
Neural Networks in Accounting and Finance Research

Duarte Trigueiros

ISCTE,

Av. Forças Armadas, 1600 Lisbon, Portugal

Phone: +351 (1) 793 50 00, Fax: +351 (1) 796 47 10,

E-Mail: dmt@iscte.pt

Acknowledgements and Quotations. We acknowledge the support of Professor Luis B.

Almeida at INESC, Portugal. This text can be referred to as a Report of the Department

of Business Studies of ISCTE. Textual quotations should be avoided.



Neural Networks in Accounting and Finance Research

September 8, 2014

Abstract

This study is an introduction to the modern statistical modelling tools known as

Neural Networks, and to their applications in accounting and finance research. It

emphasizes the description of two kinds of networks: The Multi-Layer Perceptron

(MLP) and the Kohonen’s Map of Patterns. These are the most used Neural Networks

nowadays. They also represent the two main views or branches of Connectionism. In

this study we omit references to binary-threshold networks and those intended solely

to study brain functions.

So far, expectations about Neural Networks were related to the modelling of difficult

relationships (pattern recognition) or the mimicking of the brain. The reason for using

Neural Networks in Finance and Accounting research is not just the need of simple and

versatile, yet powerful, tools able to cope with the complexity of some relationships.

It is also the fact that some Neural Networks exhibit unique characteristics potentially

valuable. For example, some internal representations of data often are meaningful and

an important way of acquiring knowledge from past experience.



Neural Networks in Accounting and Finance Research

This study is an introduction to the modern statistical modelling tools known as Neural

Networks, but only to the extent of their usefulness in accounting and finance research.

There are already many articles and books available on the subject. We limit this review

to the kind of Neural Networks interesting for our study. Therefore, we omit references to

binary-threshold networks and to those intended to study brain functions.

This presentation emphasizes the description of two kinds of networks: The Multi-Layer

Perceptron (MLP) and the Kohonen’s Map of Patterns. Incidentally, these are also the most

used Neural Networks nowadays. They also represent the two main views or branches of

Connectionism.

So far, expectations about Neural Networks are related to the modelling of difficult

relationships (pattern recognition) or the mimicking of the brain. The reason for using

Neural Networks in Finance and Accounting research is not just the need of simple and

versatile yet powerful tools able to cope with the complexity of some relationships. It is also

the fact that some Neural Networks exhibit unique characteristics potentially valuable. For

example, their internal representations of data often are meaningful and an important way

of acquiring knowledge from past experience.

Traditional tools for knowledge acquisition seem not to fit well in many financial ap-

plications. The nature of accounting and financial relations, where the input variables are

continuous-valued and stochastic, makes it difficult for the usual expert systems based on

symbolic computation to deal with. Observations such as those found in stock returns, or

data organized in accounting reports, cannot be efficiently used by actual expert systems

as a source of knowledge. Neural Networks can provide self-explanatory results, along with

improvements in performance.

Contents: Section 1 contains an historical note written so as to give the necessary per-

spective of the development of these tools. Section 2 is an introduction to Neural Networks.

Section 5 explains where Neural Networks are seemingly interesting in Finance and Account-

ing research.

1 Historical Notes

This section is dedicated to explaining the genesis of Neural Networks and the role they play

in knowledge acquisition. Only an understanding of their origins and prospects can lead to

the formation of an opinion about the interest of these tools in Accountancy and Finance.
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The history of Neural Networks is not a common one. Known as such from the early

forties, they trod an adventurous path with periods of intense enthusiasm and almost total

eclipse. The actual developments, which began in 1985, are partly the outcome of a much

expected discovery.

Learning theory and the learning tools known as Neural Networks are the result of two

lines of research which began their paths very early — about the Second World War —

and remained closely associated until the decade of the sixties. The first of such lines was

technical. It included mathematicians and engineers trying to build what is known as the

Optimum Filter. They used concepts extracted from Tele-communications: Linear Systems,

Stochastic Optimization and Information Theory. The second line was speculative and its

goal was the building of artificial machines similar to the human brain. This science was

known, and still is, as Connectionism. In the next paragraphs we follow the development of

both.

The Optimum Filter and other automatic learning devices: A filter is a tool able to

separate, in a continuous flow of information, the real signal from the randomness attached to

it. The study of filters is typical of the Information and Communication sciences. However,

the problem of filtering is very general. Optimum filters are similar to automatic controllers

or predictors. The problem of building them is similar to the problem of building a general

statistical modelling tool able to separate pure randomness from real features of the data

without the intervention of experts. For example, what engineers call a linear filter could

be described as a linear regression in a time-series context. Past observations are used to

predict future events.

Filters are optimal according to a criterion, in the same sense a regression minimizes the

squared error. But they often include other criteria, like stability, as well. A learning or

adaptive filter is the one which adapts its characteristics in accordance to changing inputs,

so as to obey one or more criteria. In the linear case it would be a sort of adaptive regression

able to change the slope and the intercept when the data changes.

Learning filters accomplish behaviour modifications without external intervention in its

operation. The number of parameters engaged in the modelling and even the amount of

non-linearity introduced, are selected just by the influence of the input and responding to

its requirements. An automatic learning system acts like a dedicated controller whose expe-

rience of the underlying structure of the process improves as the process unfolds. Additional

information concerning its structure and features causes the controller to adapt himself to

the process’s behaviour.
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Figure 1: Schematic representation of the simplest Wiener filter. An inner product of ad-
justable parameters W with the past history of a time process X is used here to approach
the actual event xt. The solid line is the output of the filter.

Such tools are valuable in many areas but especially in communications and in control.

They had their origin as solutions to problems posed by military automata. Nowadays

they are also considered as potentially interesting for knowledge acquisition and machine

learning. In fact, it is the very nature of the process which eventually emerges and becomes

transparent when described by the set of parameters used for modelling it, along with the

a-priori assumptions used. The amount of knowledge provided in this way often is more

interesting than the model itself.

Early studies on Learning: In October 1941, Bell Laboratories and the Massachusets

Institute of Technology (US) engaged Norbert Wiener and other researchers in an intense

effort to design automatic devices which could track a plane or a ship, compute the main

features of its trajectory and predict where it would be by the time the shell or bomb had

travelled to the target area. The conceptual basis of this research became the origin of the

early automatic learning systems.

Norbert Wiener had at that date a large experience on building filters. During the 30’s

he idealized, along with Y. W. Lee, a network of circuits able to perform convolutions of

incoming signals. For a signal x(t), t being a discrete time counter, such networks would
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produce an output O(t)

O(t) =
M
∑

i=1

xt−i × wi , wi being adjustable parameters.

M is known as the delay-line size. It controls the amount of memory about the past history

of the signal that is incorporated into the filtering (see figure 1).

With such devices Wiener and Lee were able to perform many interesting tasks like the

solving of partial difference equations. They were also able to design a linear filter of any

frequency response just by modifying the parameters wi.

For the prediction of plane trajectories Wiener used an improved version of the same

basic networks attached to a mechanism of feedback. The position of a target was computed

by the net and compared with its real position. From here a measure of error was obtained.

Then, the parameters wi were updated so as to minimize such error. This procedure was

carried out interactively. The final result was that the trajectory of the target would be

learned by the set of wi.

Such a simple mechanism, which in practice didn’t succeed, nevertheless became the basis

of modern filters and the paradigm of automatic learning for more than twenty years. Some

of the modern Neural Network learning rules are also based on it.

Further developments: In order to identify or to recognize the pattern for automatic

learning, it is necessary to build a mathematical model of the process to be learned. Kol-

mogoroff (1942) [15] and Wiener (1949) [48], assumed first that the process was linear. Then,

they demonstrated that the filtering and the prediction of stochastic series were special cases

of the same learning problem. Their work could be described as the finding of a general recipe

for the building of learning systems. The significance of such work is stressed by Y. W. Lee

(1964) [18]:

Wiener’s theory of optimum linear systems is a milestone in the development

of communication theory. The problems of filtering, prediction and other similar

operations were given a unity in formulation by the introduction of the idea that

they all have in common an input and a desired output. Then, the minimization

of a measure of error, which is absent in classical theory, was carried out. The

entire theory, from its inception to the final expressions for the system function

and the minimum mean-square error is invaluable in the understanding of many

problems in a new light.

As originally formulated, Wiener’s early methods are applicable only to linear time-invariant

dynamic processes which are to be optimized by a Least-Squares criterion. Booton (1952) [3]
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extended Wiener’s work to the optimization of linear time-varying dynamic processes pos-

sessing either time-invariant or time-varying statistics. Kasakov (1956) [12], Shen (1957) [36],

and others, treated nonlinear feedback control systems with random inputs using stochastic

learning techniques.

Wiener’s latest work on this subject, Non-Linear Problems in Random Theory (1958) [49]

opened up the path for a theoretical approach to self-organizing and adaptive systems. In

his framework, the complexity of the system’s repertoire of available non-linearity increases

as the learning process develops so as to maximize the flow of new information about the

structure of the process thus creating an internal model of it. In a restricted sense, if some

input and output functions represent the behaviour of an unknown process, the Wiener

system will organize itself into a model of this unknown mechanism, provided statistical

regularities exist in the process. The basic tool for such organization is, of course, the ability

to abstract those regularities from the stochastic series on which it is to operate.

Limitations of analytical learning systems: Being analytical, the Wiener solution

cannot avoid some lack of generality. Assumptions must be made about the statistical

nature of the input. If not, it would be impossible to apportion analytically the parameters

between input and output. Only Gaussian processes and a few more classes of random

processes are correctly modelled by this method. And the modelling of the signals is made

— in the later versions — using Volterra functionals, that is, Taylor series with some limited

amount of memory of past events (see Volterra 1930) [45].

When a system becomes optimal only given the restriction that it must belong to a spec-

ified class, the kind of information that such a system can identify and use is also restricted.

A linear system, for instance, can produce a significant improvement in mean-square error

reduction, only if the spectral densities of the signal and the randomness attached to it are

different, since it cannot use any other information. Therefore, an optimum linear system,

in the Wiener’s sense, is no better than an optimum attenuator. Higher order modelling

requires non-linear systems because dissimilarities in the characteristics of stochastic series,

which the linear system would ignore, can now be used to reduce mean-square errors.

Although no analytic general solution exists for the general learning model some broad

cases have been explored. In the U.K. Denis Gabor built in 1960 his Universal Non-Linear

Filter, Predictor and Simulator which Optimizes Itself by a Learning Process [6]. It was an

application of Wiener’s later work. In the US, Shen and Rosenberg (1964) [35] used the

same principles.

Many military and tele-communication applications of these early attempts followed.
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They were analytical-based dedicated automata to be used whenever computational speed

was required. These “Wiener-Volterra Systems” are not very flexible nor very good in

generalisation for, after all, they use polynomials to approach the data. But being analytical,

they avoid problems of convergence and are easily built into very fast hardware. A good

review of such systems can be found in Schetzen’s book (1980) [32].

Neural Networks seek the same goal. But they are not based on analytical optimization.

Stochastic search techniques are used instead to discover, in the parametric space, a point

obeying a desired condition. They generalise better but their learning process is much slower.

Brain Mimics: It is bizarre that a practical application of Wiener’s aspirations was at

length provided, not by any mathematical analysis, but by a few neurophysiologists trying

to build models of some brain functions like reasoning and recognition.

Artificial neural models emerged forty years ago as a broad mimic of the real neural

structure of the brain. The paradigm of Connectionism’s early work is the Hebb’s Rule.

Strongly influenced by Behaviourism and other theories accepted at that time, Donald Hebb

wrote in 1948 a book, The Organization of Behaviour [8], proposing a plausible mechanism

by which learning could take place in the brain. The Hebb’s Rule simply states that whenever

two neurons are excited at the same time the connection between them strengthens. Many

Neural Network learning rules had their origin in this mechanism or in variations of it.

However, the strong theoretical basis of connectionism has been provided by mathematicians

rather than by Psychologists.

Like Wiener, Dr. Warren McCulloch was a mathematician interested in practical prob-

lems. He first met Wiener in 1942 and their collaboration lasted for a few years. McCulloch

was mainly interested in the organization of the cortex of the brain. Working with him was

Walter Pitts, a student of logic and biophysics. In 1943 Pitts moved to the MIT for reading

with Wiener. They worked together on pattern recognition until 1948.

Wiener’s ideas on filtering and automatic learning must have inspired the first paper that

McCulloch and Pitts published. It was A logical Calculus of Ideas Immanent in Nervous

Activity (1943) [21], formalizing the intrinsic structure of the neural process leaving aside its

biochemistry. The calculus was very revealing. Using only concepts like the firing of neurons,

excitatory and inhibitory connections, synaptic delays, all-or-none processes, it was possible

to show that the specifically biologic aspects of the nervous system are irrelevant to the

understanding of perception. But the most important aspect of this work is the parallelism

it establishes between the Turing Machine and the brain.

The concepts of Turing’s Machine is significant, not only from the purely
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analytical standpoint of mathematical logic, but even from the standpoint of

the neurophysiological understanding of the human mind (McCulloch 1965 [22]

page 35).

A consequence is that the mind can compute all and only those numbers a Turing Machine

does. After this, McCulloch and Pitts turned their attention to the problem of the recognition

of patterns. Wiener describes it as an interrogation:

What is the mechanism by which we recognize a square as a square, irrespec-

tive of its position, its size, its orientation? (Wiener 1961 [50] page 18).

In 1947 they offered a theoretical description of the neurophysiological mechanisms for pat-

tern recognition in the brain, in their paper How We Know Universals [27]. They suggested

mechanisms similar to those of modern Neural Networks for explaining the ability of the brain

to recognize. This paper strongly influenced Wiener’s thoughts on Learning and Control,

being an important point of view for the work he was about to undertake.

The second generation of connectionists: In the 50’s the dominant research in Neural

Networks was led by Frank Rosenblatt at Cornell, US Based on the theoretical developments

of McCulloch, he built a network called Perceptron, supposed to be able to learn to recognize

physical objects by looking at them (see Rosenblatt 1961 [30]).

In 1959 Bernard Widrow [47] developed at Stanford, US, an adaptive linear filter called

Adeline based on neuron-like elements. The Adeline and its more sophisticated successors

were used for a variety of applications including the recognition of speech and characters,

weather forecasting and adaptive filtering. The Adeline was also the first Neural Network to

be used in a practical real-world application, the automatic elimination of echoes in phone

lines. With Widrow, the two branches described above made a mutual recognition: Engineers

became interested in Neural Networks.

In the sixties, the results of using Neural Networks were promising enough to attract

general attention. Particularly, Rosenblatt’s Perceptron generated real enthusiasm in the

scientific community.

The emergence of Symbolic Computation: Such an enthusiasm lasted for a short

period. In 1969 Minsky and Papert published Perceptrons [24] showing that Rosenblatt’s

two-layer Perceptron, being linear, would not recognize patterns involving higher order effects

like those which occur in the logical “exclusive-OR” problem (see figure 2). In order to

correctly classify patterns separated by non-linear boundaries, Minsky and Papert showed
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Figure 2: The statistical version of the logical exclusive–OR problem used by Minsky and
Papert to discard the early Perceptron. No linear frontier in the space of x1 and x2 can
separate the two groups A and B in spite of their clear separability.

that Perceptrons would need more than two layers of neurons and the introduction of non-

linear transfer functions. At that time no one knew how to build a general learning rule able

to adapt the connections between internal neurons.

After that, interest in neuro-models languished. The attention of the research concerned

with Learning was directed towards the emerging tools provided by Artificial Intelligence.

During twenty years, Connectionism was confined to a few laboratories, mainly concerned

with the brain itself: James Anderson, at Brown University, US, revived the Hebbian princi-

ple in his Linear Associator (see Anderson 1970 [2]). Teivo Kohonen, in Helsinky University,

Finland, also envisaged a modified Hebbian principle known as Competitive Learning, for

creating self-organizing maps of patterns (see Kohonen 1974 [13]).

During the seventies and early eighties the dominance of symbolic methods was over-

whelming. Machine Learning and Knowledge Acquisition became synonymous with Sym-

bolic Computation. The emergence of the Computer Sciences as an independent branch,

the fast progress in the speed of conventional machines, the existence of generous funding,

all this turned the attention of the scientific community towards tools based on Discrete

Mathematics and Logic. Research programs based on analogue tools were discontinued and

most of the earlier contributions for Machine learning were forgotten. Machine Learning

went exclusively symbolic.

The result was a delay in the course of the development of these subjects. And at length,

a muddling of concepts and techniques. For example, some researchers tried seriously to

use discrete, hierarchical, learning methods like Quinlan’s ID3 (see Quinlan 1979) [28]) as an

alternative to simple linear regressions in straightforward problems involving the prediction of
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continuous-valued variables ([23], [29]). These authors clearly put the finding of hierarchical

rules ahead of any other consideration, as no other choice was available for Machine Learning.

Another result of these years was the narrowing of views and goals inside the small

connectionist community. Connectionists became strictly concerned with the mimic of brain

functions as a goal, frequently denying the idea that such mimic could be used also as a

source of inspiration for the building of useful learning algorithms. A typical example is

Stephen Grossberg. He devised an Adaptive Resonance Theory (Grossberg 1987 [7]) leading

to self-organized memories with local characteristics. It is a plausible mechanism for the

brain with small practical applicability.

Even nowadays, the followers of Connectionism will discard any model for learning if it

is not plausible enough as a replica of the brain. One of the most demolishing things anyone

can say about a new Neural Network is that it is not enough brain-like. As a consequence,

many recent algorithms are local, self-organized and altogether with little interest for this

study.

The return of Neural Networks: The MIT was one of the few places were the interest

in analogue learning never vanished. In 1978 John Hopfield initiated a collaboration with

its Centre for Biologic Information Processing. As a result, he presented in 1982 a paper

to the Academy of Sciences of the US about a new neural model. It was the first paper on

connectionism accepted in this body since the 60’s.

Hopfield’s model [11] introduced a conceptual basis for neural learning in terms of energy.

It also established a parallelism with Ising models (Spin Glass Physics). Hopfield’s net uses

fully interconnected neurons that seek a minimum of energy. A few years later, Geoffrey

Hinton in Toronto and Terrence Sejnowski in the John Hopkins University, US, developed a

modified version of the Hopfield net they named The Boltzmann Machine (1983) [10], able to

escape from local minima during learning and with the remarkable quality of being trainable

even when having hidden layers. Hopfield’s net and the Boltzmann Machine considerably

revived the interest of the scientific community on Neural models.

The breakthrough came in 1985 when David Rumelhart, a professor of psychology at

Stanford, US, and James McClelland, a psychologist at Carnegie-Mellon, along with other

members of The Parallel Distributed Processing Group (known as PDP) devised a learn-

ing scheme that would allow multi-layered Perceptrons to feed back deviations from correct

response to more than one layer of neurons. Their scheme became known as The Back-

Propagation Algorithm [31]. It allows the training of all nodes inside a Multi-Layer Percep-

tron (MLP), even the internal ones.
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Much interesting research followed. For example, the link between Back-Propagation and

the continuous-valued version of the Hopfield paradigm was established shortly afterwards

by Luis B. Almeida at INESC, Lisbon (1987) [1]. Almeida generalised Back-Propagation

so as to make possible the learning in networks with any topology. The original MLP were

limited by a feed-forward topology in which the information flows only in one direction —

from the input to the output layer. This Recurrent back-Propagation is especially adequate

for tasks requiring some amount of memory of past events like systems identification, the

reconstruction of missing cases and the simulation of dynamic systems.

As predicted by the early research, the MLP turned out to be a very powerful and versatile

modelling tool, able to solve Minsky and Papert’s exclusive-OR problem and many other

complicated ones. The MLP is, in practice, a general learning tool as Wiener foresaw it.

This fact, interesting as it is, induced a sudden and somehow non-proportional enthusiasm

and renewed the interest in models based on Connectionism.

Indeed, one of the reasons for such a renewal of interest in Neural Networks was the

realization that Symbolic Computation, when tackling even the simplest problems involving

pattern recognition, was severely limited. The task of recognizing “a square as a square

irrespective of its position” turned out to be very hard for tools based on logic, rules, hi-

erarchical structures or other concepts of Artificial Intelligence. Typical problems of this

kind, like the recognition of voice and handwritten information, received a second chance of

improving by using Neural Network techniques instead.

Neural Networks today: Nowadays, Neural Networks are being used for finding solutions

for difficult problems of recognition of voice and image, in military applications, in Biology

and Chemistry, in Medicine and many other fields. Sejnowski’s NETtalk System (1986) [33]

is often mentioned as a reference point for assessing what Neural Networks can do in these

fields. This program converts text to speech and, connected to a speech synthesiser, it

pronounces typewritten words. It learns from examples of text together with its spoken

form. Over a few hours of such training, it progresses from a formless babble to intelligible

English.

It is clear that, again, there is no correspondence between the real possibilities offered by

Neural Networks and some extravagant expectations about them. The same strong moti-

vations which led to non-realistic views about Artificial Intelligence during the last decades

are now working in the direction of Neural Network research:

The reason why the US AI community (academic as well as commercial) has

taken up the neural-net model so enthusiastically is quite straightforward. It is
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Figure 3: A neuron or node, the basic element of Neural Networks. It implements an inner
product,X ·W , of an input vector, X , with another one of adjustable parameters W .

primarily because the Department of Defense has decided that neural-net com-

puting is a high-priority strategic technology. As an example, the UCLA (Uni-

versity of California, Los Angeles) AI lab has recently started ten new projects

concerned with neural networks while seven symbolic AI projects are due to be

terminated shortly. This switch did not come from inside the university. It hap-

pened as a result of strong prompting from DARPA and other funding bodies

(Forsyth 1988 [5], page 12).

Thus, when assessing the possibilities offered by Neural Networks it seems important to have

a clear idea about their applicability, strong and weak points and clear shortcomings. The

most quoted of these shortcomings is the apparent non-ability of Neural networks to produce

interpretable and exportable models like those based on rules and structures.

In this study we comment on several examples of Neural Networks in accounting and

finance research. In some of them, the resulting model is simple and its structure is inter-

pretable. Such an interpretability makes it attractive. But it is interpretable because it is

simple. In many others, the obtained model is complex and cannot be decoded. But this is

not a shortcoming since the model is important by itself, not because of its interpretability.

Knowledge doesn’t have to be interpretable in all cases. The most complicated pieces of

knowledge couldn’t possibly be translated into simple structures.
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2 The Structure of Neural Networks

“Neural Network” is the name of a vast number of different heuristics, having in common

the fact that all of them are aimed at learning from past experience, and their topology is

inspired by the way the brain is supposed to work. If a sample containing input and related

outcome variables represent an unknown relationship, a Neural Network will model it by

successive approximations. Such process is known as learning or training.

Topologically, Neural Networks are lattice structures of simple computational elements

called neurons or nodes. The connections between nodes (the weights) can be strengthen or

weakened during the training process, by means of simple, local, rules, causing the network,

as a whole, to become more and more similar to the relationship present in the data.

A typical node sums M weighted inputs. The result is then used as input for several other

nodes. That is, input variables labeled x1, · · · , xM are applied through a set of associated

weights, w1, · · · , wM , to a node. The weighted sum of the inputs, s =
∑M

i=1wi × xi, is the

output of the node. This output is then used as an input for several other nodes, and so on.

Figure 3 on page 11 shows the simplest node.

Nodes are often arranged in layers. In a layer of nodes, the M inputs are connected to

the N nodes, that is, a weight wij exists, linking each input xi, i = 1,M with each node

j, j = 1, N . In a layer, outputs of nodes are sj =
∑M

i=1wij ×xi. Layers can be combined into

a network (figure 4), by cascading two or more layers of nodes so that the outputs of one

layer become inputs to the next one. These simple Neural Networks are similar to those built

by Widrow in the sixties [47]. They are limited in their applications because no non-linearity

is introduced during training. They learn only linear relationships. Modern networks use

non-linear functions associated with each node.

Neural Network classification: Neural Networks can be completely specified by three

characteristics:

• The topology of the net: The number and position of the nodes and the way connections

between nodes are allowed.

• The node’s transfer function: The non-linear operation that each node performs on its

output before delivering it to other nodes.

• Learning rules: The particular algorithms used for training the network through a

steady adaptation of its weights.

According to their topology, Neural Networks often belong to one of these families:
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Figure 4: A simple Neural Network containing the input, a hidden layer of nodes and one
output node.

• Only feed-forward connections: The nodes are organized in layers and each node in

one layer connects only to next layer’s nodes. The Perceptron belongs to this group.

• Intensive wiring: Each node’s output is connected with all the other nodes’s inputs.

An example is the Hopfield net.

According to the transfer functions, there are two main kinds of Neural Networks: Contin-

uous non-linearity, for analog processing; and hard-limiter threshold, for digital processing.

The Multi-Layer Perceptron uses continuous non-linearity. The early Hopfield and Percep-

tron networks used hard-limiter thresholds.

Finally, according to their training rules, Neural Networks can be

• Supervised — There is a learning process in its strict sense, as in the Perceptron and

Hopfield networks: Each learning case consists of a vector of inputs and a corresponding

vector of desired outcomes. The Neural Network learns the relationship, if any, between

inputs and outcomes, as present in the data.

• Unsupervised or self-organized, as in the Kohonen Map of Patterns. The learning

process does not require explicit supervision: The network organizes itself according

only to the inputs, becoming a map of their density function.

The Multi-Layer Perceptron is, by far, the most popular Neural Network. We shall devote

some attention to it now.
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Figure 5: The Multi-Layer, feed-forward Neural Network known as the MLP. In this case
there are inputs, one hidden layer, and one unique output node.

3 The Multi-Layer Perceptron

The Multi-Layer Perceptron, widely known as the MLP, is a supervised learning Neural

Network. Topologically it is a layered feed-forward configuration: Nodes are arranged in

layers and each node’s output is connected to next layer’s inputs. No intra-layer connections

exist, nor any feedback paths from an output to earlier layers. Figure 5 on page 14 represents

a three-layer Perceptron with only one output node.

The back-propagation of errors by means of an iterative gradient-descend algorithm allows

training by minimization of the mean-squares differences encountered between the actual and

desired output.

In the Multi-Layer Perceptron the output of the, jth, node is not just a simple weighted

sum of inputs. After the summation sj =
∑

wij × xi the result is submitted to some

continuous differentiable non-linearity f(sj) becoming oj = f(
∑

wij × xi). It is common to

use sigmoid-like functions as f(s). In this case the output of the jth node would be:

oj =
1

1 + exp

[

−(sj + θj)

θ0

]

Figure 6 on page 18 displays one of such functions.

The parameter θj acts as a threshold or bias. The effect of a positive θj is to shift the

sigmoid to the left along the horizontal axis. θ0 modifies the steepness of the slope in the

sigmoid. Large θ0 produce smooth thresholds. Conversely, small θ0 produce sharp thresholds

which can be almost like the hard-limiter ones. These non-linearities are known as transfer

or activation functions. In the same line, 1/θ0 is known as the gain.
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Mean-Squares error: We now consider the last layer of nodes as the kth. The layer

immediately before this one is the jth and the one before that is the ith.

When learning, the net is shown a vector of inputs, Xp, from the pth example. Then, the

algorithm adjusts the set of weights and the thresholds in each node in a way that makes the

effective output of the net, opk, as close to the desired outcome, tp, as possible. Once this

small adjustment has been accomplished we show another input vector and the corresponding

outcome and ask that the net learns this new association as well. At length, we are making

the net find a single set of weights and biases that will satisfy all the input-outcome pairs

present in our learning set.

In general, the final resulting outputs opk will not succeed in approaching tp exactly. For

the pth example, the squared error is

Ep =
1

2

∑

k

(tp − opk)
2 (1)

and the average total error will be

E =
1

2×N

∑

p

∑

k

(tp − opk)
2 (2)

in which the 1/2 scale is introduced for facilitating the algebra at a later stage and N is the

number of examples in the learning set.

3.1 The Delta Rule: The Last Layer’s Nodes

The Delta Rule is a stochastic version of the steepest-descent iterative optimization algo-

rithm. It has been used in the early Perceptrons. Strictly, it applies only to the learning

process taking place in the last layer of the MLP. The learning taking place in layers other

than the last one, is accomplished using a generalised version of the Delta Rule. We shall

introduce the Delta Rule firstly, by applying it to nodes in the kth layer of the MLP, the last

one. Next, it will be easier to explain its generalized version.

Starting with an arbitrary set of W values, every example in the learning set will be

considered in a random order and its output calculated. Then, the difference between this

output and the corresponding outcome will be used to correct every parameter in W by a

small amount. The procedure will be repeated for all examples in the learning set again and

again, until a minimum square difference exists between outputs and outcomes. In general,

different results emerge depending on whether the gradient search is carried out on the basis

of Ep or E. A true gradient search should be based on minimizing (2). In practice, that is

seldom the procedure adapted.
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Convergence is achieved by changing the values of W so as to diminish the error. This is

carried out by taking incremental changes ∆wkj proportional to −∂E/∂wkj . That is, given

a small η,

∆wkj = −η ×
∂E

∂wkj

Since the error E can be expressed in terms of the outputs ok and these outputs are a

non-linear function f(sk), we can use the chain rule to evaluate the above partial derivative:

∂E

∂wkj

=
∂E

∂sk
×

∂sk
∂wkj

Notice that
∂sk
∂wkj

=
∂

∂wkj

∑

j

wkj × oj

We now define

δk = −
∂E

∂sk
as the rate of change of the error with respect to sk. So, we can write

∆wkj = η × δk × oj

This expression contains the rule for updating the weights linked with the last layer of nodes.

It is known as the Delta Rule. η is an arbitrary increment. It is a small value selected so as

to ensure a smooth, yet fast, learning.

To compute δk = −∂E/∂sk we use again the chain rule and obtain two terms:

δk = −
∂E

∂sk
= −

∂E

∂ok
×

∂ok
∂sk

The first term expresses the rate of change of the error with respect to the output ok and

the second one expresses the rate of change of the output of any node in the last layer with

respect to its input.

These two terms are easily obtained. From (1),

∂E

∂ok
= −(tk − ok)

The second partial derivative depends solely on the transfer function we are using:

∂ok
∂sk

= f ′(sk)

Hence, whenever we accept a Least-Squares success criterion, the deviations tk−ok from the

desired outcome can be viewed as the rate of change of the error with respect to the node’s

output. Notice that when the criterion is a different one this relation has to be re-written.
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For any node in the last layer we can write

δk = (tk − ok)× f ′(sk) (3)

hence

∆wkj = η × (tk − ok)× f ′(sk)× oj (4)

The original Perceptron of Rosenblatt, having only one layer of nodes, would learn to optimize

an internal model of the data with steady improvements, ∆wkj, of the weights wkj by means

of the described algorithm. Adaptive filters and some versions of the Adeline also use this

learning scheme.

3.2 The Generalised Delta Rule

The general solution of the non-linear modelling problem came with the use of internal layers

of nodes acting as intermediate maps able to apportion as much piece-wise non-linearity as

needed for modelling the relation. In the modern version of the Perceptron, the MLP, several

layers of nodes are matched in cascade so that the output of a previous one is the input for

the next. Theoretically, such a device is able to form any continuous smooth map if enough

number of internal nodes are provided.

Of course, in this new situation the problem is to discover a suitable way for optimal

parameter finding. The Delta Rule described above cannot be used in the learning of relations

by more than one layer of nodes. As mentioned, the solution of this problem has been

provided by neuro-biologists [31]. The method is a generalisation of the Delta Rule already

introduced, known as Back-Propagation.

When weights are not directly linked to the output nodes we still write

∆wkj = −η ×
∂E

∂wji

and proceeding with the same formalism, based on the chain rule, we have, as before:

∆wkj = −η ×
∂E

∂sj
×

∂sj
∂wji

= −η ×
∂E

∂sj
× oi

= η ×

(

−
∂E

∂oj
×

∂oj
∂sj

)

= η ×

(

−
∂E

∂oj

)

× f ′(sj)× oj

= η × δj × oi
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Figure 6: A sigmoid-like function can be used as activation or transfer function in the nodes
of an MLP. f(s) is the solid line and its derivative, f ′(s), is the dashed line. In this case, f
spans the interval {−0.5,+0.5}.

an expression similar to equation (4). In the case of hidden nodes we cannot evaluate ∂E/∂oj

directly. However, we can write it in terms of known values obtained from the nearest layer:

−
∂E

∂oj
= −

∑

k

∂E

∂sk
×

∂sk
∂oj

=
∑

k

(

−
∂E

∂sk

)

×
∂

∂oj

∑

m

wkm × om

=
∑

k

(

−
∂E

∂sk

)

× wkj

=
∑

k

δk × wkj

Therefore we can write in the case of hidden nodes:

δj = f ′(sj)×
∑

k

δk × wkj

That is, the rates of change of the error with each node’s s can be computed from the previous

node’s δ. Previous in the sense that they are closer to the output. The basic mechanism

of Back-Propagation consists in making it possible to evaluate all the δ throughout the net

just by beginning to evaluate them for the last layer and then proceeding backwards. The

Back-Propagation algorithm evaluates firstly the δk using (3) and “propagates” these errors

backwards along the net.
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Notice that, when the f(s) are sigmoids, hyperbolic tangents or similar logistic functions,

then their derivatives, the f ′(s) assume a very simple formalism. For example, in the case

of the sigmoid,

since oj =
1

1 + exp [− (
∑

i wji × oi + θj)]
then

∂oj
∂sj

= oj × (1− oj)

and the δ are given by these or similarly simple expressions:

δk = (tk − ok)× ok × (1− ok) and δj = oj × (1− oj)×
∑

k

δk × wkj (5)

for nodes in the output layer and for nodes in the hidden layers respectively.

For implementing Back-Propagation, a step-by-step procedure is required. Firstly, an

example is selected at random. Using it as input, the output of the MLP is calculated.

Next, the ∆wkj are also calculated and the weights linking to the last layer are corrected.

Using these corrected weights and the δk it is now possible to calculate the ∆wji, that is,

the correction to affect the weights linking to the layer before the last one. This scheme

proceeds backwards until all the weights in the net received their first correction.

The whole procedure described above is now repeated for every example in the learning

set and for as many “presentations” of the whole set as necessary to bring the overall error to

a minimum. In successful learning, the net’s error decreases with the number of presentations

and it will finally converge to a stable set of weights.

Notice that the Back-Propagation is not a real gradient-descent algorithm since the

weights are corrected by evaluating the errors Ep associated with each example (formula 1),

not the overall error E of the sample (formula 2). It could be described as a stochastic gra-

dient descent. In the case of correlated inputs, it is more effective than the classic algorithm.

For small values of η the difference between the stochastic and the classic versions of the

gradient-descent procedure vanish.

The increments η must be selected carefully. Too small η make the learning very slow

and vulnerable to local minima. Too large η produce oscillations of the error during training.

Recent versions of Back-Propagation don’t use the same η for all the weights in a network.

Instead, each weight has its own η, also adjusted during training according too the impor-

tance of weights to the diminishing of errors. This procedure makes training much faster

and less prone to local minima. See Silva and Almeida (1990) [37] for details.

The most appropriate thresholds are learned by the algorithm just as any other param-

eter. The θj can be seen as the weight linking a constant input of 1 with the node. The

use of hyperbolic tangents instead of the logistic form has no particular relevance except in

the last layer. Sigmoids in the output layer constrain outputs to span the interval {0, 1}
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while hyperbolic tangents constrain outputs to the interval {−1,+1}. But, of course, a

simple manipulation can produce any desired interval. Output intervals must be selected in

accordance with the outcomes.

The Generalised Delta Rule requires that the initial values of the weights are set to values

different from one another. It is usual to set them to small random values. If the weights

were all similar the net would be in a state known as “local minimum” and the learning

wouldn’t take place. Several runs of the training set will generally produce a minimization

of E although nothing will prevent this heuristic from reaching other local minima instead

of the overall solution (see Rumelhart’s original paper for a discussion on this issue). In

practice, the use of advanced techniques, like having one individual η for each weight, can

greatly lighten the problem of local minima.

3.3 Valuable Characteristics of the MLP

In this section we summarize the characteristics of the MLP which seem valuable for knowl-

edge acquisition and statistical modelling. This is an important issue since MLPs are very

expensive in CPU time and attention from the operator. MLPs are the kind of tool which

no one uses unless it is really necessary. Those characteristics are as follow:

Learning by stages: Many different algorithms are available for learning a relationship

input-outcome from a set of examples. The MLP is different in that it approaches a re-

lationship by stages, not directly. During the learning process, an MLP creates new sets

of variables corresponding to different stages of the modelling of the desired relationship.

A particular stage uses the variables from the previous one as input. Then, it makes an

improvement towards the final modelling of the relationship. Finally, it outputs a new set

of variables to be used as input for the next stage. The intermediate variables generated by

an MLP are often referred to as internal representations.

The characteristic really specific to the MLP is this ability to model by stages, as it

cannot be found in any other tool. However, the other desirable features of the MLP are

not easily found, all of them, in the same tool. For example, some statistical algorithms

perform stochastic non-linear optimization. But they have little control over the amount of

non-linearity they use, or over the dimensionality allowed to model a desired relationship.

Robust Generalisation: The overall rules governing the generalisation ability in any

statistical model also apply to the MLP. For instance, if the number of nodes (and therefore,

connections) is large when compared with the variability to be modelled, the MLP behaves
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just like a checking list (a storage device) or a saturated model. No generalisation can be

expected. An opposite situation, very few nodes when compared with the variability to be

modelled, would make the MLP recognize only broad families of features, without detail.

Using an internal layer with a variable number of nodes it is possible to control the basic

information flow used in classification: Many nodes will produce great detail or even no

generalisation at all; less nodes will improve generalisation. However, the MLP often exhibits

a remarkable behaviour which greatly improves the generalisation beyond that expected for

a given number of free parameters. This is caused by two factors: Nodes are prone to

individuality, and the matching of the topology of the network with the structure of the

relationship.

Any change in a weight’s value is proportional to ∂o/∂s. Hence, the changes are maximal

for values of s impinging upon the central zone of the transfer function, the one having the

largest slope. Figure 6 on page 18 illustrates this fact. It shows the shape of a sigmoid-

like function and its derivative. Since changes in a weight’s value are proportional to the

magnitude of this derivative it turns out that mid-range values introduce large changes in

the weights while extreme values make the net change little.

When the s are mostly in the mid-range of their transfer functions, the node under

question is not yet trained or committed. It can turn up or down. Under these conditions

the weights change rapidly. On the contrary, a committed node changes their weights little

since the derivative is small.

The described feature is interesting since it shows that, inside a given topology and by

the influence of a learning set, nodes tend to acquire a stable state and remain there. Hence,

it is expected that each node on a fortunate model will capture important features of the

relationship. The literature refers several of such cases. In terms of knowledge acquisition,

this quality is valuable.

In [43] (1991) we explore this ability. Each node of the MLP seems to learn a particular

characteristic of the firm in a way somehow similar to the procedure used in ratio analysis.

A second cause for the good generatisation of the MLP occurs when the minimum number

of nodes in any hidden layer matches the number of features important for the relationship

to be learned, the likelihood of each one of those nodes becoming a model of a different

feature of such relation is larger. If that happens, the MLP performs an effective features

extraction. As a consequence, the generalisation capacity receives a further improvement.

Some applications take advantage of the trend towards individuality the nodes in the

MLP exhibit, to find the important features of a set of examples. Using a topology known

as the Bottle-Neck MLP, the same set of examples are presented both as input and as
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outcome. This technique is similar to Factor Analysis. But when more than one hidden

layer is used, also non-linear features are extracted. A Bottle-Neck MLP has been used to

test the Arbitrage Pricing Theory.

Iterative optimization: A Multi-Layer Perceptron adjusts the free parameters which

ought to model a relation in small steps. Each of these steady improvements seek an advance

in the minimization of the observed deviations between the produced output and the desired

outcome. Therefore, the learning of a relation progresses steadily along many small steps.

This allows a broad manipulation of the free parameters — known as weights — engaged in

the building of the model. Such a manipulation, unavailable in analytical tools, turns out to

be essential for achieving good generalisation and interesting internal representations.

Tight control over the modelling power: Another important characteristic of the MLP

is that a tight control can be attained over the flow of information for modelling a given

relationship as well as over the amount of non-linearity introduced.

The number of nodes in any layer determines the maximum dimension of the modelled

relation. For example, by using a hidden layer with three nodes, we constrain the relation to

be modelled to have three dimensions. On linear grounds this would mean that the matrix

representing the desired relation would have one of its dimensions set to three.

This fact allows a direct control over the power of an MLP when performing classifica-

tion with non-linear boundaries. Since classification with arbitrary boundaries requires the

artificial enlargement of the dimension of the input space, by controlling it we define exactly

the kind of boundaries we allow for classifying.

Also the amount of non-linearity an MLP apportion to the model depends on the total

number of nodes in the hidden layers, no matter its topology. We can have two hidden

layers, each one with two nodes, or one unique hidden layer with four nodes. The amount

of non-linearity allowed would be approximately similar in both cases.

Together, the last two characteristics of the MLP make it remarkably flexible in the use

of its power. Hence, the MLP is flexible in its generalisation as well.

Easy implementation of optimization and convergence criteria: Finally, when ap-

propriate, we can easily change the optimization criterion for it is independent of the opti-

mization process. For example, Minimum Least-Squares deviation, as a success measure, is

just one of the possible criteria. Likelihood maximization seems more appropriate for prob-

lems involving classification. In such a case, the Multi-Layer Perceptron learns to maximize
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the probability of having obtained the set of input-output pairs which were actually observed

in the training set. This flexibility adds up to the MLP’s already good one.

Also, the learning itself can be carried out using simply the generalised delta rule or more

elaborated stochastic optimization techniques involving, for example, simulated annealing.

In general, the possibility of simply acting upon the rate of convergence and the individual

increments each parameter receives during the learning process can be most valuable for

achieving meaningful internal representations.

3.4 Discrete Versus Continuous-Valued Outcomes

An MLP can perform either non-linear multi-variate regression or non-linear discriminant

analysis. In the first case it is called upon for approaching a continuous-valued outcome.

In the second one, outcomes are discrete states. The correct classification of classes in the

statistical exclusive-OR problem is an example of the second kind of task.

When the MLP is used as a classifier, the number of nodes and layers employed is more

critical than when it is used in regressing. In the former case, the MLP must have enough

nodes to form the frontiers required by the modelled problem.

Each first-hidden-layer node creates a hyper-plane in the input space since its input is a

linear combination of input variables. In the layer next to this, several of these hyper-planes

can be used to define a region enclosing a particular group of examples relating to one of

the given outcomes. That is, the first hidden layer needs to have as many nodes as linear

pieces required to build the frontiers for separating groups, and the second layer needs to

have as many nodes as different groups. When inputs and outcomes are only statistically

separable, that is, when similar input vectors in the learning set relate to different groups,

the final error of the net, after convergence, cannot be zero. The above reasoning holds, but

now we should envisage probability surfaces (gradients of likelihood) instead of well-defined,

deterministic, frontiers.

Also, when using the MLP as a classifier, it’s more reasonable to substitute the described

minimum Least-Squares Error criterion by a more appropriate one. For example, Likelihood

maximization is often used. In that case, the model selected is the one which maximizes

the probability of having obtained samples as those actually used in the learning set. When

the number of nodes in the last layer matches the number of groups to be classified, it

can be shown that an appropriate coding of outcomes makes the MLP output directly the

probability of obtaining such an outcome given such inputs. Solla et al. [38] contains the

appropriate formalism.

When outcomes are continuous-valued, no transfer function should be used in the last
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layer of nodes since it would limit the range outputs can attain. It is also important to bear

in mind that the amount of non-linearity introduced is controlled by the total number of

nodes having transfer functions, regardless of its position. An exaggerated number of nodes

will produce a too detailed — and hence very sample-dependent — model. Figure 7 shows

the effect, in a simple case (one unique input and output) of introducing more nodes in the

MLP.

In the case of continuous-valued outcomes the appropriate success criterion is the mini-

mization of the Least-Squares Error. To control the learning process it is common practice

to use the overall R2, that is, the proportion of the variability of the targets explained by

the model, corrected for the number of free parameters engaged.

3.5 The Delay-Line MLP for Forecasting

An important consequence of the Wiener-Volterra analysis is that, under very general cir-

cumstances, it is possible to model the internal behaviour of any system just by using two

feed-forward steps. One linear step incorporating a certain amount of memory of past events,

followed by a simple non-linear map (see Schetzen 1980 [32]). This result is equivalent to say-

ing that we can mimic complex mechanisms like systems of non-linear differential equations

or a chaotic attractor just by pulling together a linear filter and a non-linear function.

Lapedes and Farber (1987) [16] used this principle to show that an MLP was suitable

for performing systems identification, time-series prediction and similar tasks. They simply

used the input vector as a delay-line (see figure 1). Hence, the first hidden layer acts like a

Wiener filter. Subsequent layers introduce the required amount of non-linearity.

When used in this fashion, an MLP becomes a very effective predicting tool. Its general-

isation, flexibility and ease of use makes it substantially more attractive than the equivalent

analytical procedures. Especially in the prediction of time-series apparently complicated

but with an underlying dynamic mechanism, the use of these delay-line MLP often mean a

decisive improvement.

We used delay-line MLP to identify the underlying system governing a few random num-

ber generators. The resulting topology was very simple. We also tested their use in the

modelling of first-difference chaotic series observing good predicting performances. Refenes

Notice that most of the tasks referred to here could be more elegantly performed using

recurrent algorithms instead of delay-lines. Recurrent networks engage a smaller number of

weights than delay-line networks. Therefore they achieve a better generalisation and require

smaller learning sets. Their learning is also faster. Recurrent networks can also cope with

missing values in the learning set. In the presence of a missing value, they provide the most

25



likely value in the context. This feature is typical of Hopfield networks and is known, in its

more general form as “Associative Recall”. However, the use of recurrence requires a more

advanced practice and its exploring is not adequate as an introduction to Neural Networks.

Almeida (1987) [1] explains this formulation.

3.6 The Modern MLP

The characteristics which make modern MLP different from the original algorithm (Rumel-

hart et alt. 1986 [31]) can be summarized as:

• Cross-Validation of results.

• Incomplete training.

• Pruning of weights or nodes.

• Learning rates particular to each weight.

We now comment on these characteristics. The first one relates to improvements in the ability

to generalise. It is a particular implementation of a known procedure, the Cross-Validation

(see Stone 1978 [39]). In order to obtain an estimate of the generalisation capacity of a model,

the original samples were divided randomly into two sub-samples. Models were constructed

with one sub-sample, the training set, and a check carried out with the other one, the test set.

When the outcomes are continuous-valued, the adequate measure of quality of fitting is the

proportion of explained variability, R2, corrected for the degrees of freedom engaged. The

performance of the MLP on the set used for training depends solely on the number of free

parameters and can be increased simply by introducing more nodes on the net. Therefore

such results are uninteresting.

Since the MLP seeks an optimum iteratively, we can stop its training when an optimum

is obtained in the test set rather than in the training set. We thus prevent this powerful

algorithm from over-fitting the data. The Back-Propagation algorithm seeks the modelling

of progressively smaller or less important features of the relation, during the learning process.

Firstly, broad features are accounted for: The mean, a linear trend. Then, more detailed

ones are modelled. Hence, the effective degrees of freedom the MLP engages can be viewed

as increasing during learning. Assuming that the topology of the net contains plenty of

free parameters, the MLP will be able to model, not only the desired features but also

the undesirable random uniqueness of a particular sample. We prevent it from doing this

by stopping the process before finishing. The appropriate moment for stopping is when
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the results, as measured by the test set, are optimal. For a good topology, the fact that the

learning stops before a minimum is reached in the learning set clearly enhances generalisation.

Finally, each one of the weights in the modern MLP has its own increment, adjusted as

described in Silva and Almeida (1990) [37].

Also, some methods for pruning the MLP are used. Amongst those, “Skeletonization” [25]

and “Optimal Brain Damage” [17] are the most popular. Notice that the first one is intended

to reduce the number of nodes, not the one of weights. A very simple method for pruning the

useless weights in the MLP consists on introducing, during training, a penalization of very

small weights. If the input variables were very differently scaled, small weights could just

mean that the MLP was trying to scale down a particular variable. But when the input to the

MLP is mean-adjusted and have similar standard deviations, the only reason for any some

weights to remain small throughout the learning is to try to diminish the importance of one

variable to the output of the node it belongs to. In the MLP, each node acts as a modelling

unit with a certain amount of free parameters. The same output can be obtained with very

different combinations of weights. If we introduce a penalization of very small weights during

the training, as the correction of weights is proportional to the input variables, small weights

tend to remain small. In the same way, large weights tend to have their values strengthen.

The final result is a contrasted set of weights: The first layer now contains only very large

or very small weights. The information concerning the modelled relation is concentrated in

a few weights instead of distributed by all of them [43].

4 Self-Organized Neural Maps of Patterns

Statistical modelling tools are often used to describe functional relationships. However,

in some cases we want to build a representation of a density of cases, not the one of a

relationship. These representations are known as topology-preserving maps. The reasons for

using maps can be twofold: Either the information regarding the position of each case in a

distribution is relevant and must be preserved, or the density of cases draws a shape which

is not simple enough for being approached by the usual functions.

The Kohonen’s Self-Organized Map of Patterns is a fast and simple heuristic able to

reproduce an original density using a small number of points that somehow are an image

of that distribution. It consists of a lattice of nodes, each of them containing its own set

of adjustable weights: In the jth node, a weight vector W = wj1, wj2, . . . , wjM links to a

corresponding input vector X = x1, x2, . . . , xM . Each node’s output is a function of both
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the input and its weights: oj = f(X,W ). Two frequently used output functions are

oj =
M
∑

i=1

xi × wji, an inner product, or oj =

√

√

√

√

M
∑

i=1

(xi − wji)
2 an Euclidean distance.

It is a requirement that these functions measure the distance or similarity between W and

X . The training of the map takes place as follows: All the nodes are supplied with the same

input vector, extracted at random from the learning set. Then, the node with the largest

output is discovered. It will be the one whose vector of weights shows the greater similarity

towards the presented input. Next, a neighbourhood is defined around this node, and the

weights of all nodes in such a neighbourhood are updated or “rewarded” in a way that makes

them more similar to the observation they identified. For example, the new value of a weight,

wji, linking the input i with a rewarded node j, can be calculated as

wt+1

ji = wt
ji + η × (xi − wt

ji)

in which t and t + 1 denote a sequence and η is a small increment. The nodes not in

this neighbourhood receive no rewarding. The procedure is repeated for all the vectors

in the learning set and then again and again. At length, specific nodes become “excited”

by particular inputs so that the topological relationship between them is mirrored by the

position of the nodes. We refer to any node within a lattice by saying that the integer

m is a counter of the rectangle’s row number and the index n is a counter of its column

number. Nodes are determined by a pair {m,n}. After training, the map will show, for

each new input, a pair {m,n} identifying the node that it excites. That is, we mapped a

continuous-valued space onto a discrete one, but preserving the original topology.

Clearly, the heuristic explained above is a variation of the Hebb’s Rule. Kohonen’s maps

owe more to Connectionism than the MLP. In the last one, learning is inspired in engineering

practice rather than in the brain.

The number of nodes and its form is determined prior to the learning. This topology

must be prone for adopting the shape it is set to learn. Figure 8 on page 29 shows the

positions, after the learning process has finished, of a lattice of nodes superimposed to the

density of cases they reproduce. Straight lines link nodes that are neighbours. The map in

figure 8 is an example of the use of Kohonen’s heuristic to build a diagnosis table relating the

m and n of a fired node to profitability and the magnitude of its components inside firms.

Such tables could be more or less detailed depending on the number of nodes used. If, in

our example, we were to use a larger number of nodes in the n dimension (for example, 5

instead of 3), we would get more specific diagnostics. But it is not clear whether such an

increase would be desirable.
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Figure 8: The lattice of 9 × 3 nodes superimposed to the RRP whose density of cases they
have learned. Nodes that are neighbours have been linked by solid lines.

Self-organized maps are adequate to perform tasks such as:

• Dimension reduction and Intrinsic dimension assessment: Find an f such f : IRN 7→

IRM , (N > M), having some optimal quality, or find the smallest M < N for which

an f exists such f : IRN 7→ IRM having some optimal quality. This is because in

Kohonen’s maps it is unlikely to obtain an ordered map when using nodes forming a

lattice of smaller dimension than the intrinsic dimensionality of the training set. For

example, if a two-dimension lattice of nodes is used to map a really three-dimensional

density of cases, the weight vectors will fold in waves, attempting to fully cover the

3-D space. In this case, no real relation exists between inputs and the density function.

Therefore, folding can be used as a diagnostic for tracing an over-reduced dimension

reduction attempt. Procedures are available to discover folding in more than 3-D maps.

Recently, Serrano et al. (1993) [34] used Kohonen’s maps to reduce the dimension of

several financial measures onto a two-dimensional lattice, obtaining promising results.

• Mapping as pre-processing for further MLP classification or for expert systems. Once

an intrinsic dimension has been recognized and a map produced, an MLP can be

used to classify discrete outputs according to features. This procedure would be the

connectionist equivalent to Factor Analysis prior to Discriminant Analysis. Also, the

discretization obtained with Kohonen’s maps can be useful to transform continuous-

valued data, like the one found in financial reports, onto diagnostic tables suitable for

expert systems.
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• Tracing dynamic features (like trajectories): When input vectors are successive events,

self-organized maps will draw a trajectory, should the variables bear any kind of joint

trend (cross-correlations not zero). Several different trends can be identified by their

trajectories. In the above example, if we input the map with a sequence of vectors rep-

resenting the same firm during several periods of time, it will output the corresponding

sequence of fired nodes. This output sequence defines a trajectory in the discrete space

of the lattice of nodes.

A drawback of Kohonen’s heuristic is that sometimes it is difficult to make the map span the

whole of the scatter. Cases may occur that will not fire any node at all. But this happens

mainly when, during the training of the map, the neighbourhood for nodes is defined in a

simplistic way. Any attempt to reproduce Kohonen’s heuristic should use more elaborated

definitions of neighbourhood than those given in introductory texts.

Besides Kohonen’s Self-Organized Maps, other algorithms exist able to perform the same

task. Some of the tools known as “quantizers” could also be used to to obtain maps. However,

this heuristic is simple to implement and to explore, and its training is fast. It also illustrates

a practical use of the Hebb’s Rule. However, Competitive Learning and, in general, the

Connectionist approaches, can have some unexpected qualities: They are local and parallel

in structure, which makes them ideal for implementation on future machines; and they are

robust regarding assumptions about the data.

5 NNs in Finance and Accounting Research

Neural Networks are not a key to all kinds of data-analytical problems. They offer some

specific advantages and they have their own drawbacks. This section mainly focus on those

fields in which we think that their use is advantageous. The examples explored in this study

illustrate important and promising capabilities of Neural Networks in accounting and finance

research.

NNs present two drawbacks: Their training isn’t straightforward, and the resulting mod-

els often are neither interpretable nor portable, acting like “black-boxes”.

The difficult training of NNs has many manifestations. Firstly, it requires an exorbitant

amount od CPU, especially when the number of examples is large. In practice, this task

isn’t properly undertaken by the usual PC, even the fastest. Secondly, the training isn’t, in

general, automatic. It requires supervision from the operator, and some practice. This is

another reason for avoiding slow machines. Thirdly, the number of nodes or layers to be used

in every case remains a question of empirical testing, despite the large amount of literature
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devoted to providing some guidance in the selection of an adequate topology. Ultimately,

only by testing can we ascertain about the fittness of a given Network. Finally, there are

plenty of small, undocumented, tricks, important for avoiding local minima, for speeding-up

the convergence, or for obtaining a parsimonious model.

The second drawback, lack of interpretability, must be seen in the light of what we get

by using NNs. It’s clear that the most complicated models produced by NNs cannot be

interpreted by direct observation. However, this is because the modelled relationship is itself

complex. Modelling aims at finding the simplest, satisfactory, map. If the trainer of a

network is not indulging in building unnecessarily complicated models, the resulting model

is as complex at it should be, and probably less complex than other models obtained by

different tools when performing the same task. The fact that the usual NNs don’t produce

rules or simple equations when solving problems hitherto unsolved, simply means that rules

or simple equations are inadequate for capturing those relationships.

It must be said that, in accounting and finance research, NN models often are inter-

pretable and even revealing. This is because the kind of relationships to be modelled isn’t

too complex.

There are one or two pitfalls awaiting those engaged in using Neural Networks, especially

if their practice in Statistical Modelling isn’t rooted in common-sense. These pitfalls stem

from the power of NNs and aren’t present when using linear tools. Firstly, Cross-Validation

must never be omitted when modelling with NNs. Secondly, even when cross-validating the

results, the topology of the network must be parsimonious. When the number of examples

in a training set is small, the network must also have a small number of weights in the

first hidden layer. Broadly, no more than five weights for every hundred. Thirdly, the

performance of a model must be discussed in the light of its robustness and economy, not

in isolation. For example, we must study the relationship between the number of weights in

several alternative models, and their performance, selecting the one that makes the best of

its degrees of freedom, not the one that performs the best. Finally, several sets of random

weights must be used when training a given model. It’s frequent to obtain, when using a

given set of initial weights, a final performance that is much better or much worse than the

one obtained with another set of weights. This is because the optimum, when training the

NN, is obtained by search. Therefore, the possibility of finding a local optimum, not the

absolute one, is real. When using NNs, we can never be sure that the optimum we found

is the best. After obtaining a model that performs not too badly, it’s frequent to discover

other ones that perform much better, just by using a different set of initial weights.

In general, Cross-Validation is enough to ensure that a model is parsimonious: In order
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to obtain a good performance in the test set, the model has to be be pruned to the limit.

However, we must be aware that, in occasions, unnecessarily complicated NNs are capable of

a surprisingly good generalisation. This generalisation isn’t to be trusted because it probably

isn’t robust.

We now summarize the tasks NNs are called upon to perform.

Classification: The most obvious application of the MLP is in classification. Discriminant

Analysis can establish linear or quadratic boundaries between groups. This seems enough

in the majority of current problems. A Multi-Layer Perceptron will draw boundaries of any

shape. Thus, it is able to cope with complex relations involving higher order effects. But

not only this. An MLP models complex relations in a very parsimonious way (the number

of free parameters engaged in the modelling can be optimized) and the non-linearity used

for defining frontiers is local.

Bond rating and lending decision mimics have already been attempted with the MLP [4].

A recent study on the selection of Neural Network architectures for improving generalisation

uses bond rating as an example [44]. See also [9] for a review of some Neural Net applications

being developed by a specialized firm. Firm distress prediction has also been modelled by

an MLP. This, despite the problem being well suited for linear algorithms.

The described applications are just direct extrapolations of classic and thoroughly ex-

plored problems in accounting research. They simply substitute the linear techniques by

the MLP. We think that such experiments are not the most adequate way of showing the

real possibilities of Neural Networks since there is very few of specifically related to Neural

Networks on them. Instead, we centre this study in what Neural Networks can do and the

other tools can’t.

Assessment of dimensionality and dimension reduction: Statistical tools like Mul-

tiple Discriminant Analysis or Factor Analysis are unable to clearly point out the intrinsic

dimensionality of the data. N input variables or groups lead to N factors or N − 1 scores.

Despite the use of some ad-hoc tests, it is after all the intuition of the researcher who de-

cides how many of these dimensions are to be considered as real features. Possibly, guesses

of intrinsic dimensionality of processes like economic pervasive factors influencing capital

markets or basic common sources of variability in ratios, based as they are on conjectures

about acceptable uniqueness, are over-estimations.

One of the most promising applications of self-organizing maps of patterns lies in the fact

that the real dimensionality of the data is recognized as a basic characteristic [14]. The real

dimension of market expected returns or accounting statements could then be assessed.
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Also the discrimination between different kinds of firm distress — should they exist —

could benefit from the capacity of Kohonen maps to trace dynamic features. Since the

relation between accounting data and the outcome is in this case very strong — the outcome

can be predicted with small confidence limits — it seems as if a simple self-organized map

of patterns would be enough to trace it. Such a map would also be able to discriminate

between trajectories leading to insolvency.

Tracing Dynamic Features Self-Organized Maps of Patterns are also useful in captur-

ing positions and trajectories of firms drawn in the space of their financial features. This

technique can be a step towards the automation of ratio analysis.

In [42] we use Self-Organized Maps of Patterns and two-dimensional ratios to improve

the financial analysis of firms. Our framework is aimed at an automatic exploring of large

databases containing accounting data. It can be seen as a pre-processor, able to bridge

the gap between continuous-valued, stochastic, data like the one of accounting reports, and

symbol-based expert systems. The information extracted with this technique can be fed into

more general expert systems along with other sources of knowledge. For example, several of

the developed tools could cover each one a particular feature of the firm — liquidity, capital

turnover and so on — outputting rules that would be jointly processed by an expert system.

Our tool allows both cross-sectional positions of individual firms and trajectories during

a time period to be traced. It is close to ratios, yielding similar diagnostics: Whether a

particular firm is above the standards, near the expected or below the standards. But this,

referred to two aspects of an accounting feature, not just one at a time. For example, whilst

ratios can assess liquidity either as a contrast between the amount of current assets and

the one of current liabilities or, alternatively, as a contrast between the amount of working

capital and the size of the firm, our tool can show both aspects of liquidity together.

The quality of the diagnosis and its interest rely on the selected variables as happens

with ratios. It is the experience of the analyst which dictates which items are to be used and

how to interpret the resulting maps. Since these tools are close to ratios, all the expertize

of ratio analysis can be directly implemented on them.

Features Extraction: After the assessment of the intrinsic dimensionality, an MLP can

construct new variables containing the main sources of variability present in the data. These

factors can be built so as to be similar to Principal Components or, alternatively, to capture

non-linear features. In the later case, the extracted factors are also representations of the

data, extracted in such a way that the average missing information becomes minimal. But

not subjected to the condition of being linear.
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In other words, Neural Networks can, if required, extract non-linear pieces of information

from the multi-variate distribution. For example, if in some two-dimensional phenomena its

scatter diagram shows a clear “S” shape, the first or main feature to be extracted can be the

S shape itself. An MLP will classify other S-shaped distributions as sharing that feature with

the original data. This can be decisive when trying a classification of sensitivities of assets

to market forces based on accounting reports and related information, or other situations

where linearity doesn’t apply.

Forecasting and Systems Identification: The MLP is suited for forecasting as well. In

this case, the desired outcome is the same time-history as the input but placed a few periods

ahead. Each input variable is related to the others so that the information fed into the

MLP is a window representing a given time period. The learning takes place by showing the

net many of these windows selected at random, along with the corresponding time-history

a desired number of periods ahead. As a result, the MLP learns to predict the underlying

phenomenon.

A description of the MLP in forecasting and Systems Identification can be found in

Lapedes and Farber (1987) [16]. White [46] used an MLP to try to predict the returns of

common stock.

Systems Identification is potentially interesting for assessing the extent to which some

financial time-histories are dictated by a complex chaotic behaviour rather than by simple

randomness. It is possible that the price of some commodities are a non-linear dynamic one

as well. Benoit Mandelbrot noticed one such structure in the price of cotton [20] and other

authors suggested similar behaviour in indices related to equity in the NYSE [26]. If that is

so, the MLP would be a most adequate tool for capturing the underlying mechanism.

Dynamic Features, Stability and Diagnostics: Neural Networks can even cope with

time-varying multi-variate data patterns as a whole. Time correlations of non-stationary

data can carry important information about underlying trends.

Considering each M-dimensional cross-section input as a vector, if there is some relation

between an event and its predecessors, a trajectory of such a vector will be drawn in IRM .

This trajectory can be recognized by an MLP or, in some cases, by a self-organized map of

patterns after appropriate reduction. See Tattersall (1988) [40] for an explanation of this

technique.

This seems a promising diagnostics tool for discussing the stability of APT factors, dif-

ferent kinds of firm distress or ratio information contents.
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6 Summary

Neural Networks are versatile modelling tools likely to become useful in specific problems

involving the extraction of knowledge from samples of accounting and financial data. The

more promising tasks seem to be those related to:

• Complex classification and systems identification. In this case the valuable feature of

Neural networks is their power and generalisation capacity. In [41] we explore this

aspect.

• Features Extraction via node’s specificity. In this case the feature viewed as interesting

is the information apportioned by the model about the intrinsic structure of the data.

Neural Networks embody two main sources of inspiration: Connectionism and Tele-Com-

munications Engineering. Examples have been given of the most representative networks in

both cases: The Multi-layer Perceptron and the Self-Organized Map of Patterns.
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