display the graphical evolution of a frequency distribution when roots

of increasing exponents were used to transform the data.

Characteristic behaviour of raw data: When assessing the distribution of ratios it is usual to

�nd cases in which no transformation seems to improve the normality of the data. However, in the

case of raw data, the situation is di�erent. Not only the log transformation emerges as the most

appropriate one, no matter the item or the industry. There is also a progress towards normality for

roots of increasing exponent. The signs of normality increase with increasing roots and are optimal

with logs. Contrasting with this, it is frequent to �nd in the literature references to an unpredictable

outcome in the distribution of ratios after applying transformations such those we use here (see, for

example, Ezzamel, Mar-Molinero and Beecher [13], 1987, pp. 473 to 476).
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Figure 2: Evolution of the frequency distribution of Current Assets, 1986, all groups together, when

several root transformations and a log one were applied.
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Figure 3: Pareto processes would exhibit a linear relationship between log ranks and log values. The

dashed line is the corresponding lognormal deviate.

1.4.2 The Pareto Hypothesis

After discarding transformations less e�ective than logs in neutralizing skewness, we tried a more pow-

erful one. Pareto processes have cumulative distributions for which the relation between the observed

values and the rank is logarithmic. If x is a random variable governed by a Pareto process we observe

logx = logM � � � log r

in which r is the rank of x (the largest x is assigned the rank 1) and M , � are constants. Therefore, if

we rank the cases in a sample from large to small, the log of the item and the log of the rank should be

linearly related (with a slope of �) for the Pareto hypothesis to be acceptable.

In the observed items it is not the case. A clear downward concavity of the distribution was observed

for all items. This departure is very signi�cant. Firms occupying the middle of the rank are more than

twice as large as that predicted by the Pareto distribution. Figure 3 (page 10) shows an example of

the shape raw accounting numbers assume when their logs are plotted against the logs of their rank.

Cases follow much more closely the lognormal deviate (the dashed line) than a straight line. Ijiri and

Simon [20] (1977) also report the same concavity for Sales and the Number of Employees in US �rms.

The Pareto process and the growth of �rms: In some literature it is usual to link the growth of

�rms with a Pareto process (see for example Steindl [28], 1965). If the growth of �rms is Pareto-like,

we should observe cross-sections of raw accounting numbers obeying the Pareto hypothesis. Since this

is not the case, it seems as if our results contradict this belief.

The models of growth used to justify a Pareto distribution of �rm sizes are inspired by the Gibrat

law [17]. The Gibrat law leads to a whole class of skewed distributions depending on the conditions

imposed on the growth process. As we recall in chapter 3, the most immediate outcome of the Gibrat law

is lognormality. Lognormality, however, is too simple and general an outcome. It requires a random walk

as the growth rate of �rms. The literature concerning the growth of �rms considers Pareto processes

instead of the lognormal ones because of the scarcity of assumptions the lognormal hypothesis allows.

When known in
uences like the serial correlation during growth, the e�ect of mergers and acquisitions
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and the birth and death of �rms are accounted for, the resulting cross-sectional distribution should be

a Pareto or a Yule one, not the lognormal.

1.5 Assessing the Importance of Multiple Tests

In this section we discuss the meaning and importance of W and corresponding P values obtained from

applying the Shapiro-Wilk test to a large number of di�erent samples. The Gaussian distribution is

the result of many independent random causes. It would be interesting to compare our set of P values

with the Gaussian distribution in order to measure in what extent its variability can be considered as

caused by many independent random events as those in
uencing mechanisms of sampling.

A set of P values such as the one obtained from the repetition of a signi�cance test for many

samples cannot be directly compared with the Gaussian distribution because probabilities or any relative

frequencies are bounded by 0 and 1. However, it is possible to transform probabilities so that the

resulting variable is Gaussian for random normal events. We used a simple logit transformation to link

relative frequencies with Gaussian deviates. For a given P , [0 � P � 1], we computed

Logit P = log

P

1� P

Logit P (also known as log-odds) ranges from �1 to +1 and is approximately normal for random

normal events. A value of Logit P = 0 is the expected or central one. Negative logits mean P < 0:5

while the positive ones are obtained for P > 0:5. Logit P can boldly be taken as the number of standard

deviations for normal distributions.

Firstly we examined the distribution of the log-odds obtained after performing the 910 + 350 tests

described above. In order to do this we had to exclude the twenty bad tests having P < 0:001,

because they would yield �1 for the number of signi�cant digits we were working with. The resulting

distribution had a mean value of �0:25 (equivalent P = 0:49) and a standard deviation of 0:85. Both

skewness and kurtosis were very small. The aspect of the frequency distribution was nearly Gaussian.

Next, we simulated an equal number of samples drawn from a strictly Gaussian population. These

samples had the same number of cases as found in each performed test. Simulated normal deviates

yielded a mean value of 0:04 (equivalent P = 0:53), and a standard deviation of 0:8. 3.6% of the

simulated tests yielded P < 0:05. Notice that supposing normality, 95% of them would have to fall

inside an interval of f�1:6;+1:6g logits, which is P = f0:025; 0:975g, as they did.

The fact that when performing multiple tests some of them are expected to exhibit P < :05 even

when the samples were drawn from a Gaussian population, means nothing wrong with the Shapiro-Wilk

test itself. When many samples are drawn from a perfectly Gaussian population, it is likely that some

of them will be far from normality in some degree due to the random nature of sampling.

Figure 4 shows the frequency distributions of both real and simulated tests. Some interesting

conclusions arise from comparing them.

� When many tests are performed we can expect at least 3.6% of them to show signi�cant departures

from normality even when the population from which the samples were drawn is strictly Gaussian.

In our case, we put aside 20 tests. The proportion of cases having 0:001 < P < 0:05 is now

11.3%. It seems as if only something like 7.7% of those (11:3� 3:6) should be considered as real,

unexpected, departures from two-parametric lognormality.
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Figure 4: The frequency distributions for real (left) and simulated (right) Logit P . The cluster of the

20 \bad samples" has been added to the distribution of real Logit P with an arbitrary, small, value.

� The second conclusion is induced by the similarity of distributions of real and simulated results.

Normality means random, independent, causes. Now, if some hazardous sampling can introduce

a standard deviation of 0:8 in an otherwise perfectly Gaussian collection of samples, the standard

deviation of the real tests, also 0:8, should be assigned to an hazardous mechanism of sampling

and not to any particular cause.

If we take the di�erence between estimated expected values as the sole factor a�ecting the lognormality

of items we can say that, while the expected probability associated with the Shapiro-Wilk W is, for

a normal population, 0:53, it becomes 0:49 in the case of items. Four to one hundred odds is what

separates items from a two-parametric lognormal mechanism.

We noticed in previous sections that twenty samples drawn from one industry at a time yielded a

very small signi�cance of W , denoting severe departures from lognormality. These bad samples didn't

improve with the three-parametric transformation, and their Shapiro-Wilk's W signi�cance were so

small that it was impossible to apply logits. Such set of bad samples behave di�erently from the other

ones. The signi�cance obtained from all other tests form, in logit space, a nearly Gaussian distribution.

Bad samples don't �t well in such a distribution. They are more numerous than expected and they

form a cluster sticking out below the lower values of Logit P (See �gure 4, page 12, on the left).

1.6 Discussion and Conclusions

Lognormality emerges as a general and stable feature of cross-sectional samples of raw accounting

numbers. Not only the large samples containing many industries are lognormal. Each individual

industry is lognormal too. Not only positive stocks are lognormal. Items with di�erent origins, 
ows as

well as stocks, are lognormal. This fact suggests that the mechanism determining lognormality in raw

data has little to do with the way particular items are generated inside the �rm.

The number of samples tested by this study is much larger than the existing ones. To what extent can

the strong regularities described here be extrapolated to di�erent samples? Our study clearly excludes

�rms which are too small to be collected into the Micro-EXSTAT database. In what concerns other

industries, given the lognormality of samples obtained by gathering all groups together, lognormality is

likely to be found also in industries not contemplated in this study. In fact, this overall homogeneity is
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the one expected when sampling �rms at random obeying a single condition, the selected �rms being

industries.

We found that some samples were three-parametric. Two-parametric lognormality only contemplates

situations in which the smallest cases approach zero. In raw accounting numbers, as in other lognormal

variables, thresholds are expected. They have a role in explaining non-proportionality in ratios, as we

shall see in section 4.3. We also noticed that three-parametric lognormality is scarce. It emerges in

some years but not in others, and it relates to industries rather than to items.

Lognormality and cross-section: Hitherto no strong regularity was found when examining ac-

counting data. This is because only ratios were tested. Ratios are exposed to the interaction between

their components. This makes them di�erent from one another. There is no reason to expect such a

variety in the distribution of raw numbers.

Lognormality isn't di�cult to explain. Any stochastic accumulation, that is, any growth proportional

to the size already attained, leads to cross-sections that are lognormal or belong to the same class of

skewed distributions. Notice that, in order to explain lognormality in accounting numbers, we don't need

to accept a stochastic accumulation as the mechanism underlying every item. It is enough to picture

the growth of the �rm as a stochastic accumulation. In our data, all sorts of items are lognormal.

Net Worth isn't particularly less lognormal than Sales despite not being a \sum of similar transactions

whose sign remains the same" (McLeay [23] 1986, p. 79). Both Sales and Net Worth are lognormal,

seemingly because the growth of the �rm as a whole is itself an accumulation. Cross-sections of items

re
ect, on average, a given proportion of size.

Notice also that lognormality expresses an expected proportionality of random e�ects, not just

a strict proportionality, as ratios do. The �nding of lognormality in raw data is promising, not only

because it answers many questions, including, to some extent, why ratios are used in �nancial statement

analysis. It is also promising in that it opens up the possibility of improving ratios.
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Chapter 2

Outliers, Heteroscedasticity and

Trimming

What are the immediate conclusions to extract from the lognormal nature of the observed items? In this

chapter we point out that the sole consideration of lognormality is enough to account for the persistent

emergence of outliers referred to in the literature. The also mentioned heteroscedasticity of residuals

is then discussed. We show that Least-Squares modelling of lognormal data isn't adequate. Other

models ought to be developed. Speci�cally, we study the consequences of using ordinary or weighted

regressions. Finally, the usefulness of trimming lognormal tails is discussed.

The meaning of the log transformation: In this study we often use the term \space" with a

quali�er. For example, we refer to the rotated space or to the log space. Our goal is to emphasize the

fact that a given set of variables has been jointly transformed in a well known and consistent way, thus

de�ning a formal system.

The accounting literature is cautious about transformations. They are seen as a means of massaging

data. For example, Eisenbeis [11] (1977) has been frequently quoted as saying that

In the case of the log transformation there is also an implicit assumption being accepted

where such a transformation is employed. That is, the transformed variables give less weight

to equal percentage changes in a variable where the values are large than when they are

smaller. If, for example, the variable being transformed was �rm size the implications would

be that one does not believe that there is as much di�erence between a $1 billion and a $2

billion size �rms as there is between a $1 million and a $2 million size �rms. The percentage

di�erence in the log will be greater in the latter than in the former case.

This is not so. The log transformation has a precise meaning and shouldn't be considered as a mere

manipulation of values to make them more tractable. Firstly, notice that

Log of one million = 6 Log of one billion = 9

Log of two millions = 6:301 Log of two billions = 9:301

The di�erence is 0:301 The di�erence is 0:301

Logs yield similar di�erences whenever the ranges are proportional, that is, when they are similar

except for scale. In log space, a di�erence from one million to two millions is as impressive as a di�erence
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Figure 5: The awkward aspect of a bivariate lognormal distribution (left) and the homogeneous one of

the same data in log space (right). Electronics, 1986.

from one billion to two billions. Of course, we should avoid applying proportions to log distances. It

would be as if we were building proportions of proportions. This is Eisenbeis's pitfall.

The meaning of the log standard deviation: In log space, distances from any case to the mean

are no longer real distances: A log displacement of 0.4, | a usual value for the log standard deviation

observed in industries | means that the displaced case has been multiplied or divided by 2.5, the anti-

logarithm of 0.4. Hence, we may say that a log standard deviation of 0.4 is equivalent to a multiplicative

one of 2.5. Or that each unit of standard deviation in log space measures a scatter of 150%.

An immediate consequence of lognormality is that the coe�cient of variation (the standard deviation

expressed as a proportion of the expected value of the variable) is constant. Hence, in lognormal

distribuions, the expected variance is not constant (homoscedastic): It grows with the square of the

variable.

2.1 Outliers

The presence of outliers in ratios is consistent with the lognormality of items. For standard deviations

like those found in accounting raw data, the lognormal distribution is severely skewed. It is this skewness

that has been taken as outliers by the literature. In fact, strongly skewed distributions have long tails

towards the positive values of observations: Many cases are concentrated in a small region and a few

of them spread out along a large range. Figure 5 on the left (page 21) is a bivariate example. Apart

from the biggest companies, the remaining ones (about 140) occupy a small region at the bottom left

of the plot. It is easy to take the few extreme values as outliers. As Snedecor and Cochran put it,

([27], 1965, pp. 281, 9

th

ed.) \the apparent outliers may re
ect distributions of the observations that

are skew or have long tails". This �gure is also an example of the adequacy of the log space to raw

accounting data. On the scatterplot on the left, hardly anything can be sorted out. When drawing

the same plot in log space (on the right), each case becomes separable. A small non-linear relation
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between the two components is now visible. This non-linearity turns out to be important to understand

non-proportionality in ratios.

Along this study we shall see that other pieces of evidence, hitherto hidden from direct observation,

become visible in log space.

Lognormality and a very small scatter: Notice that the above description of the characteristics

of the lognormal distribution shouldn't be taken as a general rule. Perfectly lognormal samples can

have small skewness when their standard deviations are very small too. It is generally accepted that

coe�cients of variation smaller than 0.25 denote distributions which can be approached by the Gaussian.

Such exceptional cases cannot explain why a few ratios are Gaussian: Ratios seldom exhibit a coe�cient

of variation small enough to comply with the above condition.

2.2 Heteroscedasticity

There is a well known claim for regressions to be used instead of ratios because of non-proportionality

between ratio components (Barnes [2], 1982). On the whole, the discussion resulting from this claim

was very revealing. It drew the attention of researchers for the use of raw numbers instead of just

ratios, and it introduced an aspiration towards more accurate models. However, given the lognormality

of items, the use of regressions is inadequate. In fact, lognormality implies leverage cases for the same

reason it implies outliers. Leverage cases are likely to be in
uential, thus distorting regressions.

Statistical models su�er distortions if one or two input vectors are in
uential. When an in
uential

case is excluded, the �tted parameters are signi�cantly di�erent from when it is present. This happens

because the quadratic nature of Least-Squares minimization precludes large residuals.

In regressions using raw data as input variables, a large �rm is a leverage case, likely to become

in
uential, just by being large. In fact, when a lognormal distribution is taken as Gaussian, the outliers

are always in its tail | the largest �rms. In the literature this problem is referred to as the non-

acceptable heteroscedasticity of data. But there are many degrees of heteroscedasticity. As stressed

by Berry and Nix [4] (1991), in order to cope with heteroscedasticity, knowledge about its nature is

required. Recipes adequate for one particular form don't work in di�erent cases. Next we comment on

one of such recipes widely used in accounting research.

Weighted Least-Squares: A weighted regression uses

y

j

x

j

=

a

x

j

+ b+

"

j

x

j

instead of y

j

= a+ b� x

j

+ "

j

:

For a variance increasing with x this procedure stabilizes it. But in lognormal deviates it's the standard

deviation, not the variance, which increases with x in average. The variance grows with the square

of x. Figure 6 on page 23 shows the meaning of this distinction. The scatterplot above is a bivariate

relation ideal for a weighted Least-Squares transformation. In fact, this sample has been obtained from

a perfectly homoscedastic sample, by applying the inverse of a weighting transformation. Below, the

same homoscedastic sample, but after applying the anti-logarithmic transformation. The aspect of both

sets is typical of data requiring weighting (above) or logs (below).

The Cook Distance: As an example of the correlation between in
uential cases and the size of

the �rm, we selected the sample displayed in �gure 5, page 21 (Electronics industry, 1986, EBIT with
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Figure 6: The typical aspect of bivariate distributions requiring weighted Least-Squares (above) and

Log transformation (below).

Ordinary Least-Squares (OLS) Weighted Least-Squares (WLS) OLS in log space (LOG)

Name Rank Cook D. Name Rank Cook D. Name Rank Cook D.

G. E. 1 12.18 TELFORD 129 7.890 NATIONAL 17 0.077

STC 4 1.485 MISYS 142 0.166 G. E. 1 0.073

IBM UK 2 0.985 M.M.T. 145 0.152 POLYTEC. 126 0.057

ENG. EL. 3 0.250 FORWARD 139 0.079 IBM UK 2 0.053

STC C. 6 0.213 KLARK-TK 137 0.057 BELL & H. 59 0.039

DIGITAL 7 0.062 HEADLAND 135 0.053 CASIO 55 0.039

AMSTRAD 14 0.033 AMS IND. 136 0.048 AMS IND. 136 0.036

UNISYS 27 0.013 SOUNDTR. 138 0.044 ZYGAL 125 0.035

FERRANTI 10 0.012 AVESCO 131 0.039 ENG. EL. 3 0.034

Table 9: The largest Cook distances when Sales was used to explain EBIT in three di�erent regressions:

OLS, WLS and LOG. Electronics, 1986.

Sales). Three di�erent regressions | OLS, WLS and LOG (a regression in log space), were performed.

Sales was the input and EBIT the outcome. Then, we compared the Cook distances observed in each

one of them. The Cook distance (Cook [9], 1977) measures the e�ective degree in which every case

in the sample commands the whole �t. Tolerable Cook distances should not exceed 1. Values larger

than 1 mean a �t monopolized by the case in which it occurs. Table 9 shows the �rms which were

traced as most in
uential in each regression. The column labeled \rank" signals the ranking of each

�rm according to size. In this column, 1 means the largest �rm, and so on.

OLS has two �rms which are in
uential. WLS has one. When using OLS, the in
uential �rms tend

to be the largest ones. In the case of WLS, they tend to be the smallest ones. The Cook distances

in log space are far below those of OLS or WLS. Notice that, when using WLS instead of OLS, some

improvements are observed. Weighting makes the standard deviation of the variables smaller, and the

skewness, in lognormal distributions, depends on the standard deviation.
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Figure 7: When trimming outliers caused by a lognormal scatter, new outliers emerge across scales.

Electronics, 1986.
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2.3 Trimming

Another point the lognormal nature of items elucidates is why it seems so unfruitful to trim outliers.

Lognormal multivariate distributions exhibit self-similarity of features across scales. Any pattern

which holds for billions also holds for thousands. The shape like a \<", typical of a lognormal bivariate

scatter of correlated variables, along with the corresponding gradient in the density of cases, is continu-

ously generating in
uential cases across scales. As a consequence, there is little point in excluding large

�rms from the sample to obtain a more homogeneous set. If we exclude the largest cases, new ones

will emerge as outliers since the phenomenon commanding the emergence of in
uential cases holds in

di�erent scales.

In the above example (table 9 on page 25, the OLS case), if we measure the Cook distance associated

with each case after excluding the two in
uential �rms (G.E. and STC), we get three new cases with

a non-acceptable weight in the regression: SUNLEIGH PLC (with a Cook distance of 1.6), ENGLISH

ELECTRIC (1.9) and BROTHER INTERNATIONAL (19.8). The new situation is worse than before.

If we exclude also these three �rms, SYNAPSE COMPUTER SERVICES emerges with a new Cook

distance of 80.5. And excluding also this �rm, MISYS PLC appears as having a new Cook distance of

0.8, much higher than the highest values observed in LOG.

Notice that DIGITAL, despite being amongst the largest �rms and therefore a leverage case, didn't

become in
uential. This is because leverage and in
uence are di�erent concepts. An in
uential case

must be a leverage case. But it is possible for a leverage case not to become in
uential.

2.4 Conclusion

The variability generated by proportional mechanisms is well known and documented. For example,

Snedecor and Cochran [27] (9

th

edition, 1989, pp. 290) observe:

\Logarithms are used to stabilize the standard deviation if it varies directly with the mean,

that is, if the coe�cient of variation is constant. When the e�ects are proportional rather

than additive, the log transformation brings about both additivity of e�ects and equality of

variance."

The log transformation solves at once two problems that the literature considers separately: The non-

homogeneous variance and the emergence of outliers.

Regressions shouldn't be used to model relations between lognormal variables. Lognormal distribu-

tions generate large residuals which monopolize the minimization of square errors. The results are then

dependent on one or two in
uential cases.

Weighted Least-Squares isn't an appropriate technique to deal with the above problem. It simply

transfers the in
uence from the largest to the smallest cases in the sample. The heteroscedasticity would

not vanish in any of these cases. The log transformation is adequate, in a �rst approximation, to render

residuals additive. But appropriate models ought to be developed that fully explore the existence of

non-proportional and non-linear relations in items.

The trimming of outliers becomes a useless exercise for lognormal data. The shape like a \<",

typical of bivariate proportional relations, will not change across scales. It will generate more and more

outliers if successive trimming is to be attempted.
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Chapter 3

The Overall E�ect of Size

In this chapter we study the co-variance matrices formed, in log space, with items from the same report.

We show that raw numbers share most of their variability. They are well described as a unique e�ect

with some particular randomness superimposed. We also discuss the statistical behaviour of items

obtained by subtraction of other items. We explain why positive di�erences maintain lognormality and

we suggest procedures to use, in log space, variables having negative cases.

The observed data is the same as in chapter 1. It contains 14 industrial groups and 18 items. This

sampling is replicated during a period of �ve years (1983-1987). Tables 2 on page 14, and 1 on page 14

describe its contents.

3.1 Co-Variance Matrices in Log Space

Inside industries, the cross-sectional variances and co-variances of log items from the same report are

similar and lie above a common ground-value. Also, for samples of signi�cant size, no negative or zero

co-variances can be observed. Table 10 shows four co-variance matrices (usually referred to as �). They

describe the features we highlight. In appendix (�gure 29 on page 98) other matrices are displayed.

� matrices such those of table 10 are only possible if there is a preeminent source of common

variability. It seems as if log items were just the same variable with a bit of particular randomness

superimposed. This is consistent with the fact that, in cross-section, the �rst and most important

S NW W I CA FA EBIT S NW W I CA FA EBIT

S 0.35 0.21

NW 0.32 0.39 Paper and Pack. 0.22 0.26 Leather

W 0.35 0.36 0.41 0.19 0.21 0.18

I 0.33 0.34 0.38 0.40 0.19 0.21 0.18 0.19

CA 0.33 0.32 0.35 0.35 0.34 0.21 0.24 0.20 0.20 0.23

FA 0.32 0.36 0.37 0.34 0.33 0.40 0.19 0.21 0.18 0.17 0.19 0.20

EBIT 0.35 0.35 0.36 0.35 0.34 0.35 0.41 0.26 0.29 0.24 0.23 0.27 0.24 0.28

S 0.17 0.55

NW 0.17 0.20 Clothing 0.57 0.73 Food Manuf.

W 0.18 0.18 0.23 0.55 0.64 0.64

I 0.19 0.20 0.20 0.23 0.59 0.68 0.63 0.73

CA 0.17 0.18 0.18 0.20 0.19 0.56 0.63 0.58 0.65 0.61

FA 0.17 0.19 0.21 0.20 0.17 0.26 0.57 0.69 0.65 0.65 0.61 0.71

EBIT 0.17 0.17 0.18 0.18 0.17 0.19 0.31 0.59 0.71 0.64 0.70 0.66 0.69 0.73

Table 10: Four Co-variance matrices denoting the homogeneity of variance and co-variance inside

industrial groups. Data from 1983.
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source of variability impinging upon di�erent items is size. Only after accounting for the e�ect of size

is it possible to assess the variability speci�c to items.

In order to provide a more systematic evidence on the existence of this strong source of common

variability, we created a variate, s, supposed to capture it. This variate can be built in several ways.

Ours will be explained in section 6.1. Using s as the predictor, we then formed regressions in log space.

Each log item was explained by s (logx

j

= a+ b� log s

j

+ "

j

). Finally, we observed the obtained R

2

.

Results: Tables 30 and 31 in appendix (pages 96 and 97) contain the detailed results of this experi-

ment, by industry and by year. Table 11 on page 29 shows the results for all industries together. We

also present a condensed table, the 12

th

, in which the R

2

are the mean of �ve years, by industry and

item. This table is sorted in ascending order of its marginal content.

The results are similar during the usual period of �ve years. The R

2

range from 97% to 75% for

most of the items. Earnings and Working Capital are below the usual and Long Term Debt has an

R

2

ranging from 30% to 80%, smaller than any other item. However, even in the case of Debt it isn't

possible to accept independence from size as an R

2

of 30% means a signi�cant correlation of 0.55. The

conclusion is that it is possible to create a unique variable, s in this case, able to explain most of the

randomness of our set of log items. The results would be similar to these if we would use, instead of s,

another item, say, logTA or logNW .

It could be argued that these large R

2

stem from using items both for building s and for explaining

them in terms of s. The observed co-variance would re
ect the e�ect of the same item in both sides of

the regresion. We shall see in section 6.1 that items like S, NW , W , D, CA, and CL, were used in the

building of our proxy for size. However, this fact will not change the results. The R

2

of items which

weren't used for building s, like I, FA, C, FL, and others, aren't signi�cantly smaller than the R

2

of

those which were. The large R

2

obtained can only be explained by an e�ect common to all items.

The slopes of regressions in which log items are explained by s, remain close to 1 (see table 11).

This stems from applying log transformations. In log space, any scaling becomes a translation. But

translations can be accounted for by the constant term of regressions. Hence, the main source of

variability in log items is modelled by a simple mean adjustment. Departures from 1 in the value of

the slopes are explainable by using OLS instead of errors-in-variables modelling, and by the presence

of signi�cant thresholds.

In the above experiment, the negative-valued cases were excluded from the sample. However, we

also observed � matrices formed from groups of �rms sharing the same problem. For example, the

matrices displayed in �gure 8 on page 29, belong to the Electronics industry (1986). On the left, only

�rms with negative Working Capital were selected. On the right, only �rms with negative EBIT.

These patterns are not similar to one another, denoting the di�erent nature of their underlying

mechanisms. Samples with negative Working Capital generate more variability than those with negative

EBIT. Notice that the number of cases is smaller than the desirable. We obtained a statistic, �, which

has more parameters in it than the number of cases in the sample. Such an analysis is case-dependent.

Comparing simulated and real �: Simulation can be carried out in order to observe, avoiding the

burden of analytical developments, the multivariate pattern of � matrices when they are calculated from

the logs of absolute values of negative cases. This allows us to understand which features of the above

matrices are due to a particular behaviour of �rms | liquidity or pro�tability problems for example |

and which are due to the mechanism of subtracting two lognormal variables.

23



Item 1983 1984 1985 1986 1987

slope R

2

slope R

2

slope R

2

slope R

2

slope R

2

S 1.006 0.91 1.006 0.89 0.994 0.90 0.991 0.90 1.004 0.89

W 1.027 0.91 1.046 0.91 1.040 0.92 1.033 0.93 1.036 0.93

NW 1.009 0.89 1.010 0.88 1.008 0.88 1.008 0.90 0.991 0.89

I 1.047 0.88 1.054 0.88 1.029 0.86 1.055 0.86 1.043 0.82

D 0.991 0.91 0.972 0.91 0.977 0.91 0.974 0.91 0.985 0.91

C 1.008 0.90 1.015 0.92 1.022 0.92 1.016 0.91 1.017 0.91

CA 0.996 0.94 0.985 0.95 0.995 0.94 0.992 0.94 0.976 0.94

FA 1.075 0.81 1.061 0.82 1.099 0.82 1.103 0.83 1.100 0.82

CL 0.981 0.92 0.986 0.93 0.984 0.93 0.992 0.94 0.984 0.93

FL 1.047 0.84 1.052 0.85 1.033 0.87 1.046 0.85 1.035 0.86

EBIT 1.036 0.78 1.032 0.81 1.024 0.82 1.022 0.83 1.008 0.83

N 0.987 0.84 1.004 0.85 1.010 0.86 1.009 0.87 1.020 0.86

DEBT 1.157 0.62 1.096 0.61 1.100 0.60 1.107 0.56 1.142 0.56

EX 1.000 0.86 1.006 0.84 1.001 0.84 0.990 0.84 0.997 0.83

WC 0.996 0.74 0.976 0.80 0.967 0.75 0.978 0.74 0.934 0.76

Table 11: The slopes and explained variability (R

2

) obtained when log s, an estimated size, is used to

explain several log items. All groups together.

DB WC EB FA FL NW I D C CL S W CA mean

METAL 0.40 0.81 0.80 0.59 0.78 0.77 0.81 0.83 0.79 0.78 0.65 0.81 0.90 0.75

CLOTH 0.32 0.56 0.54 0.76 0.67 0.84 0.89 0.79 0.86 0.85 0.92 0.87 0.92 0.75

TOOLS 0.31 0.73 0.70 0.83 0.69 0.78 0.88 0.82 0.92 0.88 0.94 0.95 0.95 0.80

WOOL 0.41 0.78 0.80 0.81 0.86 0.85 0.77 0.88 0.85 0.82 0.91 0.86 0.91 0.81

PLANT 0.57 0.67 0.67 0.82 0.77 0.80 0.88 0.93 0.90 0.93 0.96 0.96 0.95 0.83

PAPER 0.46 0.71 0.84 0.77 0.86 0.83 0.88 0.86 0.91 0.94 0.91 0.92 0.96 0.83

ELECT 0.49 0.71 0.79 0.74 0.84 0.85 0.90 0.92 0.95 0.95 0.93 0.93 0.97 0.84

CHEM 0.62 0.76 0.84 0.84 0.84 0.89 0.80 0.88 0.90 0.92 0.87 0.95 0.92 0.85

ELTN 0.53 0.84 0.80 0.81 0.86 0.92 0.79 0.93 0.90 0.93 0.93 0.90 0.93 0.85

BUILD 0.62 0.74 0.82 0.87 0.86 0.88 0.92 0.96 0.90 0.95 0.97 0.97 0.97 0.88

FOOD 0.73 0.77 0.87 0.86 0.90 0.89 0.90 0.93 0.93 0.94 0.91 0.94 0.94 0.88

MOTOR 0.76 0.80 0.82 0.92 0.88 0.92 0.94 0.96 0.91 0.95 0.96 0.96 0.90 0.90

MISC 0.77 0.78 0.90 0.81 0.92 0.93 0.94 0.94 0.94 0.93 0.96 0.90 0.95 0.90

LEATH 0.68 0.90 0.93 0.87 0.94 0.95 0.97 0.85 0.94 0.96 0.98 0.93 0.97 0.91

mean 0.55 0.75 0.79 0.81 0.83 0.86 0.88 0.89 0.90 0.91 0.91 0.92 0.94

Table 12: The R

2

(mean of the �ve years observed) of regressions in which s, an estimated size, explains

13 items. Rows are industries and columns are items.

S W I D C CL FA S W I D C CL FA

0.63 13 cases 0.32 23 cases

0.41 0.33 0.24 0.28

0.54 0.39 0.61 0.32 0.28 0.47

0.53 0.38 0.51 0.49 0.28 0.26 0.32 0.30

0.47 0.33 0.45 0.45 0.48 0.23 0.22 0.28 0.24 0.23

0.48 0.35 0.48 0.46 0.45 0.47 0.25 0.23 0.28 0.26 0.23 0.26

0.60 0.41 0.53 0.54 0.49 0.48 0.67 0.24 0.26 0.25 0.26 0.23 0.24 0.33

Figure 8: Two � matrices obtained from the same industry and year. On the left, cases with negative

Working Capital. On the right, cases exhibiting negative EBIT.
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S CA FA CL

0.510 S

0.478 0.504 CA

0.490 0.480 0.599 FA

0.462 0.470 0.467 0.460 CL

Figure 9: � matrix used for simulating Working Capital, 1986, Electronics.

S FA CL CA WC S FA CL CA WC

S 0.516 W. Cap. > 0 0.462 W. Cap. < 0

FA 0.505 0.627 0.416 0.475

CL 0.464 0.477 0.459 0.419 0.401 0.423

CA 0.475 0.484 0.465 0.489 0.422 0.400 0.424 0.429

WC 0.494 0.492 0.474 0.532 0.672 0.399 0.407 0.416 0.392 0.680

Figure 10: � matrix from the simulated Working Capital. Electronics, 1986.

We used the same group, Electronics 1986, and starting conditions similar to those found in positive

cases. Such conditions were:

Item Mean St. Deviation Item Mean St. Deviation

Current Assets 4.213 0.723 Fixed Assets 3.757 0.779

Sales 4.577 0.720 Current Liabilities 4.005 0.680

In �gure 9 we display the � matrix used to introduce in the simulation the co-variance of items.

After generating 2,000 cases with multivariate lognormality we obtained 185 with negative Working

Capital. Both samples were lognormal but the positive one had positive, though small, skewness. The

negative one had negative, also small, skewness and a larger kurtosis. The resulting co-variance matrices

for both samples are displayed in �gure 10. They aren't di�erent from the usual. Hence, the di�erences

observed in matrices obtained from real samples are probably caused by mechanisms of the �rm.

We carried out simulations of other groups. The only feature recognizable as particular to simulated

negative cases was its larger spread and the described skewness and kurtosis.

3.2 The Subtraction of Two Items

Many items from �nancial statements, namely those representing 
ows, are obtained by subtracting

two other items. In this section we try to answer two questions related to the statistical characteristics

of such items. These questions are:

� Why are they lognormal? In general, there is no reason why the subtraction of two lognormal

variates should remain lognormal.

� If an item has negative cases the log transformation cannot be applied. This is the case for

Earnings or Funds Flow. How can they be used in log space?

After explaining their lognormality we show that the problem of negative cases is not speci�c to the log

transformation. We suggest alternative solutions enabling their use in log space.

Samples containing positive cases only: The lognormality of positive di�erences between two

lognormal variables is a consequence of a strong correlation between them. In a subtraction, z = y� x,

of two correlated items, cases in which y is large also have proportionally large x. And cases in which

y is small are expected to have proportionally small x.
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The extent to which z follows x and y is dependent on this correlation. For a pair of exactly

synonymous items, z would be proportional to them. If s is the e�ect common to both x and y we can

write in such an extreme case

y

j

s

j

= R

y

and

x

j

s

j

= R

x

for any �rm j:

R

y

and R

x

are constants. Therefore z

j

=s

j

= R

y

� R

x

for any j.

The more general case can be described by introducing in the above expression small f

y

j

and f

x

j

so

as to re
ect the variability particular to x and y:

y

j

s

j

= R

y

� f

y

j

and

x

j

s

j

= R

x

� f

x

j

for any j:

These f

j

account for departures from a strict correlation with s in case j. If such departures are small,

they should be near the unit. Considering f

y

= 1� �

y

and f

x

= 1� �

x

we can write

z

j

s

j

= R

y

� (1� �

y

j

)� R

x

� (1� �

x

j

)

= R

y

� R

x

� d

j

:

The departure from proportionality is now isolated. It is d

j

= R

y

� �

y

j

�R

x

� �

x

j

. Since the f

j

are near

the unit, the �

j

are small. For values of R usual in ratios, d

j

is a di�erence of two small values. Hence,

z will be near lognormality for the same reasons x and y are lognormal.

Samples containing both positive and negative cases: In chapter 1 we showed that, when taken

separately, both the samples of positive cases and those having negative ones, are lognormal. We can

see why, by subtracting graphically two lognormal scatters correlated with size, as in �gure 11. Given

WC = CA � CL we start with a scatterplot of CA on any measure of size and then we subtract CL

from CA. The values of WC are obtained from CA by sliding them down a value which is CL. But

the CL are proportional to size too. Hence, a large �rm's CA is expected to be largely modi�ed, and

a small �rm's CA is expected to change proportionally less.

Notice that the X-axis slices the bivariate distribution of WC with size. There are now two regions

separated by the X-axis. But such regions preserve the proportional nature of the data. If the slicing

were made along a line not passing through zero, or in less correlated items, the result would be a

truncation. But whenever the slicing of a bivariate distribution of very correlated lognormal items is

made along an axis of the distribution itself, the resulting two scatters will project their values in the

Y-axis in a way that preserves lognormality. A subtraction of two items so that negative cases emerge,

generates a juxtaposition of approximately lognormal distributions. One of them contains the positive

cases. The other one, the mirror-image of the absolute value of the negative ones. The simulations we

carried out corroborate this.

3.2.1 How to Model With Samples Having Negative Cases

What do we lose by taking separately one sample with positive cases and another one with the negative

ones as we have done so far? At �rst, the existence of negative cases in a sample seems unsatisfactory

for modelling purposes. By taking both sets separately, we break the continuity of the sample and lose

the information describing the passing through the zero value. It would seem desirable to be able to

work with the whole set of cases as a unique variable in the sample.
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CA CA - CL

Size Size

Figure 11: Schematic representation of the subtraction of two items yielding a new one with a few

negative cases.

It is easy to recall important pieces of research in which the used ratios had values passing through

zero. For example, Beaver's classic study on the importance of ratios for tracing �rm's failure [3] shows

how revealing a ratio of Cash Flow to Total Debt can be when sliding down from positive to negative

values during an observed period. The consequence seems to be that ratios should be considered as

a unity and taken as a whole. Breaking them into two samples, apparently damage part of their

information content. According to this, the literature has devoted some e�ort to the assessment of the

distribution of such ratios (see, for example, McLeay [23],[24] 1986). In fact, we lose nothing by using

split samples in cross-sections. Beaver's ratios draw a trend during several time periods. One unique

object | the average ratio for a group of �rms | is observed during consecutive intervals. But cross-

sections are not about one unique object. They capture the behaviour of many objects ideally at the

same instant in time. The concern referred to above stems from picturing time-series and transposing

it to cross-sections.

Ratios and the log transformation: The lack of continuity between positive and negative cases

isn't a problem speci�c to the log transformation. Ratios face the same problem. Ratios | or more

elaborated models like regressions | fail to model the same samples the log transformation is not apt

to model. In fact, for the ratio y=x in which y is an item having both positive and negative cases, when

we go along decreasing values of y and pass through zero, the corresponding evolution of x change in

direction. It ceases decreasing and begins to increase. It is impossible to model such a sample using one

ratio. For each x there are two possible y. That's why practitioners calculate standards by considering

only positive values. They can't �nd a consistent standard for samples with both signs.

For example, consider the ratio Cash Flow to Total Debt. In a sample there are �rms with large

positive Cash Flow and large Debt. But there are also �rms having negative Cash Flow and large Debt.

When producing a ratio to explain the joint behaviour of these two items, the �rms with negative

Cash-Flow push the expected value of the ratio towards zero. The obtained estimation for Debt, given

the Cash-Flow, is larger than it should be. The expected value of the ratio can even approach zero or

become negative. When approaching zero, the amount of Debt predicted by the ratio rises to in�nity.

After passing through zero, the ratio predicts in�nitely large negative Debt.

There is a breakage of continuity when passing through zero because each sample | positive Cash
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Log EBIT

- Log |EBIT| Log S

Figure 12: Scatterplot showing the e�ect of a log symmetrical transformation on the EBIT (Y-axis) to

Sales (X-axis) relation. All industries, 1984.

Flow and the negative one | represents one group. They shouldn't be mixed up. Clearly, the problem

is not in the logs or ratios. The problem is that two di�erent groups cannot be modelled by the same

parameter. In the case of ratios or logs, the algebra itself precludes one single model. Proportional

co-movements cannot pass from one Cartesian quadrant to the other one except by going both together

through the origin. Ratios, the same as logs, entail an assumption of proportionality. Ratios, an

algebraic one. Logs, a di�erential one. Lev and Sunder [22] (1978) devote to this breakage of continuity

a large comment.

This lack of continuity seems to make sense also on grounds of �nancial analysis. We recall the

patterns of joint variability displayed in section 3.1 for samples re
ecting problems of liquidity or

pro�tability. They are very particular, contrasting with the general rules governing the positive ones.

Negative cases re
ect �rm illness. On the contrary, the positive ones re
ect a healthy state. In statistics,

situations as those require a grouping variable.

3.2.2 Alternative Variables

Despite the above remarks, there are cases in which it is useful to mix up positive and negative cases.

Here we suggest three possible solutions allowing their use in log space. Firstly, we can use a symmetrical

transformation:

x 7! log(x); for x > 0

x 7! � log(jxj); for x < 0

(1)

or the equivalent creation of a dummy variable. Such transformations correspond to the fact that

negative cases are also lognormal and correlated with size. They are useful provided no attempt is

made to �t a unique parameter to the transformed data. Figure 12 shows an example.

Secondly, if we scale one of the components of a di�erence so that negative cases cannot occur in

the sample, we obtain a new item which is also a di�erence but has only positive cases. Scaling is
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equivalent to a translation in log space. Samples will not change their shape by introducing a scaling.

Therefore, if we use z

0

= y�x�S instead of z = y�x (S being a constant) we can work with this new

variable knowing that the shape of z

0

is the same as the one of z, its standard deviation in log space

didn't change and even the outliers are all there. Only the mean value has emerged a bit.

Finally, this problem is solved by using other items instead. The variability of Earnings can be

brought to a model by Sales and Expenses. Working Capital can be substituted by Current Assets and

Liabilities. For any item z, resulting from a subtraction of two positive items y and x, the pair fy; xg

obviously contains all the information of z, and a bit more.

The addition of constants: Indeed, there is one transformation which should not be applied for it

severely distorts distributions. It consists of adding a large positive constant to all cases in the sample

so that the negative ones become positive. This practice has been reported in a few studies.

Modelling Debt: The log transformation cannot be applied to items having cases with values of

zero, like Debt. We avoid this problem by using, instead of log0, a very small number: log1 = 0. The

use of log(x+1) instead of logx is recommended for such cases, in texts like Snedecor and Cochran [27].

This will be acceptable if, in the sample, there are no cases with values near zero. If a scaling of one

million pounds is used instead of the usual scaling of one thousand, we are likely to �nd cases with

values near zero, both positive and negative.

3.3 Summary

The important point this chapter outlines is the existence of a common source of variability in the

logs of raw accounting numbers. In log space, items are the addition of two e�ects: The �rst one is

preeminent, re
ecting the relative size of �rms. The second one, particular to each item, re
ects its

uniqueness. Earnings or Gross Funds From Operations are as correlated with size as Total Assets or

Net Worth. The item showing a distinct behaviour is Debt. But even in this case size is present.

We also studied the problems posed by items having both positive and negative cases. We pointed

out that, in cross-section, there is no continuity between the positive-valued cases and the negative-

valued ones. We further suggested that negative-valued cases should be viewed as a di�erent group

since they represent speci�c situations.
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Chapter 4

Validity and Extension of Ratios

What can be said about ratios and their validity, based solely on the �ndings of previous chapters?

If raw numbers are Gaussian in log space, an observation x

j

from report j could be explained as the

expected value of the transformed variable, �

x

, plus a deviation, e

x

j

. That is,

logx

j

= �

x

+ e

x

j

: (2)

In ordinary space, exp(e

x

j

) re
ects the number of times x

j

is larger or smaller than the expected for its

industry. For example, the expected value of the logs of Sales in the Food industry, was estimated as

logx = 4:9218, (83,521 thousand pounds) in 1987. Then, we could say that G. F. LOVELL PLC and

UNITED BISCUITS are positioned at similar distances from the average: UNITED BISCUITS sold

1,832,400, about 22 times more than the average, and G. F. LOVELL sold 3,722, about 22 times less.

For both, the relative departure from the expected is e = 1:35 = log22. Only the signs are di�erent.

Financial ratios y=x can be written as a di�erence in log space:

log y

j

� logx

j

= (�

y

� �

x

) + (e

y

� e

x

)

j

or, in ordinary space,

y

j

x

j

= R� f

j

(3)

with R = exp(�

y

� �

x

) and f

j

= exp(e

y

� e

x

)

j

. R is the ratio standard: It is the number of times y is

expected to be larger or smaller than x. An estimated R is exp(log y � logx), the median of the ratio.

f

j

is the deviation from the ratio standard: It is the number of times the ratio, observed in �rm j, is

larger or smaller than the expected for the industry.

This manipulation shows that �nancial ratios only allow the strict, two-parametric, lognormality

of their components. Equation (2) is restrictive in that it doesn't model all the characteristics of raw

numbers described in previous chapters. As recalled, the literature also considers ratios as restrictive

since they can't model non-linearity and non-proportionality. Empirically, it is possible to write a model

incorporating the features unexplained by (2): Three-parametric lognormality (thresholds) and an e�ect

common to all items from the same report. In that case, an observation x

j

would now be explained as

log(x

j

� �

x

) = �

x

+ �

j

+ "

x

j

: (4)

�

x

is the threshold of x, �

j

is the e�ect of size in report j, and "

x

is the deviation from this e�ect observed

in x. This chapter shows that there is a simple point of view able to explain both (2) and (4), and hence

the �ndings of previous chapters. According to it, there is no contradiction between proportionality

as a statistical e�ect, and non-proportionality in ratios. It also shows how to extend ratios so as to

overcome their limitations.
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4.1 Ratios and the Common E�ect

The Gaussian distribution is often seen as the result of many independent elementary perturbations.

This approximation entails the assumption of a constant e�ect. For example, the probability of getting

odds, when tossing a coin, is a constant value of 1=2 no matter the number of games or the size of

the coin. And the probability of getting particular proportions of odds when tossing a coin in several

sequences of games draws a Gaussian distribution. This constant probability of 1=2 governing the game

referred to is what we call a constant e�ect. If, however, any random change dx su�ered by a variable

x is proportional to the value of x itself, the e�ect is no longer constant. It is a proportionate one.

Gaussian variables spread their �nal realizations in the neighbourhood of an expected value. It's

unlikely to �nd cases many orders of magnitude larger or smaller than the expected. This is because the

random changes leading to them are similar. When the random changes leading to any �nal realization

are similar only when taken as proportions of the momentary value of the variable, the distribution of

those �nal realizations exhibits strong positive skewness.

The lognormal probability distribution is consistent with proportionate mechanisms. This fact is

known as the Gibrat law [17] (1931). Let x be the position of a stochastic variable. If dx, the random

changes a�ecting x, are expected to be proportional to x itself,

the quotient

dx

x

is expected to be independent of x.

So, if we can �nd a function

z = f(x) such that dz =

dx

x

(5)

then the new variable z will obey the assumption of a constant e�ect. In the case of dz being many,

independent, perturbations, f(x) is the logarithmic function. Aitchison and Brown [1] (1957) contain

a detailed explanation of this reasoning. Notice that lognormality emerges as a result of the Central

Limit theorem. The normality of the process governing dz is not required as an assumption, whenever

the dz are many, independent, changes.

Since the elementary perturbations dz produce small changes dx in x, expected to be a proportion of

x itself, dz can be seen as an elementary relative growth, and z as an expected relative growth. Gaussian

�nal realizations z

j

= logx

j

are thus explained by a central trend, �

x

, resulting from a constant e�ect

determining the average relative growth, and by each particular departure from �

x

, the e

x

j

, a�ecting

only �rm j. The meaning of e

x

j

is the same as in (2). Hence, the proportionate e�ect could be used

to explain the lognormality observed in raw data, and has been quoted by McLeay in this context. He

suggested a distinction between items re
ecting size and the ones which couldn't \be treated as size

measures" [23].

Our approach is di�erent. In our study no attempt is made to specify the behaviour of any particular

item. We assume that, in the case of raw numbers, the Gaussian relative growth dx=x is the sum of

two components: A common and strong one, �

j

, which accounts for random changes acting over report

j as a whole, and a weak component, particular to item x. Then, if x and y are the positions of two

items from the j

th

report, dx

�

and dy

�

are random changes in x and y caused by �

j

, a disturbance

in
uencing both. A unique, proportionate, e�ect would mean:

dy

�

y

=

dx

�

x

:
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When considering the whole sample of 1; � � � ; j; � � � ; N �rms and many, independent, perturbations

leading to �nal realizations of x and y, this mechanism yields

log y

j

� logx

j

= (�

y

� �

x

) + ("

y

� "

x

)

j

or, in ordinary space,

y

j

x

j

= R� f

j

(6)

"

x

j

and "

y

j

have the same meaning as in (4): They measure deviations from the expected, given the size

of �rm j. They represent the variability unexplained by the common e�ect, �

j

, in each component of

the ratio. The ratio standard can be estimated as R = exp(�

y

� �

x

), and the multiplicative deviations

from it are f

j

= exp("

y

� "

x

)

j

.

The form obtained in (6) seems similar to equation (3), the one based on empirical manipulation,

but it isn't. The residual di�erence is the same, that is, "

y

� "

x

= e

y

� e

x

, but in (3) there was no room

for considering the size of the �rm. The "

x

are very important in this study. Their ability to measure

deviations from the expected for size makes sense on grounds of �nancial statement analysis.

Notice that, unless we can isolate �

j

, the strong, common, e�ect, we cannot determine each "

x

and

"

y

separately. Conversely, it is impossible to know the value that � assumes for �rm j unless we know

"

x

or "

y

. Since both the common e�ect and the particular ones are hidden from direct observation,

the above developments seem useless. However, it is possible to devise a method for overcoming such a

limitation. We shall return to this important topic in section 6.1.

Notation: Di�erences between expected values are written as �

y=x

= �

y

��

x

or, for the ratio standard,

as R

y=x

. For example, we often write "

y

� "

x

as "

y=x

. In the case of deviations of log items from the

expected, the e

x

, or contrasts between these deviations, the e

y=x

, or deviations from the expected for

size, the "

x

, we use superscripts to avoid too many subscripts.

Ratios with more than two items: For more than two items an obvious extension emerges. Let

x

1

; � � � ; x

i

; � � � ; x

M

be the position of M items for report j. dx

i

are random changes in x

i

caused by �,

a common source of variability. Considering the way such disturbance a�ects the relative growth which

is about to generate the set of x

i

we can say that

dx

1

x

1

=

dx

2

x

2

= � � � =

dx

M

x

M

(7)

For example, two groups of items y

1

; � � � ; y

k

; � � � ; y

K

and x

1

; � � � ; x

l

; � � � ; x

L

lead to

"

1

K

K

X

k=1

log(y

k

) �

1

L

L

X

l=1

log(x

l

)

#

j

=

1

K

K

X

k=1

�

k

�

1

L

L

X

l=1

�

l

+

"

1

K

K

X

k=1

"

k

�

1

L

L

X

l=1

"

l

#

j

Despite its outlook, this model is very simple and can be seen just as an expansion of equation (3).

Instead of log items, expected values and residuals, we now have averages of log items inside report j.

It leads to ratios like these ones:

p

CA�CL

TA

or

S

p

N �W

or

A� B �C

D

3

Notice that such ratios only require to be statistically valid that the residuals f

j

are multiplicative. We

must point out that, conversely, additive residuals in ratios, as accepted in the literature and practice,

aren't statistically consistent. If residuals were additive their variability wouldn't retain its statistical

nature after expansions such those displayed above. This remark applies to the \Pyramid of Ratios"

and other well known expansions.
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Degrees of freedom involved: The ratios discussed so far engage one free parameter. For modelling

expected values one free parameter is enough. But the variability of ratios remains unaccounted for. This

has important implications for the interpretation of departures from ratio standards. Ratio standards

are insensitive to the distribution of ratios. No consideration of their variability is required. Conversely,

disturbances in this variability don't a�ect ratio standards. The inclusion of more than one item in

the ratio components don't account for more explained variability. The number of degrees of freedom

engaged remains equal to one. However, more variables, if conveniently selected, can enhance the ability

of ratios to recognise features by smoothing out or reinforce some components of the variability of their

components.

4.2 Free-Slope Ratios for Prediction

Equation (6) de�nes ratios as \errors-in-variables" or functional relations. Ratios yield a contrast

between two items, both a�ected by errors. Such a contrast measures how big are the discrepancies

between their components. Thus, the above description is intended to assess deviations from standards,

not for prediction. This is because ratios don't model the variability of their components.

Ratios intended to predict items must be able to account for the variability of deviations from the

standard. In order to do it, more than one parameter is required. The simplest approach to achieve

this, consists of introducing in the mechanism leading to ratios a slope, b

i

, individualizing the relative

growth of each item in a report:

b

1

�

dx

1

x

1

= b

2

�

dx

2

x

2

= � � � b

M

�

dx

M

x

M

(8)

The b

i

are gain or attenuation factors expressing di�erent degrees of linear correlation between the

mechanism leading to items. Notice that only M � 1 of these b

i

are independent. In the simple case of

b being similar across �rms the consideration of two items, y and x, yields free-slope ratios of the form

log y

j

� b � logx

j

= w

0

+ ("

y

� "

x

)

j

or similar. In ordinary space,

y

j

x

b

j

= exp(w

0

)� f

j

b and w

0

are parameters. w

0

isn't independent of b.

The multivariate descriptor of this class has the form

M

X

i=1

w

i

� logx

i

= w

0

(9)

in which the residual is omitted. w

i

are parameters. (9) is a linear relation. In ordinary space, free-slope

ratios yield non-linear, though proportional, relations. This non-linearity mainly a�ects large �rms.

Predicting items with free-slope ratios: Functional relations describe mechanisms. Mechanisms

should be plausible. Free slopes in log space aren't plausible as they imply a unique average relative

growth for the same item across many �rms. Moreover, it would be inadequate to consider non-linearity

as a rule. However, when the goal is just prediction, there are no objections to regressing in log space,

provided a proper interpretation is given to the obtained model. Figure 13 shows a free-slope ratio

predicting Sales in terms of Net Worth.
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Figure 13: Comparing a free-slope ratio (B = 0:81) with the usual one (B = 1).

4.3 Non-Proportional Ratios

An usual topic in accounting literature is to call the attention for the assumption of strict proportionality

underlying the use of ratios. Such a statement is descriptive. Now we enumerate the assumptions

attached to ratios in a generative, rather than in a descriptive way:

1. Items are �nal realizations of elementary random changes. Such changes, when expressed as

proportions of the item they a�ect, are, in average, the same. This is the Gibrat law.

2. The elementary random changes leading to �nal realizations of accounting items are, when ex-

pressed as proportions of the item they a�ect, a sum of two components: One, a�ects in the same

way all the items in the same report. Another one, is particular to each item.

The advantage of using a generative description is that we can develop models other than ratios,

consistent with this basis. Ratios can now be seen as models that obey the statistical or expected

proportionality of random e�ects, instead of a strict proportionality. Which models are also allowed by

such a description? In this section we extend ratios so as to model non-proportionality.

Thresholds and the Gibrat law: The relation dx=x = dz is simplistic as it accepts growing from

naught. The Gibrat law points out a more realistic basis by admitting that the random changes dx

a�ecting x are proportional, not to x itself, but to x� �. We call this � a threshold. Since the process

leading to a realization of x starts with a non-zero value for x = 0, the increments x receives on the

beginning of its growth are, in average, proportional to such threshold. Therefore,

instead of dz =

dx

x

we should write dz =

dx

x� �

to describe the generation of a particular item x. Such a process leads to a class of ratios which can

have di�erent characteristics according to the magnitude, sign and position of the thresholds of their
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components. In some cases, but not in all, these threshold ratios are non-proportional.

Notice that � shouldn't be taken as the value of x at the beginning of the process leading to its �nal

realization. So long as the mechanism is proportional, initial values don't induce non-proportionality

in cross-sections. Non-proportionality emerges only when the random changes dx are proportional to

values which are not x.

Next we brie
y describe some of the possible models resulting from thresholds.

An overall threshold in the denominator: In the simplest case, � is a constant a�ecting all �rms

in the sample. When the threshold acts on the denominator but not in the numerator, the bivariate

version would be

log(y

j

) � log(x

j

� �) = �

y=x

+ "

y=x

j

In ratio form,

y

j

x

j

� �

= R� f

j

In the above expression, and in all subsequent ones, the item a�ected by the threshold | in this case

it is x| receives a transformation similar to the one used to achieve three-parametric lognormality. In

fact, non-proportional ratios occur when any of the ratio components is three-parametric lognormal.

The non-proportionality introduced in ratios by thresholds is di�erent from the one introduced by

a constant term in regressions:

y

j

= �� �R� f

j

+ x

j

�R � f

j

Here, displacements are proportional to residuals. Hence, deviations from proportionality vary from

case to case. They are also small, provided � remains small. The non-proportional term is signi�cant

only for values of x

j

near �, that is, whenever the �nal realizations of items are near the threshold.

This could happen when the growth leading to an item is weak (a very small relative growth or very

few random changes) when compared with the threshold. Cases far away from � exhibit proportionality

since x

j

� � �R� f

j

.

The examination of bivariate scatterplots of items in log space can detect departures from strict

proportionality when they are signi�cant. As �gure 14 depicts, the log and the ratio transformations

produce a trade-o� between non-proportionality and non-linearity, so that departures from proportion-

ality result in a visible bending of the scatter. The small non-linearity observed in �gure 5 (left) on

page 21 stems from a signi�cant threshold.

An overall threshold in the numerator: By considering a threshold a�ecting the numerator of

the ratio, we get non-proportional terms which can more easily be signi�cant. The expression

log(y

j

� �) � log(x

j

) = �

y=x

+ "

y=x

j

means the ratio

y

j

� �

x

j

= R� f

j

which could be written as y

j

= x

j

� R� f

j

+ �. This threshold acts as an intercept in a regression. It

introduces a constant displacement a�ecting all cases in the sample. Notice that this model is still not

a regression. The di�erence, however, isn't functional. It stems from the multiplicative nature of the

residuals.

Thresholds both in the numerator and in the denominator: When considering �

y

and �

x

as both signi�cant, the amount of non-proportionality in ratios results from their interaction. A re-

inforcement will occur when �

y

and �

x

have di�erent signs. The overall e�ect depends on R, the

expected proportion. In a particular case, �

y

= �

x

� R, both thresholds cancel out. The remaining

non-proportionality is case-dependent.
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Figure 14: When Y = X+� is transformed, the fact that � 6= 0 introduces non-linearity in the resulting

relation. Such non-linearity a�ects mainly values near �. On the left, several Y = X + � with small �.

In the centre, the same in log space. On the right, in ratio space.

Proportional thresholds: The mechanism leading to the above descriptors requires an overall dis-

placement | a threshold acting upon the whole of the sample. Overall thresholds suppose the existence

of overall costs or income and the corresponding cause must be external to �rms. We now consider

the case of thresholds which are internally-generated. Mechanisms internal to the �rm are likely to

generate thresholds proportional to size. For 1; � � � ; j; � � � ;M �rms, �

j

is now a particular threshold

concerning the proportionate e�ect leading to each x

j

. This threshold will act as a new variable, not

as a parameter. Hence, the model collapses into the no-threshold ones. In fact, if �

j

is proportional to

the size of the �rm, it is similar to any other accounting item. For instance, we could write

�

j

= x

j

�R

�

j

� f

�

j

and we would have a relative growth

dx

x� (R

�

j

� f

�

j

+ 1)

= dz

for the generating process of a particular realization of x. Since R

�

j

and f

�

j

are not involved in the

growth of x, the resulting model is a version of the free-slope ratio. thresholds proportional to the size

of the �rm don't break proportionality. They just induce di�erences in the way each item is a�ected

by the common e�ect.

The described model is interesting because thresholds internally-generated have been often used

in the literature as an example of the plausibility of intercept terms in bivariate relations. It was an

awkward choice since, as we see, thresholds acting just as another item aren't likely to induce overall

translations. We now analyze this subject using a di�erent point of view.

4.4 The Basis for the Existence of Non-Proportionality

Thresholds can have causes internal or external to the �rm. The most general one is internal: when

nonexistent variables ought to exist. All growth starting with x = 0 must have at its origin a threshold
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acting like a seed since naught can't grow. Notice also that, owing to its exponential nature, the �nal

realizations of proportionate growth are likely to attain values many orders of magnitude larger than

this seed. In such cases, x� � � x and the non-proportional term vanishes.

Internally-generated thresholds: The foundation invoked in some texts to justify the existence

of signi�cant departures from proportionality is coincident with the model we call the proportional

threshold. For example, Lev and Sunder [22] (1979) say that

The relationship between gross pro�t and sales probably contains a positive constant

term given the frequent existence of a signi�cant �xed costs component. Accordingly, ob-

served di�erences in gross margin ratios (over time or across �rms) re
ect the confounding

e�ects of di�erences in e�ciency, di�erences in the level of �xed costs, and sales.

This literature says that, because in each individual �rm some internal mechanisms exhibit constant

terms, the corresponding statistical variables, obtained when gathering many �rms in a sample, would

exhibit also a constant term. But, as we saw above, this is not so. This pitfall seems to be another case

of picturing time-series while working with cross-sections. The meaning of a cost being �xed is that it is

�xed inside a �rm. But it can be variable across �rms. As a �rst approximation, large �rms exhibit large

�xed costs, small �rms exhibit small �xed costs and in�nitesimal �rms would exhibit in�nitesimal �xed

costs. On the limit, the zero-sized �rm should have zero �xed costs thus yielding strict proportionality.

Whittington [30] (1980) clearly distinguishes between time-series and cross-sections when addressing

this problem:

In cross-section, such an interpretation (sales-unrelated income) could not be placed on

the constant term: It would now represent an estimate of the average amount of sales-

unrelated income for the average �rm, provided the further assumption is made that \sales-

unrelated income" is strictly independent of size.

This statement is equivalent to ours. In cross-section, Fixed Costs should be regarded as another item

with nothing special about it.

Overall thresholds: Mechanisms internal to the �rm don't generate thresholds. Only the ones acting

over all the population can do it. But can they induce strong thresholds? It seems as if there is a limit

for the plausibility of displacements a�ecting entire samples. Clearly, if an overall cost were big enough

to be noticed by large �rms, it would be far greater than the earnings of the smaller ones, leading them

to insolvency. And if it were small enough to allow any �rm to survive, it would be unnoticed by most

of them and its e�ect would be negligible. For example, a �xed cost of 3,722 thousand pounds over

the whole of the Food Manufacturers industry in the UK, would represent to UNITED BISCUITS just

0.2% less earnings in 1987. But the same cost would eat up the sales in G. F. LOVELL PLC. All the

�rms similar or smaller in size would perish (about 5% of the industry).

Summary: In this section we have shown that non-proportionality in ratios cannot have its origin in

mechanisms internal to the �rm, like �xed costs or income. Also, given the lognormality of the ratio

components, this non-proportionality should be small.
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Figure 15: The typical shape of free-slope and threshold ratios. On the left, log space. On the right, a

magni�cation of the region near the origin in ordinary space. (1) is the usual ratio, (2) is a free-slope

one, (3) and (4) are threshold ratios. Electronics, 1987, FA=CA.

4.5 Using Extended Ratios

This section shows an example of the applicability of the extended ratios. We selected Electronics,

1987, and the ratio FA=CA. This is because in some industries CA is three-parametric. The choice of

FA for the numerator is explained in section 5.5.

Five di�erent models are compared: The numbering (1 to 5) refers to �gure 15 on page 46. Next

we describe each model. As usual, x represents the denominator and y the numerator of the ratio.

Model 1: The usual ratio. It engages one degree of freedom. Its unique parameter, the median in

log space, is estimated as a by the Least-Squares model

log y

j

= a+ logx

j

+ "

y=x

j

yielding the ratio

y

j

x

j

= 10

a

� f

j

The graphical representation has the label 1 in �gure 15. It is a 45

o

straight line in log space. In

ordinary space it is also a straight line passing through the origin.

Model 2: The free-slope ratio. It engages two degrees of freedom. Its two parameters are a and b,

the slope. They are estimated by the Least-Squares model

logy

j

= a+ b� logx

j

+ "

y=x

j

yielding the ratio

y

j

x

b

j

= 10

a

� f

j

The graphical representation has the label 2 in �gure 15 (on the right). This model has already

been displayed in �gure 13 on page 40. It is a straight line in log space. It is non-linear in ordinary

space. It goes through the origin.

Models 3 and 4: The threshold ratios. They engage two degrees of freedom. But in model 3, both

parameters (a and �) are estimated jointly. In model 4, a is taken as known. Then � is estimated
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Model a b � R

2

Skewness Kurtosis

1 -0.46 72% 0.27 2.18

2 -0.21 0.94 76% 0.07 1.30

3 -0.49 528 78% -0.12 1.19

4 -0.46 327 76% -0.12 1.78

5 -0.40 0.99 403 78% -0.12 1.19

Table 13: The estimated parameters and statistics for �ve ratios: (1) is the usual ratio, (2) is a free-slope

one, (3) and (4) are threshold ratios, and (5) is the threshold plus free-slope ratio. Electronics, 1987,

FA=CA.

based on this assumption. They are estimated by the Least-Squares model

logy

j

= a + log(x

j

� �) + "

y=x

j

yielding the ratio

y

j

x

j

� �

= 10

a

� f

j

The graphical representations have the labels 3 and 4 in �gure 15. They are parallel and non-

linear in log space and straight lines in ordinary space. They don't go through the origin. Model

4 converges to the ordinary ratio for medium-sized and large �rms.

Model 5: The threshold plus free-slope ratio. This ratio is omitted in �gure 15. It engages three

degrees of freedom. The parameters are a, b and �. It is the result of considering free slopes and

thresholds together. The parameters are estimated by the Least-Squares model

log y

j

= a+ b� log(x

j

� �) + "

y=x

j

yielding the ratio

y

j

(x

j

� �)

b

= 10

a

� f

j

Next table shows the obtained parameters along with the variability explained, the skewness and the

kurtosis of the residuals in log space (the "

y=x

j

).

Model 1, the simple �nancial ratio, accounts for 72% of the variability. By letting the slope vary

freely, further 5% is explained. Both the skewness and the kurtosis of residuals improve. In the 3

rd

and

the 4

th

models, the gain in explained variability is similar to the one obtained with free slopes. The

explained variability didn't improve in the 5

th

model.

The threshold ratio explains as much variability as the free-slope plus threshold model (the 5

th

). It

is interesting to notice that the 2

nd

model uses the free-slope to approach the e�ect of the threshold.

Once such threshold is accounted for, the slope returns to the value of 1 (5

th

model). The threshold

is itself very small. When using the method described in section 1.1 to estimate the thresholds in

CA and FA, we obtained values which agree with the above ones. CA is three-parametric lognormal.

Signi�cant departures from normality vanish for � > 300. The maximumW is obtained with � = 570.

FA is two-parametric. The kurtosis of residuals is strong and it will not vanish with thresholds or free

slopes.

From the four extensions of ratios, the most attractive one for �nancial analysis seems to be the 4

th

:

It accounts for non-proportionality but it approaches the usual ratios for larger values of its components.

It is simple to implement and robust regarding in
uential cases.

4.6 Discussion and Conclusions

In this chapter we discussed the validity of ratios in the light of previous �ndings. We showed that there

is a stochastic mechanism able to integrate such �ndings in the same overall explanation. According to
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it, ratios can be extended in several ways. Firstly, they can have more than two components. The sole

requirement for the statistical validity of such ratios is the use of multiplicative residuals. Ratios can also

be viewed in log space as a regression. Such free-slope ratios preserve proportionality. They introduce

non-linearity for large �rms. Finally, the existence of thresholds eventually introduces non-proportional

relations between components of ratios.

Distortions in proportionality resulting from overall thresholds depend on several factors. They

are maximal for thresholds in the numerator of the ratio or when the signs of the thresholds of the

numerator and the denominator are di�erent.

Threshold ratios seem promising for �nancial statement analysis and statistical modelling. They

are robust, easy to estimate, and it is likely that they will be able to gather in one simple model the

correct relation between two items for �rms of very di�erent sizes. Free-slope ratios are adequate for

prediction. They shouldn't be used to assess deviations from standards.

Correctly estimated expected values of ratios are insensitive to their distributions. The free-slope

and, to a smaller extent, the threshold ratios, su�er misleading in
uences in the presence of constraints.

The common e�ect: According to our approach, all the items of the same report should be expressed

in terms of a common e�ect, size, and deviations from it. A common e�ect greatly simpli�es the formal

treatment of modelling with lognormal data. We have shown that non-proportionality is compatible

with this assumption. In section 6.1 we shall see that a simple manipulation of equation (4) allows size

and deviations from it to become available as statistical variables.

The extension of the e�ect of size to items like Working Capital, Earnings and Funds Flow isn't

usual in the literature. The common e�ect itself, is also a new way of interpreting size. But our

�ndings dismiss any strong di�erentiation between items which are accumulations and those which

aren't. The cross-sectional lognormality observed in items is determined by di�erences in size, not by

mechanisms speci�c to a few items. We don't think Fixed Assets is more lognormal than Earnings

owing to the proximity of the former to the assumptions of the Gibrat law. As stressed above, we

picture proportionality as a stochastic e�ect explaining di�erences in size observable in cross-sections

containing many �rms.

The Gibrat law explains lognormality in raw data and the existence of non-proportionality in ratios.

It is also plausible as a mechanism of accumulation and it ensures a consistent development of extensions

of ratios. We used it here as a point of view able to gather the main facts about ratios in a unique

formulation.
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Chapter 5

The Distribution of Ratios

The deviations from ratio standards, the f

y=x

in formula (6), should be positively skewed due to their

multiplicative nature. The same should be true in the case of the ratio output, R � f

y=x

. In practice,

some ratios are Gaussian or even negatively skewed. How is it possible? This chapter applies the

�ndings of the previous ones to the problem of the distribution of ratios.

We introduced the literature on this subject early in this study. The problem of the distribution

of ratios concerns a vast amount of di�erent situations. There are many possible ratios, many possible

choices for the de�nition of samples, many tests and criteria to analyze the results. The studies on the

distribution of ratios typically try to avoid dispersion by using Deakin's set of 11 ratios. Despite this

e�ort the results are di�cult to interpret. Our method consists of noticing that ratios are bivariate

relations. In section 5.1 we examine the in
uence of external forces on the bivariate lognormality of

raw data. This allows us to predict which ratios are near normality, which ones have negative skewness

and which ones remain broadly lognormal. Our predictions are supported by the published research.

In section 5.2 we describe regularities observed in the behaviour of ratios. As a result, we suggest

procedures for the selection of variables in statistical models.

Since this study is also intended to cover the statistical modelling of accounting relations, we selected

items according to criteria which somehow di�er from those adapted in the research concerned with the

distribution of ratios. However, we didn't go too far in the di�erentiation from the published studies. It

seems desirable to compare our results with other's. For example, we used the ratio output, R� f

y=x

,

instead of the deviations from ratio standards, the f

y=x

. Also, some of the selected ratios are usual in

the literature.

5.1 The E�ect of External Constraints

Usually ratios exhibit strong positive skewness. This is consistent with their multiplicative nature.

However, the literature mentions ratios which are Gaussian or even negatively skewed. Typically,

TD=TA is reported as being Gaussian (see Deakin [10], 1976, Ezzammel and Mar-Molinero [13], 1990,

p. 11). The reason for this is straightforward. Accounting identities like TA = CA + FA, make it

impossible for some bivariate relations to have all the values a skewed distribution would allow. Such

identities act as a constraint introduced in the normal course of their variability. This e�ect, mentioned

in the literature to explain why some ratios are bounded, had never been associated with the strong

departures from positive skewness observed in the distribution of ratios. In log space it turns out that
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Figure 16: Scatterplot in log space showing the e�ect of a strong constraint imposed on CA (Y-axis)

by TA (X-axis). All groups together, 1984. The dashed line is CA = TA.

this e�ect is clearly observable and self-explanatory (see �gure 16).

We say that there is a constraint if, due to any accounting identity or other external force, the

bivariate relation y

j

=x

j

= R� f

j

is bounded so that one of the next non-equalities hold.

for any j, x

j

> y

j

or y

j

> x

j

The non-equality on the left can be found in constrained ratios where the numerator is bounded by the

denominator. An example is Debt to Total Assets. The non-equality on the right arises in ratios in

which the denominator is bounded by the numerator. This isn't as frequent as the �rst case. But, of

course, it is possible to create such a situation just by inverting one of the former ratios.

The consequences for the distribution of ratios are di�erent in one case and in the other: When

the constraint is x

j

> y

j

, ratios cannot be larger than 1. This frontier is the dashed line, x = y, in

Figure 16. The e�ect of this constraint on the distribution of ratios is that of not allowing the spread

out of its otherwise positively skewed distribution. Instead of the large, lognormal-like tail, such ratios

exhibit a much smaller one. This explains why some studies didn't �nd positive skewness in a few

ratios. We shall see that this constraint can be e�ective in creating Gaussian-like distributions.

When the constraint is y

j

> x

j

, ratios cannot be smaller than 1. The large, lognormal-like tail

towards large values is left untouched but the one towards the small values is now truncated. This

increases even more the positive skewness of ratios. According to this mechanism, a strong positive

skewness should emerge after inverting one of the apparently Gaussian ratios.

An example: Table 14 on page 51 displays the skewness and kurtosis of three constrained ratios.

CA=TA is so strongly constrained that its distribution becomes skewed in the negative direction. Log-

normal distributions are two-tailed. If the large tail completely vanishes, the small one introduces
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Not inverted Inverted

Ratio 1983 1984 1985 1986 1987 1983 1984 1985 1986 1987

CA=TA SKEW -0.41 -0.43 -0.35 -0.50 -0.59 18.7 5.04 6.29 20.7 17.9

KURT 0.33 0.26 -0.10 0.33 0.53 377 37.0 71.5 483 337

NW=TA SKEW -0.15 0.01 0.01 -0.01 -0.06 17.7 15.4 22.3 12.9 12.4

KURT -0.23 -0.14 -0.14 -0.04 -0.04 356 260 536 193 179

FA=TA SKEW 0.41 0.43 0.35 0.50 0.59 11.2 21.9 23.8 12.7 11.2

KURT 0.33 0.26 -0.10 0.33 0.53 147 519 592 197 151

Table 14: The skewness and kurtosis of three ratios and their inverse during the period 1983-1987 for

all industries together.

negative skewness. NW=TA is almost Gaussian: The large tail doesn't vanish but becomes much

shorter so as to balance the small one. Finally, FA=TA remains positively skewed but less than the

expected. Its distribution is symmetrical to the one of CA=TA. In the same table we also show the

skewness and kurtosis of ratios similar to the above ones but inverted. These values are lognormal-like

as the constraint is now working in the same direction as the lognormal skewness.

5.2 Comparing Constrained and Non-Constrained Ratios

The last section was devoted to the identi�cation and description of the e�ect that external constraints

can have in the distribution of ratios. We discussed a limited example, showing how an accounting

identity can hide the multiplicative nature of ratios. In this section, apart from providing a more

systematic evidence on such e�ect, we show that ratios are broadly lognormal.

How ratios are a�ected by constraints: We are interested, not only in describing the constraint

mechanism, but also in predicting the skewness of ratios. This is more easily done in log space. When

the constraint is x

j

> y

j

, then logy � logx < 0, and we must have, for any j, �

y=x

j

< �(log y � logx).

That is, large positive deviations from the expected aren't allowed. When the constraint is y

j

> x

j

, then

log y� logx > 0, and we must have, for any j, �

y=x

j

> �(log y� logx). That is, large negative deviations

from the expected aren't allowed. Since, in both cases, a constraint prevents "

y=x

from spreading across

log y� logx, this di�erence can be used to estimate the extent to which constraints a�ect the symmetry

of the log distribution of ratios. We de�ne

� =

logy � logx

p

VAR("

y=x

)

(10)

as the distance, in standard deviation units, separating the constraining frontier from the expected

value of the ratio. Thus, for j�j > 3, the constraint will be very small. For 3 > j�j > 2, the constraint

will be small. For 2 > j�j > 1, the constraint will be strong. The severity of a constraint increases with

the proximity between the expected values of the ratio components, and it decreases with the standard

deviation of the ratio.

Constrained ratios: We examined 14 ratios (see list in table 15 on page 52) formed with items from

the Balance Sheet and 2 from the Pro�t and Loss Account. For such ratios there is an accounting

identity or at least a constraint in
uencing their distribution in a variable extent. Table 15 also lists

the skewness and the estimated j�j for each one of those ratios. Apart from the usual abbreviations, Q

stands for CA� I and TD for DEBT +CL. In ratios built with items having zero or negative-valued
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Ratio 1983 1984 1985 1986 1987

skew zeta skew zeta skew zeta skew zeta skew zeta

CA/TA (1) -0.41 1.29 -0.43 1.05 -0.35 1.58 -0.50 1.34 -0.59 1.14

CL/TA (x) 0.636 2.2 0.587 1.84 0.616 2.21 0.56 2.24 0.597 2.26

C/CL (2) -0.09 1.54 -0.15 2.02 -0.21 1.56 -0.27 1.63 -0.27 1.72

C/TA (3) 1.247 2.88 1.227 2.61 1.357 2.94 1.191 2.87 1.137 2.96

DB/TA (4) 1.873 2.37 1.92 2.29 2.103 2.36 1.774 2.17 2.056 2.21

FA/TA (5) 0.41 1.69 0.434 1.96 0.352 1.76 0.502 1.76 0.592 1.81

I/CA (6) 0.264 1.53 0.102 1.74 0.218 1.57 0.433 1.44 0.294 1.33

I/TA (7) 0.569 2.08 0.473 1.9 0.867 2.16 0.913 2.04 0.812 1.89

NW/TA (8) -0.14 1.61 0.012 1.85 0.009 1.73 -0.01 1.8 -0.06 1.82

Q/CA (9) -0.26 1.34 -0.10 1.17 -0.21 1.81 -0.43 1.4 -0.29 1.3

Q/TA (0) 0.504 2.07 0.583 1.92 0.51 2.41 0.387 2.17 0.455 2.26

TD/TA (o) 0.349 2.31 0.173 2.19 0.222 2.23 0.198 2.17 0.177 2.21

EB/S (+) 2.03 3.06 1.63 3.16 2.06 3.12 1.824 3.18 1.480 3.25

W/S (*) 0.42 2.14 0.42 2.01 0.412 2.08 0.395 2.13 0.371 2.13

Table 15: The values of j�j (zeta) and skewness for 14 ratios likely to be constrained in their distributions.

Q = CA� I; TD = DEBT +CL.
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Figure 17: Correlation between skewness and � in 14 constrained ratios, 1983-1987.

cases, only the positive ones were used. We gathered in the same sample all the 14 industrial groups.

Five years (1983-1987) were checked.

The results show that j�j predicts, to a large extent, the skewness of constrained ratios. For the

displayed cases, j�j accounts for 64% of the variability of the skewness (r = 0:8). Thus, accounting

identities do explain the deviations from a positively skewed distribution in ratios. The imperfection of

j�j in approaching the skewness stems from relying on an estimated standard deviation which is itself

in
uenced by the constraint.

In �gure 17 (page 54) we reproduce table 15 as a scatterplot. The marks identifying each ratio can

be found in table 15, on the left. Figure 17 shows that CA=TA is negatively skewed. I=CA, NW=TA,

C=CL, Q=CA and TD=TA aren't far from the Gaussian distribution in what concerns their skewness.

Others, like I=TA, approach a skewness of 1. DB=TA, C=TA, have their skewness above 1.

There are other external forces likely to distort the distribution of ratios. Instead of de�ning frontiers

which are impossible to cross, as in the case of accounting identities, these other forces impose frontiers

in which only a decrease in the density of cases is observed. For example, the non-equality CA > CL

de�nes one of such decreases because �rms avoid, if they can, negative Working Capital.
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Figure 18: Scatterplot of the skewness with the kurtosis of unconstrained ratios and their inverse. The

solid line is the functional relationship linking the skewness of lognormal distributions with the kurtosis.

Non-constrained ratios: The distribution of ratios, when not constrained, has a broad trend towards

lognormality owing to its multiplicative nature. Notice that ratios don't have to be lognormal just

because their components are. In fact, when examined in log space, ratios show a persistent deviation

from the Gaussian distribution, leptokurtosis.

We examined 20 other ratios (and their inverse) for which there is no obvious accounting identity

constraining their distribution. These ratios are listed in table 16 on page 56. In both cases ratios

were selected so as to represent a random choice amongst all possible combinations. The Number of

Employees was often used because there is no obvious constraint a�ecting its relation with other items.

In ratios built with items having zero or negative cases, only the positive ones were used. We gathered in

the same sample all the 14 industrial groups listed in table 2, page 14. This sample was then examined

for a period of �ve years (1983-1987).

In lognormal variables the skewness and the kurtosis are not independent. One is a function of the

other. Therefore, in order to check the existence of a broad lognormal trend in non-constrained ratios

it is enough to plot their skewness against their kurtosis. In case of lognormality, a functional relation

should emerge.

Tables 32 and 33 in appendix, contain the skewness and kurtosis of the mentioned unconstrained

ratios and their inverses. Figure 18 on page 55 is a graphical reproduction. It displays the regular curve

unconstrained ratios and their inverse form when their skewness is plotted against their kurtosis. This

regularity obeys the relation between the skewness and the kurtosis of lognormal variables for varying

standard deviations. Notice that the SPSS-X package we used in this study, computes the skewness

and kurtosis in a way that is not exactly the one found in text books.

In the 200 examined samples (20 ratios and their inverse during 5 years) only three yielded values

of the skewness and kurtosis which didn't obey the above relationship. They were from the same ratio,

CL=Q, or its inverse, during the years 1983, 1985 and 1987. We further formed a few more ratios with

Q = CA � I and we found three other cases of irregular behaviour. They were the ratio EBIT=Q in

1987, and W=Q, in 1986 and 1987.
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Ratio 1983 1984 1985 1986 1987

skew kurt skew kurt skew kurt skew kurt skew kurt

D/C -0.7 9.2 -0.8 8.6 -0.1 10.0 0.2 9.3 -0.6 6.2

CA/CL -1.2 11.0 0.4 2.9 0.8 3.1 0.6 5.9 -0.5 10.5

C/I 0.4 2.1 0.6 2.2 1.1 8.3 0.9 6.7 1.8 11.0

Q/CL -1.9 12.0 -0.3 4.3 -0.3 3.2 -0.5 5.2 0.1 2.8

W/N 0.3 12.0 -0.1 0.8 -0.4 2.8 -0.3 2.3 -0.6 4.4

S/TA 0.8 4.5 0.8 7.0 1.0 5.4 1.0 5.5 1.2 4.9

S/FA 1.8 5.4 2.0 8.5 1.9 6.9 1.9 5.9 1.6 4.6

S/NW 1.5 4.5 1.6 5.6 1.8 7.8 1.3 4.2 1.6 6.4

S/I 1.3 4.7 1.2 4.6 1.7 8.8 2.3 13.9 3.4 21.0

EB/TA -2.1 11.2 -1.3 4.9 -1.2 2.9 -1.1 3.1 -1.7 7.9

EB/NW -1.6 11.4 -0.1 6.1 -0.3 3.6 -0.5 2.7 -0.8 7.3

I/D -0.6 6.5 -0.2 6.7 -0.3 4.8 -1.6 13.4 -2.0 15.0

W/I 0.1 6.0 0.2 3.2 0.6 3.1 1.2 6.4 1.4 7.8

EB/FA -0.9 6.0 -0.3 2.8 -0.5 2.8 -0.8 2.2 0.1 3.4

S/N 1.7 5.4 1.8 5.8 1.2 3.3 1.5 4.3 1.3 3.6

EB/N -0.3 3.9 0.0 1.6 -0.3 2.2 -0.2 1.2 -0.5 2.5

NW/N 0.3 2.2 0.5 1.1 -0.4 3.1 0.0 0.9 0.0 0.9

NW/TA -1.6 5.6 -1.5 5.6 -0.9 2.2 -0.6 1.5 -0.7 1.5

NW/DB 0.7 1.7 0.8 2.3 0.5 0.5 0.6 0.3 0.8 0.8

DB/S -0.9 0.9 -1.2 2.4 -0.7 0.7 0.9 1.3 -0.8 0.9

Table 16: The skewness and kurtosis in log space of 20 unconstrained ratios, for a period of �ve years.

Inverting non-constrained ratios: Constrained ratios change completely their characteristics when

inverted and become broadly lognormal. The non-constrained ones remain near lognormality in both

situations. They just move along the formal line linking skewness with kurtosis.

5.3 The Log-Leptokurtosis of Ratios

Despite the �ndings of previous section suggesting a broad lognormality in unconstrained ratios, hardly

any of the studied ones is exactly lognormal. When examined closely in log space, they exhibit positive

kurtosis of varying severity. This kurtosis was observed in all but one of the studied log ratios. Ratios

formed with non-accounting items related to size like the Number of Employees also exhibit it. When

sampling by industry, the residual kurtosis will not vanish. As a result, the Shapiro-Wilk test seldom

�nds a non-signi�cant departure from normality in the log deviations from ratio standards (the "

y=x

).

We recall from chapter 1 that log items exhibit positive kurtosis as well, but in a smaller degree.

Table 16 contains the usual log statistics for the non-constrained ratios used above. In log space

there is no di�erence in the behaviour of a ratio and its inverse. Distributions are a mirror-image of

each other. Therefore, the skewness of the ratios which are the inverse of those displayed in table 16

will simply be the same value with inverted sign. The kurtosis will be the same.

The �ndings of previous studies: One of the �ndings of studies in this subject is that the log

transformation seems to be unable to improve the normality of ratios. In our opinion this is a result of

using precise criteria to assess phenomena which are only broad trends. For example, if we use accurate

tests like the Shapiro-Wilk's to measure the lognormality of ratios, we get the general impression that

ratios are far away from lognormality. Its precision conceals broad trends.

The use of all sorts of transformations to assess the distribution of ratios only complicates things.

For example, if we replicate with ratios the experiment carried out in chapter 1 | which consisted of
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Figure 19: Two-dimensional view of a bivariate density surface in log space.

using progressively higher roots to transform items and observing the results of applying the Shapiro-

Wilk or other tests | the results would be confusing. For unconstrained ratios, the skewness would

probably diminish with increasing roots but the kurtosis would emerge after some improvements. For

some constrained ones the skewness would change sign, becoming negative. Ezzamel, Mar-Molinero,

and Beecher [14] (1987) observed this.

5.4 The Two Sources of Statistical Behaviour

In this section we show that there is no contradiction in the fact that the logs of raw data are Gaussian

and the logs of ratios are leptokurtic. Let us write equation (6) in this way:

"

y=x

j

= (log y

j

� �

y

)� (logx

j

� �

x

)

That is, in log space, the deviations from the ratio standard, the "

y=x

, are a di�erence of two log items,

both with their central trend accounted for. Their distribution is the result of the subtraction of two

Gaussian distributions with the same mean. But these two distributions are very similar in spread.

A large fraction of the variability of items comes from the strong, common, e�ect they share. The

remaining variability is the source of the positive kurtosis in log space. It is so small a proportion of

the total one that it could have any distribution without greatly a�ecting the overall lognormality of

items. In ratios, however, it is prevalent.

We can have a graphical view of this reasoning by considering the bivariate log distribution drawn

by the components of ratios. Such distribution is an oblong hill-shaped surface oriented in the 45

o

direction and centred in �

y

��

x

. The density of cases determines the height of each point in the surface

(see �gure 19). Such a surface is very thick in one of its main dimensions and very thin in the other one.

The largest dimension accounts for most of the variability. In �gure 19, the largest dimension is labelled

the \Size Axis" and the smallest one the \Ratio Axis". The variability of log ratios is explained by the

smallest dimension, the ratio axis. It is orthogonal to the size one, which accounts for the variability

introduced by the common e�ect.

When an observer positions himself so that the largest dimension of this surface becomes parallel to

his horizon, he sees a Gaussian shape. When he observes it transversally, it yields a leptokurtic shape.

Thus, the weak, particular, e�ect is the source of leptokurtosis in accounting data, and the strong,

common, one is the source of their lognormality. For example, the small amount of kurtosis observed
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in the logs of raw numbers denotes the in
uence of their own variability superimposed to a common,

Gaussian, one. In section 6.1 we shall return to this topic.

5.5 Avoiding Asymmetry in Ratios

This section suggests a way of avoiding the asymmetry introduced in ratios by external constraints.

The proportionality of ratios is understood as a statistical quality related to the non-existence of

signi�cant constant terms in cross-sectional relations between the numerator and the denominator. Here

we recall a di�erent meaning, concerning the formal relation between numerator and denominator, not

the statistical one. A quotient is said to be a proportion when the numerator is part of the denominator.

Relative frequencies or probabilities are proportions. All the ratios bounded by the denominator are

proportions in this sense. Therefore, it seems wise to apply to such ratios the well-known recipes to

deal with similar cases. The simplest of such recipes is the \odds-ratio":

For proportions p

i

=

x

i

P

i

x

i

there is an \odds ratio" de�ned as o

i

=

p

i

1� p

i

=

x

i

P

i

x

i

� x

i

:

When the numerator of a ratio is bounded by the denominator, this transformation incorporates the

underlying accounting identity, thus yielding a new, unbounded, variable. The odds ratio corresponding

to FA=TA is the ratio FA=CA. The one of NW=TA is NW=(DEBT + CL). The di�erence between

odds-like ratios and the corresponding proportion-like ones is just functional. The information contained

in both is the same. Thus, it is possible to avoid ratios a�ected by constraints by using the corresponding

odds ratio instead. This solution only applies to ratios constrained by an accounting identity. In the

Pro�t and Loss account, Sales is not a total. There are other sources of income. But, for industrial

�rms, it acts almost as if it were. Instead of OPP=S we can use OPP=COGS. This new odds-like ratio

is unconstrained.

5.6 Summary

In this chapter we studied the distribution of ratios. We found a broad trend towards lognormality,

as expected. However, a few factors a�ect the �nal distribution that particular ratios assume. Firstly,

accounting identities and other external forces can act as constraints, hiding their multiplicative nature.

This factor induces the severe deviations from lognormality reported in the literature for ratios like

NW=TA and TD=TA. Apart from accounting identities, ratios are also a�ected by managerial practice

and by other external forces.

Secondly, when observing in log space residuals which are broadly lognormal, a persistent leptokur-

tosis emerges. The weak, particular, e�ect is the source of this log positive kurtosis. The strong,

common, one, can be identi�ed as the source of the Gaussian behaviour of accounting data.
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Chapter 6

Size And Grouping

Size and grouping are the main sources of variability in �nancial statement data. In this chapter we

study both. Firstly we discuss the building of an estimated common e�ect for assessing the size of the

�rm. Secondly we suggest two techniques to measure the homogeneity of groupings and the complexity

of the randomness present in accounting data because of groupings.

6.1 Estimating Size: The Case-Average Model

This section shows how to estimate size. Multivariate accounting models often require size as an input

variable. Also ratios intended to re
ect departures from the expected for size could become comparable

if their denominator was the same. Such a commonde
ator would produce easily interpretable residuals.

As seen in section 3.1, log items can be viewed as a unique common e�ect, size, with some particular

variability superimposed. This is true for all the observed items. However, on practical grounds, not

all of them are equally adequate to extract size:

� Items like Sales or Current Assets are almost synonymous in log space. Their particular variability

is small. They mainly re
ect size.

� Inventory, EBIT or Funds Flow have more variability of their own. And items having both positive

and negative-valued cases, exhibit a di�erent behaviour in each of such situations. Positive-valued

cases are identical to other variates. The negative-valued ones have a very particular behaviour,

as far as we could see.

� Finally, Fixed Assets, Working Capital and especially Long Term Debt have large variability of

their own. And the non-leveraged �rms form a cluster of identical cases.

A proxy for size should therefore be selected from the items mentioned in the �rst place. However, this

proxy would always have, along with the common variability we are interested in, a particular scatter

superimposed | the particular variability of the selected item.

How to isolate the common e�ect? Is it possible to build a variable re
ecting only size and having

no particular variability of its own? As seen in section 4.1 the common e�ect isn't directly accessible.

However, there is a way of isolating it. We can model the function inverse of ratios. Ratios conceal

the common variability in raw data and reveal the particular one. This model conceals their particular

variability, thus revealing the common one. Items like Current Assets, Net Worth, Wages and other
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expenses, and Sales, can be pulled together so as to form one unique variable: If we build, inside each

report, geometric means (in log space, averages) of a few items, their particular variability will smooth

out and only the common one will remain.

Considering a group of mean-adjusted log items, e

1

; � � � ; e

M

, from the same report, j, we explain

their variability as an e�ect, � = log s, common to them all, plus the deviations from it, "

i

, particular

to each item:
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1

j

= log(x
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The �

i

and �

i

play no active role in this reasoning. They are the thresholds eventually present in the

x

i

and the expected values of logx

i

. We now calculate the average of the 1; � � � ; i; � � � ;M mean-adjusted

items belonging to the same report:

For report j, �

j
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1

M

M
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Since an average of independent random deviates tends to zero with 1=M , we have for large enough M :
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or the equivalent in ordinary space, s
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Once obtained, s can be used in the denominator of ratios meant to detect deviations from the expected

for size. � = log s is welcome as an input variable in statistical models.

The di�cult point here is that the "

i

are not necessarily independent. Some precautions are required

before building this model, especially when the variety of available items is limited.

� The items to be used in the building of s shouldn't be correlated. A few items, after de
ated

by an estimated size, exhibit signi�cant correlation. The introduction of correlated pairs would

reinforce any residual variability common to both, instead of smoothing it out.

� The �nal s shouldn't generate constraints in other items. This is the most di�cult condition to

achieve. For one reason or another accounting identities seem to propagate across other relations

and make themselves present in unexpected situations.

We used two criteria to �nd the set of items appropriate to build s. The �rst one is intended to select

items. The second one is a test of the applicability of the resulting s.

� After the introduction in the case-average leading to log s of each new candidate, we compute

the variance of this average. If it decreases, the new item is accepted. If it increases, we remove

one by one the items already included. For each removed item, if the variance decreases beyond

the original value, we replace it by the new one. If the variance never decreases we reject the

new item.

� After �nding a model for s with minimal variance, we build bivariate scatterplots in which log s is

compared with each one of all the remaining log items in order to �nd out if constraints or other

asymmetry emerge.
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S NW W D CA CL N

1983 VAR: 0.5290 0.5475 0.5473 0.5161 0.5009 0.4999 0.5515

SM: 0.5290 0.5013 0.4971 0.4877 0.4843 0.4800 0.4762

1984 VAR: 0.5807 0.5963 0.6023 0.5349 0.5229 0.5390 0.5972

SM: 0.5807 0.5429 0.5412 0.5251 0.5195 0.5171 0.5138

1985 VAR: 0.5263 0.5591 0.5541 0.4977 0.4829 0.4999 0.5626

SM: 0.5263 0.5032 0.4993 0.4868 0.4812 0.4796 0.4779

1986 VAR: 0.5211 0.5356 0.5419 0.4943 0.5030 0.5009 0.5582

SM: 0.5211 0.4934 0.4920 0.4806 0.4782 0.4771 0.4772

1987 VAR: 0.5318 0.5113 0.5401 0.5003 0.4734 0.4889 0.5646

SM: 0.5318 0.4873 0.4869 0.4795 0.4733 0.4700 0.4716

Table 17: The evolution of the variance of � for incoming items. VAR is the variance of each log item.

SM is the variance of �, when the items to the left are already in.

S NW W D CA CL N

0.60

0.56

0.52

0.48

83
84
85
86

87

Figure 20: The decrease in variance of � for incoming items.

For example, in the case of all groups together, the variance of � decreased whenever the items S, NW ,

W , D, CA, CL were introduced in the model, for the �ve samples examined (1983-1987). Other items,

(C, I, TC, FA) had the opposite e�ect. And a few, (EX, N ) either made it increase or decrease,

depending on the years. Table 17 gathers these results in detail. When reading any row labeled SM

from left to right we get a description of the evolution of the variance of � for an increasing number

of items allowed in the case-average. By accepting CA, the variance of this average decreased from

0.4877 to 0.4843 in the 1983 sample. The individual variance of each item is also displayed (rows VAR).

Figure 20 on page 63 represents table 17 graphically. It depicts the e�ect of averaging together more

and more items. To avoid the overlapping of the curves the displayed variance su�ered a di�erent

translation for each year.

Two items emerged as non-adequate to build �: Inventory and Fixed Assets. Their non-adequacy

stems from apportioning more variability than the smooth they produce. Creditors was expected to be

non-adequate since it is correlated with Debtors. The same for EX, which is correlated with Sales, and

Wages, which is correlated with the Number of Employees. It is indi�erent to select one or the other

from these pairs, provide both aren't present in the average.

Despite the signi�cant decay in variability obtained, about 14%, none of the above combinations

produced exactly symmetrical residuals when de
ating items from the Pro�t and Loss Account. We

noticed that, when Total Assets de
ates the same items, the asymmetry seems to be smaller than when
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using s. But, of course, TA performs badly with all the items from the Balance Sheet whilst s will not

introduce any asymmetry.

For the set of items we could use here, the best � = log s seems to be

� =

1

7

[logS + logNW + logW + logN + logD + logCA+ logCL] (11)

In the following, any use of s or � in this study refers to this particular case-average.

When building models like this one, care must be taken to avoid the accumulation of thresholds.

Another problem with this proxy for size is that, if we de
ate with s an item already used to build it,

the result is the same as if we were using, instead of the entire numerator, a fractional exponent of it.

When de
ating x

k

,

x

k
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Q
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x

1

M�k+1

i

(12)

If M is large, (M � 1)=M � 1. But if the number of components of s is small, the exponent a�ecting

the numerator models a non-linear relation. Therefore, it would be interesting to �nd a large number

of items to build s, also because the self-smoothing would improve. Anyway, the set displayed in

equation 11 performs remarkably well.

The distribution of size: � = log s has a much smaller kurtosis than that observed in the case of

the logs of raw numbers. The reason for this is straightforward. The variability of � is the one of the

main axis of a multivariate distribution, the one which is the source of the Gaussian behaviour of log

data. This reasoning was introduced in chapter 4. We recall �gure 19 (page 58). In this graphical

representation, the variability of � would be the one along the \Size Axis". The source of positive

kurtosis is the \Ratio Axis". Log items are 45

o

projections of this multivariate distribution. That's

why they contain some kurtosis.

Notice that ratios with s in the denominator no longer yield contrasts between two departures from

size. Ideally, they re
ect the real departure from size of the item in the numerator. Using our notation,

we can now access each f

x

or "

x

. As a consequence, we can also use size-adjusted Sales, Working Capital

or Debt, separately as input variables in statistical models. Such variables are self-explanatory to an

extent so far unattained. Their interpretation is immediate, and it is expected that the indiscriminate

use of all sorts of ratios in multivariate statistical models, could be avoided.

6.2 The Homogeneity of Industrial Groups

In the presence of groups, the modelling of accounting relations cannot avoid two important questions:

� Is a particular grouping signi�cant so that it should be taken into account? If the data is more

similar inside groups than from group to group this is the case.

� Are groups similar in their e�ects upon the features of the data? For example, is liquidity a�ected

in the same way as, say, pro�tability in the presence of an industrial grouping?

In this section we show how to answer the �rst question, using the industrial grouping as an example.

We compare the variability inside industries with the one between them. As a result we obtain a

measure of the importance of this grouping, for each variable involved. The second question can be

answered at several levels of accuracy. Here, we describe the simplest procedure, consisting of ranking
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a measure of homogeneity by industry, and then verifying if these rankings are consistent for di�erent

variables.

6.2.1 Introduction and Related Research

Accounting reports don't contain all the information necessary to characterize �rms. The very basic

problem of �nancial statement analysis is the existence of similar accounting patterns which are not

neighbours in the space of the real features of �rms. In order to correctly map �rm features, accounting

data isn't enough. External information is also required.

A clear example of this, is the industrial classi�cation. The similarity of �rms as perceived by the

SEIC can be di�erent from the similarity of accounting reports. A non-standard piece of information, the

number of employees, turns out to be important when checking the homogeneity of industrial groups.

Other non-accounting variables, eventually also important, could be the patterns of consumption of

energy, area requirements for plant or stores, the age of the �rm, and its location.

The use of a limited amount of information like the one contained in accounting reports, generates

extra unexplained variability in statistical models. Here, we are not concerned with the amount of this

extra variability. We are interested in its complexity: The complexity in models becomes higher when

the data re
ects facts we cannot account for. For example, the Leather or the Wool industries could

add complexity to the model if the accounting features of each �rm were in
uenced by its location.

Location would act as a hidden grouping.

Fixed and random e�ects: Some groupings are de�ned a-priori by an accepted institution like

the SEIC in the UK. Others are the result of objective causes. The grouping of �rms into failed and

non-failed has a statistical nature which is di�erent from the SEIC grouping. The former introduces in

the population a simple partition. The later introduces real variability. Simple partitions are known as

�xed e�ects. Groupings which introduce randomness are known as random e�ects.

Groupings that introduce random e�ects in a population can indeed introduce more than one. The

assessment of the number of independent sources of variability a grouping carries with it, is eventually

important. For example, if a particular grouping contains two random e�ects, it is likely to induce

higher order relations between input variables, thus requiring non-linear tools to be modelled.

Related research: Firm grouping is itself not a very homogeneous body of research. It includes

simple industry comparisons of ratios, tests on widely accepted groupings of �rms and the search for

clusters of �rms according to similarities of ratios and other data. The former topic has been explored

from very early in the literature. Foster [15] o�ers an overview. There is an established evidence on

di�erences between some ratios for well known industry groups.

The search for clusters of �rms has been carried out by Elton and Gruber [12], and Jensen [21]

amongst others. Sudarsanam and Ta�er [29] (1985) tested the separability of the SEIC groups, using

accounting information.

6.2.2 Measuring the Signi�cance of a Grouping

We are interested in assessing the extent to which the SEIC grouping of industries is e�ective in creating

more similar subsets of �rms. Given that the 14 industrial groups selected in this study represent a
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Item 1983 1984 1985 1986 1987

F � F � F � F � F �

SIZE 5.34 9.87% 4.42 6.88% 4.48 6.70% 4.86 7.15% 4.87 7.31%

S 7.21 13.53% 6.61 10.79% 6.53 10.27% 6.48 9.85% 5.93 9.11%

NW 4.00 7.09% 3.94 6.00% 3.63 5.23% 4.20 6.10% 4.17 6.15%

W 5.01 9.26% 3.51 5.17% 4.09 6.03% 4.52 6.59% 4.66 6.96%

I 3.31 5.56% 2.85 3.87% 3.03 4.08% 3.12 4.12% 2.99 3.98%

D 7.02 13.20% 6.51 10.65% 6.31 9.91% 6.47 9.85% 6.39 9.92%

C 5.68 10.58% 5.17 8.26% 5.22 8.03% 5.48 8.22% 5.45 8.35%

FA 6.45 12.08% 6.29 10.23% 6.52 10.26% 7.18 11.00% 6.65 10.35%

CA 4.62 8.42% 4.10 6.32% 3.80 5.51% 3.86 5.44% 3.60 5.07%

CL 5.42 10.03% 5.14 8.20% 4.97 7.59% 5.67 8.52% 5.06 7.65%

N 4.41 8.00% 3.55 5.24% 3.93 5.76% 4.06 5.77% 4.08 5.94%

EBIT 5.88 11.73% 4.46 7.41% 3.49 5.26% 3.74 5.61% 5.45 8.86%

FL 5.90 11.51% 4.75 7.76% 4.35 6.76% 4.36 6.60% 4.94 7.82%

DEBT 4.44 11.86% 3.04 6.10% 3.84 7.66% 3.54 6.43% 4.08 7.81%

Table 18: The F statistic and the Intra-Class correlation, �, when log items were used to explain the

industrial grouping.

sampling amongst a larger number of choices, it is inappropriate to use �xed-e�ects models. Thus, we

use a random-e�ects one, the intra-class correlation.

The intra-class correlation coe�cient, �, measures the proportion of the total variability that is

associated with a grouping. It is a standardized way of comparing the variability within groups with

the one between groups, when the e�ects are random. If s

2

b

is the expected value of the mean-squares

between groups and s

2

is the corresponding mean-squares within groups, an estimator of � is

r =

s

2

b

� s

2

s

2

b

+ (k � 1)� s

2

k is the number of cases in each group. For M groups of unequal size n

i

; i = 1;M and N =

P

n

i

, k

should be approximated as

k =

1

M � 1

�

�

N �

P

n

2

i

N

�

It is possible to estimate con�dence intervals for r. A detailed discussion of this statistic and the way

it is derived can to be found in Snedecor and Cochran [27] (pp. 242 in the 9

th

ed.).

The more similar the groups are, the more the correlation intra-classes approaches 1. When the

variability inside groups is smaller than the one in the whole sample, this measure yields a positive

value. For a variability inside groups similar to the one between them, the intra-class correlation yields

zero. In the case of groups containing more variability than the whole, a negative correlation emerges.

When the e�ects governing the variability within groups and between them are independent, negative

� cannot occur. Negative � emerge only in cases where the e�ects interact.

The data: During the usual period of �ve years we examined three kinds of accounting information.

Firstly, several log items and also s, our estimated size. Secondly, the logs of the same items after

de
ated by s. Finally, the logs of a few ratios.

In tables 18, 19 and 20 on pages 66 and next, we display the estimated intra-class correlation along

with the F statistic. The number of �rms involved ranges from 555 to 702 in 14 industries.

Results: Raw numbers. The logs of raw data show a small but signi�cant increase in homogeneity

owing to the industrial grouping. The values of � are stable during the considered period and no
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Residual 1983 1984 1985 1986 1987

F � F � F � F � F �

S 11.79 21.41% 15.27 23.54% 16.83 24.64% 13.94 20.53% 11.39 17.45%

NW 1.54 1.35% 1.92 1.96% 1.69 1.43% 1.71 1.42% 1.61 1.25%

W 5.28 9.84% 6.18 10.12% 6.34 10.00% 6.85 10.50% 6.97 10.87%

I 4.36 7.88% 4.87 7.77% 4.35 6.57% 5.36 8.10% 3.35 4.65%

D 8.57 16.06% 11.05 17.85% 9.40 14.82% 7.18 10.98% 6.06 9.36%

C 3.46 5.85% 3.45 5.03% 2.86 3.71% 2.77 3.42% 3.15 4.22%

FA 2.23 3.00% 2.87 3.89% 3.35 4.65% 4.00 5.67% 3.69 5.20%

CA 2.79 4.36% 3.87 5.85% 4.11 6.08% 4.02 5.72% 2.04 2.09%

CL 2.93 4.65% 3.94 5.96% 2.67 3.34% 2.32 2.57% 1.69 1.40%

N 9.75 18.24% 13.42 21.23% 12.57 19.42% 12.10 18.17% 9.46 14.76%

EBIT 6.73 13.49% 5.16 8.77% 3.30 4.87% 2.98 4.11% 3.35 4.89%

FL 8.13 15.91% 6.13 10.29% 4.55 7.13% 2.79 3.62% 3.65 5.40%

DEBT 1.52 1.99% 0.97 -0.08% 1.85 2.41% 1.59 1.56% 1.91 2.44%

Table 19: The F statistic and the Intra-Class correlation, �, when several di�erent log residuals were

used to explain the industrial grouping.

negative or zero cases were observed. They aren't di�erent from one another, as expected. In fact, since

the logs of raw numbers mainly re
ect size, they yield similar proportions of variability associated with

grouping. Fixed Assets, Debtors and Sales are the most homogeneous log items inside groups (10%).

Inventory is the least homogeneous (4%). Size itself is similar to many other items (5%). On the whole,

the homogeneity ranges between the extreme values of 3% and 13%.

Results: Size-Adjusted. The contrast between industries increases for size-adjusted items (the "

x

).

Some of these deviations from the expected for size show a much larger homogeneity intra-groups than

others. Also, the consistency for the considered period of �ve years is not a�ected in most of the items

but it is completely lost in a few. Gross Funds from Operations and EBIT, for example, plunge from a

strong similarity inside industries to a much smaller one from 1986 on. It seems as if pro�tability were

increasingly non-homogeneous. See table 19 on page 67.

Size-adjusted Sales and the Number of Employees are the most similar inside groups. The SEIC

seems to rely on these items as a criterion for determining groups. Next, Debtors and Wages. Debt

and Net Worth are the less homogeneous: The �nancial structure of �rms isn't sensitive to industrial

groups. On the whole, the homogeneity of the residuals ranges from naught to 25%. These values

denote a more diversi�ed in
uence of the industrial grouping upon size-adjusted features than upon

raw data.

Results: A few ratios. Table 20 on page 68 displays the intra-class correlations for a few more

ratios. The above size-adjusted measures are also ratios, of course: They capture deviations from the

expected for size. The Long Term Debt to Net Worth ratio shows no traces of recognizing the SEIC

grouping as such. The liquidity ratio yields measures of similarity comparable with those of raw data.

Ratios incorporating Sales, Wages, Debtors or the Number of Employees, clearly recognize the SEIC

grouping. If our goal were the identi�cation of ratios appropriate to model the SEIC, then the W=N

ratio would be a good choice.

A method to select appropriate ratios for speci�c tasks could consist of using �. Firstly, the intra-class

correlations of many size-adjusted log items would be assessed. Then, the most promising combinations

of items would be selected amongst the residuals with highest �, and tested.
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Residual 1983 1984 1985 1986 1987

F � F � F � F � F �

S=N 10.08 18.80% 14.22 22.30% 13.44 20.57% 12.84 19.14% 11.08 17.11%

(S �N)=s

2

11.50 21.14% 15.75 24.24% 16.47 24.39% 13.70 20.25% 9.98 15.52%

W=N 11.14 20.62% 16.67 25.42% 18.43 26.62% 20.25 27.86% 16.09 23.61%

CA=CL 3.71 6.44% 4.76 7.56% 3.86 5.63% 5.04 7.51% 2.56 3.11%

DEBT=NW 1.65 2.51% 0.97 -0.10% 2.07 3.08% 1.73 1.96% 1.90 2.45%

S=EBIT 8.00 16.02% 6.98 12.14% 8.69 14.62% 6.67 10.97% 5.70 9.32%

Table 20: The F statistic and the Intra-Class correlation, �, when a few log ratios were used to explain

the industrial grouping.

Summary: The industrial grouping clearly gathers �rms which are, to a small extent, more similar

regarding size. Also, a few features of the �rm are more homogeneous inside industries. It is the case

for Sales, Wages, the number of employees or Debtors. The �nancial structure of �rms is not especially

more similar inside industries, and the measures of pro�tability seem to yield very di�erent results from

year to year. In the early years of our observations the pro�tability of �rms is remarkably similar inside

the same industry. In the later ones (1986, 1987) it becomes irregular.

There is nothing in the obtained results able to defy the common-sense of accounting knowledge.

The results are expected. A very simple technique yielded consistent and interpretable results.

6.2.3 Assessing the Complexity of Grouping E�ects

This section tries to answer the second question posed above. We are interested in broadly knowing

if it is acceptable to consider one unique random e�ect in the SEIC grouping. It isn't a particularly

interesting subject for �elds other than the multivariate modelling of accounting relations.

The method: Building maps from distances. As remarked before, this problem can be treated

with di�erent levels of accuracy. Here we selected a simple one. It could be much improved, so that we

would end up with a real complex instrument to measure complexity.

Our method is based on the well known possibility of constructing maps from distances. For example,

it is possible to build a map showing the relative positions of the main cities in Britain just by knowing

the distances between them. Cities require two dimensions to be mapped. When the objects to be

mapped lie in a straight line the result of this building can be expressed, if desired, as a simple ranking.

Objects positioned so as to form a two-dimensional map cannot be ranked.

We are interested in discovering if it is acceptable to rank the industrial groups according to the

variability of accounting features. If it turns out that the di�erent industries can be ranked according to

this variability, then the SEIC grouping is likely to introduce just one random e�ect. On the contrary,

if the variability introduced by the SEIC resists a simple ranking | thus requiring a two-dimensional

map like in the case of cities | then the variability introduced by the SEIC is complex.

In fact, if the SEIC grouping is a unique e�ect, it will impinge upon the features of the �rm

in di�erent degrees but not in di�erent directions, thus yielding a consistent variability for several

features. For example, if Chemicals has smaller variability in liquidity than Food, then Chemicals

would also exhibit a smaller variability in pro�tability or any other feature. But if, in the former group,

there is a smaller variability in liquidity when compared with Food, and a larger one for pro�tability,

higher order (complex) e�ects are expected.

The method we developed to test the complexity of grouping consists of:
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Figure 21: Each one of these scatterplots is a two-dimensional map showing the position of industries

regarding the variability of their accounting information. The X-axis is the �rst dimension. The Y-axis

is the second one. On the left, logs of raw data during �ve years. On the right, log deviations from that

expected for size during the same period.
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1983 1984 1985 1986 1987

CLOTHING WOOL CLOTHING CLOTHING CLOTHING

WOOL CLOTHING WOOL WOOL MACHINE TOOLS

LEATHER MACHINE TOOLS MACHINE TOOLS MACHINE TOOLS WOOL

MACHINE TOOLS CHEMICALS ELECTRICITY ELECTRICITY ELECTRICITY

INDUSTRIAL PL. INDUSTRIAL PL. CHEMICALS CHEMICALS CHEMICALS

BUILDING MT. PAPER & PACK PAPER & PACK BUILDING MT. BUILDING MT.

CHEMICALS ELECTRICITY BUILDING MT. PAPER & PACK INDUSTRIAL PL.

ELECTRICITY BUILDING MT. INDUSTRIAL PL. MOTOR COMPON. PAPER & PACK

PAPER & PACK ELECTRONICS ELECTRONICS ELECTRONICS ELECTRONICS

ELECTRONICS MOTOR COMPON. MOTOR COMPON. INDUSTRIAL PL. MOTOR COMPON.

MOTOR COMPON. METALLURGY METALLURGY METALLURGY LEATHER

METALLURGY TEXTILES M. LEATHER LEATHER METALLURGY

TEXTILES M. FOOD MANUF. FOOD MANUF. FOOD MANUF. FOOD MANUF.

FOOD MANUF. LEATHER TEXTILES M. TEXTILES M. TEXTILES M.

Table 21: Industries ranked by variability of log items. Below, the largest variability.

� Firstly, the standard deviation of several features of the �rm is measured for a sampling of groups.

� Secondly, joint distances between industrial groups are computed from these standard deviations.

One typical such distance could be the Euclidean one.

� Finally, ordinal scores are discovered that position each industry according to the above distances.

The �nal result is a map. Each industry is a position in that map. The coordinates are the obtained

scores. If industries lie in a straight line, dimensions other than the �rst one are negligible. This

means that groups can be ranked according to a unique measure of variability. They are a�ected by

the grouping in di�erent degrees but not in di�erent directions. On the contrary, if two dimensions are

required to position groups, they cannot be correctly ranked using a joint measure of variability. Our

method also points out which industries are likely to be contributing to an increase in complexity.

The data: We used two sets of data. Firstly, the standard deviations of all the log items used in

previous section. Secondly, the standard deviations of log deviations from that expected for size (the

"

x

). The �rst set is a comparison term. As the logs of raw data mainly re
ect size, their complexity

should be small. The results obtained for the second set can be compared with these. The experiment

was carried out for the usual period of �ve years.

Results: Log items. Figure 21 shows the obtained two-dimensional maps. The maps on the left

refer to raw data. The ones on the right, to size-adjusted items. The X-axis of each map is the �rst

dimension and the Y-axis is the second one. Inside maps, the position of one industry is highlight by

a number. The correspondence between these numbers and industries can be found in appendix, in

table 34 on page 100.

Maps on the left are clearly di�erent from those on the right side. In the case of raw data there is

a trend towards a straight line, as the e�ect of size is preeminent. Industries have di�erent variability

but they are under the same e�ect. Leather is the exception. It shows signs of in
uences other than

size, during three of the observed years. The most homogeneous industries regarding size are Clothing,

Wool, and Machine Tools. The least homogeneous are Miscellaneous Textiles, Metallurgy and Food

Manufacturers. We show these ranks in table 21 (page 70).

Industries like Building Materials, Metallurgy, Machine Tools, Clothing and Food show a consistent

variability during the whole period. Chemicals, Electricity, Electronics, Motor Components and Wool

are also regular. Paper and Packing, Industrial Plants, and especially Leather, are irregular. Their

ranking is not consistent during the whole period.
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Results: Size-adjusted items. The two-dimensional maps on the right side of �gure 21 show clear

di�erences from those on the left. The trend towards one unique dimension is no longer visible. One

industry, Metallurgy, emerges as very particular, with a larger variability than the others. We recall

from section 3.1 that Metallurgy was also unique in the proportion of variability of log items that size

would explain. The scores obtained are consistent for the �ve years.

Leather, Motor Components and Building Materials are now the most homogeneous groups. Met-

allurgy is the least. Building Materials, Chemicals, Electronics, Clothing, and Food, exhibit the same

score during the whole period. This means a persistent variability associated with internal features.

Industries like Electricity, Metallurgy, Motor Components, Wool, and Leather, also show a reasonable

stability. Paper and Packing, Industrial Plants, and especially Machine Tools, aren't stable in their

homogeneity. Three industries emerge as showing a consistent behaviour. Both the variability of size

measures and features, determine a clear position in the case of Food, Clothing, and Building Materi-

als. Industrial Plants, Paper and Packing, and Leather, are examples of the opposite behaviour. The

remaining industries lie in between.

6.3 Summary

In this chapter we explored the main sources of variability of accounting data. Firstly we produced a set

of statements for guidance in the search for a proxy for size. We have shown that simple case-averages

of the logs of selected items produce a signi�cant reduction in the total variability and can be used to

isolate the statistical e�ect of size.

If we use this estimated size as the denominator of ratios, we obtain a variable that enhances the

interpretability of results in statistical models and avoids the excessive number of input variables.

We also studied the importance and e�ect of the SEIC industrial grouping when present in accounting

relations. Our results show that both the variability of size and the one of some features of �rms are

dependent on grouping. But in the last case, the e�ect of grouping is not similar across industries.

The existence of higher order e�ects questions the use of linear tools to model accounting relations.
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Chapter 7

The Complement of a Ratio

Ratios only use part of the information needed to build them. Given two items, y and x, is there any

interesting piece of information besides the one conveyed by the ratio y=x? In this chapter we show

that the size-adjusted information contained in two items can be expressed in terms of the ratio itself

plus a remainder. We also point out, based on the way some ratios are used in practice, that such a

remainder is likely to be valuable for �nancial analysis.

We introduced earlier in this study the notation "

y=x

j

, or the corresponding f

y=x

j

in ordinary space,

to designate the deviation of the ratio y=x from the standard, in the case of �rm j. We also used the

"

x

j

, or the f

x

j

, to designate the deviation of x from the expected for the size of �rm j. Such a deviation

is the contribution of �rm j to the variability particular to x.

7.1 Assessing the Remainder

Since any pair of items, fx; yg, conveys two-dimensional information, and ratios are just one variable,

when we use ratios instead of their components we put aside information. Not only the one about size.

We put aside size-adjusted information, potentially interesting on grounds of �nancial analysis. The

size-adjusted information conveyed by the ratio y=x can be written in log space as the subtraction of

two deviations from the expected for the size of the �rm. If y=x = R

y=x

�f

y=x

, R

y=x

being the standard

for that ratio, then

log f

y=x

= "

y

� "

x

; in which

(

"

y

= log(y � �

y

)� �

y

� �

"

x

= log(x� �

x

)� �

x

� �

Given that it is possible to �nd an estimated � = log s, (see section 6.1) we can now isolate both the

size-adjusted information contained in x, the "

x

, and the one of y, the "

y

.

Let us de�ne two Cartesian coordinates in which the "

y

are measured along the Y-axis, and the "

x

along the X-axis. All the size-adjusted information conveyed by y and x about �rm j will be represented

by a point, f"

y

; "

x

g

j

, in this coordinate system. Now we rotate this system 45

o

anti-clockwise. We obtain

new coordinates in which the X-axis measures "

y

� "

x

and the Y-axis measures "

y

+ "

x

. But "

y

� "

x

is the information conveyed by the ratio y=x. Since the new Y-axis is orthogonal to the one assessing

the information conveyed by the ratio, we can be sure that all the information not accounted for by the

ratio itself will be contained in "

y

+ "

x

. Hence, "

y

+ "

x

conveys the size-adjusted information contained

in x and y, but not contemplated by y=x.
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It is easy to see that, in ordinary space, "

y

+ "

x

is the ratio (x � y)=s

2

, s being the estimated

size. Therefore, given any ratio y=x, if we want to know which size-adjusted information conveyed

by its components hasn't been assessed by it, we should look into the ratio (x � y)=s

2

. The ratio

(x � y)=s

2

is a complementary ratio to y=x. Together, they describe the two orthogonal aspects of a

unique two-dimensional observation.

7.2 Is the Remaining Information Useful?

In this section we show that the pair of complementary variables obtained above can answer two kinds

of questions that speci�c pairs of ratios are meant to answer as well. From this, we conclude that those

pairs convey, in some cases, information useful to analysts. We also discuss the cases in which it is

likely to �nd complementary information that is useful.

It is often mentioned in the literature that ratios are used because of the need to control for size.

This control for size has several meanings. Two of them are now considered in the form of questions:

� Is a particular item big (or small) when compared with the size of the �rm? This is the problem

of assessing deviations from standards for size. Financial ratios are meant to answer this question

when the de
ator is selected so as to re
ect size (Total Assets is a typical choice). In our framework

the answer to the above question is given by the ratio (x� y)=s

2

(in log space, the "

y

+ "

x

).

� To what extent a given feature of the �rm, like liquidity, is far away from the expected, regardless

of the magnitude of its components when compared with the standards for size? This is the

problem of measuring departures from standards describing features by themselves. In such cases

the de
ator is selected so as to produce a contrast when compared with the de
ated item. In our

framework this would be accomplished by the ratio itself (the y=x or, in log space, the "

y

� "

x

).

Though no sharp separation exists between both functions, some ratios seem more intended to answer

the �rst question whilst others are more intended to answer the second one. For example, in the two

ratios Working Capital to Total Assets and Current Assets to Current Liabilities, the �rst one assesses

liquidity by referring it to the size of the �rm, whilst the second one assesses the feature emerging when

contrasting short term assets with liabilities, regardless of the size of the �rm.

In many other situations, ratios are used alone or their pairing isn't related to the problem discussed

here. For example, the Interest Cover ratio, despite being often used along with Financial Structure

ratios, doesn't relate to them in the way we discuss here. Analysts seek two pieces of information which

are complementary on grounds of �nancial analysis, not because of any complementary relation based

on information content.

Applicability of the complementary ratios: Discussion and related research. As stated

above, in many cases the remaining information isn't used by analysts. We now discuss the cases in

which pairs of complementary ratios could yield interesting information. The literature concerning this

topic is scarce. A subject somehow related is Horrigan's response to Barnes [19]. Horrigan claims that

the main task ratios undertake is the assessment of speci�ed relationships. \They adjust for the data

size e�ect only incidentally. (...) Size de
ation is certainly an interesting property of �nancial ratios,

but it is hardly their major purpose." Horrigan seems to suggest that only the "

y

� "

x

, the y=x, convey

interesting information. However, on statistical grounds, it is easy to sustain the usefulness of the
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Figure 22: On the left, a mean-adjusted scatterplot of CA (Y-axis) versus CL (X-axis). On the right,

the corresponding residual plot. Electronics, 1986. The negative sign means CA < CL.

complementary ratio (the (x � y)=s

2

), since it is orthogonal to y=x. Only when "

y

is correlated with

"

x

the above decomposition of information becomes less attractive. This is because correlation means

redundancy: On the limit, two strongly correlated "

y

and "

x

would carry the same information.

Uniqueness of bivariate information: We now explore a more speci�c question. When the remain-

ing information turns out to be useful, to what extent is it convenient to gather in a unique observation

the two ratios | the y=x and the (x � y)=s

2

| instead of using each of them separately? Is there

anything to be gained by using bivariate information instead of their two separated pieces?

The bivariate information conveyed by the pair of complementary ratios fy=x; (x� y)=s

2

g can be

more revealing than the examination of the two ratios separately. Firstly, because two dimensions allow

an increasing in speci�city: Trajectories, recognized as such, are more accurate and easy to interpret

than trends. Secondly, because, in some cases, the bivariate information could be unique. This happens

whenever the scatter of cases draws, in two-dimensions, a shape impossible to describe functionally. For

example, when the scatter of cases is less dense in one quadrant than in the other three, or when there

is a comet-like shape (a bivariate tail).

That's why, in the examples to be explored in next section, we privilege bivariate representations

(scatterplots) instead of studying both components separately.

7.3 Creating Bivariate Tools

In this section we present increasingly elaborated scatterplots of accounting data leading to what we

call the Rotated Residual Plot. The Rotated Residual Plot is a bivariate representation of the two

complementary ratios studied in previous section.
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7.3.1 Non-Rotated Plots

Simple visual inspection of two items can be achieved with scatterplots. For the ratio y=x, logx would

be the abscissa and logy the ordinate. Figure 5 on page 21 contains one of these \XY Plots" as we

call them. Scatterplots in log space reveal the existence of external forces and signi�cant thresholds.

For example, in the case of constraints introduced by accounting identities, all cases gather on one side

of the line y = x, as seen in �gure 16 (on page 50). Non-negligible thresholds determine non-linearity

in the relation between logx and logy. Ratios like EBIT=S or CA=FA exhibit, in a few industrial

groups, traces of non-linearity consistent with this hypothesis.

The information conveyed by the XY plot contains the one of ratios. The horizontal (or vertical)

distances from any case to the line log y � �

y

= logx � �

x

, which is the axis with largest variability,

measure deviations from ratio standards. For example, the scatterplot formed with logCA in the

abscissa and logCL in the ordinate, yields, for any point fCA

j

; CL

j

g representing the position of �rm

j, a measure of "

CA=CL

j

= (logCA

j

� logCA) � (logCL

j

� logCL) which is the deviation from the

ratio standard in log space. As usual, logx stands for the log median (the mean of logx).

The mean-adjustment: A �rst step towards more practical tools is the mean-adjustment of the

data. Financial diagnosis is based on the magnitude of deviations from standards. The value of the

standard itself is important only in that it allows the calculation of such deviations. Therefore, the

mean-adjustment throws away a non-important piece of information. Mean-adjustment is also useful

when it is convenient to gather in the same scatterplot data belonging to several years. In this case we

mean-adjust separately each year.

The residual plot: If we plot, instead of mean-adjusted items, the residuals obtained after controlling

for s, the common e�ect, we get a scatterplot of "

y

with "

x

. This residual plot is adequate to detect

correlations between features of the �rm. Since the strong e�ect of size has been accounted for, any

residual correlation becomes visible. XY plots aren't accurate in detecting residual correlations since

the e�ect of size, having a much larger variability, completely masks them. Figure 22 compares a

mean-adjusted plot (left) with a residual one for the same data (right).

7.3.2 Rotated Plots

The two plots presented next are intended for �nancial analysis. The �rst one, we call the rotated plot,

preserves information regarding the size of the �rm. The second one, we call the rotated residual plot,

only shows size-adjusted information.

Taking size into account: The rotated plot. Given a data matrix X

N�2

containing N cases

of two mean-adjusted log items, log y

adj

and logx

adj

, we obtain the corresponding 45

o

anti-clockwise

rotated data matrix X

r

N�2

by applying the transformation H as in

X

r

= XH with H =

"

1 1

1 �1

#

(13)

The resulting variables are h

1

= log y

adj

+ logx

adj

and h

2

= log y

adj

� logx

adj

. h

1

is size-preserving

and h

2

is, in log space, the deviation of y=x from the standard. We can build a scatterplot in which h

1
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Figure 23: On the left, a XY plot of Earnings (Y-axis) with Sales (X-axis). On the right, the corre-

sponding rotated plot. Motor Components, 1984.

is the ordinate and h

2

is the abscissa. The space spanned by fh

1

; h

2

g contains the same information

conveyed by a mean-adjusted XY plot, but now arranged in a way that makes sense in �nancial analysis.

This rotated plot allows the straightforward measuring of deviations from ratio standards along the

X-axis. It is more accurate than the XY plot since the cases now span more uniformly the whole of the

neighbourhood about their expected values. Figure 23 shows, on the left, the usual XY plot and on the

right the same data after rotation.

Rotated plots like the one of �gure 23 (right) retain in the Y-axis the information regarding the

size of the �rm. They are ideal for observing features described both by a ratio and by size. In the

literature there is a growing conscience about the importance of size | not just deviations from the

expected for size | in some speci�c problems. For example, when predicting �rm distress, both the

ratio Cash-Flow to Total Debt and the size of the �rm seem to be revealing. We can put together both

pieces of information by means of this plot.

The rotated residual plot: In the rotated plot, the coordinates of any point, fh

1

; h

2

g, are ratio

residuals and joint measures of size. For the tracing of features unrelated to size the rotated residual

plot is the adequate tool. It uses, instead of size, a ratio which is the information-complement of the

one the X-axis shows. In this rotated residual plot:

� The X-axis measures, in log space, the deviation of the ratio y=x from the standard. For conve-

niently selected y and x, this axis is supposed to capture a �nancial feature of the �rm.

� The Y-axis measures the deviation of (x � y)=s

2

from the expected, that is, the joint departure

of y and x from the expected for that size.

Notice that the rotated residual plot is just a 45

o

anti-clockwise rotation of a residual plot. In a residual

plot, "

y

is the abscissa and "

x

is the ordinate. After rotating these axis in the way described in (13) we

obtain a new X-axis assessing "

y

� "

x

, which is the residual of y=x, and a new Y-axis assessing "

y

� "

x

which is the residual of x� y)=s

2

.
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Figure 24: Diagnosis and location of �rms in the rotated residual plot. Funds Flow to Total Debt.

The rotated residual plot can also be viewed as a way of reducing from three to two the dimensions of

the information concerning a pair of items. In fact, the whole of the potentially interesting information

involving two items, y and x, is a three-dimensional vector, f"

y

; "

x

; sg. For example, when measuring

liquidity, we might hesitate between using CA=CL, thus getting a picture of liquidity by itself, or using

WC=TA in order to have insight into the position of liquidity regarding the size of the �rm. The three-

dimensionality of the desired information is depicted by the fact that, only when knowing CA;CL and

TA, would we be able to answer both questions. A rotated residual plot could assess liquidity, both by

itself (along the X-axis), and as referred to the size of the �rm (Y-axis). The dimension reduction has

been achieved by pulling together, along the Y-axis, the departures from size observed on y and x.

7.3.3 Financial Diagnostics and the Rotated Residual Plot

Figure 24 shows the diagnostics to infer from the location of any �rm in the rotated residual plot. As

usual, the term \feature" refers to characteristics of �rms re
ected by �nancial statements: Liquidity,

pro�tability, �nancial structure and so on. Ratios are supposed to capture features. In this sense, the

diagnostics provided by the rotated residual plot are:

The position of a �rm is A: Both the feature we are interested in and its magnitude regarding the

size of the �rm, are near the expected for that industry.

The position of a �rm is B: The feature we are interested in is near the standards. But its magni-

tude is larger than the expected for the size of the �rm.

The position of a �rm is C: Although the magnitude of the feature we are interested in is near the

expected for the size of the �rm, the feature itself is below the standards.

The position of a �rm is D: The feature itself is near the standards. However, its magnitude given

the size of the �rm is smaller than the expected.
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The position of a �rm is in between C and D: Both the feature and its magnitude, given the size

of the �rm, are below the expected. This is a frequent situation when assessing pro�tability. It

means a �rm too large for the generated earnings.

The position of a �rm is E: The magnitude of the feature we are interested in is the expected for

that size. But the feature itself is above the standards.

For example, the liquidity of a �rm might be the expected one when considered as a contrast between

short-term assets and liabilities. But both Current Assets and Liabilities might be smaller than the

expected for the size of the �rm. In that case, the rotated residual plot would show a position near \D"

in �gure 24.

A di�erent way of reading positions in the rotated residual plot is also depicted in �gure 24. It refers

to quadrants, not to Cartesian axis. It leads to diagnostics based on log items, not on ratios. For the

ratio y=x and s, an estimated size, we would have:

The �rm lies in the �rst quadrant: Both x and y, the ratio components, are above their expected

values for �rms with that size.

The �rm lies in the second quadrant: The denominator of the ratio, x, is below the expected and

the numerator, y, is above the expected for �rms of similar size.

The �rm lies in the third quadrant: Both components are below the expected for a �rm of that

size. The �rm is therefore oversized in what concerns those two items.

The �rm lies in the fourth quadrant: The numerator, y, is above the expected for �rms with that

size. The denominator, x, is over-sized.

In the next section we give extensive examples of the use of rotated residual plots in �nancial diagnosis.

7.4 Using Complementary Ratios

We selected the Food Manufacturers industry and the pro�tability ratio to illustrate the joint use of

complementary ratios and the possibilities they o�er in the tracing of dynamic features. We shall use

an abbreviation, RRP, to designate the rotated residual plot.

As we stressed in the last section, the RRP represents, in two dimensions, a ratio and its complement.

Each zone of a RRP is assigned a �nancial diagnostic. It is the fact that a case lies in a particular zone

that is important here. RRPs often exhibit irregular shapes. For example, RRPs re
ecting pro�tability

or 
ow of funds frequently show a comet-like shape, with a tail towards the third quadrant.

7.4.1 How to Build the RRP

For each year of the period 1983-1987 separately, we selected two samples. One contained �rms with

positive EBIT . The other one, those having negative EBIT . Then, a symmetric log transformation

was applied to both | formula (1) on page 35 |. The items to be used, NW and EBIT , were then

mean-adjusted year by year. Any trend was thus accounted for. The estimated size to be used, log s,

was also extracted as explained in section 6.1.
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Next, we �nded the Y-axis and the X-axis of the RRP, in the same way for the positive and negative

EBIT samples. Being

"

EBIT

= logEBIT � logEBIT � log s; and "

NW

= logNW � logNW � log s;

the two axis of the RRP are:

Y = "

EBIT

+ "

NW

and X = "

EBIT

� "

NW

As discussed in section 3.2, the positive-EBIT and the negative-EBIT scatters represent two di�erent

things and should be modelled separately. However, when studying dynamic features, it is convenient

to introduce some form of continuity between them, thus allowing the tracing of �rms whose EBIT

emerges from negative to positive values and conversely, during a period of several years.

Drawing the continuity between pro�ts and losses: The third quadrant of the RRP containing

positive-EBIT �rms seems to be logically linked with the �rst quadrant of the RRP for the negative

ones. In �gure 24 (page 79), the third quadrant is the region delimited by \C" and \D". It contains

the �rms showing a performance below the expected, both in pro�tability and in the magnitude of this

feature when compared with the size of the �rm. Similarly, in the samples showing negative EBIT , the

�rst quadrant | the region between \E" and \B" in the same �gure | contains �rms with less severe

losses and whose pro�tability is larger than the expected for negative-EBIT �rms of that size.

Let us suppose that a �rm gradually falls into negative earnings. It draws in the RRP a trajectory

towards the second or the third quadrant and then into the �rst or fourth quadrant of the negative-

EBIT plot. But the path through the third quadrant means a �rm too large for what it is worth and

also for the generated earnings. The path through the second quadrant would mean a �rm too large for

the generated earnings as well, but with a balanced capital regarding its size. Conversely, when a �rm

gradually emerges from a situation of poor pro�tability to a more healthy state, its path will go along

the �rst or the fourth quadrant of the negative-EBIT plot, until it reaches the third or the second one

in the positive one. But the path through the �rst quadrant means an improvement in both earnings

and capital regarding size.

The logical path linking these two plots, should link the worst situation of positive earnings with

the best one of negative ones. The fact that �rms often fall into negative earnings from quadrant other

than the third one doesn't invalidate our reasoning. We also observed that the position of �rms having,

at least, one year with losses during the usual period, tends to be in the third quadrant. Given this, it

seems as if the continuity between pro�ts and losses should be drawn between the third quadrant of the

positive-EBIT plot and the �rst one of the negative one. Accordingly, we place the negative scatter

in the third quadrant of the positive one, far away from the rest of the data. This is done by shifting

all the cases in the former by a negative amount, and then mixing both plots, as shown in the RRP

displayed in �gure 25. Notice how the variability of the negative cases is much larger than the one of

the positive ones.

7.4.2 Reading the RRP

In this section we compare the information conveyed by a set of ratios with the one of the RRP. The

goal is to provide a means to get acquainted with this new tool by putting it side by side with the usual

source of information for analysts, the ratios.
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Figure 25: The joint RRP formed with the positive cases and the negative ones shifted so that they

occupy a region of the third quadrant far away from the rest of the data.

We selected six �rms from the Food industry. For each one of them we display the ratios Sales

to Net Worth, Funds Flow to Total Debt, EBIT to Net Worth and also log s, an estimated size. We

also present the trajectories drawn in the RRP. The whole of the information is contained in �gures 26

(page 84) and in �gures 27 (page 85). This graphical description is complemented with table 35 in

appendix (page 100). The �gures show, on the left, a time-history of the mentioned ratios, and, on the

right, the RRP. Each mark on the RRP refers to one year. For example, \4" shows the position of the

�rm in 1984. In order to interpret the RRP, notice that its axis measure percent deviations. The nearer

a �rm is from the centre, the less it diverges from the expected. The X-axis measures percent deviation

from the pro�tability expected for the Food industry. The Y-axis measures how the magnitudes of

Earnings and Net Worth, taken jointly, diverge from that expected for the size of the �rm. In terms

of quadrants, the �rst one means both Earnings and Net Worth larger than the expected. The second

one means Net Worth larger than the expected but Earnings smaller, and so on.

We now comment on each one of the �rms, organized in four classes: Firms occupying a steady

position in the RRP, trends, other trajectories, and one case of negative EBIT.

Firms occupying a steady position: The �rm on the top of �gure 26 is an example of a steady

position in the RRP. When reading the information conveyed by ratios about the evolution of UNITED

BISCUITS, a large �rm, we notice that during the period 1983-1987, the pro�tability ratios seem to

su�er a small decrease. The reading of the RRP says that both the position of this �rm in what concerns

pro�tability, and the magnitude of this feature when compared with the size of the �rm, are near the

expected ones for the industry. They didn't change during the whole period.

Trends: NESTLE (UK), and MAUNDER (LLOYD), both in �gure 26, show a trend towards a

better performance during the �ve years considered. The �rst �rm is small. It recovers from a position

of pro�tability below the expected and over-sized regarding pro�ts, to a new one agreeing with the

standard for the industry. The second �rm is larger than the expected for the industry. It improved its

pro�tability from a standard position to above standards. Its Net Worth was kept near the expected
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Figure 26: On the left, the evolution of a few ratios and a proxy for size during a period of �ve years.

On the right, the corresponding rotated residual plot | EBIT to Net Worth | showing the trajectory

drawn by the �rm during the same period. Marks 1 to 7 indicate positions from 1983 to 1987.
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Figure 27: On the left, the evolution of a few ratios and a proxy for size during a period of �ve years.

On the right, the corresponding rotated residual plot | EBIT to Net Worth | showing the trajectory

drawn by the �rm during the same period. Marks 1 to 7 indicate positions from 1983 to 1987.
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for its size.

More complicated trends: CAMPBELL FROZEN FOODS (�gure 27, page 85) is an example of a

more complicated evolution. The whole of the trajectory lies in the upper two quadrants of the RRP.

This means an excessive Net Worth when compared with the standards. The fact that this �rm lies in

the second quadrant, explicitly means that such a capital is not actually producing the expected pro�ts.

OVERSEAS FARMERS is a typical case of increasingly poor pro�tability. Since the volume of sales

didn't break down in the last two years of the period, other factors a�ected the performance of this

�rm. The RRP shows that this �rm is too large for what it's worth, and also for the generated pro�ts.

A case of negative EBIT : Figure 27 (page 85) also shows one �rm having negative EBIT except

in 1985 and 1986. When compared with the standards for the industry, G. P. LOVELL, a small �rm,

is over-sized for what it's worth and for the pro�ts it generates.

Discussion: When comparing the information conveyed by ratios with that of the RRP, it is clear

that the former only tells part of a story. That is, the RRP is more speci�c in its diagnostic. For

example, the pro�tability of NESTLE (UK) increased during the period. The RRP says as much, and

also points out that such a gain was obtained purely by an increase in e�ciency: When compared with

the size of the �rm, the Net Worth of NESTLE (UK) didn't improve. Also, ratios seem to suggest a

small decrease in the pro�tability of UNITED BISCUITS during the period, whereas the RRP shows

that, when taking size into account, this decrease is negligible. The degradation in the pro�tability of

OVERSEAS FARMERS is explained by the RRP, more as a case of oversize regarding Net Worth, than

as a lack of e�ciency.

Finally, the RRP fully takes advantage of the widespread graphical power of computers, being suited

for computerized analysis and machine learning to an extent ratios can't attain.

7.5 Summary

We have shown that the size-adjusted information left aside by the ratio y=x is the ratio (y � x)=s

2

, s

being an estimated size. We also studied the potential interest of such a remainder in �nancial statement

analysis. Then, we described bivariate tools incorporating relative size | or, in the case of the RRP,

deviations from an expected size | and allowing the study of trajectories. The drawing of trajectories

reveal a certain behaviour valuable for �nancial analysis and less explicit when using ratios solely. The

RRP is a di�erent, yet familiar, way of reading accounts. It is di�erent from ratios in that it conveys

two pieces of information at a time. But it is based on the same principles: A contrast between two

magnitudes is supposed to capture features of the �rm, and the value expected for the industry sets the

standard.
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Chapter 8

Conclusions and Tables

This study introduced a uni�ed view that clari�es issues yet unsolved in �nancial statement analysis:

The validity of ratios, the variety of their distributions, how to overcome their known limitations when

used as input variables in statistical models.

Ratios are bivariate relations. Their distributions are determined by the ones of their components,

plus the interaction between them. Thus, for understanding ratios, the �rst step consists of knowing the

characteristics of such components. Raw data is much more regular than ratios. The observed items are

two or three-parametric lognormal in cross-section. Lognormality is enough to explain the existence of

outliers and the heteroscedasticity in models, often referred to in the literature. Regressions shouldn't

be used to model lognormal variables, as large �rms become strongly in
uential. Weighting is not an

adequate remedy since it simply transfers the in
uence from the largest to the smallest cases in the

sample. The trimming of outliers is also useless.

Items are the addition of two e�ects. The �rst one is common to a given report. It re
ects the

relative size of �rms. The second one re
ects a particular variability. Hence, items should be explained

in terms of size and deviations from size.

Ratios can be extended so as to account for non-proportionality. Three-parametric lognormality

demands the introduction of non-proportional terms in ratios. Such threshold ratios are natural exten-

sions of the usual ones as both stem from the same stochastic mechanism. They seem promising for

�nancial statement analysis: It is likely that they will be able to gather in one unique standard the

features of �rms having very di�erent sizes.

Ratios are broadly lognormal. But accounting identities and other external forces can, in some

cases, act as constraints, hiding the skewness of their distribution. This explains the major departures

from lognormality observed in ratios. However, ratios are not exactly lognormal. In log space, the

distribution of accounting data is determined by the interaction of a Gaussian common e�ect with the

leptokurtic particular ones. In ratios, the particular ones are prevalent. In items, the Gaussian one

dominates.

The size-adjusted information contained in two items can be expressed in terms of a ratio plus a

remainder. Such a remainder is likely to be valuable for �nancial analysis but its building demands

the use of an estimated size. Case-averages of selected items approach such an e�ect. This allows the

assessment of the particular variability of items and the building of bivariate tools to be used in �nancial

statement analysis.
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Departures from two-parametric lognormality Items having only Items having

in �ve years positive cases both + and �

Departures are never observed 69.2% 62.9%

A departure is observed once 11.0% 22.9%

A departure is observed twice 10.4% 11.4%

A departure is observed three times 5.5% 1.4%

A departure is observed four times 3.3% 1.4%

A departure is observed �ve times 0.5%

In �ve years, deviations occurred: ONCE TWICE THREE FOUR FIVE

In item: TIMES TIMES TIMES

Sales 3 1 2

Net Worth 2 3

Wages 2 1 1

Inventory 3 1

Debtors 1 3

Creditors 2 1 1

Current Assets 3 3

Fixed Assets 1 2

Total Assets 1 3

Current Liabilities 1 3

Number of employees 1 1 1 1

Expenses 2 1 1

Tot. Capital Empl. 3 1

EBIT 2 2

Operating Pro�t 2 2

Long Term Debt 3 1 1

Funds Flow Fr. Ops. 6 1 1

Working Capital 3 2

Table 22: Persistency of departures from the two-parameters model. By item.

In �ve years, deviations occurred: ONCE TWICE THREE FOUR FIVE

In industry: TIMES TIMES TIMES

Building Materials 3 1

Metallurgy

Paper and Packing 3 1 1

Chemicals 4 1 1

Electricity 3 3 2 1

Industrial Plants 7 9 1 1

Machine Tools 4

Electronics 2 7 3 1 1

Motor Components 2

Clothing 3 1

Wool 2

Textiles Mix.

Leather

Food Manufacturers 3 4 3 4

Table 23: Persistency of departures from the two-parameters model. By industry.
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1983 1984 1985 1986 1987

item ind N W P N W P N W P N W P N W P

S BUIL 29 0.94 0.18 34 0.96 0.43 36 0.97 0.66 39 0.96 0.43 38 0.97 0.56

METL 29 0.98 0.95 32 0.98 0.97 33 0.97 0.77 34 0.96 0.50 33 0.97 0.64

PAPR 50 0.95 0.06 56 0.95 0.08 57 0.94 0.02 60 0.96 0.12 58 0.96 0.17

CHEM 53 0.95 0.09 55 0.95 0.12 56 0.96 0.20 55 0.96 0.19 55 0.96 0.30

ELEC 37 0.95 0.16 44 0.93 0.02 48 0.96 0.22 49 0.97 0.40 46 0.96 0.28

I.PL 19 0.91 0.10 20 0.84 0.00 22 0.83 0.00 23 0.89 0.02 23 0.90 0.02

TOOL 22 0.91 0.05 24 0.95 0.29 24 0.97 0.68 26 0.97 0.84 25 0.95 0.29

ELTN 98 0.97 0.33 130 0.96 0.03 138 0.96 0.04 145 0.96 0.02 143 0.97 0.07

MOTR 25 0.92 0.08 30 0.95 0.26 31 0.96 0.36 30 0.96 0.42 29 0.96 0.46

CLOT 39 0.98 0.92 46 0.89 0 48 0.98 0.94 52 0.97 0.70 50 0.99 0.98

WOOL 15 0.93 0.36 21 0.97 0.82 20 0.96 0.62 20 0.97 0.84 20 0.96 0.55

TX.M 32 0.95 0.31 36 0.97 0.75 36 0.96 0.37 37 0.97 0.66 38 0.97 0.67

LEAT 13 0.95 0.65 16 0.95 0.52 16 0.95 0.50 16 0.94 0.42 16 0.96 0.79

FOOD 94 0.96 0.03 105 0.96 0.03 112 0.95 0.00 116 0.96 0.05 114 0.93 0

NW BUIL 29 0.93 0.08 34 0.94 0.11 35 0.93 0.04 38 0.96 0.29 38 0.94 0.07

METL 29 0.96 0.49 32 0.97 0.65 32 0.98 0.87 33 0.97 0.78 31 0.97 0.77

PAPR 48 0.98 0.90 55 0.98 0.96 56 0.98 0.84 60 0.98 0.80 58 0.97 0.51

CHEM 52 0.97 0.70 54 0.98 0.74 55 0.98 0.79 54 0.98 0.91 54 0.97 0.61

ELEC 37 0.93 0.03 44 0.94 0.05 48 0.94 0.04 49 0.95 0.09 46 0.94 0.05

I.PL 19 0.91 0.10 20 0.90 0.05 22 0.89 0.02 23 0.91 0.04 23 0.93 0.13

TOOL 22 0.95 0.36 24 0.96 0.47 24 0.96 0.6 26 0.97 0.71 25 0.96 0.60

ELTN 97 0.98 0.58 130 0.98 0.5 134 0.96 0.04 142 0.98 0.45 138 0.96 0.00

MOTR 25 0.96 0.61 30 0.97 0.81 31 0.97 0.64 30 0.97 0.77 29 0.96 0.42

CLOT 39 0.97 0.75 46 0.97 0.49 48 0.98 0.88 52 0.98 0.94 50 0.98 0.95

WOOL 15 0.94 0.37 21 0.97 0.76 20 0.97 0.75 20 0.95 0.53 20 0.96 0.64

TX.M 32 0.94 0.14 36 0.97 0.61 36 0.97 0.73 36 0.97 0.79 37 0.97 0.64

LEAT 13 0.87 0.05 16 0.90 0.08 16 0.93 0.29 16 0.94 0.38 16 0.95 0.52

FOOD 94 0.98 0.81 104 0.97 0.24 109 0.98 0.65 111 0.96 0.04 113 0.97 0.24

W BUIL 29 0.97 0.72 34 0.97 0.64 36 0.97 0.64 39 0.97 0.53 38 0.97 0.57

METL 29 0.97 0.65 32 0.95 0.26 33 0.95 0.23 34 0.96 0.49 33 0.95 0.25

PAPR 50 0.97 0.58 55 0.97 0.38 56 0.97 0.42 59 0.96 0.23 57 0.96 0.31

CHEM 52 0.95 0.09 54 0.96 0.16 55 0.96 0.20 54 0.96 0.33 54 0.97 0.40

ELEC 37 0.94 0.10 44 0.94 0.05 48 0.94 0.04 49 0.95 0.06 46 0.94 0.05

I.PL 19 0.94 0.32 20 0.89 0.04 22 0.93 0.12 23 0.93 0.12 23 0.95 0.45

TOOL 22 0.93 0.15 24 0.93 0.14 24 0.93 0.10 26 0.94 0.16 25 0.94 0.18

ELTN 97 0.95 0.02 130 0.96 0.00 138 0.93 0 144 0.94 0 143 0.94 0

MOTR 25 0.95 0.33 30 0.95 0.28 31 0.95 0.33 30 0.95 0.34 29 0.96 0.43

CLOT 39 0.97 0.75 45 0.99 0.99 48 0.97 0.66 52 0.97 0.45 50 0.98 0.73

WOOL 15 0.94 0.47 21 0.98 0.93 20 0.97 0.89 20 0.98 0.96 20 0.97 0.88

TX.M 31 0.94 0.16 35 0.96 0.29 35 0.95 0.15 36 0.94 0.09 37 0.95 0.18

LEAT 13 0.95 0.68 16 0.91 0.15 16 0.92 0.22 16 0.93 0.26 16 0.93 0.26

FOOD 92 0.97 0.40 105 0.96 0.02 111 0.96 0.02 116 0.96 0.05 114 0.96 0.08

Table 24: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the

number of cases. First table.
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1983 1984 1985 1986 1987

item ind N W P N W P N W P N W P N W P

I BUIL 29 0.96 0.45 34 0.96 0.40 36 0.96 0.28 39 0.95 0.21 38 0.94 0.11

METL 29 0.95 0.36 32 0.98 0.86 33 0.97 0.7 34 0.94 0.13 32 0.93 0.05

PAPR 50 0.97 0.71 54 0.97 0.54 55 0.97 0.65 59 0.96 0.28 55 0.96 0.26

CHEM 53 0.95 0.13 55 0.94 0.04 56 0.95 0.08 55 0.97 0.44 55 0.95 0.10

ELEC 37 0.93 0.04 44 0.97 0.61 48 0.94 0.02 49 0.94 0.05 45 0.94 0.04

I.PL 19 0.93 0.22 19 0.94 0.29 21 0.92 0.08 22 0.78 0 23 0.95 0.46

TOOL 22 0.89 0.02 24 0.94 0.24 24 0.97 0.66 26 0.97 0.77 25 0.96 0.57

ELTN 94 0.97 0.18 127 0.97 0.32 132 0.98 0.86 139 0.98 0.66 136 0.97 0.33

MOTR 25 0.94 0.16 30 0.95 0.34 30 0.97 0.70 30 0.97 0.82 29 0.96 0.51

CLOT 39 0.97 0.68 45 0.97 0.59 48 0.97 0.63 52 0.97 0.69 50 0.98 0.90

WOOL 15 0.96 0.77 21 0.98 0.96 20 0.97 0.86 20 0.98 0.92 20 0.96 0.72

TX.M 32 0.96 0.37 36 0.98 0.88 36 0.97 0.80 37 0.97 0.61 38 0.96 0.38

LEAT 13 0.95 0.64 16 0.93 0.3 16 0.92 0.21 16 0.94 0.36 16 0.94 0.42

FOOD 93 0.98 0.65 105 0.98 0.53 112 0.97 0.37 114 0.98 0.51 111 0.98 0.79

D BUIL 29 0.96 0.52 34 0.98 0.82 36 0.98 0.81 39 0.98 0.93 38 0.98 0.90

METL 29 0.96 0.47 32 0.95 0.21 33 0.97 0.67 34 0.97 0.55 33 0.97 0.65

PAPR 50 0.95 0.07 55 0.94 0.03 56 0.94 0.02 59 0.95 0.07 56 0.95 0.06

CHEM 53 0.96 0.19 55 0.96 0.14 56 0.95 0.10 55 0.96 0.14 55 0.96 0.18

ELEC 37 0.95 0.14 44 0.97 0.58 48 0.96 0.20 49 0.97 0.45 46 0.95 0.11

I.PL 19 0.97 0.78 20 0.89 0.02 22 0.88 0.01 23 0.94 0.2 23 0.92 0.07

TOOL 22 0.94 0.30 24 0.89 0.01 24 0.95 0.38 26 0.96 0.43 25 0.97 0.68

ELTN 98 0.98 0.70 130 0.97 0.31 138 0.96 0.06 145 0.96 0.04 143 0.96 0.03

MOTR 25 0.95 0.37 30 0.95 0.21 31 0.94 0.17 30 0.97 0.59 29 0.96 0.52

CLOT 39 0.97 0.71 46 0.97 0.57 48 0.97 0.56 52 0.97 0.41 50 0.98 0.97

WOOL 15 0.93 0.30 21 0.97 0.79 20 0.97 0.89 20 0.98 0.96 20 0.94 0.36

TX.M 32 0.96 0.52 36 0.98 0.91 36 0.97 0.68 37 0.97 0.59 38 0.97 0.79

LEAT 13 0.90 0.14 16 0.92 0.18 16 0.92 0.23 16 0.92 0.21 16 0.91 0.12

FOOD 93 0.97 0.46 104 0.98 0.62 112 0.97 0.43 116 0.97 0.44 113 0.97 0.12

C BUIL 29 0.95 0.22 34 0.97 0.7 36 0.97 0.61 39 0.99 0.99 38 0.96 0.3

METL 29 0.98 0.86 32 0.98 0.83 33 0.98 0.83 34 0.96 0.37 33 0.97 0.76

PAPR 50 0.96 0.32 55 0.96 0.32 56 0.96 0.2 59 0.95 0.07 55 0.97 0.37

CHEM 53 0.96 0.16 55 0.94 0.02 56 0.95 0.09 55 0.96 0.14 55 0.96 0.24

ELEC 37 0.95 0.13 44 0.97 0.60 48 0.94 0.05 49 0.96 0.31 46 0.96 0.27

I.PL 19 0.95 0.40 20 0.90 0.04 22 0.90 0.03 23 0.95 0.36 23 0.98 0.90

TOOL 22 0.95 0.41 24 0.94 0.21 24 0.96 0.56 26 0.95 0.34 25 0.95 0.36

ELTN 98 0.98 0.94 130 0.97 0.30 138 0.97 0.27 145 0.96 0.02 143 0.97 0.13

MOTR 25 0.95 0.29 30 0.96 0.45 31 0.96 0.50 30 0.96 0.55 29 0.96 0.47

CLOT 39 0.97 0.66 46 0.96 0.34 48 0.98 0.92 52 0.97 0.63 50 0.98 0.91

WOOL 15 0.90 0.12 21 0.96 0.54 20 0.97 0.76 20 0.97 0.90 20 0.96 0.63

TX.M 32 0.96 0.42 36 0.97 0.69 36 0.98 0.83 37 0.98 0.80 38 0.97 0.76

LEAT 13 0.94 0.53 16 0.92 0.19 16 0.92 0.19 16 0.92 0.18 16 0.94 0.44

FOOD 93 0.95 0.01 105 0.96 0.03 112 0.96 0.02 116 0.96 0.06 113 0.96 0.02

Table 25: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the

number of cases. Second table.
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1983 1984 1985 1986 1987

item ind N W P N W P N W P N W P N W P

CA BUIL 29 0.95 0.36 34 0.97 0.62 36 0.96 0.41 38 0.96 0.33 38 0.95 0.13

METL 29 0.97 0.67 32 0.97 0.75 33 0.97 0.68 34 0.96 0.46 33 0.96 0.52

PAPR 50 0.96 0.30 54 0.95 0.11 57 0.83 0 60 0.97 0.35 58 0.96 0.29

CHEM 52 0.96 0.18 55 0.95 0.05 56 0.95 0.07 54 0.97 0.36 55 0.95 0.07

ELEC 37 0.94 0.07 44 0.94 0.05 48 0.93 0.01 49 0.94 0.05 46 0.94 0.02

I.PL 19 0.91 0.09 20 0.90 0.05 22 0.89 0.02 23 0.92 0.06 23 0.96 0.53

TOOL 21 0.90 0.03 24 0.93 0.13 24 0.96 0.47 26 0.98 0.88 25 0.97 0.80

ELTN 97 0.98 0.82 127 0.98 0.71 133 0.96 0.05 142 0.96 0.00 141 0.96 0.01

MOTR 25 0.94 0.19 30 0.96 0.39 31 0.97 0.58 30 0.97 0.67 29 0.97 0.69

CLOT 39 0.98 0.83 46 0.97 0.68 48 0.98 0.77 52 0.98 0.71 50 0.98 0.73

WOOL 15 0.95 0.65 21 0.98 0.93 20 0.98 0.93 20 0.97 0.82 20 0.96 0.71

TX.M 32 0.93 0.08 36 0.96 0.40 36 0.97 0.68 37 0.97 0.73 37 0.97 0.51

LEAT 13 0.94 0.49 16 0.94 0.47 16 0.94 0.34 16 0.94 0.41 16 0.94 0.37

FOOD 93 0.96 0.11 105 0.97 0.13 112 0.94 0 115 0.97 0.20 112 0.96 0.02

FA BUIL 29 0.92 0.04 34 0.95 0.28 36 0.95 0.15 39 0.93 0.04 38 0.94 0.11

METL 29 0.96 0.50 32 0.97 0.74 33 0.96 0.37 34 0.97 0.53 32 0.96 0.42

PAPR 50 0.97 0.37 56 0.97 0.61 57 0.98 0.95 60 0.98 0.94 57 0.98 0.80

CHEM 53 0.95 0.09 55 0.95 0.09 56 0.95 0.08 55 0.94 0.03 55 0.95 0.09

ELEC 37 0.95 0.17 44 0.95 0.15 48 0.95 0.16 49 0.96 0.19 46 0.94 0.05

I.PL 19 0.93 0.24 20 0.90 0.06 22 0.90 0.03 22 0.90 0.04 23 0.93 0.17

TOOL 22 0.95 0.43 24 0.95 0.38 24 0.95 0.40 26 0.94 0.18 25 0.95 0.36

ELTN 98 0.98 0.84 130 0.98 0.54 138 0.98 0.78 145 0.97 0.35 143 0.97 0.08

MOTR 25 0.95 0.32 30 0.98 0.89 30 0.97 0.73 30 0.98 0.86 29 0.97 0.78

CLOT 39 0.97 0.74 46 0.96 0.31 48 0.97 0.45 52 0.96 0.27 50 0.97 0.41

WOOL 15 0.95 0.61 21 0.97 0.90 20 0.98 0.99 20 0.99 0.99 20 0.98 0.93

TX.M 32 0.96 0.53 36 0.96 0.34 36 0.95 0.26 36 0.96 0.36 37 0.96 0.32

LEAT 13 0.90 0.13 16 0.93 0.28 16 0.96 0.67 16 0.95 0.51 16 0.96 0.72

FOOD 94 0.98 0.69 105 0.97 0.32 112 0.97 0.24 116 0.97 0.45 114 0.97 0.23

TA BUIL 29 0.94 0.12 34 0.96 0.39 36 0.95 0.24 39 0.94 0.07 38 0.94 0.06

METL 29 0.97 0.76 32 0.98 0.88 33 0.97 0.74 34 0.97 0.71 33 0.97 0.55

PAPR 50 0.96 0.36 56 0.96 0.15 57 0.96 0.24 60 0.96 0.10 58 0.97 0.46

CHEM 53 0.96 0.16 55 0.95 0.09 56 0.95 0.10 55 0.96 0.21 55 0.96 0.19

ELEC 37 0.93 0.04 44 0.94 0.06 48 0.93 0.02 49 0.95 0.09 46 0.94 0.04

I.PL 19 0.91 0.10 20 0.91 0.08 22 0.90 0.03 23 0.90 0.03 23 0.96 0.59

TOOL 22 0.93 0.15 24 0.94 0.25 24 0.97 0.78 26 0.96 0.45 25 0.96 0.59

ELTN 98 0.99 0.99 130 0.97 0.26 137 0.96 0.02 144 0.96 0.00 142 0.95 0.00

MOTR 25 0.94 0.21 30 0.97 0.61 31 0.97 0.74 30 0.96 0.44 29 0.95 0.33

CLOT 39 0.97 0.74 46 0.98 0.93 48 0.96 0.31 52 0.98 0.81 50 0.98 0.83

WOOL 15 0.94 0.4 21 0.98 0.93 20 0.98 0.96 20 0.98 0.92 20 0.97 0.77

TX.M 32 0.93 0.08 36 0.96 0.47 36 0.97 0.51 37 0.96 0.46 37 0.96 0.42

LEAT 13 0.91 0.19 16 0.92 0.17 16 0.93 0.29 16 0.94 0.36 16 0.96 0.75

FOOD 94 0.96 0.05 105 0.96 0.03 112 0.94 0.00 116 0.96 0.10 113 0.96 0.03

Table 26: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the

number of cases. Third table.
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1983 1984 1985 1986 1987

item ind N W P N W P N W P N W P N W P

CL BUIL 29 0.95 0.29 34 0.97 0.66 36 0.97 0.77 39 0.97 0.61 38 0.97 0.56

METL 29 0.97 0.83 32 0.98 0.97 33 0.97 0.81 34 0.96 0.51 33 0.97 0.61

PAPR 50 0.96 0.20 56 0.96 0.13 57 0.96 0.11 60 0.96 0.29 57 0.96 0.31

CHEM 53 0.94 0.04 55 0.92 0.00 56 0.93 0.00 55 0.95 0.05 55 0.95 0.05

ELEC 37 0.93 0.05 44 0.97 0.66 48 0.95 0.13 49 0.97 0.40 46 0.94 0.07

I.PL 19 0.96 0.57 20 0.86 0.01 22 0.86 0.00 23 0.93 0.17 23 0.97 0.71

TOOL 22 0.94 0.22 24 0.95 0.38 24 0.97 0.84 26 0.95 0.39 25 0.96 0.64

ELTN 98 0.97 0.35 130 0.97 0.21 138 0.96 0.02 145 0.95 0 143 0.95 0.00

MOTR 25 0.95 0.42 30 0.95 0.30 31 0.97 0.62 30 0.95 0.27 29 0.96 0.48

CLOT 39 0.98 0.88 46 0.97 0.72 48 0.97 0.57 52 0.97 0.61 50 0.98 0.96

WOOL 15 0.90 0.09 21 0.96 0.70 20 0.98 0.97 20 0.97 0.83 20 0.96 0.66

TX.M 32 0.97 0.56 36 0.97 0.8 36 0.97 0.79 37 0.98 0.93 38 0.98 0.92

LEAT 13 0.95 0.67 16 0.94 0.43 16 0.92 0.23 16 0.94 0.41 16 0.96 0.64

FOOD 94 0.95 0.01 105 0.96 0.02 112 0.95 0.01 116 0.96 0.06 113 0.96 0.05

N BUIL 28 0.97 0.64 34 0.96 0.5 36 0.97 0.61 39 0.97 0.50 38 0.96 0.44

METL 29 0.97 0.73 32 0.95 0.19 33 0.94 0.13 34 0.95 0.20 33 0.94 0.15

PAPR 50 0.96 0.35 55 0.98 0.82 56 0.97 0.62 59 0.97 0.52 57 0.97 0.59

CHEM 52 0.97 0.70 54 0.97 0.36 55 0.97 0.46 54 0.97 0.61 53 0.97 0.53

ELEC 36 0.94 0.11 43 0.96 0.20 47 0.95 0.10 49 0.94 0.03 46 0.94 0.02

I.PL 19 0.92 0.14 20 0.87 0.01 22 0.90 0.03 23 0.91 0.04 23 0.94 0.18

TOOL 22 0.91 0.07 24 0.94 0.19 24 0.92 0.06 26 0.91 0.03 25 0.92 0.05

ELTN 97 0.96 0.10 130 0.95 0.00 138 0.94 0 145 0.94 0 143 0.94 0

MOTR 25 0.95 0.42 30 0.95 0.31 30 0.96 0.53 30 0.96 0.52 29 0.96 0.55

CLOT 39 0.98 0.88 45 0.99 0.99 48 0.98 0.77 52 0.98 0.78 50 0.98 0.86

WOOL 15 0.95 0.57 21 0.98 0.99 20 0.99 0.99 20 0.99 0.99 20 0.98 0.99

TX.M 32 0.95 0.19 36 0.97 0.73 36 0.96 0.45 37 0.96 0.31 38 0.97 0.56

LEAT 13 0.92 0.29 16 0.91 0.12 16 0.91 0.16 16 0.92 0.17 16 0.92 0.21

FOOD 92 0.97 0.50 105 0.97 0.26 111 0.97 0.29 116 0.98 0.53 113 0.98 0.50

EX BUIL 29 0.93 0.08 34 0.96 0.36 36 0.97 0.58 39 0.97 0.60 38 0.97 0.77

METL 29 0.98 0.98 32 0.98 0.97 33 0.95 0.23 34 0.96 0.47 33 0.97 0.80

PAPR 49 0.96 0.18 56 0.94 0.01 57 0.90 0 60 0.95 0.06 58 0.94 0.02

CHEM 53 0.96 0.20 55 0.96 0.21 56 0.96 0.14 55 0.96 0.25 55 0.97 0.44

ELEC 37 0.95 0.23 44 0.97 0.65 47 0.96 0.27 49 0.96 0.35 46 0.96 0.29

I.PL 19 0.92 0.13 20 0.87 0.01 22 0.91 0.05 23 0.92 0.10 23 0.93 0.12

TOOL 22 0.93 0.14 24 0.95 0.32 24 0.97 0.74 26 0.98 0.92 25 0.95 0.33

ELTN 98 0.98 0.84 130 0.98 0.75 138 0.98 0.80 145 0.98 0.67 143 0.98 0.87

MOTR 25 0.92 0.07 30 0.95 0.28 31 0.95 0.22 30 0.96 0.43 29 0.95 0.25

CLOT 39 0.98 0.86 46 0.84 0 48 0.97 0.69 52 0.97 0.69 50 0.98 0.97

WOOL 15 0.96 0.70 21 0.98 0.95 20 0.98 0.92 20 0.97 0.88 20 0.97 0.78

TX.M 32 0.97 0.80 36 0.98 0.87 36 0.96 0.49 37 0.98 0.92 38 0.98 0.84

LEAT 13 0.95 0.63 16 0.96 0.73 16 0.95 0.54 16 0.93 0.31 16 0.95 0.61

FOOD 94 0.96 0.06 105 0.96 0.02 112 0.95 0.00 116 0.96 0.04 114 0.94 0

Table 27: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the

number of cases. Fourth table.
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1983 1984 1985 1986 1987

item ind N W P N W P N W P N W P N W P

TC BUIL 29 0.94 0.15 34 0.94 0.12 35 0.93 0.06 38 0.95 0.13 38 0.94 0.08

METL 29 0.96 0.47 32 0.96 0.34 33 0.98 0.88 34 0.98 0.86 32 0.98 0.92

PAPR 49 0.98 0.91 55 0.98 0.74 57 0.97 0.63 60 0.97 0.52 58 0.97 0.61

CHEM 53 0.97 0.57 55 0.97 0.46 56 0.97 0.38 55 0.97 0.62 55 0.97 0.35

ELEC 37 0.93 0.02 44 0.94 0.04 48 0.94 0.04 49 0.95 0.06 46 0.94 0.04

I.PL 19 0.90 0.07 20 0.90 0.06 22 0.88 0.01 23 0.90 0.03 23 0.92 0.10

TOOL 22 0.93 0.19 24 0.95 0.28 24 0.95 0.40 26 0.97 0.72 25 0.95 0.41

ELTN 97 0.98 0.72 130 0.98 0.62 135 0.96 0.01 143 0.97 0.10 138 0.95 0

MOTR 25 0.95 0.30 30 0.97 0.81 31 0.97 0.75 30 0.96 0.51 29 0.95 0.24

CLOT 39 0.98 0.93 46 0.97 0.42 48 0.98 0.88 52 0.98 0.94 50 0.98 0.77

WOOL 15 0.95 0.63 21 0.96 0.66 20 0.96 0.69 20 0.95 0.53 20 0.95 0.50

TX.M 32 0.93 0.09 36 0.97 0.58 36 0.97 0.61 36 0.97 0.59 37 0.97 0.57

LEAT 13 0.88 0.09 16 0.90 0.11 16 0.93 0.26 16 0.94 0.41 16 0.95 0.60

FOOD 94 0.98 0.56 105 0.97 0.48 111 0.96 0.04 112 0.96 0.02 113 0.96 0.05

EB BUIL 29 0.96 0.43 33 0.88 0.00 36 0.97 0.59 38 0.97 0.49 38 0.94 0.07

METL 25 0.96 0.56 29 0.97 0.82 27 0.95 0.28 31 0.98 0.84 29 0.95 0.30

PAPR 45 0.98 0.84 53 0.99 0.99 57 0.97 0.50 59 0.97 0.46 57 0.97 0.56

CHEM 51 0.96 0.18 54 0.97 0.47 54 0.98 0.80 53 0.97 0.69 52 0.95 0.11

ELEC 37 0.98 0.84 41 0.98 0.91 47 0.96 0.26 46 0.98 0.92 43 0.96 0.33

I.PL 17 0.85 0.01 18 0.90 0.05 21 0.92 0.12 19 0.94 0.27 19 0.92 0.13

TOOL 17 0.91 0.14 23 0.98 0.95 22 0.97 0.72 24 0.97 0.71 25 0.96 0.59

ELTN 91 0.98 0.76 122 0.97 0.28 121 0.96 0.05 121 0.95 0.00 128 0.95 0.00

MOTR 22 0.95 0.38 28 0.98 0.87 27 0.97 0.67 27 0.96 0.55 27 0.97 0.80

CLOT 36 0.96 0.41 39 0.97 0.69 44 0.97 0.50 50 0.98 0.90 45 0.98 0.93

WOOL 15 0.95 0.57 21 0.96 0.69 20 0.96 0.60 20 0.97 0.88 20 0.98 0.97

TX.M 29 0.93 0.07 33 0.96 0.45 32 0.95 0.26 34 0.95 0.26 36 0.97 0.79

LEAT 13 0.91 0.20 15 0.95 0.60 15 0.96 0.73 16 0.95 0.62 16 0.95 0.62

FOOD 87 0.96 0.10 97 0.96 0.02 106 0.97 0.16 107 0.97 0.12 106 0.93 0

OP BUIL 29 0.96 0.53 33 0.96 0.54 34 0.97 0.68 36 0.97 0.75 37 0.94 0.06

METL 24 0.95 0.38 28 0.96 0.50 26 0.97 0.73 31 0.98 0.89 28 0.97 0.67

PAPR 44 0.98 0.86 51 0.95 0.14 55 0.96 0.21 58 0.97 0.55 57 0.97 0.43

CHEM 49 0.97 0.58 54 0.97 0.59 53 0.97 0.65 51 0.97 0.63 52 0.97 0.37

ELEC 33 0.97 0.79 40 0.98 0.80 45 0.97 0.49 43 0.97 0.58 41 0.96 0.39

I.PL 17 0.86 0.02 18 0.88 0.03 19 0.92 0.14 18 0.91 0.11 16 0.94 0.46

TOOL 16 0.95 0.60 21 0.97 0.85 20 0.97 0.86 23 0.97 0.70 24 0.98 0.90

ELTN 87 0.98 0.81 118 0.97 0.47 121 0.96 0.09 120 0.96 0.04 126 0.96 0.01

MOTR 22 0.95 0.36 26 0.97 0.65 27 0.96 0.61 25 0.97 0.75 26 0.96 0.47

CLOT 35 0.95 0.14 38 0.97 0.51 44 0.86 0 50 0.97 0.70 43 0.98 0.8

WOOL 14 0.96 0.72 21 0.96 0.65 20 0.97 0.87 20 0.98 0.95 20 0.96 0.56

TX.M 27 0.95 0.25 31 0.96 0.50 32 0.96 0.55 32 0.96 0.46 35 0.98 0.93

LEAT 13 0.91 0.18 15 0.95 0.57 15 0.95 0.64 16 0.97 0.86 16 0.96 0.78

FOOD 87 0.98 0.64 95 0.96 0.05 104 0.97 0.26 104 0.97 0.27 98 0.95 0.00

Table 28: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the

number of cases. Fifth table.
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1983 1984 1985 1986 1987

item ind N W P N W P N W P N W P N W P

DB BUIL 22 0.97 0.78 28 0.97 0.75 29 0.97 0.83 34 0.94 0.13 34 0.95 0.23

METL 19 0.96 0.66 21 0.97 0.77 20 0.97 0.82 21 0.93 0.15 19 0.97 0.80

PAPR 37 0.97 0.75 43 0.96 0.29 42 0.98 0.80 46 0.97 0.56 47 0.95 0.17

CHEM 36 0.94 0.11 39 0.96 0.42 42 0.96 0.26 43 0.93 0.01 43 0.93 0.02

ELEC 19 0.93 0.25 27 0.95 0.23 29 0.95 0.35 33 0.97 0.57 33 0.97 0.63

I.PL 12 0.97 0.87 14 0.85 0.02 16 0.90 0.11 17 0.93 0.31 18 0.95 0.52

TOOL 15 0.88 0.05 19 0.96 0.60 20 0.96 0.60 21 0.96 0.57 21 0.91 0.06

ELTN 55 0.97 0.42 78 0.97 0.22 94 0.98 0.82 101 0.97 0.22 100 0.98 0.55

MOTR 21 0.89 0.02 26 0.95 0.29 25 0.95 0.35 28 0.94 0.21 27 0.96 0.43

CLOT 25 0.94 0.22 29 0.93 0.07 33 0.94 0.13 37 0.95 0.25 35 0.98 0.86

WOOL 7 0.78 0.03 10 0.95 0.72 11 0.95 0.72 12 0.97 0.87 12 0.97 0.93

TX.M 20 0.96 0.56 23 0.97 0.77 23 0.95 0.40 26 0.96 0.52 26 0.95 0.24

LEAT 6 0.93 0.58 8 0.97 0.91 9 0.90 0.28 9 0.95 0.77 11 0.94 0.57

FOOD 64 0.95 0.04 74 0.95 0.03 86 0.95 0.01 90 0.93 0 84 0.97 0.26

FL BUIL 29 0.96 0.43 34 0.91 0.01 36 0.96 0.27 39 0.95 0.23 38 0.95 0.13

METL 28 0.96 0.59 31 0.97 0.80 31 0.98 0.93 31 0.98 0.94 29 0.96 0.37

PAPR 48 0.97 0.70 56 0.98 0.92 57 0.97 0.36 60 0.97 0.45 57 0.97 0.44

CHEM 51 0.95 0.09 55 0.96 0.21 54 0.96 0.16 53 0.96 0.19 54 0.94 0.03

ELEC 37 0.96 0.37 42 0.98 0.78 48 0.95 0.10 48 0.93 0.02 45 0.95 0.11

I.PL 17 0.86 0.02 18 0.90 0.06 21 0.91 0.06 19 0.93 0.23 20 0.98 0.98

TOOL 19 0.95 0.52 24 0.96 0.65 24 0.99 0.99 25 0.94 0.25 24 0.96 0.50

ELTN 91 0.97 0.23 123 0.97 0.12 126 0.96 0.07 130 0.97 0.22 130 0.95 0.00

MOTR 22 0.96 0.60 30 0.97 0.82 29 0.97 0.64 28 0.96 0.40 28 0.92 0.04

CLOT 36 0.97 0.78 40 0.93 0.04 44 0.99 0.98 50 0.97 0.68 45 0.89 0

WOOL 15 0.94 0.44 21 0.96 0.65 20 0.95 0.53 20 0.96 0.74 20 0.98 0.94

TX.M 29 0.94 0.12 34 0.96 0.38 33 0.95 0.27 34 0.95 0.17 36 0.97 0.63

LEAT 13 0.92 0.25 16 0.97 0.93 15 0.95 0.54 16 0.96 0.73 16 0.96 0.70

FOOD 92 0.97 0.52 101 0.96 0.03 109 0.96 0.03 113 0.97 0.25 108 0.95 0.00

WC BUIL 28 0.95 0.24 30 0.98 0.89 32 0.96 0.36 37 0.97 0.62 35 0.97 0.75

METL 27 0.96 0.54 30 0.94 0.17 32 0.97 0.60 33 0.96 0.34 31 0.95 0.19

PAPR 43 0.93 0.01 48 0.97 0.51 50 0.96 0.16 54 0.97 0.51 54 0.97 0.41

CHEM 47 0.98 0.90 50 0.98 0.83 53 0.98 0.75 49 0.95 0.10 50 0.97 0.40

ELEC 36 0.97 0.55 42 0.97 0.57 47 0.98 0.85 46 0.98 0.97 42 0.95 0.12

I.PL 19 0.89 0.03 19 0.90 0.07 21 0.89 0.02 23 0.94 0.23 21 0.93 0.20

TOOL 21 0.95 0.49 24 0.95 0.28 24 0.94 0.27 26 0.97 0.68 24 0.96 0.61

ELTN 89 0.98 0.56 117 0.96 0.09 113 0.96 0.02 129 0.97 0.35 127 0.95 0.00

MOTR 25 0.95 0.39 29 0.96 0.49 30 0.96 0.49 27 0.95 0.32 28 0.97 0.62

CLOT 37 0.96 0.27 45 0.96 0.21 44 0.98 0.86 51 0.97 0.62 49 0.98 0.84

WOOL 13 0.95 0.64 19 0.95 0.40 18 0.94 0.35 18 0.91 0.11 18 0.89 0.04

TX.M 29 0.92 0.05 34 0.95 0.26 33 0.95 0.25 34 0.94 0.08 35 0.95 0.17

LEAT 12 0.96 0.73 15 0.95 0.60 15 0.95 0.58 14 0.97 0.84 15 0.89 0.06

FOOD 79 0.97 0.54 85 0.96 0.12 98 0.98 0.84 100 0.98 0.68 97 0.95 0.00

Table 29: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the

number of cases. Sixth table.
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1983: In 1983 there were no bad cases.

1984: There are bad cases in two industries:

CLOTHING: Sales and Expenses. The �rm STORMGARD PLC sold 54 (units are thousands of

pounds) and had also very small expenses. The sample has only 46 cases and the next smallest

value of sales is 2402. STORMGARD turns out to be a strong outlier in a very small sample. We

further notice that this �rm has sales which are larger than earnings.

ELECTRONICS: Wages and Number of Employees. There are three clear clusters. A cluster of eight

large �rms is clearly detached from the rest of the distribution. It is interesting to notice that neither

the skewness nor the kurtosis exhibit values far from the acceptable.

1985: There are bad cases in three industries:

PAPER AND PACKING: Current Assets and Expenses. In 57 cases there is one �rm, EAST LAN-

CASHIRE PAPER GRO, with CA = 1. The next smallest value in the sample is 1265. The same as

Expenses. EAST LANCASHIRE is also one of the 5 �rms exhibiting EBIT larger than Sales during

one or two years of the period.

FOOD: Current Assets. There are three clear clusters. Again, Skewness and Kurtosis are unable to

trace the irregular shape of this distribution.

CLOTHING: Operating Pro�t. The �rm UNIGROUP PLC appears in the database with OPP = 1,

and such a pro�t turns out to be a strong outlier in a small group. The next smallest case is

OPP = 52. The sample has 44 cases.

1986: There are bad cases in three industries:

ELECTRONICS: Wages, Number of Employees and Current Liabilities. Again three clusters, large

�rms well separated from the distribution. Skewness and kurtosis are normal.

INDUSTRIAL PLANTS: Inventory. BIMEC PLC has I = 1. Next smallest value, 278. In a sample

of 22 cases this is enough to in
uence normality tests.

FOOD: Long term Debt. Very clear three-modal distribution.

1987: There are bad cases in three industries:

FOOD: Sales, Expenses and Earnings. Again, three very clear clusters but in this case the cluster of

small �rms is detached from the others. Then, there is also a peaking central cluster. Skewness and

kurtosis again fail to trace the lack of normality. In this group there are four �rms with EBIT larger

than Sales.

ELECTRONICS: Wages, Number of Employees and Total Capital Employed. There are three clusters

as in two previous years. But the group of eight very large �rms is now less detached from the others

than it was in previous years.

CLOTHING: Funds Flow From Operations. The �rm GOODMAN GROUP PLC displays a FL = 9

which is a clear outlier. The next smallest cases have FL = 339. The sample has 45 cases.

Figure 28: Description of all the extreme departures from lognormality referred to in the main text as

the \bad samples".
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item ind 1983 1984 1985 1986 1987 item ind 1983 1984 1985 1986 1987

C 1 0.89 0.9 0.91 0.92 0.91 FA 1 0.9 0.89 0.85 0.86 0.88

2 0.8 0.86 0.81 0.74 0.77 2 0.62 0.5 0.6 0.63 0.6

3 0.89 0.89 0.92 0.93 0.94 3 0.76 0.76 0.72 0.83 0.83

4 0.91 0.92 0.9 0.9 0.88 4 0.89 0.86 0.86 0.81 0.8

5 0.95 0.96 0.96 0.95 0.94 5 0.81 0.72 0.74 0.74 0.71

6 0.86 0.91 0.93 0.95 0.87 6 0.82 0.81 0.83 0.87 0.8

7 0.92 0.96 0.92 0.9 0.91 7 0.82 0.83 0.85 0.88 0.81

8 0.9 0.9 0.9 0.9 0.91 8 0.75 0.83 0.85 0.84 0.81

9 0.94 0.86 0.93 0.92 0.92 9 0.94 0.92 0.96 0.93 0.91

10 0.88 0.9 0.88 0.84 0.8 10 0.76 0.82 0.75 0.73 0.76

11 0.8 0.87 0.86 0.85 0.89 11 0.67 0.82 0.83 0.87 0.87

12 0.91 0.93 0.96 0.95 0.94 12 0.78 0.81 0.83 0.85 0.83

13 0.92 0.94 0.96 0.95 0.95 13 0.82 0.88 0.9 0.87 0.88

14 0.93 0.94 0.93 0.94 0.94 14 0.84 0.9 0.89 0.87 0.84

D 1 0.96 0.97 0.96 0.97 0.97 FL 1 0.86 0.79 0.9 0.87 0.9

2 0.85 0.89 0.84 0.79 0.78 2 0.73 0.81 0.81 0.83 0.75

3 0.9 0.84 0.83 0.87 0.87 3 0.85 0.82 0.9 0.83 0.91

4 0.9 0.89 0.91 0.85 0.87 4 0.91 0.89 0.9 0.88 0.67

5 0.93 0.92 0.91 0.92 0.92 5 0.88 0.88 0.86 0.82 0.8

6 0.92 0.95 0.95 0.95 0.89 6 0.81 0.82 0.82 0.84 0.6

7 0.86 0.88 0.87 0.83 0.71 7 0.52 0.75 0.71 0.58 0.91

8 0.91 0.92 0.95 0.95 0.95 8 0.87 0.89 0.84 0.82 0.91

9 0.98 0.97 0.93 0.97 0.96 9 0.95 0.84 0.87 0.91 0.85

10 0.85 0.84 0.78 0.72 0.78 10 0.76 0.6 0.78 0.6 0.63

11 0.85 0.89 0.91 0.91 0.9 11 0.78 0.88 0.89 0.87 0.89

12 0.93 0.95 0.95 0.95 0.94 12 0.92 0.87 0.95 0.94 0.94

13 0.8 0.86 0.89 0.88 0.87 13 0.96 0.9 0.96 0.96 0.96

14 0.95 0.93 0.94 0.94 0.94 14 0.89 0.92 0.89 0.91 0.91

I 1 0.93 0.94 0.92 0.92 0.92 NW 1 0.85 0.9 0.89 0.9 0.9

2 0.84 0.87 0.79 0.87 0.69 2 0.7 0.82 0.8 0.8 0.77

3 0.95 0.95 0.94 0.79 0.8 3 0.89 0.81 0.79 0.8 0.89

4 0.82 0.8 0.79 0.83 0.78 4 0.88 0.9 0.9 0.89 0.88

5 0.93 0.91 0.89 0.91 0.91 5 0.9 0.85 0.85 0.84 0.83

6 0.83 0.85 0.91 0.91 0.9 6 0.75 0.77 0.84 0.86 0.79

7 0.87 0.88 0.87 0.9 0.92 7 0.84 0.75 0.71 0.82 0.82

8 0.82 0.81 0.78 0.82 0.73 8 0.94 0.91 0.93 0.93 0.92

9 0.98 0.92 0.94 0.94 0.92 9 0.94 0.95 0.91 0.92 0.9

10 0.91 0.9 0.88 0.87 0.89 10 0.81 0.84 0.84 0.85 0.87

11 0.75 0.84 0.78 0.8 0.73 11 0.77 0.85 0.89 0.89 0.89

12 0.94 0.96 0.95 0.93 0.93 12 0.91 0.93 0.94 0.94 0.94

13 0.95 0.98 0.98 0.98 0.97 13 0.93 0.96 0.97 0.97 0.96

14 0.91 0.93 0.92 0.88 0.87 14 0.89 0.88 0.88 0.92 0.88

Table 30: Proportion of explained variability, R

2

, when an estimated size explains twelve accounting

items by industry and by year. First Table. Numbers from 1 to 14 identify industries: 1, Building

Materials; 2, Metallurgy; 3, Paper and Packing; 4, Chemicals; 5, Electrical; 6, Industrial Plants; 7,

Machine Tools; 8, Electronics; 9, Motor Components; 10, Clothing; 11, Wool, 12, Miscellaneous Textiles,

13, Leather; 14, Food Manufacturers.
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item ind 1983 1984 1985 1986 1987 item ind 1983 1984 1985 1986 1987

S 1 0.97 0.98 0.98 0.98 0.98 WC 1 0.64 0.81 0.75 0.78 0.75

2 0.64 0.66 0.65 0.68 0.64 2 0.87 0.87 0.77 0.75 0.82

3 0.95 0.88 0.94 0.9 0.91 3 0.52 0.75 0.74 0.77 0.81

4 0.9 0.88 0.88 0.86 0.86 4 0.87 0.83 0.81 0.61 0.71

5 0.96 0.9 0.94 0.93 0.94 5 0.61 0.81 0.74 0.62 0.82

6 0.97 0.98 0.96 0.97 0.94 6 0.68 0.69 0.7 0.56 0.76

7 0.94 0.97 0.96 0.95 0.92 7 0.72 0.7 0.64 0.84 0.78

8 0.94 0.94 0.93 0.93 0.93 8 0.85 0.87 0.88 0.8 0.84

9 0.99 0.95 0.97 0.96 0.95 9 0.75 0.86 0.86 0.78 0.79

10 0.96 0.9 0.96 0.91 0.92 10 0.72 0.49 0.62 0.56 0.41

11 0.86 0.93 0.93 0.92 0.94 11 0.68 0.84 0.83 0.83 0.73

12 0.95 0.96 0.97 0.97 0.97 12 0.88 0.79 0.58 0.87 0.81

13 0.99 0.99 0.98 0.98 0.98 13 0.91 0.96 0.92 0.92 0.82

14 0.91 0.93 0.92 0.92 0.89 14 0.8 0.8 0.74 0.78 0.74

W 1 0.98 0.98 0.98 0.98 0.97 DEBT 1 0.55 0.68 0.69 0.55 0.65

2 0.77 0.78 0.83 0.85 0.86 2 0.38 0.31 0.38 0.43 0.5

3 0.94 0.93 0.92 0.92 0.93 3 0.51 0.27 0.4 0.5 0.63

4 0.95 0.95 0.95 0.96 0.95 4 0.73 0.73 0.63 0.52 0.53

5 0.95 0.92 0.88 0.95 0.94 5 0.73 0.49 0.46 0.41 0.36

6 0.96 0.98 0.96 0.97 0.94 6 0.23 0.86 0.86 0.6 0.33

7 0.93 0.97 0.96 0.96 0.94 7 0.04 0.34 0.24 0.37 0.58

8 0.88 0.9 0.91 0.92 0.91 8 0.54 0.62 0.55 0.49 0.49

9 0.98 0.95 0.97 0.95 0.97 9 0.72 0.92 0.83 0.68 0.66

10 0.88 0.88 0.87 0.88 0.88 10 0.34 0.26 0.39 0.32 0.29

11 0.77 0.87 0.89 0.91 0.9 11 0.12 0.31 0.54 0.52 0.59

12 0.88 0.9 0.92 0.93 0.92 12 0.71 0.74 0.83 0.84 0.76

13 0.93 0.95 0.94 0.93 0.91 13 0.65 0.85 0.72 0.66 0.54

14 0.93 0.94 0.95 0.95 0.95 14 0.82 0.77 0.73 0.68 0.66

CA 1 0.98 0.99 0.95 0.98 0.99 EBIT 1 0.82 0.78 0.82 0.82 0.88

2 0.88 0.91 0.9 0.91 0.93 2 0.75 0.83 0.78 0.83 0.84

3 0.95 0.97 0.96 0.96 0.97 3 0.89 0.77 0.83 0.86 0.88

4 0.97 0.93 0.94 0.91 0.87 4 0.86 0.89 0.83 0.85 0.81

5 0.98 0.96 0.97 0.97 0.97 5 0.75 0.82 0.82 0.7 0.88

6 0.97 0.95 0.97 0.96 0.92 6 0.66 0.76 0.73 0.75 0.48

7 0.95 0.96 0.96 0.96 0.95 7 0.4 0.75 0.8 0.77 0.84

8 0.9 0.95 0.95 0.96 0.94 8 0.82 0.8 0.77 0.84 0.82

9 0.99 0.94 0.97 0.84 0.81 9 0.89 0.79 0.92 0.75 0.77

10 0.94 0.93 0.92 0.92 0.92 10 0.35 0.6 0.72 0.58 0.45

11 0.87 0.93 0.92 0.93 0.91 11 0.68 0.83 0.86 0.83 0.84

12 0.95 0.96 0.97 0.97 0.94 12 0.84 0.89 0.95 0.91 0.92

13 0.97 0.98 0.98 0.97 0.96 13 0.97 0.96 0.92 0.9 0.93

14 0.95 0.96 0.96 0.92 0.96 14 0.87 0.89 0.86 0.89 0.85

Table 31: Proportion of explained variability, R

2

, when an estimated size explains twelve accounting

items by industry and by year. Second Table. Numbers from 1 to 14 identify industries: 1, Building

Materials; 2, Metallurgy; 3, Paper and Packing; 4, Chemicals; 5, Electrical; 6, Industrial Plants; 7,

Machine Tools; 8, Electronics; 9, Motor Components; 10, Clothing; 11, Wool, 12, Miscellaneous Textiles,

13, Leather; 14, Food Manufacturers.
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S NW W I D C CA FA TA CL TC

0.366 1983, Building Materials S

0.325 0.357 NW

0.350 0.331 0.360 W

0.388 0.359 0.398 0.472 I

0.350 0.304 0.345 0.383 0.358 D

0.358 0.296 0.340 0.380 0.358 0.387 C

0.344 0.314 0.342 0.386 0.338 0.335 0.339 CA

0.341 0.337 0.335 0.369 0.324 0.327 0.324 0.359 FA

0.344 0.323 0.339 0.379 0.334 0.333 0.334 0.338 0.336 TA

0.353 0.303 0.341 0.383 0.356 0.370 0.339 0.327 0.336 0.369 CL

0.345 0.350 0.348 0.382 0.327 0.317 0.336 0.356 0.343 0.321 0.369 TC

0.186 1983, Clothing S

0.182 0.236 NW

0.176 0.172 0.205 W

0.214 0.221 0.199 0.277 I

0.188 0.194 0.168 0.238 0.236 D

0.189 0.181 0.178 0.226 0.206 0.220 C

0.184 0.199 0.170 0.225 0.202 0.195 0.200 CA

0.182 0.196 0.197 0.214 0.193 0.188 0.184 0.262 FA

0.180 0.193 0.174 0.216 0.195 0.189 0.191 0.202 0.190 TA

0.191 0.175 0.186 0.233 0.213 0.215 0.198 0.209 0.199 0.235 CL

0.181 0.227 0.171 0.220 0.194 0.182 0.199 0.197 0.193 0.176 0.226 TC

0.620 S

0.578 0.745 1983, Food NW

0.588 0.682 0.724 W

0.656 0.675 0.660 0.777 I

0.575 0.585 0.578 0.636 0.570 D

0.587 0.589 0.595 0.651 0.571 0.608 C

0.576 0.620 0.591 0.660 0.569 0.584 0.597 CA

0.612 0.764 0.769 0.699 0.612 0.629 0.634 0.904 FA

0.579 0.647 0.626 0.662 0.570 0.587 0.596 0.692 0.615 TA

0.579 0.586 0.588 0.652 0.563 0.591 0.579 0.633 0.586 0.589 CL

0.592 0.736 0.697 0.688 0.594 0.602 0.628 0.785 0.660 0.601 0.745 TC

Figure 29: Typical � matrices. Items having only positive cases.
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Ratio 1983 1984 1985 1986 1987

skew kurt skew kurt skew kurt skew kurt skew kurt

D/C 5.7 44.5 5.6 48.3 14.0 255.0 15.0 261.0 4.8 35.5

C/D 18.7 381.1 20.5 461.0 22.5 535.0 14.3 249.0 12.4 198.0

CA/CL 2.0 5.8 4.2 29.2 5.0 38.4 11.6 205.0 4.8 43.6

CL/CA 19.6 415.0 4.2 34.5 3.0 22.9 9.2 135.0 21.6 506.0

C/I 9.9 139.0 9.8 132.0 24.2 592.0 15.8 268.0 21.3 491.0

I/C 6.5 71.5 3.3 18.0 8.9 119.0 9.2 119.0 7.9 91.3

Q/CL 0.0 14.2 3.1 21.8 4.0 31.6 7.3 99.3 5.5 64.7

CL/Q 11.9 192.0 2.5 97.2 -21.0 486.0 6.6 97.8 -18.7 418.0

W/N 18.9 399.0 1.5 4.1 1.5 4.0 1.4 3.3 1.6 4.4

N/W 11.7 199.0 2.2 12.6 7.6 112.0 7.8 118.0 8.9 116.0

S/TA 7.0 72.3 13.6 238.0 13.3 241.0 6.3 51.7 8.5 95.3

TA/S 8.8 111.0 19.5 436.0 7.6 89.0 15.9 336.0 3.4 22.3

S/FA 9.8 105.0 21.4 486.0 10.4 115.0 9.2 96.1 9.6 103.0

FA/S 2.3 9.4 15.9 317.0 8.9 125.0 5.1 50.8 5.9 60.9

S/NW 16.4 310.0 13.2 188.0 23.0 549.0 16.1 324.0 16.5 207.0

NW/S 1.6 5.2 4.4 38.6 2.5 17.6 12.0 223.0 4.7 39.8

S/I 11.7 168.0 12.0 189.0 17.0 306.0 23.5 571.0 21.3 481.0

I/S 8.9 132.0 17.1 358.0 17.9 388.0 9.8 179.0 1.4 4.5

EB/TA 2.0 8.3 2.4 11.2 1.4 3.6 1.9 7.3 1.2 2.6

TA/EB 16.6 291.0 12.2 172.0 11.1 173.0 7.5 76.0 18.3 374.0

Table 32: The skewness and kurtosis of ratios selected so as to avoid constraints. All groups. 1

st

table.

Q = CA� I; TD = DEBT +CL.

Ratio 1983 1984 1985 1986 1987

skew kurt skew kurt skew kurt skew kurt skew kurt

EB/NW 19.9 425.0 17.5 317.0 16.6 322.0 8.4 110.0 16.4 330.0

NW/EB 15.7 256.0 17.6 369.0 12.7 227.0 7.0 71.9 23.4 567.0

D/I 10.4 127.0 16.6 329.0 21.6 578.0 24.4 618.0 19.9 423.0

I/D 10.7 128.0 11.8 166.3 16.0 298.0 10.0 126.8 7.5 74.6

W/I 15.8 268.0 9.3 116.2 7.9 79.0 13.6 204.5 14.4 219.3

I/W 8.6 89.7 4.6 28.1 4.5 31.2 3.1 12.7 3.3 14.0

EB/FA 9.4 117.0 11.2 169.8 10.4 154.7 9.0 107.0 8.5 98.8

FA/EB 12.1 154.0 9.8 126.0 11.6 155.7 7.7 83.8 16.8 320.8

S/N 12.7 189.0 12.3 174.0 7.8 75.6 8.7 89.3 11.1 159.8

N/S 1.7 5.8 1.1 1.3 3.7 31.0 2.6 16.9 3.3 27.9

EB/N 9.1 92.5 11.7 177.7 5.2 42.0 3.4 14.6 5.2 45.0

N/EB 15.9 268.0 9.0 130.7 6.0 46.1 8.0 84.2 13.4 212.4

NW/N 8.4 90.9 5.0 34.1 3.5 16.1 3.9 23.0 4.3 29.1

N/NW 6.4 56.4 4.8 42.7 18.2 359.8 4.2 24.5 8.2 112.6

W/TA 1.3 4.9 1.5 5.8 1.4 4.3 1.8 7.2 1.5 6.4

TA/W 9.5 107.0 11.5 152.9 5.7 50.6 4.2 27.0 3.7 19.7

DB/NW 14.5 228.0 10.9 140.0 8.6 90.7 7.5 78.0 5.4 37.4

NW/DB 13.3 199.8 17.6 332.7 12.0 184.9 11.0 145.6 16.1 295.7

DB/S 2.5 8.4 6.0 64.2 15.3 273.4 8.3 98.7 10.3 155.8

S/DB 10.0 120.4 16.3 293.6 12.1 178.2 10.2 113.2

Table 33: The skewness and kurtosis of ratios selected so as to avoid constraints. All groups. 2

nd

table.

Q = CA� I; TD = DEBT +CL.
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Number Industrial group 1983 1984 1985 1986 1987

Log items

1 BUILDING MATERIALS -0.31 -0.16 -0.29 -0.41 -0.34

2 METALLURGY 0.85 0.80 0.88 0.80 0.88

3 PAPER AND PACKING 0.65 -0.29 -0.40 -0.20 -0.12

4 CHEMICALS -0.04 -0.36 -0.41 -0.51 -0.41

5 ELECTRICITY 0.22 -0.16 -0.45 -0.63 -0.65

6 INDUSTRIAL PLANTS -0.76 -0.34 0.07 0.54 -0.12

7 MACHINE TOOLS -0.88 -0.98 -1.21 -1.02 -1.20

8 ELECTRONICS 0.72 0.54 0.33 0.31 0.10

9 MOTOR COMPONENTS 0.84 0.67 0.48 0.15 0.44

10 CLOTHING -1.81 -1.78 -2.03 -2.02 -1.97

11 WOOL -1.63 -2.09 -1.36 -1.47 -1.16

12 MISC. TEXTILES 1.05 1.19 1.77 1.56 1.96

13 LEATHER -1.12 1.25 1.05 1.18 0.67

14 FOOD MANUFACTURERS 1.53 1.25 1.18 1.36 1.44

Log residuals

1 BUILDING MATERIALS -0.72 -0.69 -0.85 -0.91 -1.08

2 METALLURGY 2.40 2.87 3.17 3.19 2.96

3 PAPER AND PACKING -0.04 1.19 0.18 0.05 -0.36

4 CHEMICALS -0.22 -0.17 0.08 0.24 0.31

5 ELECTRICITY -0.54 0.27 0.19 0.48 -0.51

6 INDUSTRIAL PLANTS -0.49 -0.59 -0.51 -0.65 0.70

7 MACHINE TOOLS 1.85 0.34 0.64 -0.58 -1.21

8 ELECTRONICS 0.10 -0.01 0.40 0.23 0.33

9 MOTOR COMPONENTS -1.27 -1.24 -1.00 -0.65 -0.53

10 CLOTHING 0.09 -0.02 -0.48 -0.23 -0.44

11 WOOL 0.33 -0.50 -0.43 -0.66 -0.48

12 MISC. TEXTILES 0.12 -0.22 -1.02 -0.69 0.44

13 LEATHER -1.71 -1.53 -0.84 -0.95 -1.08

14 FOOD MANUFACTURERS -0.05 -0.06 0.11 0.57 0.62

Table 34: Scores ranking the spread of log items and log residuals for industrial groups.

Company 1983 1984 1985 1986 1987

Mean-adjusted log size

26 CAMPBELL FROZEN FOODS LTD -0.24 -0.24 -0.25 -0.15 -0.16

51 LOVELL (G.F.) PLC -1.09 -1.11 -1.18 -1.15 -1.16

55 MAUNDER (LLOYD) LTD -0.26 -0.23 -0.27 -0.31 -0.27

60 NESTLE HOLDINGS (U.K.) PLC 0.975 1.005 0.998 0.991 0.988

62 OVERSEAS FARMERS'CO-OP FE -0.88 -1.01 -1.05 -0.94 -0.87

86 UNITED BISCUITS (HOLDINGS) 1.397 1.447 1.439 1.447 1.448

Funds Flow to Total Debt

26 CAMPBELL FROZEN FOODS LTD 0.478 0.524 0.866 0.599 0.419

51 LOVELL (G.F.) PLC 0.043 0.122 0.159 0.387 -0.01

55 MAUNDER (LLOYD) LTD 0.179 0.207 0.161 0.157 0.206

60 NESTLE HOLDINGS (U.K.) PLC 0.223 0.301 0.338 0.442 0.477

62 OVERSEAS FARMERS'CO-OP FE 0.204 0.213 0.158 0.057 0.033

86 UNITED BISCUITS (HOLDINGS) 0.323 0.274 0.329 0.332 0.420

EBIT to Net Worth

26 CAMPBELL FROZEN FOODS LTD 0.218 0.232 0.227 0.100 0.064

51 LOVELL (G.F.) PLC -0.01 -0.03 0.020 0.138 -0.12

55 MAUNDER (LLOYD) LTD 0.026 0.073 0.053 0.091 0.227

60 NESTLE HOLDINGS (U.K.) PLC 0.152 0.310 0.366 0.538 1.336

62 OVERSEAS FARMERS'CO-OP FE 0.192 0.299 0.203 0.097 0.057

86 UNITED BISCUITS (HOLDINGS) 0.394 0.372 0.307 0.325 0.338

Sales to Net Worth

26 CAMPBELL FROZEN FOODS LTD 3.37 3.01 2.67 1.51 1.51

51 LOVELL (G.F.) PLC 3.26 4.67 3.19 3.30 3.81

55 MAUNDER (LLOYD) LTD 10.27 12.70 13.81 17.54 16.22

60 NESTLE HOLDINGS (U.K.) PLC 5.60 4.56 5.21 6.02 9.55

62 OVERSEAS FARMERS'CO-OP FE 9.22 13.70 11.04 15.96 31.90

86 UNITED BISCUITS (HOLDINGS) 5.26 5.51 4.36 4.02 3.74

Table 35: Some ratios and an estimated size, during the period 1983-1987 for nine �rms.
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