NEURAL NETWORK BASED METHODS
IN THE EXTRACTION OF KNOWLEDGE
FROM ACCOUNTING AND FINANCIAL DATA

By
Duarte Trigueiros

September the 23", 1991

University of East Anglia

School of Information Systems



© Copyright 2011
by

Duarte Trigueiros

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its
copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may

be published without the author’s prior written consent.

i



Preface

This study is about knowledge acquisition in Accountancy and Finance. It develops new concepts
and techniques for the extraction of meaningful information from data like returns on assets and
accounting reports.

Traditional areas of concern such as the homogeneity of industrial groups and the relation between
market perception of risk and accounting numbers are explored in the light of such concepts. The
result is a unified view and methodology, leading to an easier formulation and modelling of problems.

The implementation of this formulation is carried out using flexible tools, known as Neural
Networks. The aim is to show how these tools are able to apportion qualitative, very significant
improvements in areas where there 1s already a well developed set of results.

We organized our research in two main bodies. The first one comprises five chapters and its goal
is the building of a framework allowing for the statistical modelling of accounting information. The
second body includes an introduction to Neural Networks and three applications.

Both parts contain a detailed introduction. We defer the usual comments on subjects to such
introductions. Here, we would like to highlight just a few achievements of this study along with

suggestions for readers.

Describing the cross-sectional characteristics of accounting data: Empirical evidence gath-
ered in chapter 1 and 2 make it possible to develop appropriate models for the description of the
cross-sectional behaviour of accounting information. Such models are extensions of financial ratios
contemplating deviations from linearity and proportionality (chapter 3).

The most intriguing aspects of the cross-sectional behaviour of accounting data are explained in
chapters 2 and 4. We focus on the existence of outliers, the heteroscedasticity found in models, the

distribution of ratios and the nature of their information content.

Extracting appropriate ratios from examples: We show that Neural Network-like algorithms
are capable of implementing the developed models. Using them, they learn an accounting relation
from sets of examples. As a result, this technique will build optimal structures interpretable in terms

of financial ratios (chapter 7).
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This approach effectively avoids the search of appropriate ratios by the analyst and some other
major drawbacks of the multivariate statistical modelling techniques used in accountancy. It is also

self-explanatory, yielding not just a model but also an interpretable set of ratio-like structures.

Improving diagnosis specificity with Neural Networks: Neural Networks are also used to
automate financial diagnosis (chapter 8). Firstly, graphical tools are developed so as to give a joint
answer to two complementary questions often found in financial diagnosis. Then, Neural Networks
automatically interpret them. The set of rules generated in this fashion can be seen as a pre-

processing for symbol-based expert systems.

Relating firm features to expected return: Our study also typifies financial risk according to
the features of large U. K. industrial firms as perceived by the market (chapter 9). Tt uses arbitrage
considerations to establish a relation between sensitivities to factors underlying expected returns and
stable features of these firms. The APT offers the possibility of looking into the expected returns of
firms from several points of view. APT indices are able to capture with more detail covariance of risk
components with some characteristics of the firm. Neural Networks are especially good at modeling
information-flow relations involving cross-effects such as those which link accounting reports with

market expectations.

Complementary remarks: Appendices contain matters which, if placed in the main text, would
break the flow of the reading.

Figures and graphics were used generously throughout the text. The goal is to facilitate the
understanding of the subject. Figures are not intended to provide evidence. In most cases they
simply show examples or characteristic features. In a few occasions it was impossible to ensure that
the presentation of tables or figures would be placed near and after their reference in the main text.

This stems from their abundance.

Suggestions for reading: The reader interested in knowledge acquisition in Accountancy and
Finance — the subject of this work — should go through the original sequence of chapters. Such
reader needs to have a basic background in linear algebra and statistics.

Accountants mainly interested in ratio analysis or in the building of simple statistical models
could omit the reading of chapter 3 and the last section of chapter 5. From the second part of the
study they would find the first two sections of chapter 8 eventually interesting. The contributions of
our research for the problem of the distribution of ratios can be found mainly in chapters 1 and 4.

We would like to make this study accessible to a broad range of potential readers, especially
those engaged in research requiring the use of numerical methods in Accountancy and Finance. But
it would be outside of the scope of this work to provide detailed explanations for concepts easily

found in text-books. Anyway, we tried to avoid all unnecessary algebra.
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Introduction To This Part

The subject of the following chapters is the description of the cross-sectional characteristics of
a set of accounting items. The final goal is the establishment of an appropriate framework for the
extraction of knowledge from accounting reports and related outcomes.

Accounting reports are an important source of information for managers, investors and financial
analysts. Statistical techniques have often been used to extract such information from databases
where accounting reports and related outcomes are gathered. The goal is to construct models suitable
for prediction or for isolating the main features of the firm.

An early model is that of Beaver [7] who used accounting ratios to predict financial distress.
Many other researchers followed him, mainly using more sophisticated techniques (see [4] or [125]).
Other examples of accounting statistical models are the prediction of bond ratings [63], the rela-
tionship between market and accounting risk [9], and the structures of costs and output in various
industries [51].

The procedures used to obtain these models are quite similar. The first stage consists of forming
a set of ratios from selected items on an accounting report. This selection 1s typically made in
accordance with the beliefs and expectations of researchers. Next, the normality of these variables is
discussed. Outliers are discarded. Transformations are applied. Finally some linear modelling tech-
nique is used to find optimal parameters in the Least-Squares sense. Linear Regressions and Fisher’s
Multiple Discriminant Analysis are the most popular algorithms. However Logistic Regression can

also be found in some studies. Foster [44] offers a review of accounting modelling practice.

Ratios as Input Variables for Statistical Models: All such models use ratios as predictors.
The use of ratios as input variables in accounting statistical models seems to be an extrapolation
of their normal use in Accountancy. Ratios are supposed to capture in a simple and standard way
some noteworthy feature of the firm. However, there are difficulties involved in using ratios as input
variables. As M meaningful accounting variables can generate up to M? — M ratios, some research
seems to get lost in a prolific use of all sorts of combinations of variables. It is easy to find in the
accounting literature models with forty and more predictors.

The problem of selecting adequate ratios as input variables soon became a source of empiricism.
It 1s very difficult to justify the selection of one particular set of ratios instead of any other. Some

research clearly opts by accepting them all.



In a survey study dating back to 1981, Chen et al. [22] report the use of 65 different financial

ratios in 26 studies. From these,

... “forty one are considered useful and/or are used in the final analysis by one or more
researchers. Given such a heterogeneous set of useful financial ratios, the decision-maker
has to be at a loss in selecting which ratios to use for the task at hand. Conceivably,
41 ratios can not all be significant or equally important in a multi-ratio model. The
decision-maker may hesitate to omit a ratio if it has been useful in one or more of the

empirical studies.”

The empirical nature of existing procedures: Accounting statistical modeling practice rely

heavily on general-purpose recipes.

e Improvements in normality are sought by pruning out tails and empirically trying different
transformations, not always the most appropriate ones. It is a common practice to mix up in

the same model square root and log transformations.

e Heteroscedasticity is treated as a separate phenomenon and requires further manipulation,

typically a weighting of cases with another variable.

e Multicolinearity is also viewed as an accident in its own right so that the measures recom-
mended for general cases are applied — A few Principal Components are extracted and used

instead of the original variables.

The model parameters, after this pruning, scaling and rotating of the input variables become difficult

to interpret. The entire routine tends to a broad empiricism.

The Method of this Study: Financial ratios are a simple and intuitive way of capturing features
of the firm. Those who use accounting information consider ratios as a starting point for further
elaboration. However, when the goal is the description of the behaviour of accounting data it seems
clear that ratios are the end of a process rather than the beginning.

We argue that any attempt to build a basis for the description of accounting statistical procedures
by looking into the world of financial ratios is not likely to succeed. Ratios are two-variate relations.
Their behaviour will be determined by the one of their components plus the interaction between
them. This interaction can be itself generated by internal mechanisms of the firm or by external
ones, like accounting identities.

It is clear that the final characteristics of any ratio will be determined by complex factors. In this
study we begin by the opposite end. We show that the statistical behaviour of accounting data be-
comes greatly clarified after explaining the statistical behaviour of individual items. And when doing
0, also the problems quoted above — normality, transformations versus outliers, heteroscedasticity,

multicolinearity — are solved.



Contents: Chapter 1 introduces the data. Then, it empirically assesses the statistical nature of
the selected accounting items. Both individual groupings and overall samples are studied.

Chapter 2 examines the regularities devised in chapter 1 and extract the most immediate conse-
quences for the modelling of accounting relations. The existence of outliers and heteroscedasticity
in accounting data is explained. The use of regressions is discussed. Then, the joint behaviour of
more than one item is approached. The regularities found in the multi-variate behaviour of items
are described. Finally, this chapter discusses the statistical nature of items which are a subtraction
of two other items.

Chapter 3 builds up the statistical framework to be used throughout this study. New models,
which are extensions of financial ratios able to account for non-linearity and non-proportionality,
are introduced as a consequence of the empirical observations gathered in previous chapters.

Chapter 4 studies the influence of accounting identities and other external forces in the statistical
nature of ratios. The main rules governing their distribution are described. Consequences for the
statistical modelling of accounting data are extracted.

Chapter 5 is about size and industrial grouping as the main sources of variability present in our
data. A proxy for size is developed and discussed. The homogeneity of some industrial groups and
the complexity of its random effects are assessed. We conclude that non-linear modelling tools are

required in some occasions when modelling accounting relations.



Chapter 1

Empirical Evidence on the

Distribution of Accounting Items

Accounting items, as found in databases containing collections of annual reports of firms, can be
viewed as statistical variables. Fach firm is a case. For a given item, say, Fixed Assets or Sales, a
particular collection of firms form a cross-sectional sample.

In this chapter we show that the lognormal distribution cannot be rejected as a parameterization
of the probability density function governing a set of accounting items. We also explore several other
possibilities and we show that they are not tenable. In order to assess the importance of the results
of the performed tests we compare them with simulated ones. We also examine individually the few
cases of departures from lognormality.

We use data from British firms belonging to 14 industrial groups in four broad areas: Engineer-
ing, Processing, Textiles and Food Manufacturers. Both individual groups and overall samples are
examined.

Our study contemplates a period of five years (1983 - 1987) in order to check the importance of
regularities by tracing them during more than one period. But it is a cross-sectional study. Each

year is studied individually.

PROCESSING: 14 Building Materials 32  Metallurgy
54  Paper and Packing 68 Chemicals
ENGINEERING: 19 Electrical 22  Industrial Plants
28  Machine Tools 35  Electronics
41  Motor Components
TEXTILES: 59  Clothing 61  Wool
62 Miscellaneous Textiles 64 Leather
FOOD: 49  Food Manufacturers

Table 1: List of the industrial groups examined by this study and their SEIC number.



TA Total Assets NW Net Worth

FA Fixed Assets DEBT Long Term Debt

D Debtors C Creditors

CA Current Assets CL Current Liabilities

I Inventory TC Total Capital Employed
wC Working Capital

EX Operating Expenses less Wages S Sales

EBIT Earnings Before Interest and Tax | W Wages

opPp Operating Profit

FL Gross Funds From Operations N Number of Employees

Table 2: List of accounting items examined by this study and their abbreviations.

1.1 A Review of Previous Research

Some neglect in considering accounting items as statistical variables stems from the fact that their
practical importance is not evident. Unlike well-behaved variables like blood pressure or the rate
of telephone calls, accounting figures can vary between almost unlimited magnitudes. Reports from
companies like ICI or BP, containing values with many digits can be found in the same database
along with others which hardly reach four digits.

In order to deal with the problem of such differences in size, accountants use ratios, not the items
themselves, to extract useful information. Therefore the statistical properties of basic accounting
items received little attention in the literature.

Ratios, of course, have been the object of a much bigger effort. It is worth summarizing briefly

this research. As a secondary product some evidence can be collected on the items themselves.

Empirical Research on the distributions of ratios: Horrigan [62] (1965) is an early work
on this subject. He analyzed 17 ratios for 50 companies over the period 1948-57 reporting positive
skewness. Horrigan explained it as a result of effective lower limits of zero for these variables.

Other studies followed. O’Connor [91] (1973) discovered that for all his 10 ratios in a set of 127
companies during the period 1950-66, skewness was once again prevalent.

Also Bird and McHugh [14] (1976) analyzed 5 ratios for 118 firms over the period 1967-71 in
Australia finding skewness. But they considered it as an accident and implicitly suggested the
pruning or winsorizing of distributions until achieving normality.

The Deakin study [27] (1976) shows that the positive skewness could not be ignored in his sample
of 11 ratios for the period 1955-73. He concluded that

...“as a result of this analysis it would appear that assumptions of normality for financial
accounting ratios would not be tenable except in the case of TD/TA (Total Debt/Total
Assets) ratio. Even for TD/TA the assumption would not hold for the most recent data

observations.”



Deakin also points out that studies suggesting that ratio distributions could be approximated to

normality seem to do so for reasons of convenience:

“With absence of knowledge about these distributions, there i1s a tendency to rely upon
the normal distribution as an approximation due to the availability of statistical tech-

niques designed to analyze relationships among normal variates.”

The Bougen and Drury study [17] (1980) was based on U.K. firms. It collected data on 700
industrial firms for 1975 and analyzed 7 ratios, concluding that skewness could not be ignored. Also
Buijink [21] (1984) reported the persistency of skewness over a large period. Barnes [5] (1982) argued
that skewness on ratios could be the result of deviations from strict proportionality between the
numerator and the denominator. This idea that ratio behaviour should be understood by examining
the behaviour of the component accounting variables is basic to the present research.

Frecka and Hopwood [45] (1983) extended the Deakin’s 1976 study for a longer period and re-
ported similar findings. They also tried to achieve normality by applying square root transformations
and pruning the remaining outliers, proposing such procedure as the standard way of dealing with
the problem of deviations from normality.

Ezzamel and Mar-Molinero wrote two recent reports (1987 and 1990) on the distribution of ratios
using U.K. data [39] [38]. Both are extensive and detailed. The authors also investigate the effects
of a family of transformations in the distribution of ratios.

Two studies by McLeay [86] [87] (1986) are somehow out of the previous line of research. They

firstly refer to items, not to ratios. McLeay distinguishes two broad classes of items:

Acounting Sums (X): Those which are sums of similar transactions, which sign remains the same.
This applies both to accounting stocks such as Fixed Assets as well as to flows such as Sales.
In cross-section, such items should be bounded at zero with a skewed distribution. Size proxies

would fit into this class.

Accounting Differences (A): Net items which could be of either sign (or zero), such as Earnings

and Working Capital.

McLeay argues that the X variables ought to be lognormal since they are directly related to the
size of the firm which can be seen as a stochastic process adhering to Gibrat’s Law of Proportional
Effect [48]. Therefore, ratios formed with ¥ variables should also be lognormally distributed.

McLeay’s notation is useful and we shall adopt it. However, it somehow seems to induce a
qualitative difference between the 3 and the A variables. The last ones could wrongly be interpreted
as not related to the size of the firm.

Many other studies on the distribution of ratios are not referred to here. There is a wide diversity
of observed distributions none of them deserving general agreement. The only feature of accounting

ratios which received some credit is the positive skewness.



1.2 The Method and the Scope of this Study

In order to test the lognormality of accounting items we use a logarithmic transformation. We then
apply to the transformed data the Shapiro-Wilk test of normality in an improved version due to
Royston [105]. This test can cope with large or small sample sizes and is generally recommended as a
superior omnibus test. It has been used by some authors for testing the normality of ratios [39] [38].
Berry and Nix (1991) [11] discusses it in more detail.

The Shapiro-Wilk test yields a statistic, W, ranging from zero to one. Values of W approaching
1 mean increasing normality. The significance;, P, of W is dependent on the size of the sample. In
this study a value of P < 0.05 leads to the rejection of the null hypothesis that the tested sample
could have been drawn from a normal population.

P should be considered as the probability of obtaining such a W value, or such a sample as
the tested one, when the population is normal. It is important to notice that when many tests are

performed, the likelihood of obtaining a few cases in which P < 0.05 becomes very high.

The Transformation: The logarithmic transformation applied in this study to any item called
X is in some cases not just the log of X. The lognormal distribution can have three parameters, not
just the two natural extensions of the Gaussian distribution [1]. Therefore, the test of lognormality
must make allowance for this third parameter.

In all performed tests when a simple log transformation leads to 0.001 < P < 0.05 — when
the probability of getting such a W for a lognormal population is small but not below the used
precision — we repeat the test introducing an estimated value for the third parameter, § so that the

transformation of X leads to a new variable 7'
T = log(X + 4) (1)

4 is a constant. It accounts for the existence of overall displacements. We call § a base-line. This
designation stems from its role in generative processes leading to lognormal variables.

The above procedure is required if we want to model lognormality with all generality. Lognormal
distributions often are three-parametric. The § are in general small.

An introduction to the lognormal distribution can be found in a book by Aitchison and Brown [1].
When no § is needed for achieving normality these authors refer to the parameterization as a Two-
Parametric Lognormal. For significant § they refer to it as a Three-Parameters one. This terminology

is generally accepted.

Estimating the Base-Line: Some procedures available for estimating § are also described by
Aitchison and Brown. In our case, J is estimated by trial following a suggestion of Royston [105].
It is a method basically similar to the one originally used by Gibrat and about which Aitchison and

Brown say that “it is much more an art than a science”. Royston seems to rely on a new factor,
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Figure 1: The significance, (P), of the Shapiro-Wilk’s W for varying deltas. In these two cases we
would accept a three-parametric lognormal distribution with § = +90 (left) and § = —300 (right).

the precision of the Shapiro-Wilk test, to overcome this criticism. In fact, the Shapiro-Wilk test is
much more reliable than the graphical methods Gibrat used for assessing normality.

Basically, this method consists of discovering by trial which § maximizes W or P(W). Tt is
indifferent to use the statistic or its significance. Figure 1 shows two examples. The significance, P,
of W improves when we add to all observations in the sample a constant small § before transforming
the data. By trying increasing § we find an optimal W or P(W).

In the case displayed on the right (Total Capital Employed, Electrical industry in 1983), 6 = —300
is the value beyond which P(1/) no longer improves. Therefore we take this § = —300 as the correct
third parameter to introduce in the log transformation. On the left we see how a small § of +90
enhances the lognormality of Working Capital (Paper & Packing, 1985).

We found sharp, well contrasted optimal values for W, making it possible to estimate § in this
way. In our study the estimated & were often related to the absolute smallest value in the sample.

Obviously, the values allowed for § were always smaller than the smallest case in the sample
having opposite sign. Therefore the use of § cannot be considered as similar to the practice of

adding a value to all the cases in a sample to avoid negative cases. We never let § change the sign

of any value in the sample.

The Variables:

There are 11 items from the Balance Sheet, b from the Profit and Loss Account, 1 from the Sources

We examined 18 different accounting items. They are listed in table 2 (page 6).

and Applications of Funds statement, and one which is not standard. These items are widely used
in the second part of this study. They are also frequent as components of ratios used in statistical
modelling. Of course, the number of selected items could grow to much higher figures.

The selection of FX, (Operating Expenses less Wages) is a way of getting a picture of the



cost structure of firms using disclosed data. The inclusion of N (Number of Employees) concerns
findings discussed later on (chapters 5 and 7). This variable convey important information regarding
the classification of industrial groups. It 1s also useful for comparing accounting items with non-
accounting variables exhibiting similar statistical behaviour.

In our study this set of selected items can be divided in two groups.

1. Those having only positive cases, like Sales or Inventory. They are broadly the items McLeay

calls ¥ variables.

2. Those items which can have both positive and negative cases in the same sample like Earnings
and Working Capital. They are referred by McLeay as A variables. In this second group we

perform, when possible, two tests of lognormality.

(a) Using only the positive-valued cases in each sample, and

(b) using only the absolute value of the negative cases. For small samples this test could not

be carried out because the number of negative cases was non-significant or non-existent.

In section 2.3 (page 48) we discuss the potential applicability and usefulness of these split cross-
sectional samples.

The abbreviations, when used, are usual in the literature (see table 2 on page 6).

The Samples: All companies quoted on the London Stock Exchange are classified into different
industry groups according to the Stock Exchange Industrial Classification (SEIC) The SEIC aims
to group together companies which results are likely to be affected by the same economic, political
and trade influences [95]. Although the declared criteria are ambitious, the practice seems to be
more trivial, consisting of classifying firms mainly on a end-product basis. The SEIC classifies firms
according to a perception of groupings of firms.

The tested samples were drawn from the Micro-EXSTAT database of company financial infor-
mation provided by EXTEL Statistical Services Ltd, which covers the top 70% of UK industrial
companies. We selected 14 manufacturing groups according to the SEIC criteria (see table 1 on

page 5). Two kinds of samples were examined.
All Groups Together, in which the 14 industrial groups are gathered in one unique sample.
Industry Groups, for samples of only one industrial group at a time.

Each described test is performed five times for reports from 1983 to 1987. None of the companies

present 1n the original groups were excluded from the tests.
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Ttem Significant P(W)
1983 1984 1985 1986 1987

Sales

Operating Expenses less Wages
Wages 0.015 0.001 0.01 0.02
EBIT

Operating Profit
Gross Funds From Operations 0.03
Debtors
Current Assets 0.03 0.02
Inventory
Fixed Assets
Total Assets 0.01 | 0.005 0.01 0.005
Working Capital
Creditors 0.01 0.006
Current Liabilities 0.03 0.04
Net Worth

Long Term Debt

Total Capital Employed
Number of employees 0.02 0.04

Table 3: Two-parametric lognormal items for all groups together. Cases of three-parametric lognor-
mality are those for which P < 0.05. The number of cases in each sample ranges from 550 to 700.

1.3 Results

In this section we display the results of testing the lognormal hypothesis for two kinds of samples.
Firstly, the large ones containing all the 14 industries together. Secondly, the small ones drawn from
one industry at a time. These two groups of tests represent two possible levels of homogeneity worth
exploring.

In fact, one single group, if homogeneous, yields homogeneous samples. Two or three groups, each
of them homogeneous, can yield samples which are severely non-homogeneous. But 14 groups in the
same sample, all of them sharing a common attribute, are likely to apportion random effects rather
than fixed ones. In that case, a second level of homogeneity could be attained. The examination of

such samples becomes interesting since they represent the common attribute they share.

1.3.1 All Groups Together

The large samples mentioned above are now examined. The common attribute to consider here as

a possible source of homogeneity is the industrial character of all the gathered firms.

Positive cases: In appendix A we display the number of cases in each sample and the statistics
obtained when applying the Shapiro-Wilk test along with some usual measures of normality (kurtosis
and skewness) to the 13 positive-valued accounting items and to the positive values of the 4 items
having both positive and negative cases. We also included Long Term Debt for which only the

non-zero cases were selected.

11



Item Statistic 1983 1984 1985 1986 1987
EBIT w 0.9572 | 0.9838 0.988 0.951 0.946
sig W 0.042 0.048
N. Cases 40 42 48 57 47
Operating Profit w 0.9537 | 0.9851 0.9925 | 0.9686 | 0.9596
sig W
N. Cases 57 58 62 74 69
Gross Funds From Operations w 0.9594 | 0.9649 | 0.9792 | 0.9066 | 0.9644
sig W 0.005
N. Cases 27 24 30 36 38
Working Capital w 0.9640 | 0.9743 | 0.9647 | 0.9678 | 0.9609
sig W
N. Cases 50 61 67 61 62

Table 4: Results of applying the Shapiro-Wilk test to the absolute values of negative cases. All
groups together. Departures from the two-parametric assumption have P < 0.05.

Table 3 on page 11 shows, by year, a short summary of the results of applying the Shapiro-
Wilk test to such items. When nothing is said items yielded non significant departures from two-
parametric lognormality. When there is a significant difference, the significance is displayed. In all
the significant departures observed, the introduction of a small § made it vanish.

The results show that 11 on the 18 items are two-parametric lognormal in the whole period of
1983 to 1987.

Sales and Operating Expenses less Wages, Net Worth, Debtors, Fixed Assets, Inventory and
Total Capital Employed, along with the positive cases of Earnings, Operating Profit, Long Term
Debt and Working Capital, are persistently two-parametric lognormal.

The remaining 7 variables are either two-parametric or three-parametric lognormal depending on
the year. None is persistently three-parametric for the five years. In at least one year all variables
achieved lognormality with just a simple log transformation.

Total Assets and Wages require a three-parametric transformation in four of the observed years.
These samples have their smallest values far away from zero. In general the positive values of
McLeay’s A variables are more near two-parametric lognormality than the X ones. This is because
their smallest cases approach zero. Only Gross Funds From Operations exhibit one departure from
a two-parameters distribution, in 1987.

The values optimal 6 assumes whenever a three-parametric transformation is required often follow
the smallest case in the sample. It is worth noticing that the effect of adding such a § completely

vanishes for larger cases. The base-line affects only the smallest cases in the sample.

Negative cases: We also checked the negative values of items having both positive and negative
cases. We selected first the set of negative cases and then we applied logs to their absolute values.

The results are displayed in table 4 (page 12). Operating Profit and Working Capital are two-
parametric lognormal for the whole period. Earnings and Gross Funds From Operations are, in one

or two years, three-parametric. Therefore losses are also lognormal. We shall see later on that these

12



Ind. / Ttems S CL TA N TC CA EX W C NW D 1 FA | T.Ind
Leather

Metallurgy

Motor c.

Textiles m.

Wool

Clothing 1 1 2
Building m. 1 2 3
M. tools 1 1 1 1 4
Chemicals 3 1 1 1 6
Paper 1 1 3 2 7
Electrical 1 3 2 4 2 1 2 3 18
Food 4 3 3 2 2 2 4 1 25
I. plants 4 2 2 3 2 1 1 1 2 2 2 1 2 25
Electronics 3 3 3 4 2 2 5 1 2 2 27
T. item 14 11 11 10 10 9 9 9 8 8 7 6 5 117

Table b: Items having only positive cases. Number of cases yielding a significant departure from
two-parametric lognormality by industry and item.

negative values have a distinct behaviour.

1.3.2 Within Industrial Groups

In this section we show that the lognormality of our set of accounting items cannot be rejected
also when each sample is drawn from the same industrial group. Since the number of samples
involved is very large we shall not display here the detailed results. Instead, we present proportions
of departures from the two-parametric lognormality by industry and by item.

The detailed results of applying the Shapiro-Wilk test to all samples — the eighteen observed

items for fourteen industries during five years — can be found in appendix A.

How to interpret the displayed proportions: All the presented proportions are calculated
using marginal totals: When we refer to a value of 12% of departures by industrial group the total
used to calculate such proportion is not the overall total of different samples tested (say, 910) but
the 65 different possibilities of sampling by industry. That is, since we are working in this case with
five years and 13 variables there are 5 x 13 = 65 different ways in which a particular industry can
be sampled.

For example, the total used for displaying the important issue of persistency of lognormality for
the whole period of five years was 182 because there are 13 items and 14 industrial groups which
makes 182 different samples to be tested involving this period. The tables displayed in appendix A

allow anyone interested in to calculate any particular proportion.

Positive-valued items by industrial group: For the selected 14 industrial groups, 13 positive-
valued items were checked for lognormality with the Shapiro-Wilk test. This procedure was repeated

for five years (1983-1987). Therefore the total of different samples tested under this item was 910.
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Figure 2: The incidence of departures from two-parametric lognormality for positive-valued account-
ing items and industrial groups.

Lognormality was observed for the generality of cases. A total of 793 samples (87.1%) yielded
two-parametric lognormality.

Table b on page 13 shows by industry and by item the number of departures from two-parametric
lognormality in the considered period of five years. The table has been sorted by number of depar-
tures. As an example, the value 2 in column FA and raw BUILD means that departures from a
two-parametric lognormality were observed twice in the five years period for Fixed Assets (FA), in
the Building Materials group.

Only in one case (Wages in the Electronics industry) we obtained a persistent P < 0.05 for all
the five years. Electronics is also the group having more such cases (almost 40%). Next comes Food
Manufacturers and Industrial Plants with more than 30% followed by Electricity, about 20%.

Groups like Paper and Packing, Chemicals, Machine Tools, Building Materials and Clothing
have less than 10% of departures. Miscellaneous Textiles, Wool, Motor Components, Leather and
Metallurgy have no departures at all.

Industries are particular regarding lognormality. Some are two-parametric for all the observed
items and some others have a significant number of items which are three-parametric. There is not
such a clear separation for items as for industries. The worst item, Sales, had 20% of non two-
parametric lognormality for the five years in all groups. The best one, Fixed Assets, had less than
8%. Three-parametric lognormality seems to be related to industrial groups, not to items. Figure 2

on page 14 shows such a contrast in more detail.

Positive values of items having both positive and negative cases by industrial group:
In this paragraph we observe the behaviour of the positive values of four items having both positive

and negative cases like Working Capital or Earnings. We also include one item, Long Term Debt,
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Table 6: Items having positive and negative cases. Number of cases yielding a significant departure
from two-parametric lognormality by industry and item.

for which only the non-zero cases were selected. That makes a total of 350 samples to be tested:
Five variables for the same fourteen industries during a period of five years.

A total of 311 samples (88.9%) yielded no significant departure from the two-parametric lognor-
mal hypothesis.

The results by industrial group and by variable are similar to those of the previous paragraph.
Food, the second worst for positive variables, is now the worst. The industries exhibiting no depar-
tures at all are Leather, Metallurgy and Miscellaneous Textiles as before, along with Machine Tools
(see table 6 on page 15).

Again, the five observed items had a more homogeneous behaviour than the industrial groups.
Departures were observed in 16% to 8% of the samples, Funds Flow being the worst. Figure 3 on
page 16 shows the contrast between the behaviour of industries and items regarding the incidence

of three-parametric lognormality.

Negative values of items having both positive and negative cases by industrial group:
We could not test the lognormality of all industries when considering only absolute values of negative
cases. The size of the resulting samples would be too small or non-existent.

Table 7 on page 17 contains the list of the samples we were able to select and the values of W
for each one of them. Only two groups were large enough to provide a few negative cases. All the

examined samples were two-parametric lognormal.

Simulation of Negative Working Capital: Since the empirical data was not conclusive we
simulated a difference between two lognormal variates having the same features encountered in the
items themselves.

We selected a sample, Food 1987, and measured the mean values and correlation coefficient of

log C'A and log C'L. Then we generated a two-variate sample with 2000 cases obeying the observed
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Figure 3: The incidence of departures from two-parametric lognormality for positive cases of ac-
counting items and for industrial groups.

parameters. Finally we found the anti-logarithms and subtracted them. The simulated Working
Capital had 463 negative cases. The absolute values of this set were examined and they were
lognormal. The results are displayed in appendix A along with details of the used procedure.

The simulated values of CA and CL for negative variates of Working Capital were also lognormal.
This result is quite the expected one since log C'A is strongly correlated with logC'L. In a two-
variate distribution, the line separating the pairs {log CA,logCL} corresponding to positive WC'
from the negative ones is parallel to the principal axis (the one along which there is a maximum
of variability). The two distributions resulting from cutting the original one along such axis have
marginal distributions which are not very different from the original. Should the slicing be done
along an oblique axis, then the distortion would be noticeable.

A similar reasoning explains the lognormality of Working Capital. In section 2.3 we further
explore the problems posed by the statistical modelling of negative-valued lognormal items.

The lognormality of absolute values of negative cases is not enough to make us consider them as
having the same statistical characteristics as the positive ones. Their correlation with other items
and in general with the size of the firm is smaller than the usual for positive deviates. Losses are
indeed correlated with size but less than profits. In section 2.2.2 we examine correlations between

items and more simulations similar to this one are carried out.

Persistency of departures from the two-parametric hypothesis: We measured the number
of times a significant departure from a two-parametric lognormal distribution was observed in a
given sample for the period of five years. Such a measure can give us an idea of the persistency
of simple lognormality. For example, when considering items we noticed that Working Capital in

three industrial groups departed once in five years. Two other groups departed twice. And when
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Year | Industry N. Cases | Variable W | P(W)
1983 | Food 15 W. Capital | 0.929 0.28
1984 | Electronics 13 W. Capital | 0.946 0.51
Food 19 W. Capital | 0.927 0.16

1985 | Electronics 17 EBIT 0.971 0.82
25 W. Capital | 0.950 0.27

12 F. Flow 0.983 0.97

Food 14 W. Capital | 0.917 0.19

1986 | Electronics 16 W. Capital | 0.957 0.59
15 EBIT 0.929 0.26

24 EBIT 0.918 0.05

Food 16 W. Capital | 0.933 0.30

1987 | Electronics 16 W. Capital | 0.923 0.19
13 F. Flow 0.953 0.61

15 EBIT 0.962 0.69

Food 16 Op. Profit 0.898 0.09

17 W. Capital | 0.961 0.63

Table 7: Negative cases. Observed samples. No departures from two-parametric lognormality.

considering groups instead of items, Metallurgy had no departures at all, Building Materials had
three items which departed once in five years and one item which departed twice. And so on.

In appendix A we display these results in detail. Next table is a summary.

Departures from two-parametric lognormality in five years | ¥ items | A items
Departures are never observed 69.2% 62.9%
A departure is observed once 11.0% 22.9%
A departure is observed twice 10.4% 11.4%
A departure is observed three times 5.5% 1.4%
A departure is observed four times 3.3% 1.4%
A departure is observed five times 0.5%

In 69% of the tests performed in samples having only positive values there is no departure at
all during the five-years period. One departure or two can be observed in 21% of the cases. Three
departures only occur in 5% and four in 3%. Only once (Wages in Electronics) persistence of
departure from the two-parametric assumption is observed for the whole period of five years.

The study of persistency for positive values of items having both positive and negative cases
yielded similar results. We consider that a non-persistent departure from two-parametric lognor-

mality 1s interesting. It shows that deviations from the two-parametric model are sporadic.

1.4 Other Possible Parameterization

The logarithmic transformation can be viewed as a way of reducing an excessive amount of skewness
in a distribution. Therefore it makes sense to ask if the reduction achieved with logs is the appropriate
one in the case of accounting items.

In case less reduction is required we should use a square root or other appropriate root. In case

more reduction is required we should use the Pareto distribution (log-ranks) or other of its class.
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Ttem Square | Cubic | Fourth Sixth | Eighth Log
Root Root Root Root Root

SALES, 1985, Electronics
Skewness 3.59 2.43 1.86 1.32 1.07 0.412

Kurtosis 15.77 7.97 4.93 2.62 1.76 0.091
Shapiro-Wilk’s W 0.627 0.7783 0.8472 0.9041 0.9266 0.968

WAGES, 1985, Electronics
Skewness 4 2.84 2.26 1.7 1.45 0.777

Kurtosis 19.43 10.2 6.61 3.82 2.72 0.488
Shapiro-Wilk’s W 0.56 0.711 0.785 0.851 0.879 0.94

Table 8: Comparing several root transformations with the log transformation using two samples.
1.4.1 Root Transformations

We tested first a scale of possible roots progressively approaching the effect of a log transformation.
For each of them we measured the skewness, kurtosis and W.

From the samples described above we checked only those yielding a poor figure for the significance
of W. In all such cases the log transformation was the one which maximized W.

Table 8 shows the results for two particularly badly-behaved groups. Clearly the signs of nor-
mality increase with increasing roots, achieving much more acceptable values with logs.

Part of this table is replicated graphically in figure 5 (page 20) on the right. On the left of the
same figure a de-trended normal probability plot reveals the fact that only a log transformation
seems to account for the skewness present in the data.

In figure 4 (page 19) we display the graphical evolution of a frequency distribution when progres-
sively larger fractional exponents were used for transforming the data. The last case is a logarithmic

transformation.

Characteristic behaviour of items: When assessing the distribution of ratios it is usual to
find cases in which no transformation seems to improve the normality of the data. However, when
we look at single accounting items the situation is very different. Not only the log transformation
emerges as the most appropriate. Also there is a clear progress towards normality for fractional
exponentiation of increasing degree.

Accounting items show a statistical behaviour much simpler than the one found in ratios. In the
particular case of transformations, 1t is frequent to find in the literature references to an unpredictable
outcome in the distribution of ratios after applying transformations such those we use here. We
explain this behaviour of ratios in chapter 4. At the moment it is important to notice that there 1s

no reason to expect in items the same kind of interactions present in ratios.

1.4.2 The Pareto Hypothesis

After discarding transformations less effective than logs in neutralizing skewness we tried one which

1s more powerful.
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Figure 4: Evolution of the frequency distribution of Current Assets, 1986, all groups, when several
root and a log transformation were applied.
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Figure 5: On the left, de-trended normal probability plot for several root transformations and logs.
Absolute normality would mean a horizontal straight line. On the right, the evolution towards
normality of three known statistics when increasingly high fractional exponents are applied.

Pareto processes have cumulative distributions for which the relation between the observed values

and the rank is logarithmic. If z 1s a random variable governed by a Pareto process we should observe
logz =logM — 3 x logr

in which r is the rank of  (the largest x is assigned the rank 1 and so on) and M, /5 are constants.
Therefore, if we rank accounting items in a sample from large to small the log of the item and
the log of the rank should be linearly related (with a slope of 3) for the Pareto hypothesis to be

acceptable. It is not the case.

The Pareto process and our data: A clear downward concavity of the distribution was observed
for all items. This departure from the Pareto hypothesis is very significant. The actual size of firms
occupying the middle of the rank is more than twice as large as that predicted by the Pareto
distribution.

Figure 6 (page 21) shows on the left an example of the shape accounting items assume when their
logs are compared with the logs of their rank in the sample. No signs of linearity can be observed.

In the same graphic we show the shape of an equivalent lognormal deviate (solid line). Clearly,
accounting values follow much more closely the lognormal deviate than any straight line. The
hypothesis of a Pareto or similar process governing accounting items does not seem tenable. Ijir1
and Simon [65] also report the same kind of concavity for Sales and the number of employees in

samples of U.S. firms.
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Figure 6: On the left: Pareto processes would exhibit a linear relation between log ranks and log
values. The solid line is the corresponding lognormal deviate. On the right, a de-trended normal
probability plot with two root transformations and a log one, along with a Pareto deviate.

On the right of figure 6 we can see the shape a Pareto deviate assumes in the de-trended lognormal
probability plot. It illustrates the meaning of transformations accounting for progressively larger
skewness. According to this scale the lognormal process appears in between the root and the Pareto

ones.

The Pareto process and the growth of firms: In some literature it is usual to link the growth
of firms with a Pareto process (see for example Steindl [121]). If the growth of firms is Pareto-like,
we should observe cross-sections of accounting items like Sales, Total Assets and Net Worth drawing
straight lines on a log-ranks vs. log-items scatter. Since this is not the case, it seems as if our results
contradict this belief.

The models of growth used for justifying a Pareto distribution of firm sizes are inspired by the
Gibrat Law [48]. The Gibrat Law leads to a whole class of skewed distributions depending on the
conditions imposed on the growth process. As we recall in chapter 3, the most immediate outcome
of the Gibrat Law is lognormality. Lognormality, however, is too simple and general an outcome. It
requires a random walk as the growth rate of firms.

The literature concerning the growth of firms considers Pareto processes instead of the lognormal
ones because of this scarcity of assumptions the lognormal hypothesis allows. In fact, when known
influences like the serial correlation during growth, the disinvestment or the effect of mergers and
acquisitions — and especially the birth and death of firms, see [65] — are accounted for, the resulting
cross-sectional distribution should be a Pareto or a Yule one, not the lognormal.

We think that the lognormality observed in items cannot be ignored. The models based on
the Pareto distribution are attractive but they don’t seem able to explain the actual distribution

observed in the data. Lognormality therefore should be taken into account in future theoretical
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developments.

More reasonable is the discussion of whether or not the Pareto process influences large firms.
The testing of such a hypothesis is difficult since lognormal processes and the Pareto ones lie very
near one another in the upper part of their distributions. If we rank a perfectly lognormal deviate
by size and then discard the smallest 2/3 of cases we get a set of values which are not far from a
Pareto process. This can also be observed in figure 6. The differences between a straight line and a

lognormal variate are small in the portion of the sample containing the largest cases.

1.5 Assessing the Importance of Multiple Tests

In this section we discuss the meaning and importance of W and corresponding P values obtained
from applying the Shapiro-Wilk test to a large number of different samples.

We simulated many samples drawn from a strictly Gaussian population. All simulated samples
had the same number of cases as found in each performed test. Then we compared the distribution
of the P obtained when applying the Shapiro-Wilk test to this set of simulated samples, with the
distribution of P from the real tests.

We also examined the possible existence of correlations between such values and the number of

cases in every sample.

The Logit transformation: The Gaussian distribution emerges as the result of many indepen-
dent random causes. It would be interesting to compare our set of P values with the Gaussian
distribution in order to measure in what extent their spread can be considered as caused by many
independent random events as those influencing any mechanism of sampling.

A set of P values such as the one obtained from the repetition of a significance test for many
samples cannot be directly compared with the Gaussian distribution because probabilities or any
relative frequencies are bounded by 0 and 1. However, it is possible to transform probabilities
so that the resulting variable is normal for Gaussian generative processes. We used the simple
logit transformation as an acceptable approximation of the relation linking relative frequencies with
Gaussian deviates.

For a given P, [0 < P < 1], we computed

Logit P =log

1-P

Logit P (also known as log-odds) now ranges from —oo to 400 and is approximately normal for
random normal events. A value of Logit P = 0 is the expected or central one. Negative logits
mean P < 0.5 while the positive ones are obtained for P > 0.5. Logit P can boldly be taken as the
number of standard deviations for normal distributions.

The logistic function

1
T 14 10-lesit P
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Figure 7: The frequency distributions for real (left) and simulated (right) Logit P. The cluster of
bad cases has been added to the distribution of real Logit P with an arbitrary, very small, value.

transforms log-odds back to probabilities.

Comparing distributions of real and simulated Logits: First we examined the distribution
of the log-odds obtained after performing the 910+ 350 tests described above. In order to do this we
had to exclude 16 + 4 tests having P < 0.001 because they would yield infinitely small log-odds for
the number of significant digits we were working with. The resulting distribution had a mean value
of —0.25 (equivalent P = 0.49) and a standard deviation of 0.85. Both skewness and kurtosis were
very small. The aspect of the frequency distribution was very much the one of a normal process.

Simulated normal deviates yielded a mean value of 0.04 (equivalent P = 0.53) and a standard
deviation of 0.8. The skewness was acceptable but the kurtosis was around 1. 3.6% of the simulated
tests yielded P < 0.05. Notice that supposing normality, 95% of the tests would have to fall inside
an interval of {—1.6,41.6} logits which is P = {0.025,0.975} as they did.

The fact that when performing multiple tests some of them are expected to exhibit P < .05 even
when the samples were drawn from a normal population means nothing wrong with the Shapiro-Wilk
test itself. When many samples are drawn from a perfectly normal population it is likely that some
of them will be far from normality in some degree due to the random nature of sampling.

Figure 7 shows the frequency distributions of both real and simulated tests. Some interesting

conclusions arise from comparing them.

e When many tests are performed we can expect at least 3.6% of them to show significant
departures from normality even when the population from which the samples were drawn is
strictly normal. Such result is the expected one. Samples don’t have to be normal even when
the generative mechanism is. In our case we put aside 16 tests as special cases. The proportion
of cases having 0.001 < P < 0.05 is now 11.3%. It seems as if only something like 7.7% of

those (11.3 — 3.6) should be considered as real, unexpected, departures from lognormality.
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e The second conclusion is induced by the similarity of spreads and the normality observed in
the real distribution. Normality means random, independent causes. Now, if some hazardous
sampling can introduce a spread of 0.8 in an otherwise perfectly normal collection of samples,
the real spread, also 0.8, should be assigned to an hazardous mechanism of sampling and not

to any particular cause.

Therefore we can take the difference between estimated expected values as the sole factor affecting
lognormality of accounting items. This difference can be expressed by saying that while the expected
probability associated with the Shapiro-Wilk W is, for a normal population, 0.53 it becomes 0.49
in the case of accounting items. A question of four to one hundred odds. This is what seems to
separate accounting items from a strict lognormal generative mechanism.

Of course, we are interested in accessing the plausibility of assumptions which concern the pop-
ulation, not particular samples. That’s why the above simulations are important. They provide a

firm ground for interpreting the results.

Relation between the size of samples and the significance of W: The Shapiro-Wilk test is
very robust concerning the size of the sample. In the considered interval no correlation was observed

between the size of the sample and the significance of W.

1.6 Examination of Bad Cases

We noticed in previous sections that a few tests of lognormality yielded values of P (Shapiro-Wilk’s
W significance) which were so small that it would not be possible to apply logits. A small P means
a departure from the lognormal assumption, that 1s, from the null hypothesis that the examined log
sample could have been drawn from a Gaussian population.

Such set of bad cases behave differently from the other cases. The significance (P values) obtained
from all other tests form in logit space a clearly normal distribution. Bad cases do not fit well in
such distribution. They are more numerous than expected and they form a cluster sticking out well
below the lower normal values of Logit P. See figure 7, page 23, on the left.

They are also insensitive to a three-parametric transformation. No § exists able to turn them
lognormal. This feature is a very particular one since in the other cases yielding significant departures
a ¢ exists able to bring W to non-significant values.

We examined each one of such bad cases in order to find out the reasons for their erratic behaviour.

In appendix A we describe them. The causes for the existence of the described bad cases seem to

be twofold:

Anomalous Cases. Errors, extreme outliers. Values which are orders of magnitude away from the

rest of the sample. Most of them are clearly erratic.
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Non-Homogeneous Groups. The existence of clusters of firms well detached inside the same
industrial group is perhaps a result of a temporary expansion of the sector. Or it can be a
consequence of an intrinsic non-homogeneity of an industrial group. It happens from 1984 to
1987 in the Electronics and Food industries. But it only affects Sales, the number of employees

and Wages.

Lognormality, either two or three-parametric, is linked with the homogeneity of the sample in log-
arithmic space. When an industry is not homogeneous — for example, when there are two groups
of firms instead of one — the tests cannot classify the sample as lognormal, even if the underlying
mechanism governing the behaviour of accounting items is lognormal.

We conclude that there seems to be an explanation or cause for each one of the observed strong
departures from the lognormal hypothesis. These causes should be considered as external to the gen-
erative mechanism governing the cross-sectional characteristics of accounting items. Their frequency,

20 cases in 1260 different samples, makes them exceptional.

1.7 Discussion and Conclusions

For the observed cases lognormality emerges as a very general and stable feature of cross-sectional
samples of accounting items. Not only the large samples formed with several groups are lognormal.
Each individual group is lognormal too. Not only “sums of similar transactions which sign remains
the same” [86] are lognormal. Ttems with very different origins are lognormal as well. On the whole,
we found only 20 non-lognormal samples in 1260. And there seems to be a good explanation for

such departures.

Three-parametric lognormality: Most of the observed samples are two-parametric. Some are
three-parametric. In lognormal distributions the third parameter accounts for displacements of the
entire sample. We call these displacements base-lines.

In a three-parameters distribution the smallest cases are not approaching zero as they should.
They approach a given base-line instead. The two-parameters lognormality only contemplates sit-
uations in which the smallest variates approach zero. In accounting numbers, as in many other
lognormal variables, base-line effects are expected.

Small base-lines only affect the smallest cases in the sample. The base-lines we estimated are near
the magnitude of the smallest cases in the sample. For a sample with smallest values of 10, 15 and
so on, the base-line will be non-important. The distribution would be two-parametric. For samples
with smallest values of 800, 900 and so on, the introduction of a § is required in the transformation
for achieving normality. This agrees with the three-parametric mechanism.

Three-parametric lognormality is sporadic. It emerges in some years but not in others. And it

relates to industries rather than to items.
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Applicability of the results: Our study clearly excludes non-industrial firms. Also those which
are too small for being collected into the Micro-EXSTAT data-base. We believe that purely commer-
cial firms or mixed ones will not depart from the general lognormal pattern. In the case of small or
very small firms, we think that base-line effects and the existence of samples with extremely similar
cases (groups with very small variance) can change the results substantially.

In general, our results seem to suggest that the cross-sectional behaviour of accounting items is

best analysed in relative or scale-independent space.

Lognormality and the existing research: The finding of a regularity in distributions of items
contrasts with the existing scenario. Hitherto no strong regularity or consistency could be expected
when examining accounting data. This is because only ratios have been explored. Ratio outputs
are the residuals of two-variate relations. They are exposed to the effect of external constraints
like accounting identities. And they also reflect internal mechanisms of the firm. This makes ratios
different from one another.

There is no reason to expect such a variety when looking into items. The variability in items
seems to be mainly determined by the different sizes of the firms gathered in the same sample. Items

are mainly a given proportion of the size of the firm.

Lognormality and homogeneous groups: Our results also suggest that for a given industry
strict lognormality depends on the homogeneity of such industry. Most of the observed severe
departures from lognormality are due to the existence of clusters inside an industrial group. It is
interesting to study one by one the 20 “bad cases” described in appendix A. Apart from a few
samples with errors or very strange cases, most of these samples are not one unique group of firms.
There are two or three distinct groups, at least when considering Sales, Wages or the number of
employees.

We also examined the lognormality of samples when gathering two or three industrial groups in
the same sample. The proportion of strong departures from lognormality (P < 0.001) increases very
significantly. We conclude that, for small samples, lognormality is conditional on the homogeneity
of the industry.

This conclusion 1s trivial. It arises in all statistical phenomena. Whenever we hypothesize
a generative mechanism for explaining a given distribution, we must isolate homogeneous sets for
testing such a hypothesis. Two factors should be considered as conditioning an observed distribution:
The underlying generative mechanism, which determines the population’s distribution. And the
existence of groups or other sources of non-homogeneity in the defined sample.

Our results seem to suggest that the underlying generative mechanism determining the distri-
bution of items has a trend towards lognormality, even when the particular sampling yields non-
homogeneous groups. For statistical modelling purposes the real important feature to consider is

the underlying distribution. The particular grouping is an accident and can be accounted for.
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Another interesting result 1s the lognormality of samples obtained by gathering all groups to-
gether. Since these samples contain 14 different groups, we conclude that a second level of homo-
geneity is reached when the number of groups is high. One single group, if homogeneous, yields
homogeneous samples. Two or three groups, each of them homogeneous, can yield samples which
are severely non-homogeneous. But 14 groups in the same sample approach a random effects model
rather than a fixed effects one. The grouping is near continuity, yielding a new, overall, homogeneity.
This overall homogeneity is the one expected when sampling firms at random according to a new

single attribute — the selected firms being industries.

Lognormality and accumulative phenomena: We now focus on lognormality as a quality, that
is, as a trend determined by a generative mechanism, regardless of the actual distribution observed
in a particular sample.

Lognormality should not be considered as a strange or unexpected quality. It can be found in
many accumulation processes, like growth. The weight and height of children with different ages
is lognormal. Income distribution and many other processes in Economics also belong to the same
class [65].

Any stochastic accumulation, that is, the growth proportional to the size already attained, leads
to cross-sectional samples which are lognormal or belonging to the same class of skewed distributions.

If a particular item grows, for several firms, at different, Gaussian paces the final aspect of such
a sample 1s the one of a lognormal distribution. We shall explore this mechanism in chapter 3. At
the moment let us retain this simple, known, fact. Gaussian accumulations lead to lognormal final

realizations.

Lognormality and cross-section: The last remarks are useful. But they can lead to a misleading
interpretation of this study and its method.

A major difficulty in understanding lognormality and other regularities found in this study stems
from picturing the problems discussed here as concerning one unique firm and its internal mechanisms
instead of a cross-sectional sample. For example, a typical reasoning would be: Sales is likely to be
lognormal since it is an accumulation. But Dividends is very unlikely to be lognormal. Dividends
are dictated by considerations which have nothing to do with accumulations.

All the above reasoning is about the internal behaviour of the firm as perceived by using ratios.
There is nothing on it which can be surely related to a cross-sectional sampling of items. Instead
of the item Dividends for many firms of very different sizes, this reasoning is picturing a different
thing — Dividends per share. The item Dividends is itself proportional to the item Net Worth —
lognormal in our samples. Firms with a large Net Worth will have a proportionally large Dividends
item. Small firms having a small Net Worth will have a proportionally small Dividends item — even
if they pay large dividends. Dividends, the item, is likely to reflect — in a given proportion — the

size of the firm.
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The item Sales is not particularly more lognormal than any other item because of being an
accumulation. Sales is lognormal because the growth of the firm as a whole is itself an accumulation
— a trivial finding —. Sales just reflects, on average, a given proportion of the size of the firm.

Cross-sectional samples gather firms of very different sizes at the same moment in time (ideally).
Cross-sectional studies examine the joint behaviour of many firms. Common features are taken
as statistical regularities. A cross-sectional study is not about any particular firm. The internal
behaviour of firms is not contemplated as such — it can emerge in the residuals though. For
example, firms which pay large dividends will have large residuals —.

Only a joint behaviour creates regularities. And cross-sectional regularities mean something

common to many different objects.

Lognormality and the developments presented in next chapters: The next three chapters
explore lognormality and other related findings. We expect to provide a coherent view enabling
the statistical modelling of our data. Lognormality in items emerges as a trivial result. And as a
very useful result too. It is trivial because it simply means that items reflect mainly size. And it 1s
useful because it means that cross-sectional samples of accounting items tend to be Gaussian in a
scale-independent space.

The size of firms is not bounded by any central trend. Firms are free to be as large as they
manage to, inside an economy. A cross-section of many firms is expected to exhibit the same kind
of pattern governing other well known unbounded variables like income, wealth or the size of cities.

Our accounting items seem to reflect a given proportion of size. If Sales is taken as a measure
of size, then Inventory is expected to reflect, say, 1/3 of it. And Dividends, in average, 1/20 of it.
Lognormality generates constant ratios.

But lognormality is a much broader condition. It expresses the statistical or expected proportion-
ality of random effects, not just a strict proportionality like ratios do. This topic is worth exploring.

It leads to models which are beyond ratios.
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Chapter 2

The Multi-Variate
Characterization of Accounting

Items

What are the immediate conclusions to extract from the lognormal nature of the observed items?
Can lognormality be generalised to a multi-variate context?

In this chapter we first point out that the sole consideration of lognormality is enough to ac-
count for the persistent emergence of outliers referred to in the literature. The also mentioned
heteroscedasticity of residuals is then discussed. We show that the direct Least-Squares modelling
of lognormal data is, in general, not the most adequate procedure. Other models ought to be de-
veloped. Specifically, we study the consequences of using ordinary or weighted regressions and the
usefulness of trimming lognormal tails.

This chapter then turns to the multi-variate behaviour of items. First, their Gaussian parameters
in log space are examined for regularities. The mean values and standard deviations for different
industries display some easy to interpret characteristics. Next we observe the variance and co-
variance matrices of log items by industry. All the observed items have in common a strong portion
of their variability. They are well described as a unique process with some amount of particular
randomness superimposed.

Finally, we discuss items obtained by subtraction of other items. We explain why positive
differences of two items maintain lognormality. Then we suggest some procedures to apply when

such subtraction yields negative cases.

The meaning of the log transformation: We often use the term “space” with a qualifier. For

example, we refer to the rotated space or to the log space. Our goal is to emphasize the fact that a
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given set of variables have been jointly transformed in a well known and consistent way, thus defining
a formal system characterized by a set of entities and the corresponding axioms relating to them.
For example, the log space 1s the set of log transformed items.

The accounting literature is cautious about transformations. They are seen as a means of mas-
saging data. We should be alive to the fact that a log transformation cannot be considered just as
a manipulation of values to make them more tractable. The log function has a precise meaning.
By using logs we select a particular way of looking into the data. We switch to a proportional or
scale-independent space. The next quotation shows a pitfall resulting precisely from considering
logs as a simple resource to render some sample more tractable. It has been frequently quoted in

accounting papers to reinforce warnings about the dangers of using transformations.

In the case of the log transformation there is also an implicit assumption being ac-
cepted where such a transformation is employed. That is, the transformed variables give
less weight to equal percentage changes in a variable where the values are large than
when they are smaller. If, for example, the variable being transformed was firm size the
implications would be that one does not believe that there is as much difference between
a $1 billion and a $2 billion size firms as there is between a $1 million and a $2 million
size firms. The percentage difference in the log will be greater in the latter than in the

former case. [34]

This comment allows us to illustrate the meaning of switching to a proportional space. First we

look into the figures.

Log of one million = 6 Log of one billion = 9
Log of two millions = 6.301 Log of two billions = 9.301
The difference is 0.301 The difference is 0.301

Logs yield similar differences whenever the ranges are proportional, that is, when they are similar
except for scale. The variations of log X are the relative or proportional variations of X.

By working with log variates we are precisely giving the same weight to proportionally similar
changes. We accept that a difference or growth from one million to two millions is exactly as
impressive as a growth or difference from one billion to two billions.

In log space we no longer compare firms in terms of real (absolute) size but in terms of relative
size. We make differences independent of scale or measure.

Of course, we should avoid applying proportions to log distances. It would be as if we were
building proportions of proportions. This is the pitfall, a very reasonable one if we consider the log
transformation just as a bit of massaging of the data.

In appendix B we briefly discuss the possible distortions resulting from mixing-up transformations
in input variables for statistical models. For consistently transformed input data we don’t see what

kind of unexpected distortions could arise by working in the proportional space.
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Figure 8: The awkward aspect of a lognormal spread (left) and the homogeneous one of the same
data in log space (right). Electronics, 1986.

Before finishing this introduction to logs, let us recall that the decimal log basis allows us to
interpret any value in log space as the number of digits of the non-transformed data. In log space,
a value of 4 means a number with four digits. A value of 6 means a figure larger than one million

and smaller than ten millions.

2.1 The Variability of Accounting Data

This section comments on two problems widely discussed in the literature: The existence of outliers
and the heteroscedasticity emerging when using additive Least-Squares algorithms for modelling

accounting relations.

2.1.1 Lognormality and Outliers

The presence of outliers in the residuals of the ratio model is consistent with the lognormality
of items. In a first approximation, if items are lognormal, ratios should be positively skewed (in
chapter 4 we explain why some ratios are Gaussian or even negatively skewed). Lognormal variates
are likely to exhibit severe skewness of the kind easily taken as outliers. For increasing values of the
variate we observe a strong increase in variance and an also strong decrease in the density of cases.
The variance spreads proportionally to the square of the variate. The density of cases decreases in
proportion too. The coefficient of variation (the standard deviation expressed as a proportion of the
expected value of the deviate) remains constant.

As a consequence, lognormal data draw shapes in which many cases concentrate in a small region
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and very few of them spread out along a large range — as in figure 8 on the left (page 31). Tt is
easy to take these few extreme values as outliers: they lie out. However, they are not real outliers.

Their behaviour is homogeneous providing the adequate distribution is assumed.

Outliers require an assumption about the underlying distribution: The notion of outlier
is entirely dependent on a previous assumption. In order for a case to be an outlier there must be
a previous acceptance of a particular distribution as the one of the population.

When the literature refers to a case saying that it is an outlier, the underlying distribution is the
Gaussian. But since accounting items are not Gaussian, it turns out that most of the cases referred
to as outliers are not outliers.

The proper space for checking the existence of outliers is indeed the logarithmic or relative
one. Figure 8 (page 31) shows an example of the adequacy of the logarithmic space for observing
accounting data. On the left we can see a scatter-plot of Earnings versus Sales for the Electronics
industry in 1986. Hardly anything can be sorted out. Apart from the biggest companies, the
remaining ones (about 140) are concentrated in a small region at the bottom left of the plot.

When drawing the same plot in log space each case becomes distinctly separable and the two-
variate distribution emerges as homogeneous. Even more interesting, a small non-linear relation
between the two components 1s now visible. This non-linear relation turns out to be important
for the understanding of non-proportionality in ratios. It became visible because of the adequacy
between log space and accounting features.

Along this study we shall see that many other pieces of evidence hitherto hidden from direct

observation become visible in log space.

Lognormality and a very small scatter: Notice that the above description of the characteristics
of the lognormal distribution should not be taken as a general rule. Perfectly lognormal samples
can have small skewness when its standard deviation is very small too. This is the case for some
residuals of ratios when the variances and expected values of their log components are similar.

It is generally accepted that coefficients of variation smaller than 0.25 denote distributions which
can be approached by the Gaussian one. Such exceptional cases cannot explain why a few ratios
are near normality. The literature on the distribution of ratios uses the ratio output, not the ratio
residual, to assess their distributions. When using ratio outputs the spread will seldom be small

enough: In lognormal variates the spread grows with the mean.

2.1.2 The Heteroscedasticity in Models With Additive Residuals

There is a well known claim for regressions to be used instead of ratios. Non-proportional relations
between the ratio components are the basis of such a suggestion. On the whole the discussion

resulting from this claim was very revealing. It drew the attention of researchers for accounting
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Figure 9: One single influential point in a weighted Least-Squares regression makes the resulting
slope change in a significant way. The original data is lognormal (C'A vs. C'L, 1984, all groups).

items instead of just ratios. And it introduced a strong aspiration towards more accurate models.
Berry and Nix (1991) [11] review this research. However, given the lognormal nature of accounting
items, the use of regressions is inadequate.

In fact, lognormality implies input vectors which are high-leverage cases. The reason is the same
as for the emergence of outliers. Notice that high-leverage cases need not to be influential. But they

are likely to be. There is a tendency for high-leverage cases to become influential.

Leverage and Influence: The notion of leverage concerns an assumed model, not an assumed
distribution. Leverage regards inputs, not outcomes. Leverage cases are those which are far away
from the rest of the input vectors.

Models suffer distortions if one or two input vectors are influential. An influential case monopo-
lizes the fit of a model. When it is excluded the parameters are significantly different from when it
is present. This happens because influential cases manage to have small residuals when they should
have large ones, at expenses of the whole model. The quadratic nature of Least-Squares algorithms
avoids any large residual by modifying the fitted model. Figure 9 shows an example.

In regressions using accounting items as input variables, a large firm will be a leverage case,
likely to become influential, just by being large. This i1s a consequence of the lognormality of items.
In fact, when a lognormal distribution is taken as Gaussian, the outliers are always in its tail
— the largest firms. In the literature this problem is generally referred to as the non-acceptable
heteroscedasticity of accounting data. It is correct to address the lognormal scatter as a case of

non-homogeneous variance. But this 1s a too general way of putting it. There are many kinds of

33



Y ->Y/X

18
16
14
12

+
+
+
b
+
+ +
*
Iy
+i+
+ +
++
++

058
06
0.4
900 -
800 — Y -> 100Y
700 — (Thousands)
600 — +
500 —
400 — +

300 . +
200 *

100

+, o+
st + 4
o b=

Ol LI I I rllll

ooy X > 10X
(Thousands)

200 ' 400 ' 600 800

Figure 10: Typical two-variate distributions requiring weighted Least-Squares (above) and Log
transformation (below).

heteroscedasticity. In order to cope with each one, some knowledge about its nature is required.
Recipes adequate for one particular form will not work in different situations. Next we comment on

one of such recipes widely used in accounting research.

The use of weighted Least-Squares: Discussion. Since the direct use of accounting items
as inputs for statistical models yields unacceptable heteroscedasticity, weighted Least-Squares has
been called upon. If items are lognormal this seems to be the wrong recipe to apply.

A weighted regression uses ratios to control for increasing variance on the predicted variable.

Instead of the usual y; = A+ B x x; +¢;, a weighted least squares model is

For variances increasing with x this procedure should allow a Least-Squares modelling. But in
lognormal deviates it is the standard deviation, not the variance, which increases with « in average.
The variance grows with the square of . We can easily understand the meaning of this distinction
by observing figure 10. The scatter-plot above shows a two-variate relation ideal for a weighted
Least-Squares transformation. In fact, this sample has been obtained from a perfectly Gaussian
set by applying the inverse of a weighting transformation. Below, the same Gaussian set but after
applying the anti-logarithmic transformation instead of the inverse of a weighting. The aspect of
both sets is typical of data requiring weighting (above) or logs (below).

Giving lognormality, the best thing to do is recognizing its presence. But in case this is not
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Ordinary Least-Squares Weighted Least-Squares OLS in log space
Name Rank | Cook D. | Name Rank | Cook D. | Name Rank | Cook D.
G. E. 1 12.185 TELFORD 129 7.8906 NATIONAL 17 0.077
STC 4 1.4857 MISYS 142 0.1665 G. E. 1 0.0734
IBM UK 2 0.9855 M.M.T. 145 0.1522 POLYTECH. 126 0.0577
ENG. EL. 3 0.2508 FORWARD 139 0.0796 IBM UK 2 0.053
STC C. 6 0.2138 KLARK-TEK 137 0.0577 BELL & H. 59 0.0398
DIGITAL 7 0.0626 HEADLAND 135 0.0531 CASIO 55 0.0391
AMSTRAD 14 0.0331 AMS IND. 136 0.0487 AMS IND. 136 0.036
UNISYS 27 0.0135 SOUNDTRA. 138 0.0442 ZYGAL DY. 125 0.035
FERRANTI 10 0.0128 AVESCO 131 0.0395 ENG. EL. 3 0.034

Table 9: The largest Cook Distances for OLS, WLS and LOG. Electronics, 1986.

achieved, the next best thing to do is to use tests of heteroscedasticity enabling not just the identifi-
cation of its presence but also the assessment of its degree. Berry and Nix [11] recommend one such
test since it “crucially gives an indication not only of the presence of heteroscedasticity but also of

the power of the transformation needed to remove 1t”.

An example: The Cook Distance. The Cook Distance [25] can be used to assess how influential
cases are. This statistic measures influence: The effective degree in which an input commands the
whole fit, for a particular sample.

As an example of the correlation between influential cases and the size of the firm, we selected
the Electronics industry, 1986. Three different regressions — OLS, WLS and LOG (a regression in
log space) were compared. Sales was the input and EBIT the outcome.

Tolerable Cook Distances should not exceed 1. Values larger than the unit mean a fit monopolized
by the case in which it occurs. Figure 9 on page 33 shows an example of one simple case distorting
the whole fit in a weighted regression using accounting items. Table 9 shows the firms which were
traced as most influential in each regression. The column labeled “rank” signals the ranking of
each firm according to size. In this column, 1 means the largest firm, and so on. This ranking was
obtained from a size proxy developed in chapter 5.

OLS has two firms which are influential. WLS has one. When using OLS the most influential
firms tend to be the largest. In the case of WLS they tend to be the smallest. The largest Cook
Distance in log space is far below the maximum value emerging when using OLS or WLS. Figure 11
on page 36 shows the Cook Distances of the entire sample when compared with the size of the
firm. There is a clear correlation between the Cook Distance and the extreme sizes, both in OLS
regressions and in WLS. In the first case, the largest firms tend to be the most influential. In the
second, the smallest are candidates for becoming influential. There is no such a correlation when
regressing in log space.

Notice that, when using WLS instead of OLS, some improvements are observed. WLS makes the
spread of the resulting variates smaller. And the skewness, in lognormal variates, is very dependent

on the amount of the spread. Also, a fortunate coincidence can make some accounting identity
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constrain the new variables so that their quotient would not be allowed to have long tails: In the
case of industries, it is unlikely that firms could exhibit Earnings larger than sales and weighting

would work.

2.1.3 Scale-Independence and Trimming

Another point the lognormal trend of items elucidates is why it seems so unfruitful to trim outliers.
Lognormal multi-variate distributions exhibit self-similarity of features across scales. This di-
rectly stems from scale-independence. Any shape which holds for billions also holds for thousands.
The shape like a “<” — typical of a lognormal two-variate scatter of very correlated deviates —
will never change across scales. Such a shape, along with the correspondent gradient in the density
of cases, is continuously generating influential cases across scales.

As a consequence, there is little point in excluding large firms from the sample for obtaining
a more homogeneous set. If we exclude the largest cases from the sample new cases will emerge
as outliers. A different way of viewing this is noticing that a trimming would be equivalent to a
reduction in the scale in which we are observing the data. And, as the phenomenon commanding
the emergence of influential cases holds in different scales, new outliers will appear again and again
— until the overall variance becomes so small that normality can be taken as a good approximation.
Figure 12 on page 38 illustrates this mechanism.

In the above example (table 9 on page 35), if we measure the Cook Distance associated with
each case after excluding the two influential firms (G.E. and STC), we get three new cases with a
non-acceptable weight in the regression: SUNLEIGH PLC (with a Cook Distance of 1.6), ENGLISH
ELECTRIC (1.9) and BROTHER INTERNATIONAL (19.8). The new situation is worse than
before trimming.

If we exclude also these three firms, SYNAPSE COMPUTER SERVICES emerges with a new
Cook Distance of 80.5. And excluding also this firm, MISYS PLC suddenly appears as having a new
Cook Distance of 0.8. Not too bad. But much higher than the highest values observed in LOG.

Notice that DIGITAL, despite being amongst the largest firms and therefore a leverage case,
didn’t become influential. This is because leverage and influence are different concepts. An influential

case must be a leverage case. But it is possible for a leverage case not to become influential.

Conclusion: The heteroscedasticity typical of proportional phenomena is well known and doc-
umented. For example, Snedecor and Cochran [119] observe: “Logarithms are used to stabilize
the standard deviation if it varies directly with the mean, that is, if the coefficient of variation is
constant. When the effects are proportional rather than additive, the log transformation brings
about both additivity of effects and equality of variance.” The log transformation solves at once
two problems accountants were used to consider separately: The non-homogeneous variance and the

emergence of outliers.
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scales. Electronics, 1986.
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Figure 13: Variables (left) and Groups (right) in parametric space. 1983 data.

2.2 Regularities in Parametric Space

Once accepted the lognormal quality of the observed items it is possible to use the Gaussian pa-
rameterization for describing samples. In the simplest case a mean value and standard deviation
of one log item will uniquely describe a set of observations. For samples containing more than one
observation per case, a vector of means and a matrix of variances and co-variances is required.

In this section we describe the behaviour of the Gaussian parameters of the observed items for
different groups. We show empirical evidence on the existence of a common source of variability.

Because this section is all about log space we shall not refer to it explicitly in all occasions.
Whenever a statistic, a value or a set of cases are referred to, it is assumed that the observations
have been transformed and that the used log base is the decimal one.

The sample is the same as the one used in chapter 1. It contains 14 industrial groups. For
each one, 18 items have been observed. This sample can be replicated for a period of five years

(1983-1987). Tables 1 on page 5 and 2 on page 6 describe their contents in detail.

2.2.1 Relative Spread and Industrial Groups

In order to observe the mean values and standard deviation of all such cases it is practical to build
scatter-plots with means on one axis and standard deviations on the other one. By doing so we
visualize the parametric space. Each sample is thus represented by a point.

The described plot allows the searching of common patterns in sets of samples. For example, we
can view several different items belonging to the same industrial group and year. Or gather only
one particular item and compare three or four industries.

In figure 13 (page 39) we show — on the left — the positions occupied in parametric space by
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four items. On the right, the position occupied by items belonging to three industries. They form
characteristic clusters. All cases are from the 1983 sample.

In figure 14 (page 41) we compare the position of clusters formed in the parametric space by a
set of items for six different industrial groups. The most apparent feature is the relation between

the smallest standard deviations observed and every industrial group.

The ground value for the relative spread: Groups tend to exhibit similar ground or minimum
standard deviations. If we form a set with standard deviations of several items all belonging to the
same industry, we notice that these values are seldom found below a ground value which is typical
of its group. For example, the standard deviation of items from the Food industry is never smaller

than 0.77. For Clothing this value is 0.4 and for Building Materials is 0.6 (see figure 14 on page 41).

The meaning of the log standard deviation: In log space, distances from any case to the
mean are no longer real distances. For example, a log displacement of 0.4, — a fairly common value
for the log standard deviation observed in some industries — means that the displaced case has
been multiplied or divided by 2.5, the anti-logarithm of 0.4. Hence, we may say that a log standard
deviation of 0.4 is equivalent to a multiplicative spread of 2.5. Or that each unit of spread in log
space measures a scatter of 150%. The log standard deviation is a dimensionless statistic. It is the
log of the coefficient of variation of the sample. The spread is assessed as a proportion of the mean.

The fact that distances to the mean are relative will not eliminate the effect of the size of firms.
Large standard deviations denote a group for which both large and small firms are possible. Small

standard deviations denote a group with firms of uniform size.

2.2.2 Variance and Co-Variance: The Strong Common Variability

We now turn our attention to the multi-variate behaviour of items in log space. The variance and

co-variance matrices of our set of items also exhibit some clear features:
e Inside an industrial group variances and co-variances of different items are very similar.

e Strong differences can be found between the variance and co-variance matrices of different

industries.

e Even when avoiding linear combinations the variance and co-variance matrices of accounting

items are almost singular.

e For samples of significant size no negative co-variances can be found. Nor zero co-variances.
As in the case of standard deviations, there is a clear ground value characteristic of the group

and both variance and co-variances lie above it.
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Figure 14: Characteristic shapes of 6 industrial groups in the parametric space. X-axis, the mean.
Y-axis, the standard deviation. Marks identify similar items across different plots. For example,
“d” 1s Debtors, “D” is Long Term Debt, “E” is EBIT, “f” is Fixed Assets, “F” is Gross Funds From
Operations, “1” is Inventory, “n” 1s the Number of Employees, “N” is Net Worth, “0” is Operating
Profit, “s” is Sales, “t” is Total Assets, “w” is Wages and “y” is Working Capital.
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Figure 15: Frequency distributions of variances and co-variances for five groups.
S NwW w I CA FA EBI S NwW w I CA FA EBI
S 0.35 0.21
NwW 0.32  0.39 PAP 0.22  0.26 LEA
w 0.35 0.36 041 0.19 0.21 0.18
I 0.33 0.34 0.38 0.40 0.19 0.21 0.18 0.19
CA 0.33 0.32 035 035 0.34 0.21 0.24 0.20 0.20 0.23
FA 0.32 036 037 034 0.33 0.40 0.19 0.21 0.18 0.17 0.19 0.20
EBIT | 0.35 0.35 0.36 0.35 0.34 0.35 0.41 | 0.26 0.29 0.24 0.23 0.27 0.24 0.28
S 0.17 0.55
NwW 0.17  0.20 CLO 0.57 0.73 FOO
w 0.18 0.18 0.23 0.55 0.64 0.64
I 0.19 0.20 0.20 0.23 0.59 068 0.63 0.73
CA 0.17 0.18 0.18 0.20 0.19 0.56 0.63 0.58 0.65 0.61
FA 0.17 0.19 0.21 0.20 0.17 0.26 0.57 069 0.65 065 0.61 0.71
EBIT | 0.17 0.17 0.18 0.18 0.17 0.19 0.31 | 0.59 0.71 0.64 0.70 0.66 0.69 0.73

Table 10: Four X matrices denoting the homogeneity of variance and co-variance inside industrial
groups. Data from 1983.

A graphical description of the spread and co-variance of the observed items is obtained with a
frequency distribution of the components of the variance and co-variance matrix. Figure 15 shows
a few of them for different groups. They don’t overlap and they are J-shaped denoting strong
differences between industries and the existence of ground values.

Table 10 (page 42) shows four industry’s variance and co-variance matrices (usually referred to
as X). They describe the features we highlight. In appendix A several other matrices are displayed.

We also display in appendix A the minimum values for elements of the variance and co-variance
matrices belonging to each one of the 14 industrial groups observed during a five-years period.

On variance and co-variance grounds the less homogeneous items are Long Term Debt, Inventory
and Fixed Assets. In general, such items have higher variances than the usual for the industry. Co-
variances of Inventory and Fixed Assets with other log items are not especially different from others.

Debt shows differences also in co-variances.
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DB WC EB FA FL NW I D C CL S W CA mean
METAL 040 0.81 080 059 078 077 081 083 079 078 065 081 0.90 0.75
CLOTH 032 056 054 076 067 084 08 079 08 085 092 087 0.92 0.75
TOOLS 031 073 070 083 069 078 0838 0.82 092 088 094 095 0.95 0.80
WOOL 041 078 080 081 08 085 077 088 085 082 091 086 091 0.81
PLANT 057 067 067 082 077 080 088 093 090 093 096 096 0.95 0.83
PAPER 046 071 084 077 086 083 083 0.86 091 094 091 092 0.96 0.83
ELECT 049 071 079 074 084 085 090 092 095 095 093 093 0.97 0.84
CHEM 062 076 084 084 084 089 080 088 090 092 087 095 0.92 0.85

ELTN 053 084 080 081 08 092 079 093 090 093 093 090 0.93 0.85
BUILD 062 074 082 087 08 088 092 096 090 095 097 097 0.97 0.88
FOOD 073 077 087 086 090 0.89 090 093 093 094 091 094 094 0.88
MOTOR | 0.76 0.80 0.82 092 0.88 092 094 096 091 095 096 096 0.90 0.90
MISC 077 078 090 081 092 093 094 094 094 093 096 090 0.95 0.90
LEATH 068 090 093 087 094 095 097 085 094 096 098 093 0.97 0.91
mean 055 075 079 081 083 086 083 089 090 091 091 092 094

Table 11: The R? (mean of the five years observed) of regressions in which s, a proxy for the size
effect, explains 13 items. Rows are industries and columns are items.

Discussion: The outlined features are not usual. They denote a strong regularity.

Whenever similarity between variance and co-variance is observed we know that there is a com-
mon source of variability influencing several variables. And the non-existence of negative or null
co-variances, along with the ground value, make us realize that we are not really looking into several
sources of variability but into a unique one with some smaller variability superimposed. Matrices
such those of table 10 are only possible when there is a preeminent source of variability common to
all the displayed items.

Any component of these ¥ matrices could explain more than 90% of the observed multivariate
spread. Many items share up to 94%. of their variability with others. It seems as if accounting items
were, in log space, just the same unique process with a bit of particular variability superimposed.

Such a feature of log accounting items is expected. The log transformation does not control for
size. Logs make differences in size relative but the effect of size remains. For example, if the Fixed
Assets of three firms are worth one thousand, ten thousand and one million pounds, then in log
space they will be denoted by the values 3, 4, and 6.

The observed items clearly reflect a common source of variability we identify as the effect of the
relative size of each firm in samples gathering many, differently-sized firms. In cross-section, the first
and most important source of variability impinging upon different items is the effect of size.

Only after accounting for the size effect is it possible to assess the variability unique to items.
The ground value also suggests that such unique variability will show positive or zero correlations

with the unique variability of other items. The negative correlations will not be frequent.
Empirical evidence on a strong common effect: A more systematic way of looking into

the same phenomenon consists of examining slopes instead of co-variances. Co-variances are non-

standardized slopes. When divided by the variance of one of the components they yield a slope.
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In order to provide solid evidence on the existence of a strong source of variability common to the
observed items, we first created a variate, s, supposed to reflect the common variability present in all
the observed items. This can be done in several ways. Ours will be explained later on (section 5.1).
Using this variate as the predictor we formed regressions in log space. Each log item was explained

in terms of s (logz; = a + b x logs; +¢;). The results show two regularities:
e The common effect explains most of the variability of items.
e All the slopes scatter around and near 1.

Appendix A contains the detailed results of this experiment by industry and year. Also section 5.1,
and specifically table 19 on page 115 provides evidence on this subject for all groups together.
Here, we present two condensed tables (11 and 12) in which the obtained slopes and proportion of
explained variability are displayed by industry and by item. Each value is a mean of five years. Both
tables are sorted in ascending order of their marginal contents. Therefore, by reading the headings

it 1s possible to become aware of which items or groups approach the largest values.

Large R?: First we noticed that the obtained R? are very large and very similar. They range
from 94% to 74% for items like Sales, Inventory, Debtors, Creditors, Current Assets and Liabilities,
Wages, Net Worth, Gross Funds From Operations or Earnings. The results are consistent for the
usual period of five years. On the whole, after examining 920 different samples, 90% of them have
a R? larger than 0.78.

Current Assets is the most explained by s and Debt the least. Fixed Assets, Earnings and
Working Capital are below the usual. Long Term Debt is clearly different from the other items. It
shows a proportion of explained variability ranging from 30% to 80%, much smaller than any other.
However, even in the case of Debt it is not possible to accept the hypothesis of independence from
size. The minimum R? of 30% represents a correlation of 0.55 with size. This correlation is not
negligible. For the examined samples it is significant.

The conclusion is that it is possible to create a unique variate, s, able to account for most of the
variability observed in our set of log items.

Industries are similar in terms of explained variability. Only Metallurgy shows consistently values
below the usual. Items, on the contrary, display a scale of different explained variability.

It is the contrast with the other items, exhibiting in most of the cases correlations with size larger
than 0.9, which makes Debt a particular case. It would be interesting to know if this less strong

correlation with size can be found in any of the items we didn’t examine.

Slopes near the unit: Also the slopes of regressions in which log items are explained by s, an

effect common to them all, exhibit a regular behaviour. They remain close to 1.
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D WC CL NW CA S C W EB FA FL I DB mean
CLOTH 091 083 104 096 096 099 1.02 1.07 085 1.07 099 1.13 0.97 0.98
ELECT 098 093 106 087 1.01 1.03 1.12 1.05 097 093 095 1.01 0.97 0.99
PLANT 097 092 102 087 094 1.10 1.04 104 1.02 09 097 1.12 1.07 1.00
ELTN 096 1.08 095 1.04 1.02 099 100 1.00 093 1.04 096 1.07 0.95 1.00
TOOLS 0.98 1.14 091 093 1.01 1.11 1.02 1.02 1.06 092 1.04 1.02 0.93 1.01
LEATH 095 086 101 106 100 1.03 099 091 1.12 1.18 1.06 1.07 0.87 1.01
WOOL 096 1.02 1.02 1.03 1.08 093 099 098 1.16 097 1.11 095 0.95 1.01
PAPER 1.05 096 1.00 090 097 106 1.03 1.04 1.03 095 1.05 1.03 1.08 1.01
METAL 094 093 098 099 093 095 1.01 1.09 097 1.08 1.05 1.12 1.11 1.01
MOTOR | 1.00 1.02 095 1.00 0.98 098 097 104 098 1.08 101 1.02 1.24 1.02
FOOD 094 095 097 1.04 097 094 098 1.06 1.07 1.12 1.08 1.07 1.12 1.02
MISC 097 094 098 098 100 098 099 1.03 1.15 1.04 1.12 1.09 1.15 1.03
BUILD 098 1.04 098 099 098 1.00 1.01 1.03 1.04 1.05 1.06 1.07 1.28 1.04
CHEM 09 1.05 094 1.13 099 091 097 1.06 1.11 1.25 1.11 099 1.20 1.05
mean 0.96 098 099 099 099 1.00 1.01 1.03 1.03 1.04 1.04 1.05 1.06

Table 12: The slopes (mean of the five years observed) of regressions in which s, a proxy for the size
effect, explains 13 items. Rows are industries and columns are items.

Let us suppose that the log variability present in items is the result of two or three independent
effects. Such effects would be differently mixed up to form each item. In that case the above regres-
sions would yield very different slopes for different items. Each slope would reflect the particular
co-variance between the predictor, s, and the mixed variability present in each item.

This is not the case. All the observed items yield the same slope when explained by the same
variate. Hence the variability of our log items comes mainly from a unique source.

When considering all items during the same period of five years and the 14 industries one by
one, 95% of the obtained slopes are larger than 0.9 and smaller than 1.2 (see table 12).

Sales, Inventory, Debtors, Creditors, Current Assets and Liabilities and Wages are the nearest
to 1. Next come Net Worth, Gross Funds From Operations, Fixed Assets and Earnings, with slopes
ranging from 0.85 to 1.3. Finally, Working Capital, with 0.7 to 1.3 and Debt with slopes ranging
from 0.6 to 1.4.

Notice that the slopes being near this particular value — the unit — stems directly from applying
log transformations. In log space any scaling becomes a translation. If we have several variables
which are proportional to each other, after applying logs they become translations of each other.
But translations can be accounted for by using a single point in the space of the observed variables
— an intercept or the constant term of regressions. In other words, the main source of variability
of log items can be modelled by a simple mean adjustment.

In log space any regression between closely proportional variates yields slopes which are near the
unit and intercepts which are the logarithm of the expected value of such a proportion. Unit slopes
are not real slopes, as a unit scaling is not really a scaling.

In order for items to be proportions of each other — in log space translations of each other —

there must be a multiplicative common source of variability commanding them all.
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S W I D C CL FA S W I D C CL FA

0.63 13 cases 0.32 23 cases
0.41 0.33 0.24 0.28

0.54 0.39 0.61 0.32 0.28 0.47

0.53 0.38 0.51 0.49 0.28 0.26 0.32 0.30

0.47 0.33 0.45 0.45 0.48 0.23 0.22 0.28 0.24 0.23

0.48 0.35 0.48 0.46 0.45 0.47 0.25 0.23 0.28 0.26 0.23 0.26
0.60 0.41 0.53 0.54 0.49 0.48 0.67 0.24 0.26 0.25 0.26 0.23 0.24 0.33

Figure 16: Two X matrices obtained from the same sample. On the left, cases with negative Working
Capital. On the right, cases exhibiting negative EBIT.

Negative cases: The displayed ¥ matrices and the experiment explained above only consider
positive cases. The few negative cases present in A items were excluded from the sample on a
case-wise basis. In other words, all the firms used for building the observed matrices belong to the
same group — They are healthy.

The observation of ¥ matrices formed with logs of the absolute values of negative cases is, of
course, not feasible. The sample would be too small. Also, these matrices would mix up situations
which are very different from one another.

Instead, we isolated groups of firms exhibiting the same particular illness: Liquidity problems,
poor profitability. Then we formed ¥ matrices with each one of such groups. For the few significant
samples we could find, the behaviour of all the items is clearly distinct from the same matrices for
healthy cases. It seems dependent on the class of financial problem the negative items reflect.

For example, for the same group and year, firms with liquidity problems (Negative Working
Capital) have a pattern of co-variance clearly different from the corresponding pattern of those
having profitability problems. And the negative-EBIT matrix is different from the healthy one.

The matrices displayed in figure 16 belong to the Electronics industry in 1986. On the left all
cases had negative Working Capital. On the right all cases had negative EBIT. These patterns
are homogeneous but different. Samples with negative Working Capital generate more spread than
those with negative EBIT. And both differ from the pattern usual in positive cases.

Notice that the number of cases in the samples used for calculating the above matrices is smaller
than the desirable. We obtained a statistic, 3, which actually has got more parameters on it than

the number of cases in the sample. Such an analysis is case-dependent or even misleading.

Comparing simulated and real cases: Simulation can be carried out in order to establish,
avoiding the burden of analytical developments, which is the ideal multi-variate pattern of such
matrices when they are calculated from the logs of absolute values of negative cases. This allows
us to understand which features of the above matrices are due to a particular behaviour of firms —
liquidity or profitability problems for example — and which are due to the mechanism of subtracting
two log variates.

We used the same group, Electronics 1986, and starting conditions similar to those found in
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S CA FA CL

0.510 S
0.478 0.504 CA
0.490 0.480 0.599 FA

0.462 0.470 0.467 0.460 CL

Figure 17: ¥ matrix used for simulating Working Capital, 1986, Electronics.

S FA CL CA WC S FA CL CA WC
S 0.516 W. Cap. > O 0.462 W. Cap. < O
FA 0.505 0.627 0.416 0.475
CL 0.464 0.477 0.459 0.419 0.401 0.423
CA 0.475 0.484 0.465 0.489 0.422 0.400 0.424 0.429
WC 0.494 0.492 0.474 0.532 0.672 0.399 0.407 0.416 0.392 0.680

Figure 18: ¥ matrix from the simulated Working Capital. Electronics, 1986.

positive deviates. Such conditions were:

Ttem Mean | Standard Deviation
Current Assets 4.213 0.723
Fixed Assets 3.757 0.779
Sales 4.577 0.720
Current Liabilities | 4.005 0.680

In figure 17 we display the X matrix used for introducing in the simulation the co-variance of these
items. After generating 2,000 cases with multivariate lognormality we obtained 185 with negative
Working Capital.

Both positive and negative Working Capital were lognormal. When we slice such a sample along
a principal axis, in general the positive cases exhibit positive, though small, skewness. The negative
ones have negative, very small skewness and larger kurtosis. The resulting variance and co-variance
matrices for both groups are displayed in figure 18.

Such matrices are not especially different from the expected. It seems as if no real differentiation
between positive and negative cases exists caused just by the subtraction of two lognormal distribu-
tions. The strong differences observed in matrices obtained from real cases are most probably due
to mechanisms internal to the firm — the lack of liquidity or a poor profitability.

We carried out simulations of other groups. One more example is in appendix A. In general, the
only feature we could recognize as particular to simulated negative cases was its larger spread and

the described skewness and kurtosis.

Y} matrices of negative cases are not stable: A feature of data obtained from samples of
negative cases is that variance and co-variance matrices seem not to exhibit the slightest traces of
stability. In most of the industries matrices change to different ground values from one year to the
other. Even this lack of stability 1s not a stable feature since it is absent in one or two industrial

groups. All this could just result from the small number of cases in the observed samples.
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The only constant feature is the overall similarity of cells. Matrices vary but all their cells remain

fairly similar. This means a certain amount of dependence on size.

2.3 The Subtraction of Two Accounting Items

Many important items from accounting reports, namely those representing flows, are obtained by
subtracting two other items. In this section we try to answer two questions related to the statistical

modelling of flows. These questions are:

e Why are flows lognormal? In general, there is no reason why the subtraction of two lognormal

variates should remain lognormal.

e If an accounting item has negative cases the log transformation cannot be applied. This is the
case for McLeay’s A variables like Earnings, Working Capital and Funds Flow. How can they

be used 1n statistical models?

After explaining the lognormality of flows we show that the problem of negative cases is not specific

to the log transformation. We suggest alternative solutions for statistical modelling.

2.3.1 The Statistical Distribution of Flows

Samples containing positive cases only: The apparent lognormality of positive differences
between two lognormal variables is a consequence of a strong correlation between them. In a sub-
traction, z = y — z, of two correlated items, cases in which y is large also have proportionally large
x. And cases in which y is small are expected to have proportionally small x.

The extent to which z follows x and y is dependent on the correlation between x and y. For a
pair, {y, 2}, of exactly synonymous items, z would exhibit exact proportionality with them. If s is

the effect common to both # and y we can write in such an extreme case

z—j =R, and ﬁ—j = R, for any firm j.
R, and R, are constants. Therefore z;/s; = R, — R, for any j.

The more general case of correlated items can be written in a similar way. In fact, if we introduce
in the above expression small f;’ and f; so as to reflect the variability particular to « and y we
obtain

&:Ryxff and ﬁ:Rxxfjx for any j.

Sj i
These f; account for departures from a strict correlation with s in case j. If such departures are
small, they should be near the unit. Considering fY =1 — 7Y and f© =1 — n” we can write

I = Ryx f!—Rexf}

: Fi
8j
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Figure 19: Schematic representation of a subtraction of two accounting items yielding a new one
with some negative cases.

S Ryx(1=nf) = Rox (1=7))
J
= Ry— R.—(Ry x 1/ = Ra x 1))
= R,— R, —d,;.

The departure from proportionality is now represented by d; = Ry x 77? — Ry x . Since the f; are
near the unit the n; will be small. And for values of R usual in ratios d; will be a difference between
two small values as well.

z will be near lognormality for the same reasons z and y are lognormal, whenever d; will not
modify significantly the shape of s. This could occur because the variability introduced by the f; is
negligible when compared with the one of s, or because their distribution, when combined, will not
distort the shape of s. The first case requires s to be strong as we know it is (section 2.2.2).

The same reasoning could be expressed in many ways, all based on the existence of a strong effect
common to the items being subtracted. The lognormality observed in flows is a clear clue for the
existence of a common effect. Lognormality only propagates across sums or differences of variates
which are strongly correlated. The difference of two independent or weakly correlated lognormal

deviates yields a distorted shape.

Graphical subtraction of items: Graphically, any subtraction of two lognormal variables y — «
strongly correlated with s is approximately a clockwise rotation of y in a two-variate distribution of
y with size. If we build a plot in which y, a lognormal variable, is represented against s and then we
subtract to each y the corresponding z, the result will be a rotation of the original shape downwards.

In fact, to large y it will correspond large # and to small y, proportionally small z. When
subtracting them, the sliding down of large y will be large and the sliding down of the small y will

be proportionally small. The resulting movement is approximated by a rotation rather than by a
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Figure 20: Detail (near zero) of a frequency distribution obtained by simulating the difference
between two items. This distribution is a juxtaposition of two lognormal ones.

translation. Figure 19 on page 49 illustrates this.
Rotations are important because they will not modify the distributional characteristics of the
variables involved. If the overall sliding of cases is a rotation then the resulting distribution will

remain close to lognormality. Empirically we know that this is so.

Samples containing both positive and negative cases: In chapter 1 we showed that, when
taken separately, both the positive and the negative cases of the observed A items are as lognormal as
any other items. We can see why by subtracting graphically two lognormal shapes, both correlated
with size, as in figure 19.

Given WC' = C'A — C'L we start with a scatter-plot of C'A on any measure of size and then we
subtract C'L from C'A. The values of W' were obtained from C'A by sliding them down a value
which is C'L. But the C'L are proportional to size too. Hence, a large firm’s C'A is expected to be
largely modified and a small firm’s C'A is expected to change proportionally less.

Notice that the X-axis now slices the two-variate distribution. There are now two regions sepa-
rated by the X-axis. But such two regions preserve the proportional nature of the data.

If the slicing were made along a line not passing through zero, or in less correlated items, the
result would be a truncation. But whenever the slicing of a two-variate distribution of very correlated
lognormal items i1s made along an axis of the distribution itself, the resulting two scatters will project
their values in the Y-axis in a way that preserves lognormality.

In fact, when we go along growing size we find at our right hand an increasing spread in the
positive W' direction. And the corresponding for the region below WC' = 0. The projection of such

scatters in the Y-axis yields approximately lognormal distributions by the same reasons non-sliced
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scatters do. The result of a subtraction of two accounting items so that a few negative cases emerge
generates a juxtaposition of two approximately log-normal distributions. One contains the positive
cases. The other one, the mirror-image of the absolute value of the negative ones.

The simulations we carried out corroborate this fact. Figure 20 on page 50 displays the central
part of the distribution of a simulated difference between two accounting items. It is a juxtaposition
of two lognormal distributions, one with much more cases than the other. As referred, empirical

tests show that both such distributions are lognormal.

2.3.2 Modelling Samples Having Negative Cases: Discussion

What is the interest of considering — in a cross-sectional context — the whole sample of positive
and negative cases? What do we loose by taking separately one sample with positive cases and
another one with the negative ones as we have done so far?

At first, the existence of negative cases in a sample seems unsatisfactory for modelling purposes.
By taking both sets separately we break the continuity of the sample and loose the information
describing the passing through the zero value. It would seem desirable to bridge this lack of continuity
and be able to work with the whole set of cases as a unique variable in the sample.

It is easy to recall important pieces of research in which the used ratios had values passing
through zero. Beaver’s classic study on the importance of ratios for tracing firm’s failure [7] shows
how revealing a ratio of Cash Flow to Total Debt can be when sliding down from positive to negative
values during an observed period.

The consequence seems to be that the ratios like the one above should be considered as a unity
and taken as a whole. Breaking them into two samples, one for positive Cash flows and another
for negative ones, would apparently damage the most important part of its information content.
Accounting research has devoted some effort to the assessment of the distribution of such ratios

(see, for example [86] and [87]).

The cross-section context: In fact, we loose nothing by using split samples in cross-sections.
Beaver’s ratios draw a trend during several time periods. One unique object — the average ratio for
a group of firms — is observed for consecutive intervals. Cross-sections are not about one unique
object. They capture the behaviour of many objects ideally at the same instant in time. The concern

referred to above stems from picturing time-series and transposing it to cross-sections.

Ratios and the log transformation: The lack of continuity between positive and negative cases
is not a problem specific to the log transformation. And it is not a problem either. McLeay’s A
variables also break the continuity of ratios or regressions. They break it in a so large extent as the
log transformation does. Ratios — or regressions — will fail to model correctly exactly the same

samples the log transformation is not apt to model.
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Figure 21: A schematic representation of a scatter-plot for the ratio y/a when y can have negative
values.

For the ratio y/« in which y is a variable having both positive and negative cases, when we
go along decreasing values of y and pass through zero, the corresponding evolution of # change in
direction. It ceases decreasing and begins to increase. It is impossible to model such a sample using
one ratio. For each x there are two possible y. That’s why practitioners calculate standards by
considering only positive values. They can’t find a consistent standard for samples with both signs.

Figure 21 illustrates this fact. It represents a cross-sectional sample. Many firms and two
observations: For example, the Y-axis could measure Cash Flow and the X-axis Total Debt. Each
firm would be represented by a point in this scatter. In our example there are firms with large
positive Cash Flows and large Total Debt. But there are also firms having negative Cash Flows
and large positive Total Debt. Now let’s produce a ratio for explaining the joint behaviour of these
two items. The firms with negative Cash-Flow push the expected value of such ratio towards values
more near zero than otherwise. Hence, we obtain an estimation for the Total Debt any particular
firm should have — given its Cash-Flow — which is larger than it should be.

The expected value for the ratio could even approach zero or become negative. When approaching
zero, the amount of Total Debt predicted by such ratio would rise to infinity. After passing through

zero the ratio would predict infinitely large negative Debt.

Positive and negative cases form two groups: There is a breakage of continuity when passing
through zero. Each sample — positive Cash Flow and the negative one — really represent different
groups and should not be mixed up.

Clearly, the problem is not in the use of logs or ratios. The problem is simply that two different
groups cannot be modelled by the same parameter. We couldn’t use one unique regression to account
for the data in figure 21. We could but we shouldn’t. We would need two regressions. And this is

what 1t 1s all about.
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Of course, in the case of ratios or logs, the algebra itself precludes one single model. Proportional
co-movements cannot pass from one quadrant to the other one except by going both together through
the origin. This stems from being proportional or taken as such. Ratios, the same as logs, entail an
assumption of proportionality. Ratios, a finite difference one. Logs, a differential one.

Lev and Sunder [79] devote to this breakage of continuity a large comment. After presenting a
reasoning similar to ours, they conclude that “A change in Earnings which has a favourable effect on
the ratio before the change of sign, will have an unfavourable effect after it. This loss of continuity
is a frequent cause of problems in interpreting ratios computed from negative numbers. (...) This
problem renders ratios a hazardous instrument of controlling for size in the presence of negative
numbers and the researcher would be well advised to seek alternative means of exercising such
control whenever feasible.” Remarks similar to this one are usual in text books on ratio analysis.

Ratio analysts and practitioners, instead of considering the positive and negative cases together,
recommend avoid doing so. We see no reason for considering such variables as a continuum when

building statistical models.

Does it make sense to consider jointly the positive and the negative cases? In a strict
cross-sectional context the referred lack of continuity seems to make sense also on grounds of financial
analysis. Positive and negative cases represent different groups of firms. They are to be accounted
for by grouping variables, not by continuous-valued ones.

We recall the patterns of joint variability displayed in section 2.2.2 for samples reflecting lig-
uidity or profitability problems. They are very particular. This, contrasting with the general rules
governing the positive ones.

Negative cases reflect firm illness. On the contrary, the positive ones reflect a healthy state. In
statistics, situations as those require a grouping variable. The groups formed in cross-sections by
firms having positive and negative cases can be modelled and compared provide they are considered

as two groups.

2.3.3 Alternative Variables

Despite the above remarks, there are cases in which it would be interesting to use continuous-valued
information as the one conveyed by A items. It is the case of the building of trajectories of a firm’s

position for several time intervals. Here we suggest some solutions.

Substitution of items: The problem of statistical models requiring A items can be solved in
most of the cases by using their components instead. The information conveyed by negative-valued
items can be introduced in a relation by other items appropriate for the log transformation. The
variability of Earnings can be brought to the model by Sales and Expenses. Working Capital can
be substituted by Current Assets and Liabilities.

53



(o2}

Log EBIT TS

e |

-0 T T T T T

1 2 3 4 5 6 7

Figure 22: The effect of a symmetrical transformation on the EBIT to Sales relation. All groups,
1984.

For any accounting item z, resulting from a subtraction of two positive items y and «, the pair
{y, ¢} will obviously contain all the information z would contain, and a bit more. In fact, there is a
unique z for any given pair {y,«}. But for a given z, there exist an entire line of pairs {y, 2} able

to yield such z. Therefore z could never bear information not contained in {y, z}.

Scaled differences: Another alternative solution for the modelling of A variables is the use of a
scaled difference. If we scale one of the components of the difference so that negative cases cannot
occur in the sample we obtain a new item which is also a difference but has only positive cases.
Scaling is equivalent to a translation in log space. Samples will not change their shape by
introducing a scaling. Therefore, if we use z/ = y — # x S instead of z = y — # (S being a constant)
we can work with this new variable knowing that the shape of 2’ is the same as the one of z, its
standard deviation in log space didn’t change and even the outliers are all there. Only the mean

value has emerged a bit.

Symmetrical transformations: Another possible way of dealing with both signs is the use of a

symmetrical transformation:

z—  log(x), forz>0 (2)
z— —log(x), forz <0 (3)
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or the equivalent creation of a dummy variable, d, retaining the information regarding the sign of «:

| |
7 log(z) forx >0 2 log(z) for x < 0
d= 1 d= -1

Such transformations correspond to the fact that negative cases are also lognormal and correlated
with size. They will be useful and valid, provide no attempt is made to fit a unique model to the
transformed data.

Symmetrical transformations preserve the relative size of A items. They allow the building of
maps for drawing trajectories. And such trajectories will be appropriate for financial diagnostics

except in the neighbourhood of zero.

The addition of constants: Indeed, there is one transformation which should not be applied for
it severely distorts distributions. It consists of adding a large positive constant to all cases in the

sample so that the negative ones become positive. This practice has been reported in a few studies.

Modelling Debt: The log transformation cannot be applied to items having cases with values of
zero. We could avoid the problem of variables having zero values, like Debt, simply by using, instead
of log 0, a very small number: log1 = 0. The use of log(z + 1) instead of log is recommended by
Snedecor and Cochran [119] for proportional samples with zero cases. This is acceptable if in the
sample there are no cases with values near zero. For instance, if a scaling of one million pounds is
used instead of the usual scaling of one thousand, it is very likely to have in the sample cases with
values near zero, both positive and negative.

Even so, we should avoid — whenever possible — to use Debt directly as an input variable for
statistical modelling in samples having both leveraged and non-leveraged firms. The leveraged firms
are lognormal but the group of non-leveraged firms forms a cluster of cases all with the same value.
This set of cases would be influential.

When Debt is required, it is supposed to bear important continuous-valued information only
in the case of leveraged firms. Therefore, we divide the sample in two. One contains leveraged
firms. The other one the non-leveraged ones. Inside each sample, estimation and inferences based
on continuous-valued models can be carried out. Inferences about differences between these two sets

are also possible.

2.4 Summary

In this chapter we extracted the most obvious consequences of the lognormal nature of the observed
items. A few drawbacks widely discussed in the literature seem to have been accounted for. We also
described the multi-variate behaviour of log items and the consequences of lognormality in the case

of differences between 1tems.
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Outliers and Heteroscedasticity: The lognormal distribution is likely to generate what seems
to be an outlier. By the same reason, it will also generate non-homogeneous variance in regressions.

Regressions should not be used to model relations between lognormal variables. Lognormal
distributions generate large residuals which monopolize the minimization of square errors. The
results are then dependent on one or two influential cases.

Weighted Least-Squares is not an appropriate recipe for dealing with the above problem. It simply
transfers the influence from the largest to the smallest cases in the sample. The heteroscedasticity
would not vanish in any of these cases. The log transformation is adequate, in a first approximation,
for rendering additive residuals. But appropriate models ought to be developed that fully explore
the existence of non-proportional and non-linear relations in accounting items.

Also the trimming of outliers becomes a useless exercise for two-variate lognormal data. The
shape like a “<”| typical of two-variate proportional relations, will not change across scales. It will

generate more and more outliers if successive trimming was to be attempted.

The common component of the variability of items: An important point this chapter out-
lines is the existence of a common source of variability in the observed log items. In log space these
variables can be viewed as the addition of two processes. The first one is common to all items
and seems to reflect the relative size of firms. The second one, particular to each item, reflects its
uniqueness.

A consequence is that accounting items should be explained in terms of size and deviations from
size. Instead of viewing each item individually as an independent source of variability — eventually
correlated with other few items — we should first account for an effect common to them all and
then take the residual variability as the particular contribution of each item.

Our results seem to erode or smooth the distinction between ¥ and A items regarding the
influence of size. Earnings or Gross Funds From Operations are strongly correlated with size. As
correlated as Fixed Assets and Net Worth.

The item showing a distinct behaviour is Debt. But even in this case size is present. The negative

cases of A items seem also correlated with size, as far as it was possible to observe them.

Cross-sectional samples with negative cases: We also studied the problems posed to statis-
tical models by items having both positive and negative cases. We pointed out that there is no
continuity between the positive cases and the negative ones. We further suggested that negative
cases should be viewed as a different group since they represent situations of the firm which are
specific and not related to those observed for positive cases. Nevertheless, we suggested alternative
transformations to make statistical models, when necessary, able to deal with log-transformed data

in the case of samples of positive and negative values.
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Chapter 3

An Extension of the Ratio Model

So far ratios have been used as input variables for statistical modelling in Accountancy. In this chap-
ter we question their use. Ratios cannot account for non-proportional and non-linear features. On
the other hand, the lognormality observed in items suggests the use of multiplicative or proportional
models of which ratios are the simplest example.

In what extent is the lognormal nature of the observed items compatible with non-proportional
and non-linear relations between them? The development of new models rely on the ability to answer
this question. Therefore, the first task we undertake in this chapter i1s the answering of the above
question as a necessary step towards the building of appropriate tools.

We first recall a known mechanism for generating the probability distribution observed in our
data. Then we study the extent in which financial ratios and multi-variate relations are consistent
with such a mechanism. Finally we introduce on it conditions leading to non-proportional and
non-linear relations.

We show that there is no contradiction between proportional mechanisms and a class of non-
proportional relations. Financial ratios emerge as a particular case of more general descriptors.
They can be extended so as to include non-proportionality. The chapter finishes with examples of

use of the new ratios.

3.1 Introduction

Empirical observation suggests that cross-sectional samples of many accounting items are approxi-
mately lognormal. McLeay [86] observed lognormality in large samples of accounting items which
are sums of similar transactions with the same sign like Sales, Stocks, Creditors or Current Assets.

Along with the items already studied by McLeay, we found that lognormality cannot be rejected
also for stock variables like Fixed and Total Assets or Net Worth and non-accounting items related

to size like the number of employees.
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Figure 23: The relation between Sales and Total Assets in log space. All groups together 1984. The
dashed line is the axis y = ».

Positive values of accounting items having both positive and negative cases, like Working Capital,
Earnings, Gross Funds from Operations and the absolute value of the negative cases of these items,
are also lognormal.

We also gathered evidence on the lognormality of small, homogeneous, samples. We examined
18 accounting items for a period of five years (1983-87) belonging to 14 industry groups in the U.K.
The results are displayed and discussed in chapter 1. We concluded that lognormality seems to be

a general quality associated with the statistical behaviour of the observed items.

Empirical models: The observed items are lognormal. How far can we go in the building of
appropriate models for accounting relations just by considering this empirical finding?

The first consequence of our study is that, instead of an entire sample, we need only to consider
the estimated central trend and scatter. In ordinary space, financial variables are lognormally
distributed. A particular observation cannot be simply described by the mean of the distribution
plus a deviation from that mean. But once we move into logarithmic space the resulting variable
1s normally distributed. Any observation can now be explained as the mean of the transformed
variable plus a deviation from that mean. That is, any lognormal item, «, is described in log space

as an expected value, pi,, plus a residual, e®:

For the j'* firm in a sample, log Tj = pg + €5
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When we deflate one item with the median of the same item for that industry the residuals are
Gaussian in log space. Lev and Sunder [79] discuss appropriate estimators for the central trend of
several possible distributions. Amongst others, the median is also analysed.

Since log x, the mean value of log z, is a good estimator of y1,;, exp(log ) will be a good estimator
of the median of x. Then,
xj

for the j** firm in a sample, the quotient ———L—
exp(logx)

= exp(c}) (4)

will reflect the number of times the case z; is larger or smaller than the standard for its industry.
If z; is Sales of firm j, such quotients would reflect jls relative position and relative progress. In
general these position quotients seem not to be especially useful in accountancy. They measure size

instead of controlling for it.

Financial ratios: We could also say that, since our items are lognormal, financial ratios y/« can

be written in log space as a difference of two position quotients defined in 4:
For the ji* firm in a sample,  log(y;) — log(z;) = (py — ptor) + (€Y — €%); (5)
This expression is obtained just by subtracting two log items. It is similar to

%:Rxﬁ
with R = exp(pty — fto) and f; = exp(e¥ — e”);. Here, we arbitrarily used natural logarithms.

R will be the expected proportion in which y differs from z. Proportional effects lead to variables
related by percentages rather than by additive displacements. We say that F A is expected to be,
say, 2% smaller than T'A if R% = 0.75.

A good estimator for R is exp(log y—log #), the median of the ratio — in log space, the difference

between two mean values —.

The multiplicative nature of ratio residuals: f; is a multiplicative residual deviation and
accounts for the particular case of firm j. It shows in what proportion the relative magnitude of y,
in the j** firm, diverges from its expected relative magnitude as predicted by observing z.

The use of multiplicative residuals contrast with the practice but it seems reasonable. Ratios
are multiplicative models. The residuals should be taken as multiplicative too. In other words, if
the expected value is a proportion, deviations from it are likely to be proportions as well. As an
example, 1t would be possible to say: “For values of B ranging from half an inch to ten miles, A is
expected to be twice the length of B with an error of plus or minus twenty inches”. But it would
be difficult to imagine an error mechanism yielding such deviations. The usual would be to consider

errors of, say, 3%.
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The ratio model: Discussion Ratios are simple proportions. Lognormal items become homo-
geneous in a proportional space and their difference is a proportion too. These facts seem to match.
But, is the ratio model adequate beyond this apparent matching?

The sole consideration of the lognormal nature of individual items seems to be enough to conclude
about one appropriate estimator for ratio standards and also about the multiplicative character of
deviations from such standards. These are interesting points in their own right. But the sole consid-
eration of lognormality on accounting data is not enough to validate the financial ratios themselves
as appropriate models. Such an empirical basis cannot prevent the ratio model from being ques-
tionable. Ratios are just the simplest relations allowed by the lognormal nature of items. Are ratios
able to model all the relations important for financial analysis and knowledge acquisition?

Accounting research seems to give a negative answer to the above question. It is usual to find in
the literature a tone of pessimism about the usefulness of ratios. The existence of non-proportional
and non-linear relations between items are the main causes of concern. Whittington [134] ex-

plains that

in an empirical relationship between a pair of accounting variables, two of the
conditions necessary for proportionality are quite likely to be violated. Firstly, there
may be a constant term in a relationship (...). Secondly, the functional form of the

relationship may be non-linear.

The potential convenience of more elaborated models like regressions has also been stressed by
Barnes [5]. He showed that in any regression ¥ = A 4+ BX the distribution of ¥/ X will be skewed

whenever A # 0. Ratio standards would be likely to misinform since no central trend would exist.

The role of a generative mechanism in this study: Most of the concern about the validity
of ratios is based on the possibility of non-proportional relations between items. In order to study
causes for intercept terms it is usual to describe plausible mechanisms able to generate intercepts.
For example, in the accounting literature it is frequent the use of arguments based on the existence
of fixed costs.

In this study we also use a generative mechanism. Ours is not an accounting mechanism. It
is not intended to describe the internal features of the firm like liquidity or financial structure. It
describes items in terms of size and deviations from size. Items, according to our mechanism, are
endowed with two qualities: They are lognormal and they have in common a strong component of
their variability.

The reason for using a generative mechanism is not the claim that such a mechanism is actually
the real cause and explanation of the behaviour of accounting items. Our claim is that it is possible
to interpret the evidence referred to in a consistent way and develop new models bearing the same

consistency.
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3.2 Ratios and Lognormality

In this section we use the well known proportional effect as a basis for explaining ratios. The usual
financial ratio emerges as a simple consequence of a strong, common, effect.

The proportional effect has been quoted by McLeay [86] as a mechanism able to explain the
existence of lognormality in a few items. Also a recent study [128] uses it. Both studies seem to
suggest a basic or qualitative distinction between two kinds of items. The first kind would include
items reflecting size. The second one, items which cannot “be treated as size measures [86]”. In this
study and in another one we published [129] the proportional effect explains size and deviations from
size. No attempt is made to specify the particular behaviour of any item. Items having negative

cases are considered as a subtraction of two positive ones and explained as such.

The Constant Effect: The Gaussian distribution is often interpreted as the result of many inde-
pendent elementary perturbations. This approximation entails the strong assumption of a constant
effect. For example, the probability of getting odds, when tossing a fair coin, is a constant value of
1/2 no matter the number of games or the size of the coin. And the probability of getting particular
proportions of odds when tossing a coin in several sequences of games draws a Gaussian distribution.
This constant probability of 1/2 governing the game referred to is what we call a constant effect. It

leads to normality.

The Proportional Effect: If, however, any random change dax suffered by a variable x is pro-
portional to the value of z itself, the effect is no longer constant. It is a proportional effect and a
Gaussian generative process will not be able to explain it.

Gaussian variables spread their final realizations around an expected value. They are bounded:
It is most unlikely to find cases many orders of magnitude larger or smaller than the expected. This
is because the random changes leading to such realizations are expected to be similar — a constant
effect. Contrasting with such a mechanism, when the random changes leading to any final realization
are expected to be similar only when taken as proportions of the momentary value of the variable,
the effect is proportional. The probability distribution of such variables is unbounded. It exhibits
strong positive skewness. The observed samples contain cases which are many orders of magnitude
larger than the expected ones.

An example of a proportional effect would be the size of organs or animals when growing to
maturity. A whale grows de = x5 — 1 while a mouse grows dy = y» — y1. The random changes
suffered by z and y are dz and dy. Such changes are not expected to be similar. Their expected

values will be proportional to the size of the animal or organ they affect.

The Gibrat Law: The lognormal probability distribution can be viewed as a result of a generative

proportional mechanism. This fact is known as the Gibrat law [48]. Let 2 be the position of an
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accounting item. If dz, the random transactions affecting x, are expected to be proportional to z
itself,
. dx . .
the quotient —  will be expected to be independent of x.
x
So, if we can find a function
dx

X

z=f(z) such that dz= (6)

then the new variable z will obey the assumption of a constant effect. In the case of dz being many,
independent, perturbations f(x) is the logarithmic function. Aitchison and Brown [1] contain a
detailed explanation of this reasoning. Singh and Whittington [118] explore the growth of firms as
governed by the Gibrat law.

Notice that the logarithmic function emerges as a result of the Central Limit theorem. The
normality of the process governing dz is not required as an assumption, whenever the dz are many,

independent, changes.

The relative growth: Any elementary perturbation dz will produce a small change dx which is
expected to be a proportion of . Therefore dz can be seen as an elementary relative growth and z
as an expected relative growth. For example, when z increments in average from 5 to 6 thousand
pounds, dz is a growth of 1 thousand and z is 20%. The same relative growth of 20% impinging upon
different firms would make # increase in average from 10 to 12 millions or from 15 to 18 pounds.
Gaussian final realizations z; = log z; are explained in the same way. Firstly, by a central trend

1tz which is the expected one for the average relative growth affecting all cases in the sample. And

T
R

average relative growth: When back in multiplicative space, the ¢ are the proportion in which the

secondly, by each particular departure from fi,, the €7, affecting only firm j. These e} are residual
average relative growth of firm j is above or below the expected.

For example, the expected value for Sales in the Food industry was estimated as logz = 4.9218,
(83,521 thousand pounds) in 1987. We say that G. F. LOVELL PLC and UNITED BISCUITS are
positioned at similar distances from the standard. UNITED BISCUITS sold 1,832,400 — about 22
times more than the standard — and G. F. LOVELL sold 3,722 — about 22 times less. For both,
the relative departure from the standard is e = 1.35 = log 22. Only the signs are different.

The generative mechanism responsible for the cross-sectional distribution of sales in the Food
industry describes these cases as a sum of two components. One which is common to all the sample
— an expected relative growth of 4.9218. And another which is a residual relative growth particular

to each company: +1.35 for UNITED BISCUITS and -1.35 for G. F. LOVELL PLC.

3.2.1 Financial Ratios

Now we study the joint variation of more than one item. The notion of financial ratio as a descriptor

stems from the assumption of an effect common to all items for the same firm.
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As we saw, dz = dx/x, the elementary relative changes of z, have the structure of a relative

growth. z is Gaussian as dz is commanded by a constant effect.

Modelling a common effect: We now assume that in the case of accounting data this Gaus-
sian relative growth is the sum of two components. A common and strong component, ¢;, which
accounts for random changes acting over the firm j as a whole and therefore is the same for all the
1,---,4,---, M items belonging to the same report. And a weak residual, 6;, particular to item ¢.
Let z and y be the position of two accounting items for firm j. dz, and dy, are random changes
in z and y caused by o, a disturbance influencing both. Considering the way such common source

of variability affects the relative growth which is about to generate # and y we can say that

dys,  dzs

Yo Lo

This basic mechanism yields final realizations of  and y obeying general expressions of this kind:
logy, — CY =loga, — C*

C' are constants depending on the initial values of  and y. Here, the superscripts are used for
identifying corresponding items, not as exponents.

Since we defined €* =logx — log z, and €Y = logy — log y, as the variability unexplained by o,
we have:  log(y) —e¥ — CY =log(z) —e® — C*

If the cross-sectional distribution of the common effect is dictated by the Gibrat law it will be
lognormal. In this case, when we consider the whole sample of 1,--- 7, -+, N firms, it 1s easy to see

that the statistical model describing the relation between y and « for firm j is

log(y;) —log(z;) = (py — pa) + (¥ = €7); (7)

a form similar to equation 5, the one based on empirical manipulation. p, and p, are the expected
values of logy and log . Therefore ratios can be viewed as specific models describing the common
component of the variability of y and # when both x and y are supposed to be final realizations of

a unique proportional mechanism. The residuals are independent of the common effect.

Notation: Equation 7 can be written in the form of a ratio:
Y- Rxy
Zj
with R = exp(pty — pto) and f; = exp(e¥ —€7);.
For expressing the differences between expected values we use the notation i/, = py — i, or, for

the ratio standards, I, /, and so on. We write the differences between residuals as g¥lv = (e¥ — 7).
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Superscripts are intended to avoid too many subscripts and should not be taken as exponents. They
are used only in the Cj,¢;, e; and f;.

A good estimator for piy /, is log y—log z, the difference between the mean values of y and z in log
space. It 18, of course, coincident with the median of the ratio expressed in logs. If an homogeneous
sample of accounting reports is to be taken as a reference for the building of standards, the value of

Ry /s, the ratio standard, should be calculated as
Ry/x ZCXP(@ - @)

or directly as a median. And if we want to build a new variable from the residuals of the fitted

model we can calculate each £¥/% as

Eg/x = (logy; —logy) — (logz; — log z)

or each equivalent proportion, f¥/%, as
Yi

y/e _ exp(logy)
= = oetoey)

exp(log x)

Both Ry, and fY/* are ratios. f;j/x is a ratio of two position quotients (defined in 5 on page 59).
Notice that the €Y or the ¥ are different from the e¥ or the €” in 5, the empirical formulation.

However, (¢¥ —¢”); = (e¥ — e”); for any j.

The weak, particular, effect: ¢¥/7 the difference between residuals, can be interpreted as the
weak effect particular to y when z is taken as a proxy for the common effect. Unless we know o, we
cannot determine exactly the real weak effects associated with individual items. We know £¥/* but
we don’t know each ¢” and ¥, the components of such a residual difference.

Conversely, it is impossible to determine the value that o, the common effect, assumes for firm
j unless we know the components of the residual difference. Therefore, both the common effect and
the particular one are not directly measurable. Ratios reveal what is different in their components,
by concealing what is common in them. In chapter 5 we describe a model able to reveal what is
common and conceal what is different in its components.

The lognormality of the residual ratio, f¥/%, is not required for the validity of the model itself.
Because z and y are lognormal, it seems reasonable to expect that fY/* would bear the same
multiplicative nature. But the validity of the ratio model is not dependent on any assumption about
the nature of this log difference. Such distinction is important for understanding the distribution of

ratios. We study this point in section 4.2.

Ratios as functional relations: As described here, ratios are functional relations. That is, they

are not intended to explain one item in terms of the other one. Ratios yield a contrast between two
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items both affected by errors. Such a contrast measures how big are the discrepancies between the
ratio components. Therefore, the above description is intended to assess deviations from standards,

not to prediction.

3.2.2 Assumptions Underlying the Ratio Model

An usual topic in accounting literature is to call the attention for the assumption of strict propor-
tionality underlying the use of ratios. Such a statement is descriptive. We could now enumerate the

assumptions attached to the ratio model in a generative, rather than in a descriptive way:

1. Accounting items are final realizations of elementary random changes. Such changes, when
expressed as proportions of the item they affect; are, in average, the same. This 1s the Gibrat

law.

2. The elementary random changes leading to final realizations of accounting items are, when
expressed as proportions of the item they affect, a sum of two components: One which affects

in the same way all the items in the same report and another which is particular to each item.

As we remarked before, the normality of the process governing dz is not required as an assumption.

The advantage of using a generative description is that we can now develop models other then
simple ratios which are also consistent with this basis. Here, ratios emerge as models obeying to
the statistical or expected proportionality of random effects. Proportionality at the end of a growth
process is just a particular consequence of a given generative mechanism. Which other models are

allowed by such a mechanism?

3.2.3 Ratios With More Than Two Items

In section 3.2.1 we noticed that the ratio model emerges when we consider the common variability
of two relative growth processes in a generative mechanism. By considering more than two items an
obvious extension of the usual ratio emerges.

Let x1,---, &, -+, xp be the position of M items for firm j. dz;, are random changes in z;
caused by o, a common source of variability. Considering the way such common disturbance affects

the relative growth which i1s about to generate the set of z; we can say that

dris dros dxpre

_ - = (8)

Tlo L20 LMo

For example, we may want to consider two groups of items instead of two simple variables. Given
Y1, Yk, 5y and @1, @y, -+ -,z and reasoning in the same way as in previous section the

mechanism described by 8 leads to the relation

1 &E 1 & 1 &E 1 &

-5 AN —— _ =

I ;;—1 og(yx) I ;—1 og(z) =% g_lﬂk 7 ; 1 e+
= - ; =

k=1 =1

1K k 1 {
FS e
J
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Despite its outlook, this model is very simple and can be seen just as an expansion of equation 5.
Here, instead of unique variables, expected values and residuals, we have averages of items for every j.

In ratio form the model would be

K 1/K
[Tizt Yik

L 1/L
| T4

that is, a ratio of geometric means of variables describes an effect common to them all in the same

:Rxfj

way simple ratios do.
As the estimators for the p are the mean value of the corresponding log item, the above expression
is easily computed just by subtracting to each log item its mean value and then averaging groups of

items inside the same firm.

Multiplicative residuals: The above model leads to ratios like these ones:

VOA x CL X xY S AxBxC il
or or or Oor simailar.
TA ZxW VN X W D3

Notice that such ratios would immediately result from the usual ones when considering residuals as

multiplicative. In fact, any expansions

— % — .

bl

y
x

SIS

y_¥v¥.z
r oz oz

8 | w

or similar, only require to be statistically valid the multiplicative nature of residuals. For example,
ratios are interpretable as a contrast between two deviations from size.

We must point out that conversely, additive residuals as those accepted in the literature and
practice are not statistically consistent with the above expansions. If residuals were additive their
spread would not retain its statistical nature after expansions such those displayed above. Well
known expansions of this kind like the “Pyramid of Ratios” or the DuPont profitability triangle

require to be valid the assumption of residuals being multiplicative.

Degrees of freedom involved: All the above explanatory models use only one degree of freedom.
They are simple translations in log space. One free parameter i1s enough to account for a unique
optimal value. Such an optimum is an estimator of a difference between two central trends. This fact
has important implications for the assessment of ratio standards and the interpretation of departures
from such standards.

The inclusion of more than one variable in each group will not account for more explained
variability. The number of used degrees of freedom remains equal to one. We are still modelling
a single parameter. However, more variables, if conveniently selected, can enhance the accuracy of
ratios by a self-smoothing process able to make particularities cancel out. We explore this possibility

in section 5.1.
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A geometric interpretation of the common effect: Before finishing this section we review
the ratio model using a geometric, more concrete, interpretation.

Ratios emerge as a consequence of dividing the log variability of items in two components and
modelling the one which is common to both. This common component can be interpreted as the
effect of the size of the firm.

If only such common source of variability would exist, firms belonging to homogeneous groups
would be similar except for size. The values assumed by all accounting items would be just different
magnifications of such an effect. In log space, distributions of accounting items would only differ by
their position. Their shapes would be exactly the same. They would exhibit similar variance and
when paired, they would also exhibit co-variance similar to the variance. Any two-variate scatter-
plot would simply show a 45° slope intercepting the y axis in logy — logz. This is an abstraction,
of course, but it shows what a common component represents. If now we add some particular
variability to each item we obtain the statistical behaviour of items as described here.

According to the developed models all accounting items should be seen just as different aspects
of one unique underlying variable, the size of the firm. The particular behaviour of each variable

emerges as a residual or deviation from the common variability.

3.3 Extending the Notion of Financial Ratio

The ratios introduced in the last section, despite their unusual outlook, are obvious applications
to more than two items of the same principle governing the usual ones. In this section we extend
the notion of financial ratio in two new directions allowed by the proportional mechanism. First we
introduce non-linear proportions consisting of applying the linear model to the log space. Second,

we model non-proportionality as part of the Gibrat law.

3.3.1 Non-Linear Proportionality

If we wish to model the joint behaviour of 1,---,%,---, M items after controlling for the common
effect we must be able to account for differences amongst them other than the simple position or
mean differences the usual ratios account for.

In order to do this we notice that the proportional mechanism is able to yield more complex
relations than those developed above. Expression 8 is just the simplest case. Accordingly, we now
develop similar models, but able, to some extent, to cope with the variability of individual items.

The introduction of multi-variance in the generating mechanism can be done with different
degrees of complexity. The simplest approach consists of using just one parameter, b;, individualizing
each proportion. This new parameter allows the description, using the same formulation and without
loss of generality, of the two components of the variability of each accounting item. A common effect

would have b; = 1 for all variables.
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Similarly to 8, there is a relative growth, p, for which

dl‘l dl‘z
by x L — by % rP_ ... bar X
Tip L2p TMp

dl‘Mp

=dp (9)

In this mechanism, the b; are gain or attenuation factors expressing different degrees of linear
correlation between the generative growth rates leading to these variables. Notice that only M — 1
of these b; are independent.

In the simple case of b being similar across firms the consideration of two items, y and z, would

yield general expressions like
logy; —b x loga; = (CY —C"); 4 (Y —&"); — b x logh

or similar. Such free-slope ratios would look like this:

y;
—‘Z = exp(wy) X f;
L

b and wqy are now the two parameters of the model. wy 1s expressible in terms of b and the initial
values CY and C7”.

And when considering two groups of items instead of two simple items we would have

1 K 1 L 1 K 1 L
- _ k l
% ké_l by, x log(yjk) — 7 l_é 1 by x log(le) = wp + (_ff ké_lef — _L l_é 1 e )

or similar. wgy is a parameter expressible in terms of the b; and the initial values. In the form of

J

ratio,
K bp/K
| ij o
— T = exp(wp) x f;
[T, Z 5
We can simply say that any multi-variate descriptor of this kind has, for 1,---,¢,-- -, M items, a
general form
M
Zwi x log(#;) = wy (10)
i=1

in which the residual is omitted. w; are parameters expressible in terms of the b;, M, and the initial

values. In ratio form,
M
wi _
H xft = exp(wo).
i=1

We can write 10 as a linear relation in log space
M
E w; X u; =wy  where  wu; = log ;.
i=1

that is, in log space a simple inner product can account for linear correlations in the residual

behaviour of accounting variables.
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A class of non-linear ratios: At the beginning of this section we remarked that the free-slope
ratios about to be introduced were intended to model relations between ratio residuals. We now
discuss their direct use in the modelling of relations between items. What is the consequence of
using free-slope ratios instead of the usual ones?

Firstly, let us notice that free-slope ratios contain the traditional ones. We can view financial
ratios as a special case of the equation 10 in which M = 2 and {w; = 1, wy = —1}.

Free-slope ratios have some attractive features when directly modelling items: They preserve
proportionality. They are also able to model a class of non-linear relations. Simple ratios only
consider a linear proportionality in which the exponents affecting the items are the unit or a fractional
— the inverse of the number of items gathered in the numerator or in the denominator. Here, we
envisage a more general proportionality, not necessarily linear, in which items have real exponents.
As long as we accept linearity in log space, proportionality will be preserved and inner products will
model accounting relations.

However, free-slope ratios are no longer interpretable in terms of relative size and deviations from
it. In log space, any slopes different from 1 — when relating to items, not to residuals — rely on
simplified mechanisms difficult to accept and lead to functional relations with no intuitive meaning.

The evident functional relation linking all accounting items seems not to be a co-variance but a
simple scaling — in log space, a displacement. Slopes diverging from 1 in log space mean a non-linear
relation. As a rule, we shouldn’t accept non-linearity before being compelled to reject more simple
mechanisms. We based the assumption of # = 1 on findings described in chapter 2: For the observed
items the log variance and co-variance are similar for homogeneous groups.

There is another reason for avoiding the use of more than one free parameter in financial models.
Accounting data is fertile in irregularities capable of distorting the meaning of a model in which
slopes are allowed to vary freely.

In figure 24 (left) on page 70 the non-linearity introduced by letting the slope of the regression
in log space be different from 1, 1s clearly being used just to approach a few influential cases. These
cases are marked with a plus sign and an arrow on the right of the same figure. In other words, the

resulting model is now sample-dependent.

Using non-linear ratios: There are a few cases in which the extended ratios discussed above

could be useful. The first one is when we want a proportion of size to be present in a simple ratio.

For example, we could form the ratio Y _ Rx f;.

7
zj
By selecting appropriate b we obtain a residual, f;, contaminated with as much size as desired.
Another possible application 1s when we wish to introduce a second free parameter in the model
because our goal 1s the prediction of y using x as predictor, not the assessment of a contrast between

them. In such circumstances we don’t need to be guided by the above, cautious, reasoning.
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Figure 24: Comparing a regression in log space (B = 0.81) with the ratio model (B = 1).

Functional relations describe mechanisms. Mechanisms should be plausible. Free slopes in log
space are not plausible for describing items since they imply the existence of a unique relative
growth for the same item across many firms. Moreover, it would be inadequate to consider non-
linear mechanisms as a rule. But when the goal 1s to predict one item from another, there are no

known objections to the use of simple regressions in log space.

The class of non-linearity introduced by free-slope ratios: Figure 24 or any similar one
will show that the distortion introduced in a two-variate model by allowing small departures from
B =1, affects mainly large firms. It will be a concavity towards smaller y, in the case of B < 1.
And it will be a convexity towards larger values of y for B > 1.

The practical assessment of significant departures seems difficult since cases which could be

interpreted as drawing these non-linear features also could be considered as influential.

3.3.2 Non-Proportional Ratios

The relation da /2 = dz is a simplistic description of generative processes. The Gibrat Law allows a
more realistic basis by admitting that the random changes dz affecting # are proportional, not to z
itself, but to x + xg.

We call this zy a base-line. Since the generative process leading to a particular realization of

x starts with a non-zero value for # = 0 the increments x receives at this point are in average
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proportional to such base-line. Therefore,

dx

r+ xo

instead of dz = @ we should write dz =
x

for describing the generation of a particular item z.

Such a process leads to a class of ratios which can have many different characteristics according
to the magnitude, sign and position of their base-lines. In some cases, but not in all, these base-line
ratios will draw non-proportional relations between its components.

Notice that zy should not be taken as the initial value of z, that is, the value of z at the beginning
of the process leading to its final realization. Such initial values — which in our notation are the
C® — will not induce non-proportionality in the models describing cross-sectional samples. As long
as the process is strictly proportional, the outcome 1s proportional as well. Non-proportionality
emerges only when the random changes dx are proportional to values which are not z.

Next we briefly describe some of the possible models resulting from base-lines.

An overall base-line in the denominator: In the simplest case, zg would be a constant value
affecting all realizations of x; for any j. That is, for a particular item all firms in the sample were
expected to be affected by the same non-zero base-line.

One possible model resulting from a two-variate relation would be

log(y;) — log(x; + x0) = iy/e + €4/

when the base-line acts on the denominator but not in the numerator. In ratio form,

Base-lines occur when any of the ratio components is three-parametric lognormal instead of two-
parametric. In the above expression and in all subsequent ones, the item affected by the base-line
— in this case it is # — receives a transformation similar to the one used in formula 1 (page 8) for

achieving three-parametric lognormality.

Estimating zg: The problem of finding good estimators for #g can be approached in two ways:

e Firstly, this problem could be considered as concerning each item independently, as we did in

chapter 1. Hence, the estimator for y, ., supposing that we know in advance d,, an estimated

zg, would be simply log y — log(x + d5). By considering the estimation of p as independent of

the estimation of zg we considerably simplify the formulation of estimators for base-line ratios.

e But we could as well find plausible reasons for considering these two parameters as not inde-
pendent. It would be complicated to discover the analytical expressions for estimating x and

1 when considering their dependence. In practice, there is no problem in finding estimators for
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these models. Any iterative Least-Squares algorithm, used in log space, will generally succeed

in doing so.

Both the independence and the dependence models are interesting. They can explain different
kinds of base-lines. But the independence model is attractive also because of its robustness. In this
model only the small cases in the sample are affected by the introduction of a second parameter.
For larger firms the model behaves exactly like the corresponding simple ratio. And the estimation
of expected values is less affected by influential cases or non-desirable interactions between the ratio

components.

Non-independent residuals: Returning to the above model — base-line in the denominator —

it is clear that ratios of this sort are a non-proportional relation:
yj:l‘QXRij—l—l‘jXRij

The above form is useful just to show that such a model is not a linear regression. The non-
proportional term zo x R x f; is not independent. It will introduce displacements proportional to a
residual value. Distortions will vary from case to case.

The distortions introduced by this kind of ratio will be small provide |§,;| remains small. The non-
proportional term will be significant only for values of ; near J,, that is, whenever the generative
process leads to final realizations of items which are near their base-line. Cases far away from their

base-lines exhibit proportionality since xz; 3> zo X R x f;.

An overall base-line in the numerator: By considering a base-line, yo affecting y, the numer-
ator of the ratio, instead of x, we get non-proportional terms which can more easily be significant.
The expression

log(yj + o) — log(2;) = pyye + 4"

means a ratio

which can be written as
yj:l‘jXRij—yo

In this case the base-line acts as an intercept in a regression. It introduces a displacement affecting
all cases in the sample. Notice that this model is still not a regression. The difference, however, is
not functional. It stems from the multiplicative nature of the residuals.

Notice also that, except when assuming independence between the estimation of yy and p, there

are practical problems in modelling this relation directly with the usual algorithms.
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Figure 25: An example of the effect of a base-line in the denominator (T'A/F A) and in the numerator
of a ratio (FFA/TA). The X-axis measures the rank of firms according to size. The Y-axis measures
the ratio in logs. All groups, 1987.

Differences between numerator and denominator base-lines: When the base-line acts on
the denominator its effect is not independent of the value of the residuals and other parameters. For
instance, the overall distortion introduced depends on the value of Ry, the expected proportion
between the numerator and the denominator. On the contrary, even a small yg, the base-line in the
numerator, seems able to induce significant displacements. Therefore, it is possible to have a ratio,
y/x, exhibiting only residual non-proportionality and just by inverting it to get another ratio, /vy,
now exhibiting a strong departure from proportionality.

This behaviour is expected. In log space both the distortions introduced by y/a or /y are
symmetrical about 0 and have exactly the same magnitude for equal base-lines. But since the one
originated in the denominator is a distortion acting towards the range of negative log values, it
will induce, when in ratio form, departures from proportionality limited by {0, 1}. Differently, the
departures observed in the numerator will be, when in ratio form, directed to span the interval
{1, 00} since they come from the positive region of the log space. There is the difference.

Figure 25 shows the distortions observed in two symmetrical ratios (FA/TA and TA/FA) by
significant base-lines. The X-axis is the rank of the cases in the sample when sorted by T'A in
ascending order. The Y-axis is the value of the ratio in log space.

A ratio for which proportionality holds will induce an horizontal trend. The expected value for
the ratio 1s the same no matter what value is expected for T A. On the contrary, in this case the
smallest firms in the sample clearly break the assumption of proportionality. This is because of a

significant base-line affecting one of the ratio components.
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The scatter-plot described here is valuable in detecting base-lines. It is just a practical application
of the usual plots for tracing possible trends in residuals. It is convenient to apply a small amount

of smoothing for improving its clarity. In the above example we used moving averages.

Base-lines both in the numerator and in the denominator: When considering yo and g
as both significant, the amount of non-proportionality introduced results from their interaction. A
reinforcement of non-proportionality will occur when y; and zg have different signs. Apart from
this, the overall effect will depend on R, the expected proportion.

In a very particular case, yo = x¢ X R, both base-lines cancel out. The remaining non-

proportionality is residual.

Multi-variate base-line ratios: The general multi-variate descriptor, involving free-slopes and

base-lines affecting all cases and present in several items would be written as

M
Z w; X log(w; + xo;) = wo
i=1
or, in ratio form,
M
[T + w0i)*t = exp(wo)
i=1

It is expected that multi-variate models of this sort will eventually generate strong departures from

proportionality. The zg; can easily reinforce their effects creating important joint displacements.

Proportional base-lines: The mechanism leading to the above descriptors requires an overall
displacement — a base-line acting upon the whole of the sample in the same way —. Overall
base-lines suppose the existence of overall costs or income.

We now consider the case of base-lines which are dependent of the size of the firm. Mechanisms
internal to the firm are likely to generate base-lines proportional to size. The assumption of such
internally generated base-lines being similar for the whole of the sample would be difficult to accept.

For 1,---,7,---, M firms, zy; is now a particular base-line concerning the generative process of
each x;. This base-line will act as a new variable, not as a parameter of the model.

The model collapses into the no-base-line ones. In fact, if zg; is proportional to the size of the
firm it is similar to any other accounting item. For instance we could write zo; = z; X Roj X fo;

and we would have a relative growth

dx
T X (Roj X ij + 1)

=dz

for the generating process of a particular realization of .
And since Rop; and fp; are not involved in the subsequent growth of x the resulting model would

be a version of the free-slope ratio we explored in section 3.3.1.
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Base-lines proportional to the size of the firm will not break proportionality. However, they will
induce differences in the way each item is affected by the common variability. In order to account
for such differences, mechanisms similar to free slopes are required.

The described model is interesting because it has been often used in the accounting literature as
an example of the plausibility of intercept terms in two-variate relations. It was an awkward choice
since, as we see, base-lines acting just as another item are not likely to induce overall translations.

We now analyze this subject in more detail.

3.4 The Basis for the Existence of Non-Proportionality

Base-lines can occur due to internal or external causes. The most general one is internal: when
non-existent variables ought to exist. All growth processes starting with = 0 must have at its
origin a base-line acting like a seed since zero-valued items can’t grow. This is the basic reason for
the existence of base-lines. It applies to all growth processes of the kind we consider here. And it
certainly applies to accounting items as well.

Due to its exponential nature, the final realizations of proportional mechanisms are likely to attain
values which can be many orders of magnitude larger than this seed. In such cases, * — zy &~  and
the non-proportional term vanishes. Growth processes in which the final realization is not far from

the base-line would generate non-proportional terms which would not vanish.

3.4.1 Internal Base-Lines

The foundation invoked in some literature for the existence of significant departures from propor-
tionality is coincident with the model we call the proportional base-line. Foster [44], for example,

referring to the Earnings-to-Sales ratio, explains that

One rationale for a negative constant term is the existence of fixed costs, which implies
a loss at zero sales level. One rationale for a positive constant term in the earnings-sales
relation is an income source (for example, interest income on cash investments) not

related to sales.
Lev and Sunder — apart from suggesting a different sign for the base-line — argue in the same way:

The relationship between gross profit (y) and sales (z) probably contains a positive
constant term given the frequent existence of a significant fixed costs component. Ac-
cordingly, observed differences in gross margin ratios (over time or across firms) will
reflect the confounding effects of differences in efficiency, reflected by 3, differences in

the level of fixed costs, «, and differences in sales volume, x.
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This literature says that, because in each individual firm some internal mechanisms exhibit constant
terms, the corresponding statistical variables, obtained when gathering many firms in a sample,
would exhibit also a constant term.

It is worth emphasizing that, as we saw above, this is not so. The base-lines described by the
above mechanisms could induce particular correlations between items instead of overall displace-
ments.

This seems to be another case of picturing time-series while working with cross-sections. Return-
ing to the example of Fixed Costs, the meaning of a cost being fixed is that it is fixed inside a firm.
But a cost can be fixed inside a firm and variable across firms. As a first approximation, we can say
that large firms exhibit large fixed costs, small firms exhibit small fixed costs and infinitesimal firms
would exhibit infinitesimal fixed costs. On the limit, the zero-sized firm would have zero fixed costs
thus yielding strict proportionality. Whittington [134] clearly distinguishes between time-series and

cross-sections when addressing this problem:

In cross-section, such an interpretation (sales-unrelated income) could not be placed
on the constant term: It would now represent an estimate of the average amount of
sales-unrelated income for the average firm, provided the further assumption is made

that “sales-unrelated income” is strictly independent of size.

This statement is equivalent to ours. In cross-section Fixed Costs should be regarded as another

item with nothing very special about it.

3.4.2 Overall Base-Lines

We noticed that mechanisms which are internal to the firm would not yield intercept terms. Only
overall base-lines can do it. The question now is: Can such overall base-lines plausibly induce strong
intercepts? It seems as if there 1s a limit for the plausibility of overall translations affecting entire
samples. In fact, such translations must be small because they have to impinge upon all firms, small
or large. And being small, they will be entirely un-noticed by large ones.

Clearly, if an overall cost were big enough to promote a significant displacement it would be far
greater than the earnings of many firms — leading them to immediate insolvency. And if it were
small enough to allow any firm to survive then it would not be noticed by most of the firms and
indeed its effect would be negligible.

For example, a fixed cost of 3,722 thousand pounds over the whole of the Food Manufacturers in
the U.K. would represent to UNITED BISCUITS just 0.2% less earnings in 1987. This firm would
have to be content with 99.8%. But such a cost would eat up the whole of sales in G. F. LOVELL
PLC. All the firms similar or smaller in size would perish (about 5% of the industry). This is not
conceivable. The acceptance of overall displacements able to influence large firms would imply the

existence of unreasonable or impossible mechanisms.
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Figure 26: When Y = A + X is transformed, the fact that A # 0 introduces non-linearity in the
resulting relation. Such non-linearity affects only values of ¥ near A. On the left several Y = A4+ X
slopes with very small A. In the centre the same slopes in log space. On the right, in ratio space.

3.4.3 Assessment of Overall Departures From Proportionality

In order to assess the significance of overall departures from proportionality it is important to gain
insight into the way the introduction of a constant term affects the linearity, in log or ratio space,
of an otherwise proportional relation. By applying log or ratio transformations to both sides of
Y = A+ X and observing the distortions resulting from increasing the value of A, we can acquire a
precise idea of the impact of deviations from strict proportionality.

Figure 26 on page 77 shows the results of applying logs (centre) or dividing by X (right) in both
sides of Y = A+ X (left) for small values of A — thus obtaining relations which are formally similar
to the above non-proportional models.

Those considered A are +1,000, £600 and +200. For large X, the effect of introducing such
intercept terms is negligible. The effect of A becomes significant and visible whenever the order of
magnitude of the X is similar to the order of magnitude of A.

Accordingly, base-lines must be taken into account only when the final realization of a growth
process, x, is not far away from 2. This could happen when the growth is weak (very small relative
growth and very few random changes). Please compare figure 26 (right) with figure 25 on page 73.

The last one is a practical realization of the former.

Traces of non-proportional relations in log space: The examination of two-variate scatter-

plots of accounting items in log space can thus detect departures from strict proportionality when
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Figure 27: Overall base-lines introduce non-linearity in log space. Four possible cases. Simulated

data. Above, the original scatter with no base-line effects introduced.

78




NUMERATOR (I NUMERATOR (I
o (1069 deltas = - 50 (num), + 300 (den) | 6 4 (999 Geltas = + 300 (num), - 30 (den)

X X

° o ° oo

X

X
] x:x:%’*%‘

W% %:)% o
3 % 3 R
(03
c B A

24 2

B
1 1

A DENOMINATOR (logs) DENOMINATOR (logs)
0 T T T T T T 0 T T T T T T

0 2 4 6 0 2 4 6

Figure 28: Overall base-lines introduce non-linearity in log space (Cont.). Two more cases. Simu-
lated data (continuation).

they turn out to be significant. As seen above, the log transformation — and also the ratio one —
produces a trade-off between non-proportionality and non-linearity so that even small departures
from proportionality result in clear departures from linearity. Figure 8 on page 31 is an example.
Figures 27 and 28 on pages 78 and 79 systematically explore the different possible patterns
observable in scatter-plots in log space when overall base-lines are in the numerator or in the de-
nominator of ratios. The Y-axis assess the numerator and the X-axis the denominator of the ratio.
The data is a set of 71 cases simulated so as to replicate the ratio CA/CL using log mean values

and correlation similar to those found in the Electronics industry (1987):

p = 09380
logCA = 4343 | minCA = 53
logCL = 4192 | minCL = 32

The base-lines (¢ in the figures) were introduced in the simulated data after the generation of
correlated variates. In appendix A we use this sample to display some methods available for the
estimation of base-lines.

The observed shapes agree with those of figure 26. They can be used for gaining insight into the

effect of overall displacements in the small firms’s deviations from standards.

3.5 Using Extended Ratios

In this section we show examples of the applicability of the devised extended ratios. Two items
are used that often exhibit significant overall base-lines. They are Current Assets and Earnings.
Both samples belong to the Electronics industry. We formed the ratios FA/CA and S/EBIT and

explored their behaviour.
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As usual, x represents the denominator of the ratio and y the numerator. For each example, five
different models are compared: Model 1 to 5. The numbering refers to figure 29 on page 81 and to

tables displayed later on. Next we describe each model.

Model 1: The usual ratio. It engages one degree of freedom. Its unique parameter, the median
of the ratio in log space, is estimated as a in the equation
logy; = a+logz; + Eg/x yielding the ratio Ui~ 00 x fi
Ly
The graphical representation of this ratio has the label 1 (solid line) in figure 29. It is a 45°

straight line in log space. In ordinary space it is also a straight line passing through the origin.

Model 2: The free-slope ratio. It engages two degrees of freedom. Its two parameters are a and
b, the slope. They are estimated by the equation

logy; =a+b xlogz; + 6?” yielding the ratio y—‘z =10% x f;
x?
J
The graphical representation of this ratio has the label 2 (dotted line) in figure 29. It is a

straight line in log space. It is not linear in ordinary space. It goes through the origin.

Models 3 and 4: The base-line ratios. They engage two degrees of freedom. But in the former
both parameters (a, and d) are estimated jointly. In the last, a is taken as known. Then ¢ is
estimated based on this assumption. The slope is not allowed to vary freely. The parameters
are estimated in the equation

logy; = a+ log(x; +6) + Eg/x yielding the ratio yi 5= 107 x f;
Zj

The graphical representations of these ratios have the labels 3 and 4 (dashed lines) in figure 29.
They are non-linear in log space and straight lines in ordinary space. They don’t go through
the origin. In log space both models yield curves which are parallel to each other. Model 4

converges to model 1 for medium-sized and large firms.

Model 5: The base-line plus free-slope ratio. It engages three degrees of freedom. The pa-
rameters are a, b and 4. It is the result of considering free slopes and § together. The

parameters are estimated in the equation

logy; = a+b x log(z; +d) + 6?” yielding the ratio ﬁ =10% x f;
This ratio i1s not displayed in figure 29.

The above description i1s complemented with figure 29. It represents graphically the typical shape

of each model. In this representation there are three plots. Above, the models in log space. The
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two plots below this one represent each model in ordinary space. They explore the region near the
origin using two magnifications.

Methods similar to those discussed here but using simulated base-lines can be found in ap-
pendix A. Some important practical details to bear in mind when attempting to estimate base-lines

are only referred to there.

3.5.1 Fixed Versus Current Assets

For some industries, C'A generates clear base-line effects when combined with other variables. We
selected Electronics, 1987, and tried several combinations of items. Finally we decided to use F' A as
the numerator. Fixed Assets is a complementary item to Current Assets. No external constraints
resulting from accounting identities will distort this relation.

Next table relates the tested models to the variability explained, the skewness and the kurtosis

of the ratio residuals in log space (the Eg/x).
Model a b ) R? Skewness | Kurtosis
1 -0.46 72% 0.27 2.18
2 -0.21 | 0.94 76% 0.07 1.30
3 -0.49 +528 | 78% -0.12 1.19
4 -0.46 +327 | 76% -0.12 1.78
5 -0.40 | 0.99 | +403 | 78% -0.12 1.19

We now observe the features of each one of the obtained models. Model 1, the simple financial
ratio, accounts for 72% of the variability. By letting the slope b vary freely in log space, further 5%
of the variability are explained. Both the skewness and the kurtosis of the residuals are improved.
In the 3" and the 4! models the gain in explained variability is similar to the one obtained with

free slopes. The explained variability didn’t improve in the 5* model.

Discussion: In this example, the variability explained is smaller than the usual in ratios. It is
common to find ratios able to explain between 80% and 95% of the variability on its components.
This is because, apart from Debt, F'A is the item with the largest amount of unique variability.

The base-line ratio with two free parameters (the 37%) explains as much variability as the three-
free-parameters model (the 5%). It is interesting to notice that the free-slope model (the 279) is
using it to approach the non-linear effect of the base-line. Once such base-line is accounted for, the
slope returns to the value of 1 (the 5" model).

The value of the base-line is itself very small and its effect will vanish except for the smallest firms
in the sample. When using the method described in chapter 1 to estimate the base-lines in C'A and
F A we obtained values which agree with those displayed in the above table. C'A is three-parametric
lognormal: Significant departures from normality vanish for —580 < ¢ < —300. The maximum W

is obtained with § = —570. F'A has no significant departures from the two-parametric hypothesis.
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The skewness of residuals is not very strong in this example. And it is clearly controlled by
the introduction of a base-line. The kurtosis is strong and it will not vanish with base-lines or free
slopes, as expected. In chapter 4 we discuss the distribution of ratio residuals.

From the four extensions of simple ratios we present here, the most attractive one seems to be the
4th Tt accounts for the base-line but approaches the usual ratios for larger values of its components.
Such a independently-estimated base-line ratio 1s also simple to implement. It will exhibit the same
kind of robustness regarding the influence of particular cases or external constraints simple ratios
have. And it seems able to account for a significant increase in explained variability. The estimator

for & produced by this model is smaller than the predicted by the other ones.

3.5.2 Earnings Versus Sales

The relation between Earnings and Sales has been frequently quoted as an example of the plau-
sibility of an intercept term. We examined such a relation for all industrial groups introduced on
page 5 (chapter 1), for a five-years period (1983-1987). In most of the industries no traces of non-
proportionality were found. In others, the apparent effect of an overall base-line turned out to have
a very different explanation.

We first selected the Food Manufacturers group in 1987. Figure 30 shows the log scatter-plot
of Earnings versus Sales for this group. It seems a case of non-linearity consistent with an overall
base-line. However, four of the firms, the smallest when measured by Sales, have Earnings larger
than Sales and shouldn’t be considered as typical industries. These cases are marked with a “o”
instead of a “x” in figure 30. Without such cluster the non-linearity seems much less impressive.

This example shows how vulnerable and potentially misleading the financial relations become if
more than one free parameter is used.

Figure 31 on page 85 shows some other industries. The visual examination of samples in log space
and the modelling of base-lines were particularly difficult in this case because one of the components
of the ratio is bounded by the other.

In the Electronics industry, a small departure from proportionality could be observed in 1986
and 1n 1987. The results of applying extended and base-line ratios to the 1986 sample are displayed
in next table. We modelled the ratio S/EBIT, not the EBIT/S one.

Model a b ) R? Skewness | Kurtosis
1 1.03 77% 0.73 0.99
2 1.39 | 0.90 78% 0.49 0.66
3 0.97 +273 | 79% 0.54 0.70
4 1.03 +148 | 78% 0.62 0.84
5 1.10 | 0.97 | 4207 | 79% 0.50 0.68

The same features observed for C'A are replicated here but not so strongly. The improvement
in explained variability over the usual ratio is not significant. When the base-line is estimated

independently of the median, its value is smaller than the one for joint estimations.
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Figure 30: Log Earnings versus Log Sales for the Food Manufacturers, 1987. The cluster inside the
dashed square has EBIT > S.

3.5.3 Other Non-Linear Relations Between Items

Apart from the mechanisms described above, non-linearity could emerge in accounting models due

to other causes. Two of them seem plausible:

Higher order effects: It could occur, for example, when modelling financial risk. Leveraged and
non-leveraged firms can behave in opposite directions if they belong to some specific industries. In
this case, the significant interaction would emerge owing to the presence of two groupings: Financial
structure and industry. A statistical version of the “exclusive-OR” problem, that is, a second-
order effect, can arise when modelling an outcome for more than one grouping. Such possibility is
important when using linear techniques. Linear tools wouldn’t be able to separate effects other than

first-order ones. In chapters 5 and 9 we explore this possibility.

Non-proportional non-linear relations between variables: Proportional non-linearity is just
a particular class of non-linear relations between items. It would require the use of free-slope ratios
instead of the usual ones. However, many other kinds of departures from linearity are possible.
Whittington [134] reports quadratic relations in profitability ratios. He suggests that this could
be explained by saturation effects. Saturation is the kind of distortion free-slope ratios could broadly
model since it affects mainly the largest firms in the sample in a way similar to free-slope ratios do

— with b < 1, as in figure 24, page 70 —.
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Figure 31: Earnings versus Sales for four industries in 1987. The X-axis is log .S and the Y-axis is
log EBIT.

However, non-linearity affecting, for example, the smallest cases in a sample, wouldn’t be mod-
elled by free-slopes. Notice that base-lines represent linear displacements. They only yield non-
linearity in log or ratio space. And it is possible that, along with genuine base-lines, other influences
affect small firms.

Existing accounting statistical models seem not to be aware of potential sources of non-linearity.
Base-line and saturation effects are not very imposing and the second order effect can be avoided

by increasing the dimension of the input space, which accounting models implicitly do.

3.6 Discussion and Conclusions

We described a generative mechanism for the probability distribution observed in our data. The
traditional notion of financial ratio stems from considering a common relative growth impinging over
the two items forming it.

Ratios can be extended in several ways consistent with such a mechanism. Firstly, they can have
more than two components. The sole requirement for the statistical validity of such ratios is the use
of multiplicative residuals. Ratios can also be viewed in log space as a regression. Such free-slope
ratios preserve proportionality. They introduce non-linearity in the large firms in the sample.

Finally, the existence of base-lines in the generation of items will eventually introduce non-
proportional relations between the components of a ratio.

The reasons generally invoked for expecting significant intercepts don’t lead necessarily to the
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emergence of non-proportional relations. Only an overall cost or income impinging upon the whole
of the sample seems able to yield non-proportional relations in cross-sectional samples. This overall
base-line couldn’t be far away from the smallest case in the sample though. And, in that case, the
effect of such a translation wouldn’t be noticeable except in its neighbourhood.

Distortions in proportionality resulting from overall base-lines depend on several factors. They
are maximal for base-lines in the numerator of the ratio or when the signs of the base-lines of the

numerator and the denominator are different.

The validity of ratios: We conclude that it is not necessary to abandon the basic notion of
ratio to model non-proportional and a class of non-linear relations. Ratios can be extended so as to
include these features. This 1sn’t the same as saying that the simple ratios are always acceptable.

Base-line ratios seem promising for ratio analysis and statistical manipulation of accounting data.
They are robust, easy to estimate and it is likely that they will be able to gather in one simple model
the correct relation between two items for firms of very different sizes.

This study also supports the idea that the use of ratios was not just an arbitrary choice amongst
many possible ones. Ratios are consistent with a trend towards lognormality. They are, however,
too simple relations having this quality. Since the non-linearity modelled by free-slope ratios mainly
concerns the largest firms and the non-proportionality generated by overall base-lines affects only
the smallest ones, it seems as if there is room left amongst the medium-sized firms for the traditional,
non-extended, ratio to be used more or less accurately.

It is worth emphasizing that all the developed models require the acceptance of the multiplicative

nature of deviations from standards.

The proportional mechanism: Discussion. As referred in chapter 1 lognormal distributions
are not a mandatory outcome of the proportional mechanism. The Gibrat law is at the origin of a
whole class of positively skewed distributions of which the lognormal is just one member. Also, the
proportional mechanism is not the only one capable of producing lognormal variables. However, the
other known mechanisms are not plausible for reflecting growth processes. Aitchison and Brown [1]
offer a more detailed development of these topics.

As mentioned, we are not using the Gibrat law for explaining the distribution of particular
items. We don’t think Fixed Assets is more lognormal than Earnings owing to the proximity of the
former process to the assumptions of the Gibrat Law. We picture proportionality as a stochastic
effect present in all items: Not as a mechanism internal to the firm but as a mechanism explaining
differences in size observable in cross-sections containing many firms.

The proportional mechanism is clearly not intended to describe the history of particular items.
It strictly applies only to positive stocks in periods of exponential growth. Our choice of the Gibrat
law for explaining and exploring the empirical findings of previous chapters could be summarized by

saying that 1t 1s consistent with lognormality, the common effect and the existence of base-lines. It
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is also plausible as a mechanism underlying any growth process. Therefore it fits in the role assigned

to 1t, the one of ensuring the consistent development of models based on previous findings.

The common effect: Discussion. The developments presented in this chapter are consequences
of empirical observations. They are in line with previous research carried out mainly by Whit-
tington [134] and Lev and Sunder [79] who pointed out the limitations of ratios. By Barnes [5]
who stressed the potential applicability of models in which items could be used directly. And by
McLeay [86] who described the lognormality of some items, amongst others. These authors open up
a path for viewing more general models behind ratios.

However, the central assumption of this study is likely to eventually cause surprise. We based
our approach on the existence of a common effect. According to it, all the items belonging to an
accounting report should be expressed in terms of the same effect, size, and deviations from it. We
have shown that non-proportionality 1s compatible with this assumption. The common effect greatly
simplifies the formal treatment of the general problem of modelling with lognormal data.

The extension of such an effect to items like Working Capital, Earnings and Funds Flow is not
usual — 1t has not been explicitly denied either —. The common effect itself 1s also a somehow new
way of referring to size. Our empirical findings dismiss any strong statistical differentiation between
items which are accumulations and those which are not. Items are lognormal because they reflect
size, not because their internal generative mechanisms lead to lognormality.

The effect of size is clearly present in the observed items. Only Long Term Debt shows a less
strong but not negligible correlation with size. In our opinion, the assumption of independence from
size 1s not tenable. If Earnings were independent from size there would be no place in the economy
for firms other than those having a particular dimension. We think that only firms in distress can
exhibit accounting features not correlated with their sizes. Firms are so distinct in their sizes that

all their accounting features have to reflect, to a smaller or larger extent, this basic characteristic.
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Chapter 4

External Constraints and the

Cross-Sectional Distribution of

Ratios

The residuals of ratios, the f¥/% should be positively skewed due to their multiplicative nature. The
same should happen for the ratio output, i/, x fY/*In practice, some ratios are Gaussian or even
negatively skewed. How is this possible? And which causes influence the distribution of ratios?
This chapter applies the findings of the previous ones to the problem of the distribution of ratios.
Our aim is to find the rules governing them. We base our approach on the models introduced in

chapter 3 and on the effect of external forces.

Previous research and contents: We introduced the literature on this subject early in this
study (see chapter 1). The problem of the distribution of ratios has suffered from the same drawback
other problems involving ratios suffer. It concerns a vast amount of different situations. There are
many possible ratios, many possible choices for the definition of samples, many tests and criteria for
analyzing the results.

The studies on the distribution of ratios typically try to avoid dispersion by using Deakin’s
set of 11 ratios. Despite this effort, the results turn out to be difficult to interpret. Apart from
the positive skewness — which 1s not a general rule — no widespread behaviour was found in the
cross-sectional distribution of ratios. Ratios seem able to assume any possible distribution, from an
extreme positive skewness consistent with their multiplicative nature to an almost perfect normality
and even a negative skewness.

Indeed, just by observing ratios, it is very difficult to discover the rules governing their distri-

bution. As stated at the introduction to this study, our method consists of reckoning that ratios
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Figure 32: Scatter-plot in log space showing the effect of a strong constraint imposed on CA (Y-axis)
by TA (X-axis). All groups together, 1984.

are two-variate relations. Their distribution is determined by two main effects and one interaction.
Eventually, this interaction plays an important role.

In section 4.1 we examine the influence of external forces on the two-variate lognormality of
items. This allows us to identify and predict which ratios will be near normality, which ones will
have negative skewness and which ones will remain broadly lognormal. Our predictions are supported
by the published research.

Once solved the most puzzling situations, we are in good position to find real regularities in the
behaviour of residuals. We describe and discuss the ones we found in our data in section 4.2. As
a result, we suggest practical procedures for the selection and pre-processing of input variables in

statistical models.

The method: The goal of this study is the establishment of convenient procedures for the statis-
tical modelling of accounting relations. We are mainly concerned with common characteristics, not
with the behaviour of particular ratios. Therefore, we selected the items to be examined according
to criteria which somehow differ from those adapted in the research concerned with the distribution
of ratios. In general, combinations of items were selected so as to form as many relations as possible
with a small number of deflators.

However, we didn’t go too far in the differentiation from the published studies. It seems desirable

to compare our results with other’s. For example, we used the ratio output, Ry, x f9/* instead of
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Figure 33: How log residuals of the ratio model y/x = R are affected by the identity z; > y; for all
j- The two-variate distribution is confined to assume values below the line logy = log x.

ratio residuals, f¥/?. And some of the selected ratios are standard in the literature. We think that

the results of this chapter are interesting also in the context of ratio analysis.

4.1 The Effect of External Constraints

Usually ratios exhibit strong positive skewness. This is consistent with their multiplicative na-
ture. However, the literature often mention ratios which are Gaussian or even negatively skewed.
Typically, TD/T A is reported as being Gaussian [27] [38]. How is this possible?

The reason is straightforward. Accounting identities like TA = C'A 4+ F A, make it impossible
for some two or higher variate relations to have all the values a skewed distribution would allow.
Such identities act as a constraint introduced in the normal course of a multi-variate spread. This
effect, accountants often mention to explain why some ratios are bounded, had never been associated
with the strong departures from positive skewness observed in the distribution of these ratios. In

log space it turns out that this effect is clearly observable and self-explanatory.

Gaussian ratios and accounting research: The finding of Gaussian ratios had a negative effect
in the way accountants picture important problems. For example, it is possible that this observation
is in the origin of the conviction about dividing the items in two categories — those which are
dependent on size and those which are not. Gaussian ratios would denote the existence of additive
effects in accounting data. In that case independence from size could be possible. Since Gaussian
— and other not positively skewed — ratios are the result of external forces, one of the objections

to the acceptance of a widespread common effect is removed.

Quantifying the constraint: The two-variate case is the most important one for it directly

affects financial ratios. In order to quantify it we shall write accounting identities in a non-equality
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form like this
NW < TA, CA<TA, ¢ < 0L, and so on.

We say that there is a constraint if, due to any accounting identity or other external force, the

two-variate relation y; /x; = R X f; is bounded so that one of the next non-equalities hold.
forany j, x; > y; or y > x;

The non-equality on the left can be found in constrained ratios where the numerator is bounded by
the denominator. An example could be Debt to Total Assets. The non-equality on the right arises
in ratios in which the denominator is bounded by the numerator. This 1s not as frequent as the
first case. But, of course, it is possible to create such a situation just by inverting one of the former
ratios.

The consequences for the distribution of ratios are different in one case and in the other.

When the constraint is z; > y;:  Taking first the case on the left we must have log y —log & < 0.

This constraint affects the distribution of €%/ the residuals of the ratio model in log space. Since

Eg/x + [logy —logz ] =logy; —logz;

we must have, for any j,

eg/x < —[logy —logz ]

In log space this constraint imposes a frontier on the values residuals can attain. The frontier is
the line logz = logy, the anti-clockwise 45° axis. Figure 33 is a geometrical representation of a
two-variate relation in log space under this kind of constraint. The residual is no longer free in its
scatter. It is now constrained to have only small positive values.

Figure 32 (page 89) shows, in log space, a real situation in which a numerator (Y-axis) bounds
the denominator (X-axis). A case of no constraint is displayed in figure 23 (page 58). Figure 22, on
page 54 shows another example of constraint but in smaller degree.

The effect of constraints on the distribution of f¢¥/¢, the multiplicative deviations from the ratio
standard, is that of not allowing the spread out of its otherwise skewed distribution. Instead of a
clear tail towards the positive values, such ratios will exhibit a smaller or much smaller tail. This
fact explains why some studies didn’t find positive skewness in a few ratios. We shall see that this

constraint can be very effective in creating Gaussian-like distributions.

When the constraint is y; > z;: When the numerator of a ratio is bounding the denominator

we have a constraint imposed on the values residuals can attain, described by

eg/x > —[logy — logz ]
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for any j. Now the residuals are constrained to have only small negative values since large negative
deviations from the expected value are not allowed. This will increase even more the skewness of

FY/% the multiplicative residual.

Which ratios are affected: The above considerations are enough to predict the conditions under
which a constraint created by accounting identities will visibly affect residuals of ratio models.
The variance of ¢¥/% the residual in log space of the ratio y/x, can be expressed in terms of the

variance and co-variance of log z and logy as
VAR(e¥/") = VAR(logz) + VAR(logy) — 2 x COV(logz,log y) (11)

Since, in general, an existing constraint will not allow £¥/* to spread across [logy — log |, this
difference can be used, along with the above measures of spread, to estimate in what degree a

constraint will affect the symmetry of ratio log residuals. We define

_ logy — log x
~ /VAR(logz) + VAR(log y) — 2 x COV (log z, log )

¢ (12)

as the distance, expressed in standard deviations, separating the constraining frontier from the

€] > 3 the constraint will be very small.

. > |¢| > 2 the constraint will be small.
expected value of the ratio. Then, for ) )
> |¢| > 1 the constraint will be strong.
1 > [¢| > 0 the constraint will be very strong.

That is, given an existing constraint, the severeness will increase with two factors:

e The proximity between the mean values in log space of the items under constraint. Ratios
like Current Assets to Total Assets or Net Worth to Total Assets are more likely to exhibit a

severe constraint than, say, Inventory to Total Assets.

o The spread of €%/ the residuals in log space. Smaller spread means smaller constraint. Such
a spread will depend on the spread of the items and on their correlation. Notice that some

combinations of items, similar in their variability, can create residuals with a very small spread.

Both factors are expressible by measuring, in standard deviation units, the distance, , between the

constraining frontier and the expected value of the ratio.

An example: The mean values and standard deviations in log space of some 1tems of the Balance

Sheet (all groups together, 1986) are displayed next.

Ttem Mean | Standard Ttem Mean | Standard
Deviation Deviation

Current Assets | 4.258 0.698 Fixed Assets | 3.900 0.829

Total Assets 4.454 0.706 Net Worth 4.080 0.734
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Figure 34: Frequency distributions in log space of three ratios differently affected by constraints.

From the table above, and accepting as a first approximation that the differences in variance and
co-variance amongst these variables will not introduce significant new information, we can predict
that, due to the existence of the identities TA = FA+CA and TA = NW + DEBT + CL the items

most affected by such constraints will be,
e in first place Current Assets because its mean value is the nearest to T A.
e in second place Net Worth,
e in third place Fixed Assets, the item with a mean value away from the one of T'A.

In fact, the ratios CA/TA, NW/TA and FA/TA have their distributions strongly affected by

constraints. They form a scale illustrating different degrees of severeness.

o CA/TA s so strongly affected that its distribution, instead of being positively skewed, becomes
skewed in the opposite direction. Lognormal variates are two-tailed. If the cases in the largest

one are constrained so as to make it vanish, the remaining one generates negative skewness.

o NW/TA is affected in a way that makes it almost Gaussian, despite NW and T'A being as
lognormal as any other items. The long tail of the distribution of residuals is constrained to

become much shorter so that the resulting one is almost balanced by the small-values tail.

o 'A/T A remains positively skewed but less than the expected for multiplicative residuals. Tts
distribution is symmetrical to the one of CA/TA.

Figure 34 shows the frequency distribution of the above three ratios in log space. The bounding

effect of the denominator 1s clearly visible.
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In the next table we show the skewness and kurtosis of the logs of the items involved in this

example. The skewness and kurtosis of the items in ordinary space is so high that their computation

causes overflaw problems.

Ttem Year 1983 1984 1985 1986 1987
Log Net Worth SKEW | 0.174 | 0.163 | 0.253 | 0.289 0.289
KURT 0.468 | 0.402 | 0.255 | 0.263 0.353
Log Fixed Assets SKEW | 0.097 | 0.177 | 0.119 | 0.124 0.159
KURT 0.421 | 0.110 | 0.114 | 0.113 | -0.008
Log Total Assets SKEW | 0.301 | 0.351 | 0.404 | 0.343 0.425
KURT 0.546 | 0.276 | 0.228 | 0.349 0.309
Log Current Assets | SKEW | 0.237 | 0.349 | 0.056 | 0.295 0.345
KURT 0.372 | 0.374 | 1.840 | 0.345 0.480

The conclusion 1s that the above variables, when considered individually, are

lognormality. Appendix A contains more detailed statistics.

not far away from

Next we display the values of the skewness and kurtosis obtained for the ratios used in this

example. They were not transformed.

Ratio Year 1983 1984 1985 1986 1987
CAJTA SKEW | -0.410 | -0.434 | -0.352 | -0.502 | -0.592
KURT 0.332 0.261 | -0.098 0.332 0.528
NW/TA | SKEW | -0.146 0.012 0.009 | -0.015 | -0.063
KURT | -0.233 | -0.137 | -0.136 | -0.039 | -0.036
FA/TA SKEW 0.410 0.434 0.352 0.502 0.592
KURT 0.332 0.261 | -0.098 0.332 0.528

The values obtained for the

skewness agree with the constraint mechanism: CA/T A, the most

affected ratio, has a negative skewness. NW/T A comes next and finally FA/TA exhibits positive

skewness. Notice how small is the skewness for the ratio NW/TA. In general, the skewness and

kurtosis displayed in the above table cannot be considered as far away from normality. But a

powerful test like the Shapiro-Wilk rejects normality in almost all cases displayed. The skewness

is far smaller than the expected for ratios of correlated lognormal deviates having spreads similar

to those of the above items. Table 14 on page 98 and 15 on page 99 show typical values for the

skewness and kurtosis of ratios selected so as to avoid constraints.

Finally we display the skewness and kurtosis of ratios similar to the above ones but inverted.

Ratio Year 1983 1984 1985 1986 1987
TA/NW | SKEW 17.712 15.462 22.287 12.891 12.453
KURT | 356.027 | 260.067 | 536.404 | 192.986 | 179.477
TA/FA SKEW 11.211 21.927 23.788 12.704 11.214
KURT 147.527 | 519.812 | 592.486 | 197.060 | 151.238
TA/CA SKEW 18.714 5.044 6.286 20.685 17.955
KURT | 377.719 37.058 71.563 | 483.578 | 337.921
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Ratio 1983 1984 1985 1986 1987

skew | zeta skew | zeta skew | zeta skew | zeta skew | zeta
CA/TA (1) -0.41 1.29 -0.43 1.05 -0.35 1.58 -0.50 1.34 -0.59 1.14
CL/TA (X) 0.636 2.2 0.587 1.84 0.616 2.21 0.56 2.24 0.597 | 2.26

C/CL (2) -0.09 | 1.54 | -0.15 | 2.02 | -0.21 | 1.56 | -0.27 | 1.63 | -0.27 | 1.72
C/TA (3) 1.247 | 2.88 | 1.227 | 2.61 | 1.357 | 2.94 | 1.191 | 2.87 | 1.137 | 2.96
DB/TA (4) 1.873 | 2.37 1.92 | 2.29 | 2.103 | 2.36 | 1.774 | 2.17 | 2.056 | 2.21
FA/TA (5) 0.41 | 1.69 | 0.434 | 1.96 | 0.352 | 1.76 | 0.502 | 1.76 | 0.592 | 1.81
I/CA (6) 0.264 | 1.53 | 0.102 | 1.74 | 0.218 | 1.57 | 0.433 | 1.44 | 0.294 | 1.33
I/TA (7) 0.569 | 2.08 | 0.473 1.9 | 0.867 | 2.16 | 0.913 | 2.04 | 0.812 | 1.89
NW/TA (8) -0.14 | 1.61 | 0.012 | 1.85 | 0.009 | 1.73 | -0.01 1.8 | -0.06 | 1.82
Q/CA (9) -0.26 | 1.34 | -0.10 | 1.17 | -0.21 | 1.81 -0.43 1.4 | -0.29 1.3
Q/TA (0) 0.504 | 2.07 | 0.583 | 1.92 0.51 | 2.41 | 0.387 | 2.17 | 0.455 | 2.26
TD/TA (o) 0.349 | 2.31 | 0.173 | 2.19 | 0.222 | 2.23 | 0.198 | 2.17 | 0.177 | 2.21
EB/S (4) 2.03 | 3.06 1.63 | 3.16 2.06 | 3.12 | 1.824 | 3.18 | 1.480 | 3.25
W/S (%) 0.42 | 2.14 0.42 | 2.01 | 0.412 | 2.08 | 0.395 | 2.13 | 0.371 | 2.13

Table 13: The values of |¢| (zeta) and skewness for 14 ratios likely to suffer a constraint in their
distributions. Q = CA—-I; TD = DEBT + CL.

The above ratios were not transformed. Ratios which are the inverse of the ones affected by the
constraint y; > z; for all j will obviously be affected by the constraint z; > y; for all j. That is,
ratios like TA/NW and so on, should exhibit positive skewness because their tail is now free from
constraints. In fact, the constraint is working in the same direction as the lognormal skewness, not
against it.

Not only the values obtained for these statistics are lognormal-like. The mirror-image effect
linking the distributions of CA/T' A and FA/T A also vanished. This simple example has shown how
accounting identities explain the strongest deviations from a multiplicative behaviour mentioned in

the literature.

Other constraints: There are other external forces likely to condition the distribution of ratios.
Instead of defining frontiers which are impossible to bridge, as in the case of accounting identities,
these other forces impose frontiers in which only a gradient in the density of cases is observed.
For example, the non-equality CA > C'L defines one of such gradients because firms avoid, if they
can, negative Working Capital. And, at least in industrial firms, the non-equalities S > OPP,
S > EBIT, S > W and so on, will be almost equivalent to real accounting identities.

One of the most interesting consequences of the lognormal nature of items is the possibility of
directly observing two-variate relations by building simple scatter-plots in log space. The constraints

described above and many other features become clearly visible with these tools and can be identified.

4.2 Comparing Constrained and Non-Constrained Ratios

The last section was devoted to the identification and description of the effect external constraints

can have in the distribution of ratios. We discussed a limited example, showing how an accounting
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identity can hide the multiplicative nature of ratios. In this section, apart from providing a more

systematic empirical evidence on such effect, we show that ratio outputs are broadly lognormal.

The data: We examined 14 ratios (see list in table 13) formed with items from the Balance Sheet
and 2 from the Profit and Loss Account. For such ratios there is an accounting identity or at least
a strong constraint which should influence their distribution in a variable extent.

We also examined 20 other ratios (and their inverse) for which there is no direct accounting
identity constraining their distribution. These ratios are listed in tables 14, page 98 and 15, page 99.
In both cases ratios were selected so as to share as many items as possible but representing an
approximate random choice amongst all possible combinations.

We gathered in the same sample all the 14 industrial groups listed in table 1, page 5. This
sample was then examined for a period of five years (1983 - 1987). Some industrial groups were also

examined individually.

Constrained ratios: Table 13 lists the 14 constrained ratios. It also displays the values obtained
for their skewness during a period of five years. The same table shows the value |¢| assumes in each
case. In figure 35 (page 97) we reproduce table 13 as a scatter-plot. The marks identifying each
ratio can also be found in table 13, on the left. Apart from the usual abbreviations for items, @
stands for CA — I and T'D for DEBT + C'L.

Figure 35 shows that the ratios I/CA, NW/TA, C/CL, Q/CA and TD/TA are not far away
from the Gaussian distribution in what concerns their skewness. Others like I/T'A approach a
skewness of 1 and DB/TA or C/T A have their skewness well above the unit.

The results also show that (, as expected, predicts the skewness of the constrained ratios, though
it cannot be considered as the only factor influencing it. For the displayed cases ¢ accounts for 656%
of the observed variability of the skewness (r = 0.8). The ratio DB/T A seems to depart from this
rule. Tts skewness is larger than predicted by |(].

Gaussian ratios: We identified two ratios with almost Gaussian distributions: NW/TA and
TD/TA. These ratios are the ones Deakin and other studies also identify as Gaussian, thus breaking
the rule of positive skewness [27] (see also [38], a recent study with U.K. data). We now understand
why this happens and in which cases it is likely to occur.

However, the most important finding i1s that constrained ratios behave in a way which can be
very different from the non-constrained ones. In order to see this we must explore the behaviour of

non-constrained ratios first.

Non-constrained ratios: The 20 ratios which — as far as we know — should not be affected
by constraints and therefore should be expected to be positively skewed were built with the same

variables used in the 14 preceeding ones and a few more. Tables 14 (page 98) and 15 (page 99) contain
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Figure 35: Correlation between the observed skewness in 12 ratios built with items from the Balance
Sheet and the value of (, the standardized distance measuring the expected degree of constraint.

a listing. The number of employees was used because there is no obvious constraint affecting its
relation with other items. In ratios built with EBIT and other items having zero or negative cases

only the positive ones were used.

Identifying the broad lognormality of non-constrained ratios: In order to highlight the
existence of a broad lognormal trend in non-constrained ratios we plotted their skewness against
their kurtosis. Lognormal variables should have their skewness and kurtosis functionally related.

Lognormal distributions have skewness and kurtosis depending solely on their variance. In log-
normal variates the skewness and the kurtosis are not two independent statistics. One of them is a
function of the other one. The book by Aitchison and Brown [1] contains this formulation.

Figure 36 on page 98 is a graphical reproduction of tables 13, 14 and 15. It displays the regular
curve non-constrained ratios and their inverse form when their skewness is plotted against their
kurtosis. Below we can see in detail the lower values of this characteristic pattern approaching the
random scatter produced by constrained ratios around the origin.

The regularity observed in figure 36 follows the outlined relation which exists between the skew-
ness and the kurtosis of lognormal variables for different spreads. No variate other than the lognormal
or a distribution of the same class could yield such a regular spread of cases.

The particular values that the skewness and the kurtosis assume in each case are meaningless.
The variance of a lognormal variable is not independent of the mean. A given log spread, when
associated with a large mean value, will produce more spread — and the corresponding skewness

and kurtosis — than when associated with a smaller mean. Therefore, the resulting skewness and

97



28 4 SKEWNESS
24
20
16 : o

12

All cases KURTOSIS

0 200 400 600

24 — SKEWNESS X

16 — STy X
1.2 X

0.8
04

RANDOM SCATTER ZONE

Detall KURTOSIS

|

|

|..'.

t——= 3 s 7 s  _m 1

.04 —

Figure 36: Two scatter-plots of the skewness with the kurtosis of all the studied ratios and their
inverse. Above, the typically lognormal relation drawn by non-constrained ratios. Below, the same
scatter near zero, with the constrained ratios forming a disordered scatter around the origin.

Ratio 1983 1984 1985 1986 1987
skew kurt | skew kurt | skew kurt | skew kurt | skew kurt
D/C 5.7 44.5 5.6 48.3 14.0 255.0 15.0 261.0 4.8 35.5
C/D 18.7 | 381.1 20.5 461.0 22.5 535.0 14.3 249.0 12.4 198.0
CA/CL 2.0 5.8 4.2 29.2 5.0 38.4 11.6 205.0 4.8 43.6
CL/CA 19.6 | 415.0 4.2 34.5 3.0 22.9 9.2 135.0 21.6 506.0
C/I 9.9 139.0 9.8 132.0 24.2 592.0 15.8 268.0 21.3 491.0
I/C 6.5 71.5 3.3 18.0 8.9 119.0 9.2 119.0 7.9 91.3
Q/CL 0.0 14.2 3.1 21.8 4.0 31.6 7.3 99.3 5.5 64.7
CL/Q 11.9 192.0 2.5 97.2 | -21.0 486.0 6.6 97.8 | -18.7 | 418.0
W/N 18.9 | 399.0 1.5 4.1 1.5 4.0 1.4 3.3 1.6 4.4
N/W 11.7 199.0 2.2 12.6 7.6 112.0 7.8 118.0 8.9 116.0
S/TA 7.0 72.3 13.6 238.0 13.3 241.0 6.3 51.7 8.5 95.3
TA/S 8.8 111.0 19.5 436.0 7.6 89.0 15.9 | 336.0 3.4 22.3
S/FA 9.8 105.0 21.4 486.0 10.4 115.0 9.2 96.1 9.6 103.0
FA/S 2.3 9.4 15.9 317.0 8.9 125.0 5.1 50.8 5.9 60.9
S/NW 16.4 | 310.0 13.2 188.0 23.0 549.0 16.1 324.0 16.5 207.0
NW/S 1.6 5.2 4.4 38.6 2.5 17.6 12.0 223.0 4.7 39.8
S/I 11.7 168.0 12.0 189.0 17.0 306.0 23.5 571.0 21.3 481.0
I/S 8.9 132.0 17.1 358.0 17.9 388.0 9.8 179.0 1.4 4.5
EB/TA 2.0 8.3 2.4 11.2 1.4 3.6 1.9 7.3 1.2 2.6
TA/EB 16.6 291.0 12.2 172.0 11.1 173.0 7.5 76.0 18.3 374.0

Table 14: The skewness and kurtosis of ratios selected so as to avoid constraints. All groups.

1t table. Q = CA—I; TD = DEBT + CL.
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Ratio 1983 1984 1985 1986 1987
skew kurt | skew kurt | skew kurt | skew kurt | skew kurt
EB/NW 19.9 425.0 17.5 317.0 16.6 | 322.0 8.4 110.0 16.4 330.0
NW/EB 15.7 256.0 17.6 | 369.0 12.7 | 227.0 7.0 71.9 23.4 567.0
D/I 10.4 127.0 16.6 | 329.0 21.6 578.0 24.4 618.0 19.9 423.0
I/D 10.7 128.0 11.8 166.3 16.0 298.0 10.0 126.8 7.5 74.6
W/I 15.8 268.0 9.3 116.2 7.9 79.0 13.6 204.5 14.4 219.3
I/W 8.6 89.7 4.6 28.1 4.5 31.2 3.1 12.7 3.3 14.0
EB/FA 9.4 117.0 11.2 169.8 10.4 154.7 9.0 107.0 8.5 98.8
FA/EB 12.1 154.0 9.8 126.0 11.6 155.7 7.7 83.8 16.8 320.8
S/N 12.7 189.0 12.3 174.0 7.8 75.6 8.7 89.3 11.1 159.8
N/S 1.7 5.8 1.1 1.3 3.7 31.0 2.6 16.9 3.3 27.9
EB/N 9.1 92.5 11.7 177.7 5.2 42.0 3.4 14.6 5.2 45.0
N/EB 15.9 268.0 9.0 130.7 6.0 46.1 8.0 84.2 13.4 212.4
NW/N 8.4 90.9 5.0 34.1 3.5 16.1 3.9 23.0 4.3 29.1
N/NW 6.4 56.4 4.8 42.7 18.2 359.8 4.2 24.5 8.2 112.6
W/TA 1.3 4.9 1.5 5.8 1.4 4.3 1.8 7.2 1.5 6.4
TA/W 9.5 107.0 11.5 152.9 5.7 50.6 4.2 27.0 3.7 19.7
DB/NW 14.5 228.0 10.9 140.0 8.6 90.7 7.5 78.0 5.4 37.4
NW/DB 13.3 199.8 17.6 | 332.7 12.0 184.9 11.0 145.6 16.1 295.7
DB/S 2.5 8.4 6.0 64.2 15.3 273.4 8.3 98.7 10.3 155.8
S/DB 10.0 120.4 16.3 293.6 12.1 178.2 10.2 113.2

Table 15: The skewness and kurtosis of ratios selected so as to avoid constraints. All groups.

274 table. Q = CA— I, TD = DEBT + CL.

kurtosis can be to a large extent influenced by R, ., the expected proportion between the numerator
and the denominator of the ratio. The understanding of this mechanism accounts for a few remarks
found in the literature.

In case it would be convenient to compare the spreads of several ratios, residuals, f¥/%, should
be used instead of the ratio output, R/, x f¥/* . Since the fY/* have a constant expected value of
1, we would make the skewness and the kurtosis relate to the variance alone.

When reproducing this experiment, notice that the SPSS-X package we use to compute the

skewness and kurtosis in this study does 1t in a way that is not exactly the one found in text books.

Departures from this relation: In the 200 examined samples (20 ratios and their inverse during
5 years) only three yielded values of the skewness and kurtosis which wouldn’t obey the above
formulation. They were from the same ratio, CL/Q), or its inverse, during the years 1983, 1985 and
1987. We further formed a few more ratios with ¢ = C'A — I and we found three other cases of
irregular behaviour. They were the ratio EBIT/Q) in 1987, and W/Q), in 1986 and 1987.

Comparing constrained and non-constrained ratios: The distinct behaviour of constrained
ratios also emerges when observing figure 36 (page 98). Whilst non-constrained ratios obey the
formal relation between skewness and kurtosis for lognormal variates, the constrained ones form a
random scatter of cases around the small values of these statistics.

In figure 36 the cases marked with a dot in the detailed scatter (below) represent ratios which

are known to be to some extent constrained by an accounting identity. The ones marked with a
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“x” represent the position of non-constrained ratios. A few constrained ratios are near lognormality

owing to its small constraint.

The special character of constrained ratios could also be traced by inverting them. Constrained
ratios change completely their characteristics when inverted and actually become broadly lognormal.
The above ones remain near lognormality in both situations. They will just move along the formal
line linking skewness with kurtosis. When not considering the effect of the spread of the ratio itself,

this movement would be commanded by the new value of the expected proportion, Ry /,.

4.3 Persistent Departures From Lognormality

In this section we return to the log space. Despite the findings of previous section suggesting a
broad lognormal behaviour for ratios, hardly any of the studied ratios is exactly lognormal. When

examined closely in log space, a persistent departure from the Gaussian curve can be observed.

4.3.1 Leptokurtosis In Log Space

As a rule, log residuals exhibit positive kurtosis of varying severity.

A few ratios also show asymmetry. But this is not a widespread feature. Skewness in log ratios
can be explained and accounted for. A careful examination of secondary effects of constraints,
managerial practice or base-lines, leads to plausible mechanisms able to generate asymmetry. The
use of extended ratios yields non-asymmetric residuals.

On the contrary, the persistent kurtosis observed in log space seems to be quite a general feature.
It was observed in all but one of the studied ratios and their inverse. Ratios formed with non-
accounting items related to size like the number of employees also exhibit such a feature. When
sampling by industry the residual kurtosis will not vanish.

Kurtosis cannot be accounted for by base-line ratios. And, of course, the modelling of the spread
of log items allowed by the free slope ones will not make it vanish. It is unlikely that external
forces generate kurtosis. This feature is more likely to be related to internal mechanisms of the
firm. As a result of this kurtosis, the Shapiro-Wilk test seldom finds a non-significant departure
from normality in the e¥/% residual differences. This fact contrasts with the strong consistency of
results when assessing the lognormality of items. Log items exhibit positive kurtosis as well but in
a much smaller degree.

Table 16 contains the usual log statistics for the non-constrained ratios used above. In log space
there is no difference in the behaviour of a ratio and its inverse. Distributions are a mirror-image of
each other. Therefore, the skewness of the ratios which are the inverse of those displayed in table 16

will simply be the same value with inverted sign. The kurtosis will be the same.
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Ratio 1983 1984 1985 1986 1987
skew | kurt | skew | kurt | skew | kurt | skew | kurt | skew | kurt
D/C -0.7 9.2 -0.8 8.6 -0.1 10.0 0.2 9.3 -0.6 6.2
CA/CL -1.2 11.0 0.4 2.9 0.8 3.1 0.6 5.9 -0.5 10.5
C/I 0.4 2.1 0.6 2.2 1.1 8.3 0.9 6.7 1.8 11.0
Q/CL -1.9 12.0 -0.3 4.3 -0.3 3.2 -0.5 5.2 0.1 2.8
W/N 0.3 12.0 -0.1 0.8 -0.4 2.8 -0.3 2.3 -0.6 4.4
S/TA 0.8 4.5 0.8 7.0 1.0 5.4 1.0 5.5 1.2 4.9
S/FA 1.8 5.4 2.0 8.5 1.9 6.9 1.9 5.9 1.6 4.6
S/NW 1.5 4.5 1.6 5.6 1.8 7.8 1.3 4.2 1.6 6.4
S/I 1.3 4.7 1.2 4.6 1.7 8.8 2.3 13.9 3.4 21.0
EB/TA -2.1 11.2 -1.3 4.9 -1.2 2.9 -1.1 3.1 -1.7 7.9
EB/NW -1.6 11.4 -0.1 6.1 -0.3 3.6 -0.5 2.7 -0.8 7.3
I/D -0.6 6.5 -0.2 6.7 -0.3 4.8 -1.6 13.4 -2.0 15.0
W/I 0.1 6.0 0.2 3.2 0.6 3.1 1.2 6.4 1.4 7.8
EB/FA -0.9 6.0 -0.3 2.8 -0.5 2.8 -0.8 2.2 0.1 3.4
S/N 1.7 5.4 1.8 5.8 1.2 3.3 1.5 4.3 1.3 3.6
EB/N -0.3 3.9 0.0 1.6 -0.3 2.2 -0.2 1.2 -0.5 2.5
NW/N 0.3 2.2 0.5 1.1 -0.4 3.1 0.0 0.9 0.0 0.9
NW/TA -1.6 5.6 -1.5 5.6 -0.9 2.2 -0.6 1.5 -0.7 1.5
NW/DB 0.7 1.7 0.8 2.3 0.5 0.5 0.6 0.3 0.8 0.8
DB/S -0.9 0.9 -1.2 2.4 -0.7 0.7 0.9 1.3 -0.8 0.9

Table 16: The skewness and kurtosis of ratios in log space for a period of five years.

The findings of previous studies: One of the most puzzling findings of previous studies is that
no transformation seems to improve the normality of ratios. In our opinion this is a result of using
precise criteria to assess phenomena which are only broad trends. For example, if we would use
accurate tests like the Shapiro-Wilk’s for measuring the lognormality of ratios, we would get the
general impression that ratios are far away from lognormality. Its precision conceals broad trends.

The use of all sorts of transformations to assess the distribution of ratios only complicates things.
For example, if we replicate with ratios the experiment carried out in chapter 1 — which consisted
of using progressively higher fractional exponents for transforming items and observing the results
of applying the Shapiro-Wilk or other tests — it is clear that the results would be confusing. For
non-constrained ratios, the skewness would probably diminish with increasing roots but the kurtosis
would emerge after some improvements. For most of the constrained ratios the skewness would
change sign, becoming negative. Ezzamel et al. [39] observed this.

Items are lognormal and ratios should be broadly lognormal since they are multiplicative devi-
ations from expected proportions. Only when knowing this in advance is it possible to notice the
departures affecting such trend. In the literature, the realization that transformations apparently
wouldn’t improve the normality of ratios [45] led to a cautious attitude towards transforming data

and to a renewed interest in the trimming of outliers, which, as we saw, didn’t work either.

4.3.2 Departures From Lognormality: Discussion

In this section we show that the kurtosis observed in the log residuals of ratios is not inconsistent

with the lognormality of items. Then, we show that the strong common effect is the source of the
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Figure 37: Two-dimensional view of a two-variate density surface in log space.

Gaussian behaviour of log items.

The difference of two similar Gaussian distributions: Let us recall the expression for esti-

mating the residuals of the ratio model in log space:

Eg/x = (logy; —logy) — (logz; — logz)
Clearly, the e¥/% are a difference of two log items, both with their central trend accounted for. Their
distribution is the result of the subtraction of two Gaussian distributions with the same mean.

Also, these two Gaussian distributions which, when subtracted, yield the ratio residuals, are very
similar in spread. A large fraction of the variability of items comes from the strong common effect
they share. Ratios account for this effect and yield — as a residual — a contrast between two weak
effects. Such a residual variability is the source of the positive kurtosis in log space. But, in items, it
is so small a proportion of the total one that it could have any distribution without greatly affecting
their lognormality.

We can have a graphical view of this problem by considering the two-variate log distribution
drawn by the components of the ratio. Such distribution is an oblong hill-shaped surface oriented
in the 45° direction and centred in logy — log . The density of cases determines the height of each
point in the surface (see figure 37).

Such a surface would be very thick in one of its main dimensions and very thin in the other one.
The largest dimension accounts for most of the variability. In figure 37, the largest dimension is
labelled the “Size Axis” and the smallest one the “Ratio Axis”. The variability of ratio residuals is
explained by the smallest dimension, the ratio axis. It is orthogonal to the size one, which accounts
for the variability introduced by the common effect.

The variability along the smallest axis happens not to be Gaussian. When the considered surface
is observed so that the largest dimension becomes parallel to the horizon, the surface shows a

Gaussian aspect. On the contrary, when it is observed transversally, it yields a leptokurtic shape.
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As we see, there i1s no contradiction in the fact that log items are Gaussian and log ratio residuals
are leptokurtic.

According to the above explanation we should consider the weak effect as the source of leptokur-
tosis and the strong effect as the source of the Gaussian behaviour in log data. For example, the
small amount of kurtosis observed in log items would denote the influence of their own variability

superimposed to a much larger Gaussian spread. In chapter 5 we return to this topic.

4.4 Ratio Standards and Departures From Standards

What is the appropriate estimator for ratio standards? How should the individual deviations from
standards be interpreted? In this section we suggest an answer for these two questions.

The calculation of ratio standards has been the object of widespread discussion in the literature.
This is because each distribution apparently suggests its own standard. And “in non-normal distri-
butions, location measures are far from being unanimous” [38]. Lev and Sunder [79] enumerate a
few possible answers.

We are in a good position for giving an answer too. Ours is that as long as items are lognormal,
the distribution of ratios doesn’t matter. Neither for the estimation of standards nor in assessing
deviations from standards. However, it matters — for practical reasons — for the building of
statistical models.

The lognormality on items makes the choice of estimators simple. The acceptance of a plausible
mechanism for the generation of the common effect makes it meaningful. But it remains a matter
of opinion, of course. However, trying to assess the best distribution for each ratio individually
and discussing the most appropriate estimator for each ratio individually, does not seem reasonable
either. Doing so is to deny any sense in accounting data as a whole. It is equivalent to treating
ratios as if they were a collection of isolated random variables with nothing in common. One ratio
would be more like the rate of telephone calls, the other one more like the size of white mice’s tails

and so on.

Standards are not disturbed by the distribution of ratios: An intuitive way of noticing
this is given by the formula for calculating the median. logy — logx (or the same value obtained by
finding the logs of ratios and averaging) is not disturbed by any external disturbance or interaction
between y and . When standards or central trends in ratios are estimated by the median, the
actual distribution of the ratio itself is irrelevant for the estimation.

Distortions in the distribution of ratios are a result of its two-variate nature. The distribution of
individual items is not affected. Only when considering two or more variate distributions will such

distortions emerge.
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The spread of residuals is not accounted for by the ratio model: Financial ratios are
one-degree-of-freedom models: They engage only one degree of freedom from those avaliable in the
sample. For example, a sample containing two observations,  and y carried out over N cases, would
have 2 x N degrees of freedom before any assumption were made about its behaviour. When fitting
the ratio model into this sample, just one degree of freedom, the one corresponding to knowing R/,
would be engaged. By using only one degree of freedom it is possible to model just a unique optimal
point, not a spread. The spread remains in possession of perhaps hazardous, non-modelled forces.

The one-degree-of-freedom model only requires, as an assumption for being correct, that their
components must have a central trend — and hence, an expected value. Items comply with this
requirement in proportional space. Accordingly, we use ratios — proportional adjustments — instead
of mean adjustments.

The expected value assumption implies that the distribution of ratio components ought to be
symmetrical in 1ts proper space. But not any special symmetry is required. There is nothing either
in the assumptions underlying the ratio model or in the model itself able to assess the spread of
cases around the standard and as we pointed out, in practice the lognormality of the components is
not enough to ensure the lognormality of the residuals.

Skewness in the log components of a ratio would affect its symmetry. The above assumption
would be affected. But the existence of kurtosis in the log components wouldn’t affect by itself
any assumption of the ratio model. Kurtosis wouldn’t break its symmetry. Hence, kurtosis is
not a departure from ratio assumptions. There is nothing in ratios saying that they shouldn’t be
leptokurtic.

In the case of external constraints, since the components of the ratio are not affected, the model’s
assumptions are not violated. And a constrained ratio should be able to yield all the information
any other ratio can provide. But this is only possible if the information conveyed by ratios is ordinal.

In short, the discussed facts lead us to two conclusions:

Ratios are ordinal. Strictly speaking, ratios cannot provide a scaling. Ratios only provide a
measure of the deviation from standards by saying that one deviation is larger or smaller than
the other.

The distribution of ratios is irrelevant. The actual shape of the residuals of the ratio model
is not called upon to play any role in the ratio model itself. Constrained or distorted ratios,
leptokurtic or not, yield correct estimates of standards. They also yield ranks as measures of
departure from a central trend. And this is, strictly speaking, what we can expect from any
ratio. The condition for the validity of ratios as models lies in the symmetry of its components

taken individually, not in the ratios themselves.

Ratlos and internal features of the firm: Financial ratios are about size and deviations from

size. They rank contrasts between deviations from size. But they cannot provide distances between
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such contrasts. The distribution of ratios could be elucidated by building explanatory models for
the joint behaviour of accounting items inside one firm. Only after understanding the internal
mechanisms governing the features of the firm would i1t be possible to contrast such a theoretical
basis with empirical observations. In other words, the explanation for the leptokurtosis or other
regularities observed in ratios is not contained in the ratio model. It is an interesting point but

ratlos cannot answer it.

4.5 The Use of Ratio Residuals in Statistical Models

In the last section we concluded that the distribution of ratios wouldn’t matter and the calculation
of a central trend, when using the median, would also be independent of this distribution.

For financial analysis this seems interesting. However, in statistical models the use of ranks is
not considered as the best solution.

Accounting statistical models should avoid the burden of rank statistics. Firstly, because statis-
tical models are free to select the variables and can avoid, to some extent, the combinations of items
which would produce constraints and other severe departures from homogeneity. Secondly, because
the statistical tools based on ranks are very limited in issues regarding estimation. For example,
the non-parametric equivalent of the test allowing a comparison of two means is the Mann-Whitney
test. This tool will not compare two estimations. It is only intended to assess the significance of
the non-similarity of two distributions. Since estimation i1s important in accounting practice and
statistical modelling, non-parametric methods should be seen as altogether not satisfactory.

Therefore, it seems as if the problem of obtaining homogeneous residuals in ratios and their
extensions still remains. Despite the remarks of the last section, the spread of the £¥/% can be made
reasonably homogeneous and the influential points are rare.

This section suggests a few procedures to avoid the major departures from an homogeneous

behaviour in ratios. Our concern is mainly the statistical modelling of accounting relations.

4.5.1 Avoiding Asymmetry

The proportionality of ratios is understood as a statistical quality related with the non-existence of
significant base-lines in cross-sectional relations between the numerator and the denominator. Here
we recall a different meaning, concerning the formal relation between numerator and denominator,
not any statistical quality. A quotient is said to be a proportion when the numerator is a part of
the denominator. Relative frequencies or probabilities are proportions.

All the ratios bounded by the denominator are proportions in this non-statistical sense. Such
proportions, when taken as statistical variables, will be more or less constrained, thus yielding asym-
metric distributions. Therefore, 1t seems wise to apply to such ratios the well-known recipes generally

accepted for dealing with similar cases. The simplest of such recipes is the odds transformation.
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The Odds transformation: Ratios like F’A/T A have the numerator as part of the denominator.
An odds transformation incorporates the underlying accounting identity thus yielding an unbounded

variable.
For any proportion p; = ! there are odds defined as o; = bi

Zixi 1—]72'.

Hence,
Li

For example, the odds of FA/T A is the ratio FA/CA. The odds of NW/T A will be NW/(DEBT +
CL). Clearly, the information contained in both such ratios is exactly the same. The difference
between an odds-like ratio and the corresponding probability-like one is the same existent between
probabilities and odds. Tt is just functional. F.A/T A expresses something like probabilities. FA/C A,
something similar to odds. But both say the same. Therefore, it seems possible to avoid some of
the ratios affected by constraints by using the corresponding odds instead.

This solution only applies strictly to constrained ratios from the Balance Sheet. In the Profit
and Loss accounts, Sales is not a total. There are other possible sources of income. But it acts as if
it were. At least in industrial firms the amount of Sales constrains all the other items of the P. & L.

We noticed that odds can also be used with totals which are not strictly dictated by accounting
identities. Instead of OPP/S we can use OPP/COGS. This new odds-like ratio will not exhibit

constraint effects and its information content will be similar to the former one.

4.5.2 The Selection of Input Variables For Statistical Models

As we stressed before, log items can be used instead of ratios as inputs for modelling accounting
relations. Any linear relation in log space will be equivalent to a free-slope multi-variate ratio. And
since statistical models are to some extent free to select input variables, they can avoid the use of
items which impose constraints in other items.

Accordingly, partial or detail items are preferable to items expressing totals. Elementary pieces
of information directed to a specific subject like Inventory, Creditors, Properties, Wages, should, as
a general rule, be used instead of Fixed Assets, Total Assets, Current Assets. Obviously they will
form ratios which are away from causing constraints.

It is especially important to avoid mixtures of both kinds of items or the inclusion in the same
model of items leading, by means of some accounting identity, to the emergence of constraints.

Strong, clear, base-lines should be accounted for before the inclusion of items as input variables

in multi-variate tools. This is especially important when using linear algorithms.

The problem of leptokurtosis: When using ratio residuals as input variables for the modelling of
accounting relations, kurtosis is generally considered as far less damaging than skewness. Widespread

financial models like the CAPM deal with variables which are leptokurtic too. So far, we didn’t find

106



any special difficulty in dealing with limited amounts of kurtosis. This is because it doesn’t generate
influential cases.

The neutralization of the extra kurtosis by means of transformations would be difficult and
damaging for the interpretability of models. We think that the correct procedure, in face of this

phenomenon, is to investigate its causes and build models able to account for them.

4.6 Summary

In this chapter we studied the distribution of ratios. We found a clear trend towards lognormality, as
expected. However, a few factors affect the final distribution that particular ratios assume. Firstly,
accounting identities and other external forces can act as constraints, hiding their multiplicative
nature. This factor induces the severe deviations from lognormality reported in the literature for
ratios like NW/TA and TD/TA. Apart from accounting identities, ratios are also affected by
managerial practice and by other external forces.

Secondly, when observing in log space residuals which are broadly lognormal, a persistent lep-
tokurtosis emerges. The weak, particular, effect is the source of this log positive kurtosis. The

strong, common, one can be identified as the source of the Gaussian behaviour of accounting data.

The selection of input variables for statistical models: Since statistical models are to some
extent free to select input variables, they can avoid the use of items which impose constraints in other
items. Partial or detail items are preferable to items expressing totals. It is especially important to

avold mixtures of both kinds of items.

Ratios and robustness: Since the correctly estimated expected values are not disturbed by
constraints, ratio standards can be estimated just by finding their mean values in log space. More
sophisticated models — like the free-slope and, to a smaller extent, the base-line ratios — would
suffer misleading influences when in the presence of constraints and other forces. They would also
become very dependent on the sample used for building the model.

This fact is another example of the relation between robustness and simplicity. Ratio standards
are not affected by any anomalies in the distribution of ratios because they only use one degree of
freedom. In other words, no consideration of the spread of items is required to model with ratios.
Conversely, no disturbances in their spread can affect ratio standards.

We should be alive to the fact that by using free slopes and, to a smaller extent, base-line ratios

we loose one of the most attractive features of financial ratios, their robustness.
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Chapter 5

The Modelling of Size And
Grouping

Size and grouping seem to be the main sources of variability in our data. In this chapter we study
both. The correct solving of estimation problems require, prior to any other task, the acceptance
of assumptions regarding the characteristics of the input and output spaces. The two main goals of
this chapter are therefore the development of appropriate variables for defining an input space and
the assessment of the complexity introduced into it by random effects groups often carry with them.

First we discuss, based on empirical evidence, the most appropriate proxy for the common effect,
the one which reflects the size of the firm. We conclude that it is possible to build such a variable
and that the residuals obtained from it have attractive features for defining input spaces. Next we
study the problem of reducing the dimension of such spaces in accounting models. Appropriate
methods are developed that incorporate the corollary devised in first place.

Finally we suggest a few concepts and techniques for the assessment of the homogeneity and
complexity of effects present in the input space because of existing groupings. We first recommend
a standardized measure of the relative degree of homogeneity of each group one by one. We show
that in our data industrial grouping cannot be ignored. Next we show that this grouping effect is

complex. We conclude that linear tools should be used with suspicion and eventually discarded.

5.1 Selecting an Appropriate Proxy for Size

This section is concerned with the finding of a general deflator reflecting size. Multi-variate account-
ing models often require size as an input variable. Also ratios intended to reflect departures from
expected size could become comparable if their deflator was the same. Such a general deflator would

produce easily interpretable residuals.
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As we saw in chapter 2, log items can be viewed as a unique common process with some particular
variability superimposed. This is true for all the observed items. However, on practical grounds,

not all of them are equally adequate for extracting the common effect.

e Items like Sales or Current Assets are almost synonymous in log space. Their particular

variability 1s small when compared with the total variability other similar items exhibit.

e Inventory, EBIT or Funds Flow have more variability of their own. And items having both
positive and negative cases exhibit a different behaviour in each of such situations. Positive
cases are identical to other variates. The negative ones have a very particular behaviour, as
far as we could see. As a few negative cases are always present in samples, the homogeneity

of such 1tems, when considered across the whole sample, 1s bad.

e Finally, Fixed Assets, Working Capital and especially Long Term Debt have large variability of
their own. And the non-leveraged firms form a cluster of identical cases. They would severely

damage the homogeneity of residuals when considering such items as deflators.

A proxy for the common effect should therefore be selected from the items mentioned in the first
place. However, such a proxy would always have, along with the common variability we are interested
in, a particular scatter superimposed — the weak effect corresponding to the selected item.

How to isolate the common effect? Is it possible to build a variate reflecting only size and having
no particular variability of its own? As we saw in section 3.2.1 the common effect is not directly
accessible. However, there 1s a way of isolating it by building a model which performs the function
inverse of ratios. Ratios conceal the common variability and reveal the particular one. This model

would conceal the particular variability, thus revealing the common one.

5.1.1 The Case-Average Model

Items like Current Assets, Net Worth, Wages and other expenses, and Sales, can be pulled together
to form one unique variate. If we build, for each case in a sample, geometric means (in log space,
averages) of these items we can ideally self-smooth their particular components so that the common
effect emerges. This is the basis of our method.

Considering a group of items z1,---,x;, -, xps selected as appropriate, and a common effect,
s, we explain their variability in log space as the result of an effect, ¢ = logs, common to them all,

plus a residual, €' particular to each item. In the case of firm j,

log(z1; +61) = o5 + 6}
log(zo; +d2) = o0; + 65
log(zyj +dm) = o5 + &
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The §; are the base-lines eventually present in ;. We now average the 1,---,4,--- M items case

by case. For firm j,
M
U._Lzlo (25 +8) = — (£ 22 4 oo 4 M)
I glTij T 0 MO\ J
i=1

Since an average of independent random deviates tends to zero with 1/M | the number of components,

we would have for a large M
| M
o3 37 23 1o8la + )

or the equivalent, in ratio form,
M

sj~ [ [y +60)

i=1
Once obtained, s could be used as a proxy for size as the denominator of ratios. ¢ = logs would
also be welcome as an input variable for statistical modelling or in the building of tools for visual
inspection of residuals.
The difficult point here is the fact that the collection of averaged &' are not necessarily inde-
pendent. Therefore some precautions are required before attempting to build this model, especially

when the number and variety of available items are limited.

e The items should not be correlated. A few accounting items are correlated beyond the common
effect. Their residuals, after being deflated by a proxy for size, exhibit significant levels of
correlation. Sales and Operating Expenses are strongly correlated — and in some industries it
is a non-linear correlation —. Wages are correlated with the number of employees. Creditors
is correlated with Debtors. The introduction of correlated pairs would reinforce the residual

variability common to both instead of smoothing it out.

e The final s should not generate constraints in other items. This is the most difficult condition
to achieve. For one reason or another accounting identities seem to propagate across other

relations and make themselves present im some unexpected situations.

Practical criteria for building s: We used two criteria for finding the set of items appropriate
for building s. The first one is intended to the selection of items. The second one 1s an overall test

of the applicability of the resulting s.

e After the introduction in the case-average leading to log s of each new candidate, we compute
the resulting variance of the average. If it suffers a decrease, the new item is accepted. If it
increases, we remove one by one the items already included. For each removed item, if the
resulting variance decreases beyond the original value, we replace it by the new one. If the

variance never decreases we reject the new item.
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S NW W D CA CL N
1983 VAR: | 0.5290 | 0.5475 | 0.5473 | 0.5161 | 0.5009 | 0.4999 | 0.5515
SM: | 0.5290 | 0.5013 | 0.4971 | 0.4877 | 0.4843 | 0.4800 | 0.4762
1984 VAR: | 0.5807 | 0.5963 | 0.6023 | 0.5349 | 0.5229 | 0.5390 | 0.5972
SM: | 0.5807 | 0.5429 | 0.5412 | 0.5251 | 0.5195 | 0.5171 | 0.5138
1985 VAR: | 0.5263 | 0.5591 | 0.5541 | 0.4977 | 0.4829 | 0.4999 | 0.5626
SM: | 0.5263 | 0.5032 | 0.4993 | 0.4868 | 0.4812 | 0.4796 | 0.4779
1986 VAR: | 0.5211 | 0.5356 | 0.5419 | 0.4943 | 0.5030 | 0.5009 | 0.5582
SM: | 0.5211 | 0.4934 | 0.4920 | 0.4806 | 0.4782 | 0.4771 | 0.4772
1987 VAR: | 0.5318 | 0.5113 | 0.5401 | 0.5003 | 0.4734 | 0.4889 | 0.5646
SM: | 0.5318 | 0.4873 | 0.4869 | 0.4795 | 0.4733 | 0.4700 | 0.4716

Table 17: Building s: The evolution of the variance of log s for an increasing number of incoming
items. VAR shows the variance of each log item. SM shows the variance of log s after introducing
each item, when all the items to the left of it are already in.

C I EX TA TC FA
1983 VAR: | 0.5350 | 0.5856 | 0.5478 | 0.5051 | 0.5670 | 0.6766
SM: | 0.4780 | 0.4835 | 0.4842 | 0.4843 | 0.4870 | 0.4924
1984 VAR: | 0.5776 | 0.6325 | 0.6174 | 0.5317 | 0.6289 | 0.7019
SM: | 0.5167 | 0.5232 | 0.5250 | 0.5231 | 0.5258 | 0.5303
1985 VAR: | 0.5405 | 0.5689 | 0.5742 | 0.5049 | 0.5828 | 0.6996
SM: | 0.4811 | 0.4843 | 0.4858 | 0.4849 | 0.4882 | 0.4957
1986 VAR: | 0.5384 | 0.6075 | 0.5575 | 0.5119 | 0.5606 | 0.6951
SM: | 0.4798 | 0.4862 | 0.4855 | 0.4879 | 0.4918 | 0.4978
1987 VAR: | 0.5314 | 0.6100 | 0.5627 | 0.4835 | 0.5408 | 0.6871
SM: | 0.4741 | 0.4790 | 0.4798 | 0.4808 | 0.4855 | 0.4922

Table 18: The items in this table weren’t selected for building logs. SM shows what would have
happened to the overall variance of log s if they were allowed 1n.

e After finding a model for s with minimal spread we build two-variate scatter-plots in which
log s 1s compared with each one of all the remaining log items in order to find out if constraints

or other asymmetry emerge.

The first criterion would induce misleading models for s if residuals were to be expected to
exhibit negative correlations along with the positive ones. In fact, the variance of the case-average
could decrease because of existing negative correlations. However, we didn’t find so far any traces

of negative correlations amongst the residuals of the used items.

An example: In the case of all groups together, the variance of logs decreased whenever the
items S, NW, W, D, CA, CL were introduced in the model, for all the five samples examined —
corresponding to reports from 1983 to 1987.

Other items, (C, I, TC, FA) had the opposite effect for all the years. They made the variance
of log s increase. And a few, (EX, N) either made it increase or decrease, depending on the years:
N was generally associated with a decrease whilst £X would make it increase except in one year.

Table 17 gathers these results in detail. When reading any row labeled SM from left to right
we will get a description of the evolution of the variance of log s for an increasing number of items

allowed in the case-average. For example, by accepting C'A, the variance of this average decreased
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Figure 38: The decrease in variance of s, a proxy for size, for several incoming items.

from 0.4877 to 0.4843 in the 1983 sample. Notice that the acceptance of C'A (and the variance of
log s achieved with it) supposes the previous acceptance of S, NW, W, D, that is, of those items to
the left of C'A.

The individual variance of each item is also displayed (rows VAR). Figure 38 on page 112 is a
graphical representation of table 17. It clearly depicts the effect of averaging together more and more
items. Notice that, for avoiding the overlapping of the curves, the variance displayed in figure 38
suffered a different translation for each year.

Two items emerged as non-adequate for building s despite not being correlated with others.
They were Inventory and Fixed Assets. The variability of s increases when we introduce any of
them in the case-average. Fixed Assets is the item with the largest variance amongst the eligible.
Its non-adequacy stems from apportioning more variability than the smooth it produces. Inventory
has also a large variance but it is not as distinct as Fixed Assets.

Creditors was expected to be non-adequate since it is correlated with Debtors. The same for
E X, which 1s strongly correlated with Sales, and Wages, which is correlated with the number of
employees. It is indifferent to select one or the other from these pairs, provide both are not present

in the final model.

5.1.2 Results and Discussion

Using the outlined procedure we tried several combinations of items selected from the limited set
we displayed in table 2 on page 6. For each combination we observed the behaviour of the resulting
s when deflating all the other items in our set. Despite the significant decay in variability obtained,
about 10%, none of these combinations turned out to be completely satisfactory since it produced

non-exactly symmetrical residuals when deflating items from the Profit and Loss Account. We
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noticed that when Total Assets deflates such items the asymmetry seems to be smaller than when
using s. But, of course, T'A performs badly with all the items from the Balance Sheet whilst s will
not introduce any asymmetry.

For the set of items we could use, the best o = log s seems to be

o=

[log.S + log NW + log W + log N +log D + log C'A + log C'L] (13)

~1| =

In the following, any use of s or ¢ in this study refers to this particular case-average.

When building models like this one, care must be taken to avoid the accumulation of base-
lines. Each item must be checked for really significant base-lines (see page 8 in chapter 1) and the
corresponding § accounted for before applying logs. It is worth mentioning that models like the one
above involving many variables which are allowed to accumulate their individual effects can display

a magnitude of problems unknown in simpler cases.

Why not Principal Components? For building a proxy for size we suggested an average of
several items case by case. Such a procedure contrasts with the usual one in accounting research
where tasks like this one would be carried out by a Principal Components (P.C.) rotation. We shall

comment on the use of P.C. later on. At the moment, we report the following result:

e When comparing the measure of size obtained by averaging with the measure of size the first
P.C. yields for the same sample and set of items we very often obtain two variates which are

similar except for scale.

e For small, non-homogeneous samples, the results of a P.C. rotation and those of averaging can

be very different. P.C. scatters the size effect along the largest two or three axis.

Notice that averaging, summing or any linear combination of items in which the multipliers have
equal values is equivalent to a 45° multi-dimensional rotation. When the P.C. algorithm explores
homogeneous samples it finds in first place this 45° axis in log space, the one corresponding to the
proxy for size obtained above. On the contrary, when samples are not homogeneous, the existence
of clusters can distort the meaning of the resulting main axis.

Averages are robust regarding the problem of non-homogeneous samples and are easier to com-
pute as well. But they should be used instead of the P.C. rotation mainly because they are function-
ally correct. Group averages model the functional relation linking individual items with the main

source of variability in multi-variate distributions generated by a proportional mechanism.

The need for a large number of components when building s:  Another problem with this
general deflator is that, if a variable is present both in the numerator and in the denominator, that

1, if we deflate with s any item already used for building s, the result is the same as if we were
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using, instead of the entire numerator, a fractional exponent of it. For example, when deflating item

x; with s we would have

M—1
Tl _ [xk] M (14)
El 1 1
_ — -
HM 2 M k-1 % M M—kF1
i=1%; [lic =" x Hi:k+1 x;

When M is large, (M — 1)/M ~ 1. But if the number of components of s is small the exponent
affecting the numerator will model a non-linear relation. Therefore it would be interesting to find a
large number of items for building s. Also because the self-smoothing would improve.

We succeed in finding seven items gathering all the desired requirements. This is all our set can
yield. It would be better if we were to have a few more. For a set with more items and especially with
items reflecting details, not totals, it would be possible to increase the number of the components
of s. Anyway, the set displayed in equation 13 performed remarkably well in the many applications

it was called upon during our research. In the second part of this study we often use it.

The distribution of s: The resulting s is two-parametric lognormal for all groups and years. This
is not surprising since the individual § of the candidates are calculated on the basis of maximizing
the Shapiro-Wilk’s W. In general, log s has also smaller kurtosis than that observed for individual
items. In a few industries negative kurtosis can be observed.

The reason for this small kurtosis is straightforward. The variability of log s is the one of the
main axis of a multi-variate distribution. Since this main axis is supposed to be the source of the
Gaussian behaviour of log items, log s should exhibit a kurtosis even smaller than items.

A two-variate version of this reasoning was introduced in chapter 4. We recall figure 37 (page 102).
In this graphical representation, the variability of log s would be the one along the “Size Axis”. The
source of positive kurtosis is the “Ratio Axis”.

Items are 45° projections of this multi-variate distribution. They contain some kurtosis. Ideally,
log s shouldn’t be correlated with the source of kurtosis.

When used as a deflator in ratios, s yields the same kind of lognormal residuals other deflators

produce. The observed leptokurtosis is neither larger nor smaller than the usual.

s and the common effect: A remarkable feature of s is the small departures from the unit in

the slopes of regressions in which log s explains individual log items. For models like
logz; =a+0b6xlogs; + ¢;

in which z; is an accounting item, the estimated values of b are, as a rule, very near 1. In table 19 we

display the slopes and the proportions of explained variability in our sample for all groups together.

Figure 39 on page 116 is a graphical representation of this table intended to facilitate its reading.
Long Term Debt emerges as the item with less explained variability and also the largest departure

from the simple ratio model (b = 1). However, even in this case, such departure is very small. And
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Item 1983 1984 1985 1986 1987
slope R? slope R? slope R? slope R? slope R?

S 1.006 0.91 1.006 0.89 | 0.994 0.90 [ 0.991 0.90 1.004 0.89
w 1.027 091 1.046 0.91 1.040 0.92 1.033 0.93 1.036 0.93
NwW 1.009 0.89 | 1.010 0.88 | 1.008 0.88 1.008 0.90 | 0.991 0.89
1 1.047 0.88 | 1.054 0.88 | 1.029 0.86 1.055 0.86 1.043 0.82
D 0.991 091 | 0972 091 | 0977 0.91 0.974 091 0.985 0.91
C 1.008 0.90 | 1.015 0.92 1.022 0.92 1.016 0.91 1.017  0.91
CA 0.996 094 | 0985 095 | 0.995 0.94 | 0.992 0.94 | 0.976 0.94
FA 1.075 0.81 1.061 0.82 1.099 0.82 1.103 0.83 1.100 0.82
CL 0.981 0.92 | 0986 0.93 | 0984 0.93 | 0.992 094 | 0.984 0.93
FL 1.047 0.84 | 1.052 0.85 1.033 0.87 | 1.046 0.85 1.035 0.86
EBIT 1.036 0.78 | 1.032 0.81 1.024 0.82 1.022 0.83 1.008 0.83
N 0.987 0.84 | 1.004 0.85 1.010 0.86 1.009 0.87 | 1.020 0.86
DEBT 1.157 0.62 1.096 0.61 1.100 0.60 1.107 0.56 1.142 0.56
EX 1.000 0.86 | 1.006 0.84 | 1.001 0.84 | 0.990 0.84 | 0.997 0.83
WwC 0.996 0.74 | 0.976 0.80 | 0.967 0.75 | 0.978 0.74 | 0.934 0.76

Table 19: The slopes and explained variability (R?) obtained when log s, a proxy for size, is used to
explain several log items. All groups together.

the common effect still explains 55% to 65% of Debt in relative space. These values mean a strong
correlation and cannot be ignored.

Working Capital comes next, with an explained variability of 75% to 80%. All the other items
can be explained by the common effect in a 80% to 94%. And their slope will not be significantly
different from 1.

As seen in chapter 2 the displayed results are an argument in favour of the overall proportionality
of accounting items in cross-section. This proportionality leads, in log space, to a unique, strong
effect. The slope emerges as a non-important parameter. Its value is predictable and departures from
such a prediction are very small. They can be explained by the bias introduced in the estimation of

b when using regressions instead of functional relations.

A consequence of using s: Ratios with s in the denominator no longer yield contrasts between
two departures from size. Ideally, they reflect the real departure from size of the item in the
numerator. Using our notation, we could ideally access each 7 or f* instead of the ¥/* or fy/*.
As a consequence, we could also use size-adjusted Sales, Working Capital or Debt, along with s
as input variables for statistical models. Such models would be self-explanatory to an extent so far
not attained in accounting research. Their interpretation would be immediate. In the second part

of this study we show examples of this use of s.

5.2 Dimension Reduction for Statistical Modelling

The excessive number of input variables in accounting statistical models and the consequent need

for a reduction on the dimension of the input space stems in a large degree from the use of ratios as
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Figure 39: The slopes (X-axis) vs. the R? (Y-axis) when logs, a proxy for size, is used to explain
log items. Debt emerges as having a particular behaviour. All groups, five years.

inputs. It is difficult to know to what extent a feature of the firm is being conveniently modelled by
a given combination of ratios. Some research solves the problem by using all possible combinations.

Since a few residuals (size-adjusted log items) can be used instead of ratios the problem of an
excessive number of inputs should now be seen in a different light.

Nevertheless, it 1s possible that in some cases even the dimension of the input space achieved by
using log items instead of ratios will be excessive. This section is devoted to the description of a tool,
the Hadamard rotation, intended to dimension reduction and especially well suited for accounting
items in log space.

In order to understand why the Hadamard rotation is interesting we must explain first why
the usual one, the Principal Components rotation, can eventually become inadequate for dimension

reduction with log items.

5.2.1 The Use of the Principal Components Rotation: Discussion

Factor Analysis has been widely used in accounting research. The log space could be understood as
an appropriate field for achieving dimension reduction with it. However, when doing so there are
some dangers we should be aware of. Here we highlight two of them.

The first danger 1s specific to accounting items in log space. It consists of the possible finding
by the Principal Components algorithm of a main axis which is not a 45° multi-variate slope. The

second one is common to all algorithms based on optimization principles.

P.C. and the modelling of the common effect: P.C. algorithms standardize each variable

individually before the rotation takes place. In other words, whenever we use such programs we are
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Figure 40: Two clusters of data having parallel principal axis can induce two significant dimensions
where only one should be considered.

implicitly making a strong assumption — that for each variate there are two free parameters which
ought to be taken into account: The estimated expected value and the variance.

What is the effect of assuming, in log space, that each accounting variable has an independent
variance? It is the same as a multi-variate free-slope ratio. We would be using free-slope ratios
before controlling for size, thus assuming non-linear proportions between items as a rule, not as an
exception.

P.C. is also very sensitive to non-homogeneous samples. The real dimension of the data, that is,
the number of independent sources of variability, can be magnified by the existence of clusters inside
the sample. Clusters will give the wrong impression of different sources of variability. In figure 40
we represent two clusters of cases having only one significant dimension. P.C. would most probably
induce two significant dimensions instead of one. Either lines like AA’” or BB’ would be candidates
for appearing as the first axis. Then, a perpendicular to it would emerge as a second one. None of
these axis maximizes its explained variability. None of them is adequate for capturing the effect of
size 1n log space.

In short, the common effect requires a 45° rotation to be accounted for. Not an optimal rotation.

Notice that the referred problem can be avoided by using the P.C. rotation after manually

controlling for the common effect.

The problem of the negligible variability: Other potential dangers of using P.C. are not
specific to accounting models. A clear one stems from these tools being intended to the extraction of
features. Dimension reduction becomes a by-product of the extraction of features, not the main goal.

Features extraction makes sense in an identity context. The negligible variability is the one

unexplained by the discovered features of the data. Dimension reduction makes sense also when
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modelling relations between the data and observed outcomes. It is a constraint imposed from
outside in the flow of information allowed to explain a relation.

These two tasks are different. In an identity map the input variables try to explain themselves.
When modelling a relation they try to explain the relation between them and the outcomes.

When a set of features are trying to explain themselves in the most economic way, the common
variability will emerge. The particular one can eventually be considered as negligible. Clearly, such
a particular variability — negligible in an identity map context — could be important in other
contexts. In fact, the task required when performing discriminant analysis or regression is not for
the input variables to explain themselves but the outcomes.

Figure 40 also depicts this. Supposing that the maximum-variance axis was correctly found, it
would lie in between AA" and BBI, in a way that would separate both groups. If we select such axis
— and therefore we consider as negligible the second axis in order to reduce the dimension of the
input space — and then we apply some discriminant technique to try to distinguish between group
A and B, we would have thrown away the axis containing precisely the useful information for such

a task — the second one.

5.2.2 The Hadamard Rotation

For achieving dimension reduction in log space we suggest the use of the Hadamard rotation [107].
Its remarkable quality is that it is not optimal in any sense. The Hadamard rotation could be briefly
described as a multi-dimensional 45° anti-clockwise rotation. The results of applying it will not
depend on the particular statistic of the data being rotated. In other words, the Hadamard rotation
exhibits the same kind of robustness ratios have.

For M items to be reduced, the effect of applying the Hadamard rotation is twofold.

e First, all the variability along the multi-variate 45° axis — defined in the M-dimensional space
of the items to be reduced — is accounted for and placed in the first extracted factor. Thus,
the first factor will contain, up to a constant value of 1/M, the strong, common effect, s, as

modelled by the M items to be reduced.

e Second, the remaining variability, the weak effect particular to each item, is re-distributed by
all the other M — 1 factors according to simple combinatorial laws. Each item will be present

in these new variables either summing or subtracting to the total.

We consider the Hadamard rotation as adequate for achieving dimension reduction in the input
space of the log accounting items because it is able to isolate the only clear feature of the data —
the common effect — and then it re-distributes the remaining variability by the dimensions we want
to use in a way that will not privilege any particular piece of information.

It is up to the next step — the modelling of the relation — to determine how many variables are

to be used. This will determine the information flow.
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The Hadamard rotation is also easy to implement. It will not require any special algorithm.

How to build Hadamard matrices: Hadamard matrices are square arrays of only plus and

minus ones disposed in such a way that the rows or the columns are orthogonal to one another. The

=[]

If we are examining just two accounting items in log space, {logy,loga}, we would obtain, by

simplest case is the matrix of order two:

applying H, two new variables, h1 = logy + log« and hs = logy — log x. Therefore, hy is the ratio
y/x in log space and hy is the product y x 2 in log space. hy can be identified — up to a constant
value of 1/2 —as the effect common to both items.

The Hadamard rotation decomposed the total variability so that the first new variable contains
the variability common to the original items and the second new one the variability unexplained
by the first new one — which is the ratio of the original items. This was achieved by rotating the
original axis 45° anti-clockwise. The new X-axis is now the main dimension of the distribution. The
new Y-axis is orthogonal to it. Again, we recall figure 37 (page 102). In this graphical representation,
the variability of h; is the one along the “size axis”. The one of hs is the one along the “ratio axis”.

For more than two items, the i*” row and j** column component of one possible M dimensional
H matrix can be found by applying the formulas

M-1
ai; = (—1)6(”) where b ;) = Z i X
1=
The terms ¢; and j; are the bit states (+ or -) of the binary representation of ¢ and j respectively.

For example, in the case of M = 8 one possible H matrix would look like this:

1 1 1 1 1 1 1]
-1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1

-1 -1 1 1 -1 -1 1
1 1 1 -1 -1 -1 -1
-1 1 -1 -1 1 -1 1
1 -1 -1 -1 -1 1 1
-1 -1 1 -1 1 1 -1

Il
I T T S e S e O e

Notice that, when converting the new factors obtained in log space back to the anti-logarithmic
space summation become multiplications and divisions are now subtraction. Hence, the Hadamard
rotation will produce a set of M — 1 new variables which are ratios. These ratios contain all the

original items appearing either in the numerator or in the denominator.
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For example, in the case of M = 4, the three ratios formed with items A, B, C, D would be:

AXC. A><B. Ax D
BxD' (CxD’ Bx(C’

along with the first factor A x B x C x D

Supposing we were to decide to consider as negligible the information conveyed by the third

factor — which is the ratio AB/C'D — then we would get a new information content equivalent
(A3 x %)% instead of A
o (B? x %)% instead of B o ) )
to considering This is what 1s meant by saying that the H
(C3 x #)% instead of C
(D3 x %)% instead of  D.

rotation re-distributes the variability of items according to simple combinatorial laws. Whenever
the desired goal is just dimension reduction, not the isolation of particular features of the data, this
simple re-distribution is enough.

Re-distribution avoids the emergence of factors containing very particular pieces of information.
Algorithms based on optimization will easily find, should they exist, preeminent features in the
data. Therefore, the dimension reduction they achieve can have the undesired characteristic of being
features-oriented. As commented above we would be probably throwing away features, instead of

constraining the information flow.

How to use the Hadamard rotation: In order to achieve a reduction in the dimension of the
input space, the H rotation is applied to the set of mean-adjusted log-items. Notice that only
summation and subtraction are required to rotate the input vectors. Then, the variance of the
obtained factors is measured. Those exhibiting the smallest spread are, in general, the ones to put
aside.

Since the variability particular to each item is re-distributed by all the M — 1 factors after
controlling for the common effect, it is clear that differences observed in the spread of such factors
must be the result of correlations between the weak components differently combined. As any
correlation means redundancy in the information content of variables, the factors to be thrown out

are those having smaller spread.

An example: Using a sample with accounts of 169 firms belonging to four industrial groups (1984)
we first selected eight items — NW, W, D, C, CA, CL, S, N — and applied the H rotation to their

mean-adjusted logs. We obtained eight new variables. The variance observed in each item was

NW W D C CA CL S N sum
2.72 | 2.76 | 266 | 3.04 | 2.61 | 2.81 | 2.77 | 2,53 | 21.91

The resulting factors had their variability distributed in this way:

Fac 1 Fac 2 Fac 3 Fac 4 Fac 5 Fac 6 Fac 7 Fac 8 sum
20.63 0.26 0.12 0.14 0.08 0.06 0.43 0.18 21.91
94.13% 1.19% 0.55% 0.65% 0.35% 0.29% 1.98% 0.84%
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Figure 41: On the left, the distribution of the variability of eight items. On the right, the variability
of factors after the Hadamard rotation.

Figure 41 is a graphical representation of the above data. The displayed proportions are, of
course, only approximations. The factors resulting from the H rotation are not independent and
their variance will not sum up to a total.

As we see, the first factor accounts for approximately 94% of the variability of the sample. This
is a typical value attained by the common effect. Given that the smallest variability was that of
factors 5 and 6, we considered such factors as negligible. If we were modelling a particular relation
we would now use the six remaining factors as input variables.

In this case we were interested in reconstructing the original items from just the six accepted
factors. Hence, we filled with zeros or constant values the two negligible factors for all the cases in
the sample and applied the rotation inverse of I — which, in this particular case (M = 8) is the
same as H itself, up to a constant value —. In doing so we obtained the original items reproduced
after a reduction of two in the dimension of the input space.

The differences between the correlation matrices of the original and reproduced items are shown
in table 20 (page 122). Since they are small, we conclude that the Hadamard rotation succeeds in
reducing the dimension of the original items with no significant loss in their information content.

A P.C. rotation with the same data didn’t succeed in finding the 45 axis as the main dimension.
Instead, it apparently scattered the common effect over the three largest factors. This is not a
particularly clumsy result since the sample was drawn so as to be quite non-homogeneous. The
four selected groups — Building Materials, Industrial Plants, Clothing and Food — are not usually
found in the same sample except on purpose.

We repeated the above experiment with twelve items. The resulting factors’s variance were now
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NW W D C CA CL S N
0
-0.0051 0
-0.0002 0.0111 0
-0.0206  0.0044  -0.0069 0
-0.0147  0.0128 0.0073 0.0094 0
-0.0178 0.013 -0.0107 -0.0067  0.0097 0
-0.0415 -0.0005 -0.0203 -0.005 0.0012  -0.0037 0
-0.0236 -0.0083 -0.0202 -0.0274 -0.0069 -0.0058 -0.0193 O

Table 20: The difference between the correlation matrices of eight original items and their repro-
duction after reducing the dimension by two.

NW W D C CA CL S N EX TA FA I
0
-0.03 0

-0.06  -0.06 0

-0.07 -0.05 -0.01 0

-0.02  -0.02 0.003 0.000 0

-0.03 -0.04 0.002 -0.00 0.038 0

-0.02 0.003 -0.01 0.015 0.060 0.026 0

-0.01 0.013 -0.05 -0.06  -0.01 -0.04 0.020 0

-0.06 -0.04 -0.02 -0.00 0.036 0.012 0.013 -0.03 0

-0.00 -0.03 -0.00 -0.00 0.008 0.032 0.052 -0.03 0.008 0

-0.00 -0.02 -0.05 -0.03 -0.04 0.008 0.046 0.007 -0.00 -0.01 0

-0.03 -0.00 -0.04 -0.03 0.009 -0.00 0.000 0.046 -0.03 0.020 -0.02 O

Table 21: The difference between the correlation matrices of twelve original items and their repro-
duction after reducing the dimension by two.

more irregular since a few of the emerging ratios are non-balanced. We call non-balanced a ratio
with a different number of items in the numerator and in the denominator.

The ratios emerging after the Hadamard rotation are all guaranteed to be balanced only when
the dimension of the input space 1s a power of two. However, for most of the remaining M 1t is

possible to build Hadamard matrices yielding balanced ratios. M must be even, of course.

Fac 1 Fac 2 Fac 3 Fac 4 Fac 5 Fac 6 Fac 7 Fac 8 Fac 9 Fac 10 | Fac 11 | Fac 12
31.85 0.265 0.057 0.131 3.973 0.091 0.243 0.232 3.233 0.227 0.220 0.240
78.13% 0.65% 0.14% 0.32% 9.75% 0.22% 0.60% 0.57% 7.93% 0.56% 0.54% 0.59%

After identifying the two factors with the smallest variance we obtained reproduced items. The
differences in the correlation matrices observed between the original and the reproduced items are

displayed in table 21.

The Hadamard Symmetrical rotation: Apart from the outlined features, when the number
of 1tems to be reduced is a power of two, the Hadamard rotation becomes symmetrical, that is, the
matrix is its own inverse up to a constant value.

If M = 2™ for any input vector X with M elements,

Z:LXX~H and X:LXZJ{
M vM
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Another characteristic of this particular case is that H matrices can be obtained from others of

smaller dimension just by using the simple formula

Hy  Hum
Hoym = [ ]
Hy —Hy
For M > 12 the difference between symmetrical and non-symmetrical A becomes non-important in
practice. It 1s then possible to find a Hadamard matrix yielding balanced ratios. Anyway, the effect

of having non-balanced ratios is no longer noticeable in high-dimensional input spaces.

Conclusion: The Hadamard rotation seems to be a simple and well-fitted method for achieving
dimension reduction in the input space of accounting data. It yields a proxy for size and a collection
of ratios corresponding to different combinations of the original log items. In chapter 8 we use the

same basic principle in the building of graphical tools for financial diagnostics.

5.3 The Homogeneity of Industrial Groups

The modelling of accounting relations in the presence of groups cannot avoid two important questions

concerning the input space.

e Is a particular grouping significant so that it should be taken into account? If the data is more

similar inside groups than from group to group this is the case.

e Can significant groups be taken as similar in their effects upon the features of the data?
For example, is liquidity affected in the same way as, say, profitability in the presence of an

industrial grouping?

We answer the first question by comparing the variability inside groups with the one between them for
the most important features of the data. As a result we obtain an overall measure of the importance
of a grouping for each variable involved. The second question could be answered at several levels of
accuracy. The simplest procedure would consist of just ranking a measure of homogeneity of each
feature by group and then verify if these rankings were consistent across different features. We use
a basically similar method.

In this section we develop procedures for assessing the importance of groupings and also the
complexity they introduce in the input space regarding the features of the data. The tested grouping
is the SEIC industrial classification. However, any other grouping can be explored by these or similar

methods.

5.3.1 Introduction and Related Research

Accounting reports do not contain all the information necessary to uniquely characterize the impor-

tant features of firms. The very basic problem of ratio analysis is the existence of similar accounting
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patterns which are not neighbours in the space of the real features of firms. In order to correctly
map firm features accounting data is not enough. External information is also required.

A clear example of this i1s the industrial classification. The similarity of firms as perceived
by the SEIC can be different from the similarity of accounting reports. A non-standard piece of
information, the number of employees, turns out to be important when checking the homogeneity of
industrial groups. Other non-accounting variables; eventually also important, could be the patterns
of consumption of energy, area requirements for plant or stores, the age of the firm and its location.

The use of a limited amount of information like the one contained in accounting reports alone,
generates extra unexplained variability in models. Here we are not concerned with the amount
of variability. We are interested in its complexity. The complexity of accounting models becomes
higher when the input data reflect facts we cannot account for.

For example, the Leather or the Wool industries could introduce more than one effect in the
input space if the accounting numbers of each firm were strongly influenced by its location. This
location would act as a hidden grouping: Say, the north and the south, each one with particular

characteristics. In such case, the complexity of the SEIC grouping would be larger than expected.

Limitations when answering the first question: In chapter 7 we shall evaluate the discrimi-
natory power of accounting reports when classifying firms according to the SEIC. Notice that such
a problem is different from the one we are exploring now. Several very homogeneous groups of firms
can also be very similar in their features as perceived by accounting reports alone. When groups are
homogeneous and also overlap, they cannot be correctly separated by accounting information.
Similarity can only be measured in a comparative way. We can rank groups according to their
homogeneity but we cannot say that an attained degree of homogeneity is acceptable while another
isn’t. We cannot say that the SEIC succeeded or failed in creating homogeneous groups. We can

only say that one group is more or less homogeneous than another one regarding particular features.

The second question: Grouping and features. Given a grouping, some features of the firm
will be sensitive to it, varying from group to group. Others will be insensitive to the grouping.
The tracing of both kinds of behaviour is potentially important for ratio analysis. Ratios reflecting
sensitive features are interesting because they can be used to discriminate between groups. And ratios
reflecting insensitive features are also interesting. They yield robust standards or benchmarks.
Ratio Analysis is concerned with mean values. Statistical modelling is mainly concerned with

the sources of spread. Are the different sources of spread equally sensitive to a grouping?

Fixed and random effects: Some groupings are defined a-priori by an accepted institution like
the SEIC in the U.K. Others are the result of objective causes. The grouping of firms into leveraged

and non-leveraged or into failed and non-failed has a statistical nature which is different from the
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SEIC grouping. The former introduces in the population a simple partition. The later introduces
real variability.

Whenever we consider grouping variables that can make themselves present — in one way or the
other — in the input space, the first point to clarify is its statistical nature. Simple partitions are
known as fixed effects. Groupings which introduce random effects are known as such.

Groupings that introduce random effects in a population can indeed introduce more than one.
The assessment of the number of independent sources of spread a grouping carries with it is eventually
important. For example, if a particular grouping contains two random effects it is likely to induce

higher order relations between input variables.

Related research: Firm grouping is itself not a very homogeneous body of research. It includes
simple industry comparisons of ratios, tests on widely accepted groupings of firms and the search
for clusters of firms according to similarities of ratios and other data. The former topic has been
explored from very early in finance literature. Foster [44] offers an overview. There is an established
evidence on differences between some ratios for well known industry groups.

The search for clusters of firms has been carried out by Elton and Gruber [35] [36], Jensen [67],
and Gupta [54] amongst others. The problem with hierarchical cluster analysis is that the used
algorithms seem able to always find clusters. The interpretability of the results suffered with this.
It is difficult and not particularly revealing.

Another aspect of this research is the test of separability of groups using accounting data. This
has been tried for the SEIC by Sudarsanam and Taffler [124].

A not well known body of research tested the homogeneity of existing groupings according to
accounting measures of financial risk. Equivalent risk class hypothesis tests began with Wippern
in 1966 [139] and vanished after Martin et al. in 1979 [83] (see also [49] and [99]). Foster doesn’t
even mention them. This research is an attempt to test a basic assumption in Finance, the one that

groups are similar before risk.

5.3.2 Measuring the Significance of a Grouping

The techniques designed to divide the variability of cases in two components, inter-groups and intra-
groups, have in common the basic Analysis of Variance model but differ in the assumptions. Given
that the 14 groups selected represent a sampling between a much larger amount of possible choices
it would seem inappropriate to use fixed-effects models. Hence, we explore a random-effects one.
Our answer to the first question is given by a statistic, the intra-class correlation, able to yield
measures of similarity comparable across different samples. Notice that this kind of tools are sensitive
to deviations from the Gaussian assumption. The fact that they can now be used is a consequence

of the broad lognormality of firm features.
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The problem: We are interested in assessing the extent to which the used grouping of industries
is effective in creating more similar subsets of firms.

The intra-class correlation coefficient, p, measures the proportion of the total variability that is
associated with a grouping. It is a standardized way of comparing the spread within groups with
the one between groups when the effects are random. If s? is the expected value of the mean-squares
between groups and s? is the corresponding mean-squares within groups, then an estimator for p

could be ) )
sj — s

_sg—i—(k’—l)xsz

k is the number of cases in each group. For M groups of unequal size n;,i =1, M and N = > n,, k

k= ! x(N—Zn?)

should be approximated as

M -1 N
It 1s possible to estimate confidence intervals for r. A detailed discussion of this statistic and the
way it is derived can to be found in Snedecor and Cochran [119].

Real groups are expected to be more similar than the whole. The more similar groups are —
regarding the sample — the more the correlation intra-classes approaches 1.

When the variability inside groups is smaller than the one in the whole sample, this measure
yields a positive value. For a variability inside groups similar to the one between them the intra-class
correlation yields zero. In the case of groups containing more spread than the whole, a negative
correlation would emerge. When the effects governing the spread within groups and between them

are independent, negative p cannot occur. Negative p emerge only in cases where the effects interact.

The data: During the usual period of five years we examined three kinds of accounting information.
First, several log items and also s, our proxy for size. Second, the log residuals of the same items
when deflated by s. Finally, the log residuals of a few more ratios.

In tables 22, 23 and 24 on pages 127 and next, we display the estimated intra-class correlation

along with the F' statistic. The number of firms involved ranges from 555 to 702 in 14 groups.

Results: Log items. The log items show a small but significant increase in homogeneity owing to
the industrial grouping. The values of p are stable during the considered period and no negative or
zero cases were observed. They are not very different from one another as expected. In fact, since log
items mainly reflect size they yield similar proportions of variability associated with grouping. We
conclude that the relative size of firms, as reflected by accounting data, is slightly more homogeneous
inside industries than for the whole sample.

Fixed Assets, Debtors and Sales are the most homogeneous log items inside groups (10%). In-
ventory is the least homogeneous (4%). Size itself is similar to many other items (5%). On the

whole, the homogeneity ranges between the extreme values of 3% and 13%.
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Item 1983 1984 1985 1986 1987
I P I P I P I P I P

SIZE 5.34 9.87% 4.42 6.88% 4.48 6.70% 4.86 7.15% 4.87 7.31%
S 7.21 13.53% | 6.61 10.79% | 6.53 10.27% | 6.48 9.85% 5.93 9.11%
NwW 4.00 7.09% 3.94 6.00% 3.63 5.23% 4.20 6.10% 4.17 6.15%
w 5.01 9.26% 3.51 5.17% 4.09 6.03% 4.52 6.59% 4.66 6.96%
1 3.31 5.56% 2.85 3.87% 3.03 4.08% 3.12 4.12% 2.99 3.98%
D 7.02 13.20% | 6.51 10.65% | 6.31 9.91% 6.47 9.85% 6.39 9.92%
C 5.68 10.58% | 5.17 8.26% 5.22 8.03% 5.48 8.22% 5.45 8.35%
FA 6.45 12.08% | 6.29 10.23% | 6.52 10.26% 7.18 11.00% | 6.65 10.35%
CA 4.62 8.42% 4.10 6.32% 3.80 5.51% 3.86 5.44% 3.60 5.07%
CL 5.42 10.03% | 5.14 8.20% 4.97 7.59% 5.67 8.52% 5.06 7.65%
N 4.41 8.00% 3.55 5.24% 3.93 5.76% 4.06 5.77% 4.08 5.94%
EBIT 5.88 11.73% | 4.46 7.41% 3.49 5.26% 3.74 5.61% 5.45 8.86%
FL 5.90 11.51% | 4.75 7.76% 4.35 6.76% 4.36 6.60% 4.94 7.82%
DEBT | 4.44 11.86% | 3.04 6.10% 3.84 7.66% 3.54 6.43% 4.08 7.81%

Table 22: The F statistic and the Intra-Class correlation, p, when log items were used to explain
the industrial grouping.

Results: Log residuals. For size-adjusted variates the contrast between different items clearly
increases. Some of these residuals show a much larger homogeneity intra-groups than others.

The consistency for the considered period of five years is not affected in most of the items but
it 1s completely lost in a few. Gross Funds from Operations and EBIT, for example, plunge from a
strong similarity inside groups to a much smaller one from 1986 on. It seems as if profitability were
increasingly non-homogeneous inside industries. See table 23 on page 128.

The SEIC

industrial grouping seems to rely on these variates as a criterion for determining groups. Next,

Sales and the number of employees are the most similar features inside groups.

Debtors and Wages. Debt and Net Worth are the less homogeneous residuals. In fact, almost no
influence of grouping can be detected in their size-adjusted measures. The financial structure of
firms seems not to be sensitive to industrial groups.

On the whole, the homogeneity of the residuals ranges from about zero to 25%. These values

denote a more diversified influence of the industrial grouping upon residuals than upon size.

Results: A few ratios. In table 24 on page 128 we display the intra-class correlations for a few
more ratios. The above size-adjusted measures are also ratios, of course. But the displayed ones
capture contrasts between residuals, not the residuals themselves.

The Long Term Debt to Net Worth ratio shows no traces of recognizing the SEIC grouping as
such. The liquidity ratio yields measures of similarity comparable with those of non-deflated items.
Ratios incorporating Sales, Wages, Debtors or the number of employees clearly recognize the tested
grouping. If our goal would be the identification of ratios appropriate for recognizing industrial
groups then the W/N ratio would emerge as a good choice.

A method for selecting appropriate ratios for given tasks could consist of using p. First, the

intra-class correlations of many size-adjusted log items would be assessed. Then, the most promising
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Residual 1983 1984 1985 1986 1987
I P I P I P I P I P

S 11.79 21.41% 15.27  23.54% 16.83 24.64% 13.94 20.53% 11.39 17.45%
NwW 1.54 1.35% 1.92 1.96% 1.69 1.43% 1.71 1.42% 1.61 1.25%

w 5.28 9.84% 6.18 10.12% 6.34 10.00% 6.85 10.50% 6.97 10.87%
1 4.36 7.88% 4.87 7.77% 4.35 6.57% 5.36 8.10% 3.35 4.65%

D 8.57 16.06% 11.05 17.85% 9.40 14.82% 7.18 10.98% 6.06 9.36%

C 3.46 5.85% 3.45 5.03% 2.86 3.71% 2.77 3.42% 3.15 4.22%

FA 2.23 3.00% 2.87 3.89% 3.35 4.65% 4.00 5.67% 3.69 5.20%

CA 2.79 4.36% 3.87 5.85% 4.11 6.08% 4.02 5.72% 2.04 2.09%

CL 2.93 4.65% 3.94 5.96% 2.67 3.34% 2.32 2.57% 1.69 1.40%

N 9.75 18.24% 13.42  21.23% 12.57  19.42% 12.10 18.17% 9.46 14.76%
EBIT 6.73 13.49% 5.16 R.77% 3.30 4.87% 2.98 4.11% 3.35 4.89%

FL 8.13 15.91% 6.13 10.29% 4.55 7.13% 2.79 3.62% 3.65 5.40%

DEBT 1.52 1.99% 0.97 -0.08% 1.85 2.41% 1.59 1.56% 1.91 2.44%

Table 23: The F' statistic and the Intra-Class correlation, p, when several different log residuals were

used to explain the industrial grouping.

Residual 1983 1984 1985 1986 1987
I P I P I P I P I P

S/N 10.08  18.80% | 14.22 22.30% | 13.44 20.57% | 12.84 19.14% | 11.08 17.11%
(Sx N)/s2 | 1150 21.14% | 15.75 24.24% | 16.47 24.39% | 13.70 20.25% | 9.98  15.52%
W/N 1114 20.62% | 16.67 25.42% | 18.43 26.62% | 20.25 27.86% | 16.09 23.61%
CA/CL 371 6.44% | 476 7.56% | 3.86 5.63% | 504  7.51% | 256  3.11%
DEBT/NW | 1.65  251% | 097 -0.10% | 207 3.08% | 173  1.96% | 1.90  2.45%
S/EBIT 8.00 16.02% | 6.98 12.14% | 8.69 14.62% | 6.67 10.97% | 570  9.32%

Table 24: The F statistic and the Intra-Class correlation, p, when a few log ratios were used to
explain the industrial grouping.

combinations of items would be selected amongst the residuals with highest p and tested.
Conclusions: The industrial grouping clearly gathers firms which are to a small extent more
similar regarding size.

Also, a few features of the firm are more homogeneous inside industries. It is the case for Sales,
Wages, the number of employees or Debtors. The financial structure of firms is not especially more
similar inside groups. And the measures of profitability seem to yield very different results from
year to year. In the early years of our observations the profitability of firms is remarkably similar
inside the same industry. In the later ones (1986, 1987) it becomes irregular.

There is nothing in the obtained results able to defy the common-sense of accounting knowledge.

The results are expected. A very simple technique yielded consistent and interpretable results.

5.3.3 Assessing the Complexity of Groupings

The methods and results of this section are not particularly interesting for fields other than the
multi-variate modelling of relations. We are interested in broadly knowing if it is acceptable to
consider one unique random effect in the SEIC grouping regarding accounting data. The results of

this experiment are important later on, when relating sensitivity of assets to market returns.
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The method: Building maps from distances. Asremarked before, this problem can be treated
with different levels of accuracy. Here we selected a very simple and intuitive level. It could be much
improved so that we would end up with a real complex instrument for measuring complexity. Since
our goal is not only the assessment of complexity itself but the support of further research, we used
a reasonably simple instrument.

Our method is based on the well known possibility of re-constructing maps from distances. For
example, 1t is possible to re-construct a map showing the relative positions of the main cities in
Britain just by knowing the distances between them.

Cities would require two dimensions to be mapped. When the objects to be mapped lie in a
straight line the result of this re-construction can be expressed, if desired, as a simple ranking.
Objects positioned so as to form a two-dimensional map cannot be ranked.

We are interested in discover if it is acceptable to rank the industrial groups according to the
spread of accounting features. If it turns out that the different groups can be ranked according to
their spread, then the SEIC grouping is likely to introduce just one random effect. On the contrary,
if the spread of groups resist a simple ranking — thus requiring a two-dimensional map like in the
case of cities — i1t means that the spread present in accounting features because of the grouping is
complex or higher dimensional.

In fact, if the grouping is a unique effect it will impinge upon the features of the firm in different
degrees but not in different directions — thus yielding a consistent spread for several features. For
example, if Chemicals have a smaller spread in liquidity when compared with the one of Food, then a
unique random effect would mean that Chemicals would also exhibit a smaller spread in profitability
or any other feature. But if in the former group there is a smaller spread in liquidity when compared
with the Food industry and a larger spread of profitability in the same circumstance, then the
randomness present in the grouping is not one-dimensional. Higher order effects are expected.

The method we developed for testing the complexity of grouping consists of:

e First, the spread of several features of the firm is measured for a sampling of groups. We
used the standard deviation of log data as a measure of spread. The standard deviation is a
one-dimensional measure of spread. Other statistics, like the variance and co-variance matrix,

are multi-variate measures of joint spread.

e Then, joint distances between industrial groups are computed from the above measures. One
typical such distance could be the Euclidean distance. Notice that the use of joint distances
— one distance 1s measured in the space of several variables — doesn’t change the one-variate

character of our method.

e Finally ordinal scores are discovered that position each industrial group according to the above

distances.

The final result is a map. Each industry is a position in that map. The coordinates of each industry
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are the obtained scores. For example, the position of Leather would be determined by a vector of
scores. The first score positions Leather according to the first dimension, the second positions it
according to the second dimension, and so on.

If industries lie in a straight line dimensions other than the first one are negligible. This means
that groups can be ranked according to a unique measure of spread. They are affected by the
grouping in different degrees but not in different ways. On the contrary, if a vector of two scores is
required for conveniently positioning groups, they lie in a plane, not in a straight line. In this case
groups cannot be correctly ranked using a joint measure of spread. We conclude that the variability
introduced by grouping cannot be considered as one effect.

Our method has the important quality that it clearly points out which industries are likely to be
contributing to an increase in complexity. Such groups should be kept out of the sample whenever

we want to study reasonably simple cases.

The data: We used two sets of data. First, the standard deviations of all the log items used in
previous section. Second, the same for standard deviations of log residuals.

The first set is a comparison term. Clearly, as log items reflect mainly relative size there is no
room for cross-effects. The results obtained for the second set can be compared with these. The
experiment was carried out for the usual period of five years.

As a sampling of groups we used the 14 industries referred to in table 1 (page 5). Indeed,
it 1s not a random sampling. But the number of groups is large when compared with the total
of industries. And the results obtained with this particular sample will condition the selection of

groups in experiments carried out in the second part of this study.

Results: Log items. It is possible to compute a statistic, the usual R?, showing in what propor-
tion each dimension accounts for the goodness of the fitted map. And, of course, it is also possible
to use the first two dimensions for building visual representations of the obtained positions like in
figure 42 on page 131.

R? measures the proportion of variance in the ranked or mapped data which is accounted for
by such ranking or mapping. The obtained proportions are very high, denoting an essentially one-
dimensional map. However, even in this case, the second dimension cannot be ignored. For the five

periods the R? were:

Year | One dimension | Two dimensions
1983 90% 98%
1984 90% 99%
1985 97% 99%
1986 92% 98%
1987 95% 99%

Figure 42 (left) shows the two-dimensional maps of industries for the five years. The X-axis is
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Figure 42: Each one of these scatter-plots is a two-dimensional map showing the position of indus-
tries. The X-axis is the first dimension. The Y-axis is the second one. On the left, log items for five
years. On the right, log residuals for the same period.
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Number | Industrial group 1983 1984 1985 1986 1987
1 | BUILDING MATERIALS -0.31 | -0.16 | -0.29 | -0.41 | -0.34
2 | METALLURGY 0.85 0.80 0.88 0.80 0.88
3 | PAPER AND PACKING 0.65 | -0.29 | -0.40 | -0.20 | -0.12
4 | CHEMICALS -0.04 | -0.36 | -0.41 | -0.51 | -0.41
5 | ELECTRICITY 0.22 | -0.16 | -0.45 | -0.63 | -0.65
6 | INDUSTRIAL PLANTS -0.76 | -0.34 0.07 0.54 | -0.12
7 | MACHINE TOOLS -0.88 | -0.98 | -1.21 | -1.02 | -1.20
8 | ELECTRONICS 0.72 0.54 0.33 0.31 0.10
9 | MOTOR COMPONENTS 0.84 0.67 0.48 0.15 0.44

10 | CLOTHING -1.81 | -1.78 | -2.03 | -2.02 | -1.97
11 | WOOL -1.63 | -2.09 | -1.36 | -1.47 | -1.16
12 | MISC. TEXTILES 1.05 1.19 1.77 1.56 1.96
13 | LEATHER -1.12 1.25 1.05 1.18 0.67
14 | FOOD MANUFACTURERS 1.53 1.25 1.18 1.36 1.44

Table 25: Scores ranking the spread of log items for industrial groups.

BUILDING MT.

PAPER & PACK

PAPER & PACK

BUILDING MT.

1983 1984 1985 1986 1987

CLOTHING WOOL CLOTHING CLOTHING CLOTHING
WOOL CLOTHING WOOL WOOL MACHINE TOOLS
LEATHER MACHINE TOOLS MACHINE TOOLS MACHINE TOOLS WOOL

MACHINE TOOLS CHEMICALS ELECTRICITY ELECTRICITY ELECTRICITY
INDUSTRIAL PL. INDUSTRIAL PL. CHEMICALS CHEMICALS CHEMICALS

BUILDING MT.

CHEMICALS ELECTRICITY BUILDING MT. PAPER & PACK INDUSTRIAL PL.
ELECTRICITY BUILDING MT. INDUSTRIAL PL. MOTOR COMPON. | PAPER & PACK
PAPER & PACK ELECTRONICS ELECTRONICS ELECTRONICS ELECTRONICS
ELECTRONICS MOTOR COMPON. MOTOR COMPON. | INDUSTRIAL PL. MOTOR COMPON.
MOTOR COMPON. | METALLURGY METALLURGY METALLURGY LEATHER
METALLURGY TEXTILES M. LEATHER LEATHER METALLURGY
TEXTILES M. FOOD MANUF. FOOD MANUF. FOOD MANUF. FOOD MANUF.
FOOD MANUF. LEATHER TEXTILES M. TEXTILES M. TEXTILES M.

Table 26: Industries ranked by spread of log items. Below, the largest spread.

the first dimension and the Y-axis is the second. Each number stands for one industry. The meaning
of these numbers can be found in tables 25 or 27 on pages 132 or 135.

There is a visible trend towards a straight line. The effect of size is preeminent. Industries have
different spreads but they are under the same effect. Leather is the exception. Its log items show
signs of influences other than size for three of the observed years. And such influences are not stable
during the period. The second dimension of Leather changes sign twice.

When the first dimension was used for ranking industries according to spread the resulting rank
was stable during the period of five years. The most homogeneous industries concerning size are
Clothing, Wool, Machine Tools. The least homogeneous are Miscellaneous Textiles, Metallurgy and
Food Manufacturers. We show these ranks in table 26 (page 132). The scores obtained as the first
dimension of the map are displayed in table 25 (page 132).

Industries like Building Materials, Metallurgy, Machine Tools, Clothing and Food show a con-
sistent spread for the whole period. Chemicals, Electricity, Electronics, Motor Components and
Wool are also regular. Paper and Packing, Industrial Plants and especially Leather are irregular.
Their ranking is not consistent for the whole period. Figure 43 (above) (page 134) shows the score
representing the first dimension of each industry for five years. Each year is a mark. When marks

gather very close to one another the spread is consistent for the whole period.
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Results: Size-adjusteditems. When building a map of industries using joint measures of spread

for log residuals, the obtained R? are:

Years | One dimension | Two dimensions
1983 91% 98%
1984 93% 99%
1985 92% 100%
1986 84% 98%
1987 82% 99%

For one dimension these R? are less stable than the R? obtained for size but the numbers are
not very different. It suffers a break in 1986 and 1987, as if the spread of firm’s internal features
were becoming increasingly complex.

Two dimensions seem enough to account for the randomness introduced by the industrial group-
ing. But notice that our method is not intended to count the number of dimensions present in the
data. It 1s intended to trace the presence of more than one.

The two-dimensional maps are displayed in figure 42 (page 131 on the right) so that they can
be compared with the corresponding spread of size. They show clear differences from the spread
of size. The trend towards one unique dimension is no longer visible. One industry, Metallurgy,
emerges as very particular, with a much larger spread than the others. We recall from section 2.2.2
that Metallurgy was also unique in the proportion of variability size would explain in each item.

In face of these results we must conclude that the R? statistic is not very reliable for deciding
whether the second dimension is significant. Its value is similar to the one obtained for the spread
of items but we know by visual inspection that the aspects of the two maps are clearly distinct. The
position of Metallurgy in the two-dimensional maps — a strong outlier — 1s partially responsible
for this anomaly.

The scores obtained are consistent for the five years. Industries occupy positions which don’t
suffer clear changes. But it is clear that the effects present are not linear. They affect different

features in different directions making a second dimension emerge.

Ranking the spread of industries: The internal features of firms, as perceived by size-adjusted
items, yield rankings which are not in the least similar to those obtained when assessing the spread
of size. Leather, Motor Components and Building Materials are now the most homogeneous groups.
Metallurgy is the least. The scores seem to vary with the year. But table 28 is not a good guide to
assess the consistency of results. It shows a picture which is worse than the reality. In order to have
a fair idea of the evolution of the scores during the considered time period, table 27 (page 135) is
more appropriate.

As in the preceding case, Figure 43 (below) (page 134) compares the scores of each industry for
five years. Building Materials, Chemicals, Electronics, Clothing and Food exhibit the same score

during the whole period. This means a persistent amount of spread associated with internal features.
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Figure 43: Industries ranked by spread. Comparing five years. The Y-axis shows the scores. A large
score means a large spread. Each year is represented by a different mark.

Industries like Electricity, Metallurgy, Motor Components, Wool and Leather also show a reasonable
stability. Paper and Pack, Industrial Plants and especially Machine Tools are not stable in their

homogeneity. The number of non-stable industries is not larger than in the case of size.

In short: Three industries emerge as showing a consistent behaviour. Both the spread of the
size measures and features determine a clear position in the case of Food, Clothing and Building
Materials. Industrial Plants, Paper and Packing and Leather are examples of the opposite behaviour.
And the remaining industries lie in between. An interesting finding is the time-dependence of the
spread of features for some industries and not for others.

The existence of higher order effects questions the use of linear tools for modelling accounting
relations. If the input space is capable of apportioning such effects is because they eventually carry

information needed for explaining relations.

5.4 Summary

In this chapter we explored the main sources of variability of accounting data. First we produced a
set of statements for guidance in the search for a general deflator. The use of a proxy for the common
effect can enhance the interpretability of results in statistical models. We have shown that simple
case-averages of selected items produce a significant reduction in the spread of the resulting variate.

Next we used a generalisation to more than two dimensions of principles discussed in chapters 3
and 4 for achieving dimension reduction in the input space. The outlined procedure, known as the
Hadamard rotation, isolates the common effect and re-distributes the remaining variability by a

number of factors according to simple combinatorial laws.
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Number | Industrial group 1983 1984 1985 1986 1987
1 | BUILDING MATERIALS -0.72 | -0.69 | -0.85 | -0.91 | -1.08
2 | METALLURGY 2.40 2.87 3.17 3.19 2.96
3 | PAPER AND PACKING -0.04 1.19 0.18 0.05 | -0.36
4 | CHEMICALS -0.22 | -0.17 0.08 0.24 0.31
5 | ELECTRICITY -0.54 0.27 0.19 0.48 | -0.51
6 | INDUSTRIAL PLANTS -0.49 | -0.59 | -0.51 | -0.65 0.70
7 | MACHINE TOOLS 1.85 0.34 0.64 | -0.58 | -1.21
8 | ELECTRONICS 0.10 | -0.01 0.40 0.23 0.33
9 | MOTOR COMPONENTS -1.27 | -1.24 | -1.00 | -0.65 | -0.53

10 | CLOTHING 0.09 | -0.02 | -0.48 | -0.23 | -0.44
11 | WOOL 0.33 | -0.50 | -0.43 | -0.66 | -0.48
12 | MISC. TEXTILES 0.12 | -0.22 | -1.02 | -0.69 0.44
13 | LEATHER -1.71 | -1.53 | -0.84 | -0.95 | -1.08
14 | FOOD MANUFACTURERS | -0.05 | -0.06 0.11 0.57 0.62

Table 27: Scores ranking the spread of log residuals for industrial groups.

1983 1984 1985 1986 1987

LEATHER LEATHER TEXTILES M. LEATHER MACHINE TOOLS
MOTOR COMPON. | MOTOR COMPON. MOTOR COMPON. | BUILDING MT. LEATHER
BUILDING MT. BUILDING MT. BUILDING MT. TEXTILES M. BUILDING MT.
ELECTRICITY INDUSTRIAL PL. LEATHER WOOL MOTOR COMPON.
INDUSTRIAL PL. WOOL INDUSTRIAL PL. INDUSTRIAL PL. ELECTRICITY
CHEMICALS TEXTILES M. CLOTHING MOTOR COMPON. | WOOL

FOOD MANUF. CHEMICALS WOOL MACHINE TOOLS CLOTHING
PAPER & PACK FOOD MANUF. CHEMICALS CLOTHING PAPER & PACK
CLOTHING CLOTHING FOOD MANUF. PAPER & PACK CHEMICALS
ELECTRONICS ELECTRONICS PAPER & PACK ELECTRONICS ELECTRONICS
TEXTILES M. ELECTRICITY ELECTRICITY CHEMICALS TEXTILES M.
WOOL MACHINE TOOLS ELECTRONICS ELECTRICITY FOOD MANUF.
MACHINE TOOLS PAPER & PACK MACHINE TOOLS FOOD MANUF. INDUSTRIAL PL.
METALLURGY METALLURGY METALLURGY METALLURGY METALLURGY

Table 28: Industries ranked by spread of log residuals. Below, the largest spread.

Finally we studied the importance and effect of the SEIC industrial grouping when used as an
input variable for modelling accounting relations. Our results show that industrial groups cannot
be ignored. Both the spread of size and the one of internal features of firms are dependent on the

group to which each case belongs. But in the last case the effect of grouping is not similar across

industries.

The existence of higher order effects in the space of firm’s features demands the use of algorithms
able to model them. Higher order effects can form “statistical exclusive-OR” structures which are
impossible to model with linear tools and very difficult to account for even with the conventional

non-linear ones. In the second part of this study we show how Neural Networks are able to model

higher order relations ensuring good generalisation.
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Part 11

Neural Networks and Knowledge
Acquisition in Accountancy and

Finance
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Introduction To This Part

The second part of our study is dedicated to show how Neural Networks implement the framework
developed in previous chapters.

Despite ratios being a simple and appealing way of assessing the features of the firm, when the
goal is the understanding of the statistical behaviour of accounting data it seems more reasonable to
study individual items first. This was our basic programmatic statement which proved itself fruitful.

Items are much more regular and easy to model than ratios. The observed ones were two or
three-parametric lognormal. Such a characteristic carries with it an explanation for the existence of
outliers and heteroscedasticity so often mentioned in the literature.

Items seem to reflect mainly size and deviations from size. Regarding size there is no reason
to establish a separation between the statistical behaviour of positive items and those having also
negative cases. Cross-sectional samples having negative cases should be modelled as two groups.

Given the lognormality of items and their sharing of a common source of variability it is possible to
extend the notion of financial ratio so as to account for non-proportionality between its components.
Non-proportionality is not inconsistent with proportional or multiplicative mechanisms. And it 1s
expected to affect mainly small firms.

The distribution of ratios becomes easy to understand by observing the way their components
interact. The logarithmic space allows such a direct observation. For example, some irregular be-
haviour reported in the literature and so far unexplained emerges as a consequence of the numerator
of the ratio being bounded by the denominator. This affects the long multiplicative tail of the ratio
distribution so that it is constrained to be much shorter.

Size and grouping are the two main sources of variability in accounting data. It is possible to
approach the statistical effect of size by building case-averages of several log items conveniently
selected. The industrial grouping of firms introduces higher order effects in the variability of the
data. Not only features like liquidity or profitability are different from group to group. They also

seem able to react in different directions in the presence of the same perturbation.

As a consequence: The algorithms for modelling accounting relations will need the ability to
introduce non-linearity when necessary. This stems from the existence of base-lines — which produce
a concavity in the spread of cases in log space — as well as from the higher order relations in

grouped data.
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The introduction of a non-linear modelling capacity must be achieved without damaging the
ability to generalise of the resulting model, that is, using the right assumptions and the number of
free parameters required by the problem and not more than those. The second part of this study is
thus devoted to explore the possibilities of the new algorithms known as Neural Networks since they
seem particularly apt to respond to the requirements of a powerful non-linear yet tightly controlled

modelling.

Description of this part: Chapter 6 is an introduction to Neural Networks. It contains an
historical note written so as to give the necessary perspective of the development of these tools. Tt
further explains where Neural Networks are seemingly interesting in Finance and Accountancy.

In chapter 7 Neural Networks are described as a maximum likelihood implementation of the
extended ratios devised in chapter 3. We show that the problem of choosing appropriate ratios for
statistical models can be avoided. Neural Networks seem able to improve our knowledge of a relation
by finding the appropriate ratios to model it. When using procedures consistent with the statistical
nature of accounting items the optimization process leading to the modelling of a relation can find
extended ratios adequate for representing such a relation. An internal node of a Neural Network
conveniently trained will build internal representations similar to ratios. Such representations are
self-explanatory thus improving our knowledge of the modelled relation far beyond the information
provided by the model itself.

Chapter 8 explores the possibilities of Self-Organized Neural Nets in improving ratio diagnosis
power and specificity. The first part of this chapter is a discussion of graphical tools which approach
ratios but are two-dimensional. In the second part, Self-Organized Maps are implemented as a means
of obtaining automatic diagnostics from these two-dimensional ratios. The devised tool can be used
as a pre-processor for extracting rules from databases containing accounting data. Such rules can
then be used by symbol-based expert systems along with other sources of information.

Finally, chapter 9 attempts a taxonomy of risk based on the capabilities offered by Neural Net-
works to model complex relations. A clear improvement is obtained in the understanding of the way

the market trades a particular class of assets.

The role of Neural Networks in this study: So far, expectations about Neural Networks
are related to the modelling of difficult relations (pattern recognition) or the mimicking of brain
functions.

A considerable effort has been devoted throughout this study to devise appropriate learning
and post-processing techniques for the Multi-Layer Perceptron so that it could be used just as any
other statistical modelling tool. An important result we came across is the ability these tools display,
under particular circumstances, to form self-explanatory internal representations able to increase our
knowledge of the modelled relation. We show that some specific statistical problems requiring self-

explanatory power can greatly beneficiate from the existence of internal representations meaningful
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for accountants.

Therefore, the reason for using Neural Networks here is not just the need of simple and versatile
yvet powerful tools able to deal with the complexity of the relations. It 1s also the fact that internal
representations turned out to be meaningful and an important way of acquiring knowledge from
past experience.

This is fortunate because the traditional tools for knowledge acquisition seem not to fit well
in many financial applications. The nature of accounting and financial relations, where the input
variables are continuous-valued and stochastic, makes it difficult for the usual expert systems based
on symbolic computation to deal with. Observations such as those found in stock returns, or data
organized in accounting reports, cannot be efficiently used by actual expert systems as a source of
knowledge. We expect to prove that Neural Networks can provide self-explanatory results, along

with improvements in performance.
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Chapter 6

An Introduction to Neural

Networks

This chapter intends to be an introduction to the modern statistical modelling tools known as Neural
Networks but only to the extent of their usefulness in accounting and finance research.

There are already many articles and books available on the subject. We limit this review to
the kind of Neural Networks interesting for our study. We mainly focus on tasks which cannot be
easily performed by tools based on symbolic computation. For example, the statistical modelling of
relation having continuous-valued inputs. Therefore, we omit any reference to binary-threshold nets
and those intended to mimicking the brain.

This presentation emphasizes the description of two kinds of nets we use later on in this study:
The Multi-Layer Perceptron and the Kohonen’s Map of Patterns. Incidentally, these are also the
most used Neural Networks nowadays. And they represent the two main views or branches of
Connectionism.

The contents of this chapter are neither original nor presented in an original way. We recommend,
as a complement to it, the excellent book by Pao [92] on adaptive techniques. Some formalism we
display when describing Back-Propagation owes its clarity to being inspired by this author. Finally,
since it is usual to quote the Lippmann article [80] as an introductory piece of information on Neural

Networks we obligingly do so.

6.1 Historical Notes

This section is dedicated to explaining the genesis of Neural Networks and the role they play in
knowledge acquisition. Only an understanding of their origins and prospects can lead to the forma-

tion of an opinion about the interest of these tools in Accountancy and Finance. A perspective of
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its future becomes easier when knowing its past.

The history of Neural Networks is not a common one. Known as such from the early forties, they
trod an adventurous path with periods of intense enthusiasm and almost total eclipse. The actual
development, which began in 1985, is partly the outcome of a much expected discovery.

Learning theory and the learning tools known as Neural Networks are the result of two lines of
research which began their paths very early — about the second world war — and remained closely
associated until the decade of the sixties.

The first of such lines was technical. It included mathematicians and engineers trying to build
what 1s known as the Optimum Filter. They used concepts extracted from Tele-communications:
Linear Systems, Stochastic Optimization and Information Theory. The second line was speculative
and 1ts goal was the building of artificial machines similar to the human brain. This science was

known, and still is;, as Connectionism. In the next paragraphs we follow the development of both.

The Optimum Filter and other automatic learning devices: A filter is a tool able to
separate, in a continuous flow of information, the real signal from the randomness attached to it.

The study of filters is typical of the Information and Communication sciences. However, the
problem of filtering is very general. Optimum filters are similar to automatic controllers or pre-
dictors. And the problem of building them is also similar to the problem of building a general
statistical modelling tool, able to separate pure randomness from real features of the data without
the intervention of experts. For example, what engineers call a linear filter could be described as a
linear regression in a time-series context. Past observations are used to predict future events.

Filters are optimal according to a criterion, in the same sense a regression minimizes the squared
error. But they often include other criteria, like stability, as well.

A learning or adaptive filter is the one which adapts its behaviour (its free parameters) to
changing inputs, according to one or more criteria. In the linear case 1t would be a sort of adaptive
regression able to change the slope and the intercept when the data changes.

Such a learning system will accomplish behaviour modifications without external intervention in
its operation. The number of parameters engaged in the modelling and even the amount of non-
linearity introduced, are selected in such systems just by the influence of the input and responding
to its requirements. An automatic learning system acts like a dedicated controller whose experience
of the underlying structure of the process improves as the process unfolds. Additional information
concerning its structure and features causes the controller to adapt himself to the process’s behaviour.

Such tools are valuable in many areas but especially in communications and in control. They
had their origin as solutions to problems posed by military automata. Nowadays they are also
considered as potentially interesting for knowledge acquisition and machine learning. In fact, it is
the very nature of the process which eventually emerges and becomes transparent when described by
the set of parameters used for modelling it, along with the a-priori assumptions used. The amount

of knowledge provided in this way often is more interesting than the model itself.
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Figure 44: Schematic representation of the simplest Wiener filter. An inner product of adjustable
parameters W with the past history of a time process X is used here to approach the actual event
x¢. The solid line is the output of the filter.

Early studies on Learning: In October 1941, Bell Laboratories and the Massachusets Institute
of Technology (U.S.) engaged Norbert Wiener and other researchers in an intense effort to design
automatic devices which could track a plane or a ship, compute the main features of its trajectory
and predict where it would be by the time the shell or bomb had travelled to the target area. The
conceptual basis of this research became the origin of the early automatic learning systems.
Norbert Wiener had at that date a large experience on building filters. During the 30’s he
idealized, along with Y. W. Lee, a network of circuits able to perform convolutions of incoming
signals. For a signal #(t), t being a discrete time counter, such networks would produce an output

o(t)

M
O(t) = th_i x w; ,w; being adjustable parameters.
i=1

M is known as the delay-line size. It controls the amount of memory about the past history of the
time process incorporated into the filtering (see figure 44).

With such devices Wiener and Lee were able to perform many interesting tasks like the solving of
partial difference equations. They were also able to design a linear filter of any shape (any frequency
response) just by modifying the parameters w;.

For the prediction of plane trajectories Wiener used an improved version of the same basic
networks attached to a mechanism of feedback. The position of a target was computed by the net and

compared with its real position. From here a measure of error was obtained. Then the parameters
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w; were updated so as to minimize such error. This procedure was carried out interactively. The
final result was that the trajectory of the target would be learned by the set of w;.

Such a simple mechanism, which in practice didn’t succeed, nevertheless became the basis of
modern filters and the paradigm of automatic learning for more than twenty years. Some of the

modern Neural Network learning rules are also based on it.

Further developments: In order to identify or to recognize the pattern for automatic learning,
it is necessary to build a mathematical model of the process to be learned. Kolmogoroff [74] and
Wiener [136], assumed first that the process was linear. Then, they demonstrated that the filtering
and the prediction of stochastic series were special cases of the same learning problem. Their work
could be described as the finding of a general recipe for the building of learning systems. The
significance of such work is stressed by Y. W. Lee:

Wiener’s theory of optimum linear systems is a milestone in the development of
communication theory. The problems of filtering, prediction and other similar operations
were given a unity in formulation by the introduction of the idea that they all have in
common an input and a desired output. Then, the minimization of a measure of error,
which is absent in classical theory, was carried out. The entire theory, from its inception
to the final expressions for the system function and the minimum mean-square error is

invaluable in the understanding of many problems in a new light [77].

As originally formulated, Wiener’s early methods are applicable only to linear time-invariant dynamic
processes which are to be optimized by a Least-Squares criterion. Booton [16] extended in 1952
Wiener’s work to the optimization of linear time-varying dynamic processes possessing either time-
invariant or time-varying statistics. Kasakov [68], Shen [115], and others, treated nonlinear feedback
control systems with random inputs using stochastic learning techniques.

Wiener’s latest work on this subject, Non-Linear Problems in Random Theory (1958) [137]
opened up the path for a theoretical approach to self-organizing and adaptive systems. In his
framework the complexity of the system’s repertoire of available non-linearity increases as the learn-
ing process develops so as to maximize the flow of new information about the structure of the process
thus creating an internal model of it. In a restricted sense, if some input and output functions rep-
resent the behaviour of an unknown process, the Wiener system will organize itself into a model of
this unknown mechanism, provided statistical regularities exist in the process. The basic tool for
such organization 1s, of course, the ability to abstract those regularities from the stochastic series on

which it is to operate.

Limitations of analytical learning systems: Being analytical, the Wiener solution cannot
avoid some lack of generality. Assumptions must be made about the statistical nature of the input.

If not, it would be impossible to apportion analytically the parameters between input and output.
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Only Gaussian processes and a few more classes of random processes are correctly modelled by
this method. And the modelling of the signals is made — in the later versions — using Volterra
functionals, that is, Taylor series with some limited amount of memory of past events [131].

When a system becomes optimal only given the restriction that it must belong to a specified
class, the kind of information that such a system can identify and use is also restricted. A linear
system, for instance, can produce a significant improvement in mean-square error reduction, only if
the spectral densities of the signal and the randomness attached to it are different, since it cannot use
any other information. Therefore, an optimum linear system, in the Wiener’s sense, is no better than
an optimum attenuator. Higher order modelling requires non-linear systems because dissimilarities
in the characteristics of stochastic series, which the linear system would ignore, can now be used to
reduce mean-square errors.

Although no analytic general solution exists for the general learning model some broad cases have
been explored. In the U.K. Denis Gabor built in 1960 his Unwersal Non-Linear Filter, Predictor
and Simulator which Optimizes Iiself by a Learning Process [46]. It was an application of Wiener’s
later work. In the U.S., Shen and Rosenberg [114] used the same principles.

Many military and tele-communication applications of these early attempts followed. They were
analytical-based dedicated automata to be used whenever computational speed was required. These
“Wiener-Volterra Systems” are not very flexible nor very good in generalisation for, after all, they
use polynomials to approach the data. But being analytical they avoid problems of convergence and
are easily built into very fast hardware. A good review of such systems can be found in Schetzen’s
book [108].

Neural Networks seek the same goal. But they are not based on analytical optimization. Stochas-
tic search techniques are used instead to discover in the parametric space a point obeying a desired

condition. They generalise better but their learning process is much slower.

Brain Mimics: It is bizarre that a practical application of Wiener’s aspirations was at length
provided, not by any mathematical analysis, but by a few neurophysiologists trying to build models
of some brain functions like reasoning and recognition.

Artificial neural models emerged forty years ago as a broad mimic of the real neural structure
of the brain. The paradigm of Connectionism’s early work is the Hebb’s Rule. Strongly influenced
by Behaviourism and other theories accepted at that time, Donald Hebb wrote in 1948 a book, The
Organization of Behaviour [56], proposing a plausible mechanism by which learning could take place
in the brain. The Hebb’s Rule simply states that whenever two neurons are excited at the same time
the connection between them strengthens. Many Neural Network learning rules had their origin in
this mechanism or in variations of it. However, the strong theoretical basis of connectionism has
been provided by mathematicians rather than by Psychologists.

Like Wiener, Dr. Warren McCulloch was a mathematician interested in practical problems. He

first met Wiener in 1942 and their collaboration lasted for a few years. McCulloch was mainly
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interested in the organization of the cortex of the brain. Working with him was Walter Pitts, a
student of logic and biophysics. In 1943 Pitts moved to the M.I.T. for reading with Wiener. They
worked together on pattern recognition until 1948.

Wiener’s ideas on filtering and automatic learning must have inspired the first paper McCulloch
and Pitts published. Tt was A logical Caleulus of Ideas Immanent in Nervous Activity (1943) [84],
formalizing the intrinsic structure of the neural process leaving aside its biochemistry. The calculus
was very revealing. Using only concepts like the firing of neurons, excitatory and inhibitory con-
nections, synaptic delays, all-or-none processes, it was possible to show that the specifically biologic
aspects of the nervous system are irrelevant to the understanding of perception. But the most im-
portant aspect of this work is the parallelism it establishes between the Turing Machine and the

brain.

The concepts of Turing’s Machine is significant, not only from the purely analytical
standpoint of mathematical logic, but even from the standpoint of the neurophysiological

understanding of the human mind ([85] page 35).

A consequence is that the mind can compute all and only those numbers a Turing Machine does.
After this, McCulloch and Pitts turned their attention to the problem of the recognition of

patterns. Wiener describes it as an interrogation:

What is the mechanism by which we recognize a square as a square, irrespective of

its position, its size, its orientation? ([138] page 18).

In 1947 they offered a theoretical description of the neurophysiological mechanisms for pattern
recognition in the brain, in their paper How We Know Universals [94]. They suggested mechanisms
similar to those of modern neural nets for explaining the ability of the brain to recognize. This
paper strongly influenced Wiener’s thoughts on Learning and Control, being an important point of

view for the work he was about to undertake.

The second generation of connectionists: In the 50’s the dominant research in Neural Net-
works was led by Frank Rosenblatt at Cornell, U.S. Based on the theoretical developments of Mc-
Culloch, he built a class of networks called Perceptrons supposed to be able to learn to recognize
physical objects by looking at them.

In 1959 Bernard Widrow [135] developed at Stanford, U.S., an adaptive linear filter called Adeline
based on neuron-like elements. The Adeline and its more sophisticated successors were used for a
variety of applications including the recognition of speech and characters, weather forecasting and
adaptive filtering. The Adeline was also the first Neural Network to be used in a practical real-world
application, the automatic elimination of echoes in phone lines. With Widrow the two branches

described above made a mutual recognition: Engineers became interested in Neural Networks.
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Figure 45: The statistical version of the logical exclusive—-OR, problem used by Minsky and Papert
to discard the early Perceptron. No linear frontier in the space of x1 and x5 can separate the two
groups A and B in spite of their clear separability.

In the sixties the results of using Neural Networks were promising enough to attract general
attention. Particularly, Rosenblatt’s “Perceptron” (1961, see [103]), generated real enthusiasm in

the scientific community for a few years.

The emergence of Symbolic Computation: Such an enthusiasm lasted for a short period. In
1969 Minsky and Papert published Perceptrons [89] showing that Rosenblatt’s two-layer Perceptron,
being linear, would not recognize patterns involving interactive or higher order effects like those
which occur in parity-detection (the logical “exclusive-OR” see figure 45). In order to correctly
classify patterns using non-linear boundaries, Minsky and Papert showed that Perceptrons would
need more than two layers of neurons and the introduction of non-linear transfer functions. At that
time no one knew how to achieve a general learning rule able to adapt the connections between
internal neurons.

After that, interest in neuro-models languished. The attention of the research concerned with
Learning was directed towards the emerging tools provided by Artificial Intelligence. For twenty
years Connectionism was confined to a few laboratories, mainly concerned with the brain itself:
James Anderson, at Brown University, U.S., revived the Hebbian principle in his Linear Associator.
Teivo Kohonen, in Helsinky, also envisaged a modified Hebbian principle known as Competitive
Learning, for creating self-organizing maps of patterns.

During the seventies and early eighties the dominance of symbolic methods was overwhelming.
Machine Learning and Knowledge Acquisition became synonymous with Symbolic Computation.
The emergence of the Computer Sciences as an independent branch, the fast progress in the speed
of conventional machines, the existence of generous funding, all this turned the attention of the
scientific community concerned with these subjects towards tools based on Discrete Mathematics.

Research programs based on analogue tools were discontinued and most of the earlier contributions
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for effective machine learning were forgotten. Machine Learning went exclusively symbolic.

The result was a delay in the course of the development of these subjects. And at length, a
muddling of concepts and techniques. For example, some researchers tried seriously to use discrete,
hierarchical, learning methods like Quinlan’s D3 as an alternative to simple linear regressions in
straightforward problems involving the prediction of continuous-valued variables [88], [98]. These
authors clearly put the finding of hierarchical rules ahead of any other considerations.

Today, the research tends to consider rule trees as a very attractive way of expressing acquired
knowledge. But only when the model they express is correct. In [12] we further explore this subject.

Another result of these years was the narrowing of views and goals inside the small connectionist
community. Connectionists became strictly concerned with the mimic of brain functions as a goal,
frequently denying the idea that such mimic could be used also as a source of inspiration for the
building of useful learning algorithms. A typical example is Stephen Grossberg. He devised an
Adaptive Resonance Theory leading to self-organized memories with local characteristics. It is a
plausible mechanism for the brain with small practical applicability.

Even nowadays, the followers of Connectionism will discard any model for learning if it is not
plausible enough as a replica of the brain. One of the most demolishing things anyone can say about
a new Neural Network is that it is not enough brain-like. As a consequence, many recent algorithms

are local, self-organized and altogether with little interest for this study.

The return of Neural Networks: The M.I.'T. was one of the few places were the interest in
analogue learning never vanished. In 1978 John Hopfield initiated a collaboration with its Centre
for Biologic Information Processing. As a result, he presented in 1982 a paper to the Academy of
Sciences of the U.S. about a new neural model. It was the first paper on connectionism accepted in
this body since the 60’s.

Hopfield’s model [60] introduced a conceptual basis for neural learning in terms of energy. It also
established a parallelism with Ising models (Spin Glass Physics). Hopfield’s net uses fully intercon-
nected neurons that seek a minimum of energy. A few years later, Geoffrey Hinton in Toronto and
Terrence Sejnowski in the John Hopkins University, U.S., developed a modified version of the Hop-
field net they named The Boltzmann Machine [59], able to escape from local minima during learning
and with the remarkable quality of being trainable even when having hidden layers. Hopfield’s net
and the Boltzmann Machine considerably revived the interest of the scientific community on Neural
models.

The breakthrough came in 1985 when David Rumelhart, a professor of psychology at Stanford,
U.S., and James McClelland, psychologist at Carnegie-Mellon, along with other members of The
Parallel Distributed Processing Group (known as PDP) devised a learning scheme that would allow
multi-layered Perceptrons to feed back deviations from correct response to more than one layer
of neurons. Their scheme became known as The Back-Propagation Algorithm [106]. It allows the

training of all nodes inside a Multi-Layer Perceptron (MLP), even the internal ones.
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Much interesting research followed. For example, the link between Back-Propagation and the
continuous-valued version of the Hopfield paradigm was established shortly afterwards by Luis B.
Almeida at INESC, Lisbon [2]. Almeida generalised Back-Propagation so as to make possible the
learning in nets with any topology. The original MLP were limited by a feed-forward topology in
which the information flows only in one direction — from the input to the output layer.

This Recurrent back-Propagation is especially adequate for tasks requiring some amount of mem-
ory of past events like systems identification, the reconstruction of missing cases and the simulation
of dynamic systems.

As predicted by the early research, the MLP turned out to be a very powerful and versatile
modelling tool, able to solve Minsky and Papert’s exclusive-OR problem and many other complicated
ones. The MLP is, in practice, a general learning tool as Wiener foresaw it. This fact, interesting
as 1t 1s, induced a sudden and somehow non-proportional enthusiasm and renewed the interest in
models based on Connectionism.

Indeed, one of the reasons for such a renewal of interest in Neural Networks was the realization
that Symbolic Computation, when tackling even the simplest problems involving pattern recognition,
was severely limited. The task of recognizing “a square as a square irrespective of its position” turned
out to be very hard for tools based on logic, rules, hierarchical structures or other concepts typical of
Artificial Intelligence. Typical problems of this kind, like the recognition of voice and handwritten

information, received a second chance of improving by using Neural Network techniques instead.

Neural Networks today: Nowadays, Neural Networks are being used for finding solutions for
difficult problems of pattern recognition and in military applications. Sejnowski’s NETtalk System
[110] is often mentioned as a reference point for assessing what Neural Networks can do in these
fields. This program converts text to speech and, connected to a speech synthesiser, it pronounces
typewritten words. It learns from examples of text together with its spoken form. Over ten hours
of such training it progresses from a formless babble to intelligible English.

It is clear that, again, there is no correspondence between the real possibilities offered by Neural
Networks and some extravagant expectations about them. The same strong motivations which led to
non-realistic views about Artificial Intelligence are now working in the direction of Neural Network

research:

The reason why the US AT community (academic as well as commercial) has taken up
the neural-net model so enthusiastically is quite straightforward. It is primarily because
the Department of Defense has decided that neural-net computing is a high-priority
strategic technology. As an example, the UCLA (University of California, Los Angeles)
Al lab has recently started ten new projects concerned with neural networks while seven
symbolic Al projects are due to be terminated shortly. This switch did not come from

inside the university. It happened as a result of strong prompting from DARPA and
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Figure 46: A neuron or node, the basic element of Neural Networks. It implements an inner
product, X - W, of an input vector, X, with another one of adjustable parameters W.

other funding bodies ([43], page 12).

Of course, the state of things in the U.S. doesn’t have to extrapolate to other countries. Anyway,
when assessing the possibilities offered by Neural Networks it seems important to have a clear idea
about their applicability, strong and weak points and clear shortcomings.

The most quoted of these shortcomings is the non-ability of Neural Nets to produce interpretable
and exportable models like those based on rules and structures. We think that knowledge doesn’t
have to be interpretable in all cases. The most complicated pieces of knowledge couldn’t possibly
be translated into simple structures.

In this study we show two examples of the use of Neural Networks in knowledge acquisition.
Both are related to accounting and financial research. In the first one, the resulting model is simple
and its structure is interpretable. Such an interpretability makes it attractive. But it 1s interpretable
because it is simple. In the second one, the obtained model is complex and it cannot be decoded. But

this is not a shortcoming since the model is important by itself, not because of its interpretability.

6.2 The Structure of Neural Networks

“Neural Network” is the the name of several modelling heuristics, having in common a topology
inspired by the way neurons are organized in the brain and the use of non-analytical algorithms.
If a sample containing input and related outcome variables represent an unknown relation, a
Neural Network will model this relation by successive approximations using interactive algorithms.
Such process is known as learning or training of the net.
Topologically, Neural Networks are lattice structures of simple computational elements called
neurons or nodes connected in a specific way. The connections between neurons (known as weights)

can be strengthen or weakened during the training process, by means of iterative heuristics, causing
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Figure 47: A simple Neural Network containing an input layer, a hidden layer of neurons and a
unique output neuron.

the net, as a whole, to become a model of the data.

A typical neuron sums M weighted inputs. Then, the result will be the input for several other
neurons or nodes. That is, input variables labeled x1, - - -, z3s are applied through a set of associated
weights, wy, - - -, wyy, to the neuron. The weighted sum of the inputs, s = Zf‘il w; X x;, 18 the output
of the neuron. This output will then be used as input for several other nodes, and so on.

Figure 46 on page 149 shows the simplest artificial neuron or node.

Several nodes form a layer. There, all M inputs are fully connected to the N nodes, that is; a
weight w;; exists, linking each input z;,7 = 1, M with each node j,j = 1, N. In this layer outputs
of nodes are s; = Zf‘il Wij X .

Layers can be combined into a network (figure 47). Nets formed by cascading two or more layers
of nodes so that the outputs from one layer become inputs to the next one, are similar to those
built by Widrow in the sixties [135]. They are limited in their applications because no non-linearity
is introduced during training. It can be proved that these nets are equivalent to a simple linear
Least-Squares algorithm.

Modern nets use non-linear functions associated with each node. These non-linearities are known

as activation or transfer functions.

Neural Network classification: Neural Networks can be completely specified by three charac-

teristics:

e The topology of the net: The number and position of the nodes and the way connections

between nodes are allowed.

e The node’s transfer function: The non-linear operation each node performs on its output before

delivering it to other nodes.
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e Learning rules: The particular algorithms used for training the net through a steady adaptation

of its weights.
According to their topology, Neural Networks often belong to one of these families:

e Only feed-forward connections: The nodes are organized in layers and each neuron in one layer

will connect only with next layer’s nodes. The Perceptron belongs to this group.

e Intensive wiring: Each node’s output is connected with all the other nodes’s inputs. An

example is the Hopfield net.

According to the transfer functions, there are two main kinds of Neural Networks: Continuous non-
linearity, for analog processing; and hard-limiter threshold, for digital processing. The Multi-Layer
Perceptron uses continuous non-linearity. The early Hopfield nets used hard-limiter thresholds.

Finally, according to their training rules, Neural Networks can be

e Supervised — There is a learning process in its strict sense, as in the Perceptron and Hopfield
nets: Each learning case consists of a vector of inputs and a corresponding vector of desired

outcomes.

e Unsupervised or self-organized, as in the Kohonen map of patterns [72] [73]: The learning
process does not require explicit supervision: The net organizes itself according only to the

inputs.

6.3 The Multi-Layer Perceptron

The Multi-Layer Perceptron, widely known as the MLP, is a supervised learning Neural Network.
Topologically it 1s a layered feed-forward configuration: Nodes are arranged in layers and each node’s
output is connected to next layer’s inputs. No intra-layer connections exist, nor any feedback paths
from an output to earlier layers. Figure 48 on page 152 represents a three-layer Perceptron with
only one output node.

The back-propagation of errors by means of an iterative gradient-descend algorithm allows train-
ing by minimization of the mean-squares differences encountered between the actual and desired
output.

In the Multi-Layer Perceptron the output of any, j** node is not just a simple weighted sum of
inputs. After the summation s; = >~ w;; x #; the result is submitted to some continuous differentiable
non-linearity f(s;) becoming o; = f(3 ws; x ;).

It is common to use sigmoid-like functions as f(s). In this case the output of the j* node

would be:

1
_(Sjg;i— 9]’)]

05 =
1—|—exp[
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Figure 48: The Multi-Layer feed-forward Neural Network known as the MLP. In this case there is a
layer of inputs, one hidden layer, and one unique output node.

Figure 49 on page 156 displays one of such functions.

The parameter #; acts as a threshold or bias. The effect of a positive 8; is to shift the sigmoid
to the left along the horizontal axis. 8y modifies the steepness of the slope in the sigmoid. Large
6o produce smooth thresholds. Conversely, small 8y produce sharp thresholds which can be almost
like the hard-limiter ones. These non-linearities are known as transfer or activation functions. In

the same line, 1/ is known as the gain.

Mean-Squares error: We now consider the last layer of nodes as the k'”. The layer immediately
before this one is the j** and the one before that is the it”.

When learning, the net is shown a vector of inputs, X,, from the pt? example. Then, the
algorithm adjusts the set of weights and the thresholds in each node in a way that makes the
effective output of the net, o,;, as close to the desired outcome, t,, as possible. Once this small
adjustment has been accomplished we show another input vector and the corresponding outcome and
ask that the net learns this new association as well. At length, we are making the net find a single
set of weights and biases that will satisfy all the input-outcome pairs present in our learning set.

In general, the final resulting outputs 0,5 will not succeed in approaching ¢, exactly. For the pth
example, the squared error 1s

Ep = %Z(tp _Opk)z (15)
k

and the average total error will be

1 2
E= rw L) (16)

in which the 1/2 scale is introduced for facilitating the algebra at a later stage and N is the number

of examples in the learning set.
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6.3.1 The Delta Rule: The Last Layer’s Nodes

The Delta Rule is a stochastic version of the steepest-descent iterative optimization algorithm. It
has been used in the early Perceptrons and it applies strictly to the learning process taking place in
the last layer of the MLP. Since it cannot cope with a topology involving hidden nodes, the learning
of these 1s accomplished using a generalised version of this technique. First we shall introduce the
Delta rule by applying it to nodes in the k** layer, the last one.

Starting with an arbitrary set of W values, every example in the learning set will be considered
in a random order and its output calculated. Then, the difference between this output and the
corresponding outcome will be used to correct every parameter in W by a small amount. The pro-
cedure will be repeated for all examples in the learning set again and again, until a minimum square
difference exists between outputs and outcomes. In general, different results emerge depending on
whether the gradient search is made on the basis of £}, or E. A true gradient search should be based
on minimizing the expression 16. In practice, this is seldom the procedure adapted.

Convergence is achieved by improving the values of W. This is done by taking incremental

changes Awy; proportional to —0E/Owy;. That is, given a small 7,

or
3wkj

Awkj =X

Since the error F can be expressed in terms of the outputs o; and these outputs are a non-linear

function f(s;) we can use the chain rule to evaluate the above partial derivative:

8E . 8_E % 88k
3wkj o 65k 3wkj

Notice that

38k 3
= — E Wgj X 05
J

3wkj 3wkj

We now define
OF

" Osy,

as the rate of change of the error with respect to s;. So, we can write

8 =

Awkj:UX(stOj

This expression contains the rule for updating the weights linked with the last layer of nodes. It is
known as the Delta Rule. 7 is an arbitrary increment. It is a small value selected so as to ensure a
smooth, yet fast, learning.

To compute dy = —9E/Jsi we use again the chain rule and obtain two terms:

8E . 8E 80k

b=t = x 2
k 38k 80k % 65k

153



The first term expresses the rate of change of the error with respect to the output o and the second
one expresses the rate of change of the output of any node in the last layer with respect to its input.

These two terms are easily obtained. From 15,

oOF

Tor —(te = ox)

The second partial derivative depends solely on the transfer function we are using:
80k
5a, ~ 1)
Hence, whenever we accept a Least-Squares success criterion, the deviations tg — o from the desired
outcome can be viewed as the rate of change of the error with respect to the node’s output. Notice

that when the criterion i1s a different one this relation has to be re-written.

For any node in the last layer we can write
(Sk = (tk — Ok) X f/(Sk) (17)

hence
Awkj =nX (tk — Ok) X f/(Sk) X 0j (18)

The original Perceptron of Rosenblatt, having only one layer of nodes, would learn to optimize an
internal model of the data with steady improvements, Awy;, of the weights wy; by means of the

described algorithm. Adaptive filters and some versions of the Adeline also use this learning scheme.

6.3.2 The Generalised Delta Rule

The general solution of the non-linear modelling problem came with the use of internal layers of
nodes acting as intermediate maps able to apportion as much piece-wise non-linearity as needed for
modelling the relation.

In the modern version of the Perceptron, the MLP, several layers of nodes are matched in cascade
so that the output of a previous one is the input for the next. Theoretically, such a device is able to
form any continuous smooth map if enough number of internal nodes are provided.

Of course, in this new situation the problem is to discover a suitable way for optimal parameter
finding. The Delta Rule described above cannot be used in the learning of relations by more than
one layer of nodes.

As mentioned, the solution for this problem has been recently provided by neuro-biologists [106].
The method 1s a generalisation of the Delta Rule already introduced, known as Back-Propagation.

When weights are not directly linked with output nodes we still write

or
3wji

Awkj =-—-nX
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and proceeding with the same formalism, based on the chain rule, we would have:

Awkj = —MNX_—X

I
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an expression formally similar to equation 18. However, in the case of hidden units we cannot

evaluate 0EF /0o; directly. But we can write it in terms of known values obtained from the last layer:

08 _ 50 on

_8_0j
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= E (5k><wkj
k

Therefore we can write in the case of hidden nodes:
(Sj = f/(Sj) X Zék X W4
k

That is, the rates of change of the error with each node’s s can be computed from the previous
node’s §. Previous in the sense that they are closer to the output. The basic mechanism of Back-
Propagation consists in making it possible to evaluate all the § throughout the net just by beginning
to evaluate them for the last layer and then proceeding backwards.

Therefore, the Back-Propagation algorithm evaluates firstly the d; using expression 17 and “prop-
agate” these errors backwards along the net.

Notice that, when the adapted f(s) are sigmoid, hyperbolic tangents or similar logistic functions,

then f/(s) assumes a very simple formalism. For example, in the case of the sigmoid,

. 1 do;
since o; = then %9 — 0; X (1 —o05)

1+exp [ (32, wji X 0; + 0;)] s

and the § are given by these or similarly simple expressions:
(Sk = (tk — Ok) X 0 X (1 —Ok) and (Sj =0; X (1 - Oj) X Zék X Wgj (19)
k

for nodes in the output layer and for nodes in the hidden layers respectively.
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Figure 49: A sigmoid-like function can be used as activation or transfer function in the nodes of an
MLP. f(s) is the solid line and its derivative, f/(s), is the dashed line. In this case, f is a tailored
so as to span the interval from -0.5 to +0.5.

The Back-Propagation step-by-step: For implementing Back-Propagation a step-by-step pro-
cedure is required. Firstly, an example is selected at random. Using it as input, the output of the
MLP is calculated. Next, the Awy; are also calculated and the weights linking with the last layer
are corrected. Using these corrected weights and the g it is now possible to calculate the Aw;y;,
that is, the correction to affect the weights linking to the layer before the last one. This scheme
proceeds backwards until all the weights in the net received their first correction.

The whole procedure described above is now repeated for every example in the learning set and
for as many “presentations” of the whole set as necessary to bring the overall error to a minimum.
In successful learning, the net’s error decreases with the number of presentations and it will finally
converge to a stable set of weights.

Notice that the described procedure is not a real gradient-descent algorithm since the weights
are corrected by evaluating the errors E, associated with each example (formula 15), not the overall
error I/ of the sample (formula 16). Such a procedure could be described as a stochastic gradient
descent. And, in general, it is more effective than the classic algorithm. For small values of 7 the
difference between the stochastic and the classic versions of the gradient-descent procedure vanish.

The increments 7 must be selected carefully. Too small 1 make the learning very slow and
vulnerable to local minima. Too large 7 produce oscillations of the overall error.

The most appropriate thresholds are learned by the algorithm just as any other parameter. The
@; can be viewed as the weights linking a constant input of 1 with the node. The use of hyperbolic
tangents instead of the logistic form has no particular relevance except in the last layer. Sigmoids

in the output layer constrain outputs to span the interval {0, 1} while hyperbolic tangents constrain
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Figure 50: In the MLP the progress on learning is gradual. A given success criterion will improve
steadily after each presentation of the entire training set (epoch).

outputs to the interval {—1,4+1}. But, of course, a simple manipulation can produce any desired

interval. Qutput intervals must be selected in accordance with the outcomes.

The problem of local minima: Finally, the Generalised Delta Rule requires that the initial
values of the weights are set to values different from one another. It is usual to set them to small
random values. If the weights were all similar the net would be in a state known as “local minimum”
and the learning wouldn’t take place. Several runs of the training set will generally produce a
minimization of E although nothing will prevent this heuristic from reaching other local minima
instead of the overall solution (see Rumelhart’s original paper for a discussion on this issue). In
practice, the use of advanced techniques — like having one individual 7 for each weight, a topic we

outline in chapter 7 — can greatly lighten the problem of local minima.

6.3.3 Generalisation in the Multi-Layer Perceptron

The overall rules governing the generalisation ability in any statistical model also apply to the MLP.
For instance, if the number of nodes (and therefore, connections) is large when compared with the
variability to be modelled, the MLP behaves just like a checking list (a storage device) or a saturated
model. No generalisation can be expected. An opposite situation, very few nodes when compared
with the variability to be modelled, would make the MLP recognize only broad families of features,
without detail.
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Using an internal layer with a variable number of nodes it is possible to control the basic infor-
mation flow used in classification: Many nodes will produce great detail or even no generalisation

at all; less nodes will improve generalisation.

Nodes tend to individuality: However, the MLP often exhibits a remarkable behaviour which
greatly improves the generalisation beyond that expected for a given number of free parameters.

Any change in a weight’s value is proportional to do/ds. Hence, the changes are maximal for
values of s impinging upon the central zone of the transfer function, the one having the largest slope.
Figure 49 on page 156 illustrates this fact. It shows the shape of a sigmoid-like function and its
derivative. Since changes in a weight’s value are proportional to the magnitude of this derivative it
turns out that mid-range values introduce large changes in the weights while extreme values make
the net change little.

When the s are mostly in the mid-range of their transfer functions, the node under question is
not yet trained or committed. It can turn up or down. Under these conditions the weights change
rapidly. On the contrary, a committed node changes their weights little since the derivative is small.

The described feature is interesting since it shows that, inside a given topology and by the
influence of a learning set, nodes tend to acquire a stable state and remain there. Hence, it is
expected that each node on a fortunate model will capture important features of the relation. The
literature refers several of such cases. In terms of knowledge acquisition this quality is valuable.

In chapter 7 we explore the ability an MLP seems to exhibit to relate features with particular
nodes. Each node seems able to learn or capture a particular characteristic of the firm in a way

somehow similar to the procedures typical in ratio analysis.

Resonance: When the minimum number of nodes in any hidden layer matches the number of
features important for the relation to be learned, the likelihood of each one of those nodes becoming
a model of a different feature of such relation is larger. When that happens, the MLP performs
an effective features extraction. As a consequence, the generalisation capacity receives a further
improvement.

Some applications take advantage of the trend towards individuality the nodes in the MLP
exhibit, to find the important features of a set of examples. Using a topology known as the Bottle-
Neck MLP, the same set of examples are presented both as input and as outcome. This technique
is similar to Factor Analysis. But when more than one hidden layer is used, also non-linear features

are extracted.

6.3.4 Discrete Versus Continuous-Valued Outcomes

The MLP performs both non-linear multi-variate regression and non-linear discriminant analysis.

In the first case it is called upon for approaching a continuous-valued outcome. In the second one,
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outcomes are discrete states. The correct classification of classes in the statistical exclusive-OR

problem is an example of the second kind of task.

The MLP as a classifier: In classification, the number of nodes and layers to be used is generally
critical. Following Lippmann [80] any one-hidden-layer MLP should be able to form arbitrarily
complex frontiers in input space so as to obtain the best possible separation between groups.

Each first-hidden-layer node creates a hyper-plane in the input space since its input is a linear
combination of input variables. In the next layer of nodes, several of these hyper-planes can be used
to define a region enclosing a particular group of examples relating to one of the given outcomes.
That is, in an MLP undertaking a classification, the first hidden layer needs to have as many nodes
as pieces to build the frontiers for separating groups. And the last layer needs to have as many
nodes as different groups (see figure 52 on page 164).

Of course, when inputs and outcomes are only statistically related, that is, when similar input
vectors in the learning set relate to different states, the final error of the net, after convergence,
cannot be zero. The above reasoning holds, but now we should envisage probability gradients
instead of well-defined, deterministic, frontiers.

For such applications the described minimum Least-Squares criterion should be replaced by a
more appropriate one. For example, likelihood maximization i1s often used in classification instead
of minimum Least-Squares. In this case, the model selected would be the one which maximizes the
probability of having obtained those samples which were actually used as the learning set. And
when the number of nodes in the last layer matches the number of groups to be classified, it can be
shown that an appropriate coding makes the MLP output directly the probability of obtaining such

an outcome given such inputs. Solla et al. [120] contains the appropriate formalism.

The MLP performing non-linear regression: When outcomes are continuous-valued, no trans-
fer function should be used in the last layer of nodes since it would limit the range outputs can attain.
It is also important to bear in mind that the amount of non-linearity introduced is controlled by the
total number of nodes having transfer functions regardless of its position. An exaggerated number
of nodes will produce a too detailed — and hence very sample-dependent — model. Figure 51 shows
the effect, in a very simple case (one unique input and output) of introducing nodes.

In the case of continuous-valued outcomes the appropriate success criterion is the minimization
of the Least-Squares error. To control the learning process it 1s common practice to use the overall

R?, that is, the proportion of the variability of the targets explained by the model.

6.3.5 The Delay-Line MLP

An important consequence of the Wiener-Volterra analysis is that, under very general circumstances,

it is possible to model the internal behaviour of any system just by using two feed-forward steps.
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One linear step incorporating a certain amount of memory of past events, followed by a simple
non-linear map (see [108]).

This result is equivalent to say that we can mimic complex mechanisms like systems of non-linear
differential equations or a chaotic attractor just by pulling together a linear filter and a non-linear
function.

Lapedes and Farber [75] used this principle to show that an MLP was suitable for performing
systems identification, time-series prediction and similar tasks. They simply used the input vector
as a delay-line (see figure 44). Hence, the first hidden layer acts like a Wiener filter. Subsequent
layers introduce the required amount of non-linearity.

When used in this fashion, an MLP becomes a very effective predicting tool. Its generalisation
capacity, flexibility and ease of use makes it substantially more attractive than the equivalent ana-
lytical procedures. Especially in the prediction of time-series apparently complicated but with an
underlying dynamic mechanism, the use of these delay-line MLP often mean a decisive improvement.

We used delay-line MLP to identify the underlying system governing a few random number
generators. The resulting topology was very simple. We also tested their use in the modelling of
first-difference chaotic series observing good predicting performances.

Notice that most of the tasks referred to here could be more elegantly performed using recurrent
algorithms instead of delay-lines. Recurrent nets engage a smaller number of weights than delay-line
nets. Therefore they achieve a better generalisation and require smaller learning sets. Their learning
is also faster.

Recurrent nets can also cope with missing values in the learning set. In the presence of a missing
value, they provide the most likely value in the context. This feature is typical of Hopfield nets and
is known, in its more general form as “Associative Recall”.

Recurrence, however, requires an advanced practice and is not adequate as an introduction to

Neural Networks. Almeida [2] contains this formulation.

6.4 Self-Organized Neural Maps of Patterns

Contrasting with Multi-Layer Perceptrons, the self-organized maps of patterns, developed by Teivo
Kohonen during the late 70°s [72] [73], don’t require explicit supervision for the learning to take place.
Each example of the learning set contains just a vector of inputs instead of the input-outcome pair
used by the MLP. Therefore, Kohonen nets don’t learn any relation. They self-organize themselves
according to the main features of the inputs.

These class of heuristics are a good example of strict Connectionist reasoning, inclined to non-
supervised learning schemes and strongly inspired by the brain. They became popular as a simple
mapping procedure in tasks related to the recognition of the human voice.

We shall use Kohonen nets in chapter 8 for mapping two-dimensional scatters suited for financial
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diagnosis. The final result is a set of rules able to diagnose the state of financial features of firms

given its accounting numbers.

Topology: In its most basic form, the net consists of a K-dimensional lattice of nodes able to
map the density distribution of the data to which it 1s exposed. Hence, the task undertaken by a
self-Organized Map is the one of establishing a relation between a set of a large number of points,
the “patterns” and another set of a much smaller number of points, the nodes.

All the nodes are supplied with the same input vector x1, s, ..., 23 = X. Each element contains
its own set of adjustable weights: For the j* node, a weight vector Wi1, Wya, . .., wip will link to
a corresponding input variable. Each node’s output is a function of both the input vector and the

weights: 0; = f(X, W). For example, two frequently used outputs would be

M M
. 2 . .
0 = E x; X wj;, an inner product, or o; = E (z; — wj;)” an Euclidean distance.
i=1 i=1

It is a requirement that these functions will yield a measure of the distance or similarity between W
and X.

Non-supervised learning: The training of the self-organized map is known as non-supervised
since the examples only contain input vectors, not outcomes. It takes place as follows: A learning

set 1s supplied to all the nodes. When a new vector is shown to the net,

1. The node with the largest output is found. It will be the one with greater similarity between
X and W.

2. A neighbourhood is defined around this node.

3. The weights of all nodes in such neighbourhood are updated or “rewarded” in a way that
makes them more similar to the example they identified. That is, the new value of a weight,

wy;, linking the input ¢ with the node j will be calculated as

t+1

Wi = w;’i + 0 x (2 — wﬁz)

in which ¢ and ¢ + 1 denote a sequence and 7 is a small increment. The nodes not in this

neighbourhood receive no rewarding.

The procedure is repeated for all patterns in the learning set and then again and again. At length,
specific nodes become “excited” by particular patterns. And the topological relationship between
patterns is, after learning, mirrored by the spatial relationship of the nodes excited by those patterns.

Patterns are presented to a self-organized map in random order. After training, the value of
each node’s weight vector is usually plotted back into the pattern space with lines linking the nodes
which are adjacent in the lattice as in figure 70 on page 207. The final result is thus a mapping of

the many patterns onto the few nodes. Hence, each node “covers” a neighbourhood.
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Specific tasks: Clearly, the learning scheme displayed above is a variation of the Hebb’s Rule.
Kohonen’s maps owe more to Connectionism than the MLP. In the last one, the learning scheme is
inspired in engineering practice rather than in the brain.

Self-organized maps are adequate to perform tasks such as:
e Dimension reduction: Find an f such f : RY — IRM, (N > M), having some optimal quality.

e Intrinsic dimension assessment: Find the smallest M < N for which an f exists such f : RY —

RM having some optimal quality.
e Mapping as pre-processing for further MLP classification.
e Tracing dynamic features (like trajectories).

A valuable feature of Kohonen’s maps is that i1t is unlikely to obtain an ordered map when using
nodes forming a lattice of smaller dimension than the intrinsic dimensionality of the training set. For
example, if a two-dimension lattice of nodes 1s used to map a really three-dimensional phenomena,
the weight vectors will fold in waves, attempting to fully cover the 3-D space. In this case, no
real relation exists between inputs and the density function. Therefore, folding can be used as a
diagnostic for tracing an over-reduced dimension reduction attempt. Procedures are available to
discover folding in more than 3-D maps.

Once an intrinsic dimension has been recognized and a map produced, an MLP can be used to
classify each shape according to features. This procedure would be the connectionist equivalent to
Factor Analysis prior to Discriminant Analysis.

Finally, if input vectors are successive events, self-organized maps will draw a trajectory, should
the variables bear any kind of joint trend (cross-correlations not zero). Several different trends can

be identified by its trajectories.

6.5 Neural Networks and Financial Modelling

This section compares Neural Network prospects in financial analysis with classical methods, showing
how some limiting assumptions of the later can be avoided.

This section is not intended to describe what is contained in the second part of this study. Rather,
it mostly describes what we couldn’t do but we would like to, should enough time and appropriate
data were available. On the whole, the examples explored in this study illustrate important and
promising capabilities of Neural Networks in accounting and finance research.

Neural Networks are not a key to all kinds of data-analytical problems. They offer some specific
advantages and they have their own drawbacks. This section mainly focus on those fields in which

we think their use is advantageous.
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Figure 52: Classification boundaries and number of nodes in the Multi-Layer Perceptron for two
inputs. Adapted from Lippmann, R. 1987. An introduction to computing with neural nets, /IEEE
ASSP Magazine, vol. 4.

Classification: The most obvious application of the MLP is in classification. Discriminant Analy-
sis can establish linear or quadratic boundaries between groups. This seems enough in the majority
of current problems. A Multi-Layer Perceptron will draw boundaries of any shape (see figure 52 on
page 164). Thus it is able to cope with complex relations involving higher order effects. But not
only this. An MLP models complex relations in the most parsimonious way. The number of free
parameters engaged in the modelling can be optimized as well.

Bond rating and lending decision mimics have already been attempted with the MLP [31]. A
recent study on the selection of Neural Network architectures for improving generalisation uses bond
rating as an example [130]. See also [57] for a review of some Neural Net applications being developed
by a specialized firm. Firm distress prediction has also been modelled by an MLP. This, despite the
problem being well suited for linear algorithms.

The described applications are just direct extrapolations of classic and thoroughly explored prob-
lems in accounting research. They simply substitute the linear techniques by the MLP. We think
that such experiments are not the most adequate way of showing the real possibilities of Neural
Networks since there is very few of specifically related to Neural Networks on them. Instead, we

centre this study in what Neural Networks can do and the other tools can’t.

164



Assessment of dimensionality and dimension reduction: Statistical tools like Multiple Dis-
criminant Analysis or Factor Analysis are unable to clearly point out the intrinsic dimensionality of
the data. N input variables or groups lead to N factors or NV — 1 scores. Despite the use of some
ad-hoc tests, it is after all the intuition of the researcher who decides how many of these dimensions
are to be considered as real features. Possibly, guesses of intrinsic dimensionality of processes like
economic pervasive factors influencing capital markets or basic common sources of variability in
ratios, based as they are on conjectures about acceptable uniqueness, are over-estimations.

One of the most promising applications of self-organizing maps of patterns lies in the fact that
the real dimensionality of the data is recognized as a basic characteristic [73]. The real dimension
of market expected returns or accounting statements could then be assessed.

Also the discrimination between different kinds of firm distress — should they exist — could
benefit from the capacity of Kohonen maps to trace dynamic features. Since the relation between
accounting data and the outcome is in this case very strong — the outcome can be predicted with
small confidence limits — it seems as if a simple self-organized map of patterns would be enough to

trace it. Such a map would also be able to discriminate between trajectories leading to insolvency.

Features Extraction: After the assessment of the intrinsic dimensionality, an MLP can construct
new variables containing the main sources of variability present in the data. These factors can be
built so as to be similar to Principal Components or, alternatively, to capture non-linear features.
In the later case, the extracted factors are also representations of the data, extracted in such a
way that the average missing information becomes minimal. But not subjected to the condition of
being linear.

In other words, Neural Networks can, if required, extract non-linear pieces of information from the
multi-variate distribution. For example, if in some two-dimensional phenomena its scatter diagram
shows a clear “S” shape, the first or main feature to be extracted can be the S shape itself. An MLP
will classify other S-shaped distributions as sharing that feature with the original data. This can be
decisive when trying a classification of sensitivities of assets to market forces based on accounting

reports and related information, or other situations where linearity doesn’t apply.

Forecasting and Systems Identification: The MLP is suited for forecasting as well. In this
case, the desired outcome is the same time-history as the input but placed a few periods ahead.
Each input variable is related to the others so that the information fed into the MLP is a window
representing a given time period. The learning takes place by showing the net many of these windows
selected at random, along with the corresponding time-history a desired number of periods ahead.
As a result, the MLP learns to predict the underlying phenomenon.

A description of the MLP in forecasting and Systems Identification can be found in Lapedes and
Farber (1987) [75]. White [133] used an MLP to try to predict the returns of common stock.

Systems Identification is potentially interesting for assessing the extent to which some financial
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time-histories are dictated by a complex chaotic behaviour rather than by simple randomness. It 1s
possible that the price of some commodities are a non-linear dynamic one as well. Benoit Mandelbrot
noticed one such structure in the price of cotton [82] and other authors suggested similar behaviour
in indices related to equity in the NYSE [93]. If that is so, the MLP would be a most adequate tool

for capturing the underlying mechanism.

Dynamic Features, Stability and Diagnostics: Neural Networks can even cope with time-
varying multi-variate data patterns as a whole. Time correlations of non-stationary data can carry
important information about underlying trends.

Considering each M-dimensional cross-section input as a vector, if there is some relation between
an event and its predecessors, a trajectory of such a vector will be drawn in IR™ . This trajectory can
be recognized by an MLP or, in some cases, by a self-organized map of patterns after appropriate
reduction. See Tattersall (1988) [126] for an explanation of this technique.

This seems a promising diagnostics tool for discussing the stability of APT factors, different

kinds of firm distress or ratio information contents.

6.6 Summary

Neural Networks are versatile modelling tools likely to become useful in specific problems involving
the extraction of knowledge from samples of accounting and financial data. The more promising

tasks seem to be those related to:

e Complex classification and systems identification. In this case the valuable feature of Neural
Nets is their power and generalisation capacity. Chapter 9 is dedicated to the exploring of this

aspect.

e Features Extraction via node’s specificity. In this case the feature viewed as interesting is the
information apportioned by the model about the intrinsic structure of the data. Chapters 7

and 8 are dedicated to the exploring of this second aspect.

Neural Networks embody two main sources of inspiration. They are Connectionism and Tele-
Communications Engineering. Examples have been given of the most representative nets in both

cases: The Multi-layer Perceptron and the Self-Organized Map of Patterns.
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Chapter 7

Knowledge Acquisition Using the
Multi-Layer Perceptron

We introduced in chapter 6 the Multi-Layer Perceptron (MLP) as a modelling tool. Many other
algorithms available are also intended to learn a relation input-outcome from a set of examples. The
MLP is different in that it approaches relations by stages, not directly.

During the learning process an MLP creates new sets of variables corresponding to different
stages of the modelling of the desired relation. A particular stage will use the variables from the
previous one as input. Then, it will make an improvement towards the final modelling of the relation.
Finally, it will output a new set of variables to be used as input for the next stage. The intermediate
variables generated by an MLP are often referred to as internal representations.

In this chapter we show that the ability to create internal representations along with other
characteristics of the MLP, make 1t able to automatically extract meaningful knowledge from raw
data directly available in accounting reports and the related outcomes thus avoiding the need for
searching appropriate ratios.

The next section explains which characteristics of the MLP are valuable in accounting modelling
and knowledge acquisition. Section 7.2 describes how accounting items can be used as direct inputs
for an MLP. Section 7.3 introduces a typical classification problem involving the prediction of the
industrial group to which each firm belongs, using accounting data. The MLP was able to discover
appropriate ratios for modelling such a relation. Incidentally, it also over-performed the usual
statistical tools in classification power.

Using the above problem as a background example, sections 7.4 explains the departures from
ordinary techniques we introduced in the training of the MLP. Two contributions are outlined: The
post-processing of MLP outputs so that they can be used as scores. The random penalization of

small weights for improving generalisation and obtaining meaningful internal representations.

167



Appendix B complements this chapter. It is a self-contained study of the performance of the
MLP when compared with traditional methods.

7.1 Specific Characteristics of the MLP

In this section we summarize the characteristics of the MLP which seem valuable for knowledge
acquisition and statistical modelling. This is an important issue since MLPs are very expensive in
CPU time and attention from the operator. MLPs are the kind of tool which no one uses unless it
1s really necessary.

The characteristic specific to the MLP is the ability to model by stages, thus creating internal
representations. However, the other desirable features are not easily found, all of them, in the same
tool. For example, some statistical algorithms perform stochastic non-linear optimization. But they
have little control over the amount of non-linearity introduced, or over the dimension allowed to
model a desired relation.

We now summarize the advantages of using the MLP.

Meaningful internal representations: It is the back-propagation of deviations from the desired
outcome towards more than one layer of nodes which makes the Multi-Layer Perceptron potentially
attractive in knowledge acquisition tasks. The outputs of intermediate nodes, considered as new
variables, can eventually bear interesting information about the process underlying the relation or
its features. Such new variables, the internal representations, along with the net topology, can make
the modelling self-explanatory.

The mechanism by which nodes learn has been presented in chapter 6. We saw that nodes tend
to assume a stable state and behave like small learning units eager to capture a feature of the relation

being modelled. This often makes them assume meaningful internal representations.

Iterative optimization: A Multi-Layer Perceptron adjusts the free parameters which ought to
model a relation in small steps. Each of these steady improvements seeck an advance in the minimiza-
tion of the observed deviations between the produced output and the desired outcome. Therefore,
the learning of a relation progresses steadily along many small steps. This allows a broad ma-
nipulation of the free parameters — known as weights — engaged in the building of the model.
Such a manipulation, unavailable in analytical tools, turns out to be essential for achieving good

generalisation and interesting internal representations.

Tight control over the modelling power: Another important characteristic of the MLP is that
a tight control can be attained over the flow of information for modelling a given relation as well as

over the amount of non-linearity introduced.
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The minimum number of nodes in any layer determines the maximum dimension of the modelled
relation. For example, by using a hidden layer with three nodes, we constrain the relation to be
modelled to have three dimensions. On linear grounds this would mean that the matrix representing
the desired relation would have one of its dimensions set to three.

This fact allows a direct control over the power of an MLP when performing classification with
non-linear boundaries. Since classification with arbitrary boundaries requires the artificial enlarge-
ment of the dimension of the input space, by controlling it we define exactly the kind of boundaries
we allow for classifying.

Also the amount of non-linearity an MLP apportion to the model depends on the total number
of nodes in the hidden layers, no matter its topology. We can have two hidden layers, each one with
two nodes, or one unique hidden layer with four nodes. The amount of non-linearity allowed would
be approximately similar in both cases.

Together, the last two characteristics of the MLP make it remarkably flexible in the use of its

power. Hence, the MLP is flexible in its generalisation as well.

Easy implementation of any optimization and convergence criterion: Finally, when ap-
propriate, we can easily change the optimization criterion for it is independent of the optimization
process. For example, Minimum Least-Squares deviation, as a success measure, is just one of the pos-
sible criteria. Likelihood maximization seems more appropriate for problems involving classification.
In such a case, the Multi-Layer Perceptron learns to maximize the probability of having obtained
the set of input-output pairs which were actually observed in the training set. This flexibility adds
up to the MLP’s already good one.

Also, the learning itself can be carried out using generalised hill-climbing algorithms like those
explained in chapter 6, or more elaborated stochastic optimization techniques involving, for example,
simulated annealing. In general, the possibility of simply acting upon the rate of convergence and
the individual increments each parameter receives during the learning process can be most valuable

for achieving meaningful internal representations.

7.2 Ratios as Internal Representations of a Relation

Simple ratios have been used for extracting useful experience contained in samples where reports
were gathered together with known outcomes. The problem of learning from examples using ratios
can be formalized in this way: Let x and y be two items forming the ratio y;/#; = r; in the case of
firm j. For learning we have a sample containing 1,---,7,---, N examples of these two accounting
observations plus ¢, the vector of the related outcomes. If we assume the existence of a map W such
that W : r — ¢ then we learn it by finding a W which is optimal in some sense.

Before doing this we would have to assume an a-priori form for W. For example, a linear W
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would lead to N equations

t; = wo+ wy X7y

where the wy and w; are unknown parameters. Generally, the set of examples is much larger than
the number of unknown parameters. The problem is overdetermined. However it is possible to
“solve” the set of equations in a Least-Squares sense thus obtaining the values of wy and w; which
minimize the squared differences between ratios and outcomes. In this case, W would minimize
N
Yo (ri—t;)’
j=1
a measure of the error committed when predicting ¢ from r. In this linear case W = {wg, w1} would
be the simple regression’s intercept and slope.
The above model involves only one ratio and one outcome. It is similar to the ones used by
Beaver [7] for discovering ratios interesting for the prediction of firm failure. Such a formulation
covers both discrete and continuous outcomes and makes no strong assumptions about the distribu-

tion of r. However, this algorithm i1s adequate only if such distribution is reasonably homogeneous.

Cascading two relations inside the MLP: The functional relation between accounting items
— yielding ratio outputs — is different from the relation between accounting features and outcomes
we now study. The last one is the goal of statistical modelling. However, these two relations are not
independent. Qutcomes, like distress or wealthy states, are dictated by internal features of the firm
which we believe are reflected by appropriate ratios.

In the case of accounting statistical models used so far, the former relation is embedded in the
choice of the input data — ratios. In the framework presented in this chapter we let the MLP form
both such relations. Appropriate ratios are discovered and used for approaching the outcomes as
part of a unique optimization process.

Since size is generally considered as an important piece of information for modelling some rela-
tions, we also make allowance for such an assumption to work out as an intermediate result.

In short, when modelling a relation we allow ratios to be formed as the output of nodes in the
first hidden layer of an MLP, along with a proxy for size. Our approach solves the problem of finding
the appropriate set of ratios for modelling a particular relation. Such problem clearly emerges when

reviewing the published literature.

Forming ratios in the first hidden layer: We let the raw data be the input to an MLP. Then,
we set it to model the desired relation. As a first stage in this process ratios are formed that
approach the outcomes. Other stages follow. At the end, outputs are the final stage. If ratios are
the appropriate way of modelling such a relation, the internal representations formed by the MLP

in the first hidden layer are extended ratios.
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Output

Figure 53: A node able to form a ratio in the first hidden layer of a MLP.

As seen in section 3.2.1 a multi-variate relation able to account for both common and particular

components of the variability of accounting data is

M
— Wi
11
i=1

containing 1,---,%,---, M items as input. The residuals are omitted. In logarithmic space,
M
logr = Zwi x log ;. (20)
i=1

Notice that this expression, an inner product, is the same as a Neural Network node’s output.

Our approach consists of letting w; be the adjustable connections or weights linking the inputs
of an MLP with the nodes in the first hidden layer. The inputs are the logs of the accounting items,
z;, considered as interesting for modelling the desired relation. Thus we create in each node of the
first hidden layer an internal representation with the form of an extended ratio. Next layers use
such ratios to approach the outcomes.

We show in section 7.4.1 that by using an appropriate training scheme these extended ratios often
assume a simple and interpretable form. If the overall model discovered by the MLP is optimal in
some sense, it seems reasonable to expect that the discovered ratios represent an optimal choice of
combinations of variables as well. Therefore, the problem of forming ratios given a set of accounting
variables considered as preeminent can be avoided. The best ratios to be used are not imposed by

the analyst. Instead, they are discovered by the modelling algorithm.

The transfer function: Figure 53 is a representation of a node intended to form ratios. The

logistic function

1
T =

which is standard in Multilayer Perceptrons as a transfer function, will bring back the extended

(21)

ratios from logarithmic space and will also provide a controlled amount of non-linearity for the lower

values of r.
1 r

- 1 +exp(—logr—0) r+exp(—0)

f(r)

171



0.03 0.4

OUTPUT = x / (x+bias) biss=4 -~ 4 OUTPUT =x/ (x+bias) =77
N 0.2 -7
0.02 - - ] SO
e 04 DB2E e
0.01 - .~ bias=5 __ T bes=3..---7" 7
7 — 029 .- .7
S - 1 bias=2
0 - ____:_;/A/—~"B|as—6 -0.4 ,
————— ; " ’/' 06 b //
0014—"" e e /
7 -0.8 1 //
e o /
-0.02 - ‘ /
d 14
x/ 1/
00347 -12 4 /bias=1
/
x=ratio formed in node -1.4 1 x=ratio formed in node
'004 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
-0.8 0 0.8 -0.8 0 0.8

Figure 54: The output of each node in the log MLP will be a concave function approaching linearity
for increasing values of the bias. On the left, a magnified view.

6 is the bias. Large negative values of § yield a linear relation between r and the output of the node.
Smaller values introduce a concavity affecting small r.

Figure 54 shows the way # controls the output of its node. For increasing bias the node’s response
is linear. In general, the training of the bias is directed by the optimization algorithm so that the
output is linear. Therefore, the first hidden layer is not apportioning non-linearity to the model.
This can be done in next stages. However, there is a class of non-linearity which is accounted for in

this layer just by allowing smaller ¢ (a notation also used for @ is wg).

The modelling of base-lines and other non-linearity: The back-propagation of errors could
also be used for discovering and accounting for non-proportionality in individual inputs. Appropriate
base-lines could automatically be found for each input just by using the information propagated
backwards, in the same way the other free parameters are estimated.

In practice, such a propagation across the log function is not stable. The MLP simply generates
4 which become more and more negative during the training. Therefore, at least at the present stage
of the research, we directly model the non-linearity introduced by base-lines instead of reproducing
its underlying mechanism. This can be done since, as we saw in section 3.4.3 the log space introduces
a trade-off between non-proportionality and non-linearity (see figure 26 on page 77) and the MLP
can model such a non-linearity.

The number of hidden layers to be used and the number of nodes in each layer should be selected
so as to apportion the required dimension and amount of non-linearity. For example, in order to
model difficult non-linear relations with just two or three dimensions — with just two or three ratios
—, one additional hidden layer of nodes is required. Depending on the number of nodes allowed,

this new layer will apportion as much piece-wise non-linearity as necessary and, hopefully, not more
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Figure 55: Two sigmoid modelling a local non-linearity.

than the necessary. Unlike polynomials, the logistic transfer function tightly controls the amount of
non-linearity in use. It 1s a very simple, monotonic increasing curve. Its response becomes constant
when the input is out of a limited range. Several of such curves can bring to the model the required
pieces of non-linearity yielding good interpolation and extrapolation.

Figure 55 shows a very simple non-linear relation, the solid line, which requires two sigmoid to
be accounted for (the dashed lines). This curve would never be conveniently modelled by polyno-
mials. The non-linearity introduced by polynomials is not local. It will persist out of a limited

neighbourhood.

7.3 Learning to Discriminate Industrial Groups

In this section we apply our framework to a known accounting statistical problem, the test of the
separability of the components of a particular industry grouping. We compare our procedure with
the traditional one and we extract some conclusions.

All companies quoted on the London Stock Exchange are classified into different industry groups
according to the Stock Exchange Industrial Classification (SEIC). We selected 14 manufacturing
groups according to the SEIC criteria. After discarding some firms (see below) we got accounting
information on 297 firms covering a six year period (1982 - 1987) and a bigger sample (500 cases)
for only one year (1984).

The data: The input variables received two different types of processing. The first, usual in finance
research, consisted of “forming 18 financial ratios chosen as to reflect a broad range of important

characteristics relating to the economic, financial and trade structure of industries (...) [124]” and
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Feature Ratio Tr. Feature Ratio Tr.
Operating NW Log Fixed Capital FA/TA Sqrt
Scale S Log Intensity S/ Av. FA Log
Labour-Capital W/TA Sqrt || Short Term D/CA None
Intensity VA/ Av. TCE Sqrt || Asset Intensity D/I Log
Profitability OPP/S Sqrt Asset Turnover DD None
EBIT/S Log S/ Av. TA Log
OPP/ Av. TCE | Sqrt S/I Sqrt
EBIT/ Av. TCE | Sqrt
Net Trade D/C Sqrt || Financial DEBT/NW | Sqart
Credit Leverage DEBT/TCE | None

Table 29: Ratios used in the original study and their transformations.

extracting from them the eight principal components. These new variables were then used as inputs
for a Fisher’s Multiple Discriminant Analysis (MDA). A description of these ratios and the modelling
procedure can be found in [124]. Table 29 reproduces them along with the transformations applied.
“DD” means the ratio Debtors Days.

Appendix B is a self-contained study of the performance of the MLP compared with traditional
methods. There, a description of our reproduction of the method usual in finance research can be
found along with the detailed MLP classification results.

The new approach consisted of using eight accounting variables directly, not in the form of ratios.
The selected items were Fixed Assets, Inventory, Debtors, Creditors, Long Term Debt, Net Worth,
Wages and Operating Expenses less Wages. All these variables were present in the original 18 ratios,
along with others like Earnings, Value Added, Total Capital Employed and Total Assets which we

didn’t use in the new approach.

Criteria for selecting the input variables: The criteria used for selecting the new variables was
threefold. Firstly, they should have been present in the original set in order to allow the comparing
of results. No new information was to be introduced in the problem. Secondly, we avoided items
representing totals for reasons explained in chapter 4. Finally, the input dimension should be eight
or less. The number of common factors extracted from ratios in the original study was eight. Eight
items or less wouldn’t allow a larger flow of information.

The choice of EX and Wages instead of Sales and Operating Profit stems from the same reason-
ing. The discarding of Earnings stems from not being appropriate for the log transformation. The
information contained in EBIT could be introduced by Sales and C'OGS but for this particular
model the residual EBIT didn’t seem important.

The selection of cases for the samples: A major methodological difference between our ap-

proach and the usual one was the way firms were selected. In general, one-variate normality criteria

is used to prune the original sample of ratios down to an acceptable number of standard deviations.
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N. | Group Code | Group Name N. Cases | Proportion
1 14 Building Materials 31 6.2%
2 32 Metallurgy 19 3.8%
3 54 Paper and Pack 46 9.2%
4 68 Chemicals 45 9.0%
5 19 Electrical 34 6.8%
6 22 Industrial Plants 17 3.4%
7 28 Machine Tools 21 4.2%
8 35 Electronics 79 15.7%
9 41 Motor Components 23 4.6%
10 59 Clothing 42 8.4%
11 61 Wool 19 3.8%
12 62 Miscellaneous Textiles 30 6.0%
13 64 Leather 16 3.2%
14 49 Food Manufacturers 80 15.9%

Table 30: Industrial groups and the proportion of each one in our sample.

We followed a case-wise method for discarding undesirable firms. It was not based on distribu-
tional considerations. Only cases known as distressed firms, non-manufacturing representatives of
foreign companies, merged or highly diversified ones were excluded.

Results concerning two sets of data are reported. The first (“1984”) represents a cross-sectional
view. The second (“SIX YEARS”) checks the regularity of firm grouping during a larger period.

Table 30 displays the proportions of cases in the 1984 set. Notice how groups are dissimilar
in size, the smallest one having 16 firms and the biggest 80. These proportions entail no prior

knowledge of any classification.

7.4 Improving Generalisation and Interpretability

In this section we explain the characteristics which make our MLP different from the standard

algorithm. They can be summarized as:

e The use of two samples, one for learning and another one for assessing the classification per-

formance. This is commented in 7.4.1.
e The random penalization of small weights, explained in 7.4.2.
e The post-processing of outputs, outlined in 7.4.3.
e Learning rates particular to each weight as described in Silva and Almeida [116].

Likelihood maximization instead of squared deviations minimization, as explained in 7.4.3.

The first characteristic relates to improvements in the ability to generalise. It is a particular im-
plementation of a known procedure, the Cross-Validation [122] [123]. The random penalization of
errors and the post-processing of outputs are specific contributions of this study. They allow the

use of the MLP for general-purpose statistical modelling and the interpretability of results.
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7.4.1 Generalisation: Using the Test Set

In order to obtain an estimate of the generalisation capacity of a model, the original samples were
divided randomly into two sub-samples of approximately equal size. All models were constructed
twice, first with one half of the sample and a check carried out with the other half, and again
reversing the roles of the two half data sets. Results were considered conclusive if both models,
when validated with the half-sample not used to build them, produced consistent results.

All classification results reported here concern the test set, not the training set. That is, they
were obtained by measuring the rate of correct classification in the half-set not used for learning.
The classification performance on the set used for learning depends solely on the number of free
parameters and can be increased simply by introducing more nodes on the net. Therefore such
results are uninteresting and are not presented here.

The normal approach to test a model, by deleting a single observation and predicting its value
with the model estimated on the rest of the data set, and repeating this procedure N times, is
not feasible. This is because the training of a Neural Network is time consuming. The procedure
adopted will however, with a large enough data set, produce unbiased estimates [37] [122].

The described procedure, combined with incomplete training, also allows improving the general-

isation of the MLP. This is a common practice. Next we describe incomplete training.

The role of incomplete training: Since the MLP seeks an optimum iteratively, we can stop its
training when an optimum is obtained in the test set rather than in the training set. In doing so we
prevent this powerful algorithm from over-fitting the data.

It is generally believed that the Back-Propagation algorithm seeks the modelling of progressively
smaller or less important features of the relation during the learning process. Firstly, broad features
are accounted for: The mean, a linear trend. Then, more detailed ones are modelled. Hence, the
effective degrees of freedom the MLP engages can be viewed as increasing during learning [132].

Assuming that the topology of the net contains plenty of free parameters, the MLP will be able
to model, not only the desired features but also the undesirable random uniqueness of a particular
sample. We prevent it from doing this by stopping the process before finishing. The appropriate
moment for stopping is when the results, as measured by the test set, are optimal.

Figure 56 on page 177 shows the evolution of classification results in the test set during the
learning process for the 1984 data. After 300 presentations the classification reaches an optimum.
If the learning continues, the classification breaks down. Such a breaking down is a clear sign that,
from the optimal point on, the MLP is no longer modelling any features of the population. Instead,
it 1s modelling the variability particular to the learning set.

For a good topology, the fact that the learning stops before a minimum is reached in the learning
set clearly enhances the generalisation. The difference between the generalisation performances

achieved with analytic tools and the iterative ones stems from this ability to stop. In our example, if
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Figure 56: Typical evolution of the classification results during the learning process. 1984 (test set).

we allow the training to proceed, the generalisation obtained with the MLP is similar or even worse

than the one obtained with analytic tools.

The role of an appropriate topology: We found the generalisation capacity very dependent
on the topology of the net. The number of nodes in a hidden layer seems to determine, not only the
dimension of the relation, but also the ability of the MLP to generalise. Persistently, we obtained
good generalisations whenever a hidden layer would have six nodes. Both the 1984 and the SIX
YEARS data set exhibit such a feature. Figure 57 on page 178 shows some classification results
for different numbers of nodes in the first hidden layer for the SIX YEARS data. Similar patterns,

though not so contrasted, were observed for the 1984 set.

7.4.2 Random Penalization of Small Weights

Another major goal of this study was to evaluate the power of Neural Networks in knowledge
acquisition. Multi-Layer Perceptrons are often considered as not ideal in applications where self-
explanatory power is required. However, in the case of accounting variables it seems possible to
interpret the way the relation has been modelled by looking into the weights connecting input
variables with the first hidden layer’s nodes. These weights are the free slopes of ratios.

In order to enhance interpretability we introduced during training a random penalization of
weights with small absolute values. A weight is inhibitory when its absolute value is smaller than
the unit. If the input variables were very differently scaled, inhibition values in the input weights
could just mean that the MLP was trying to scale down a particular variable. Since the log items

used as input to the MLP are mean-adjusted and have very similar spread the only reason for any
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Figure 57: Classification results on the test set (Y-axis) versus number of nodes in the hidden layer

for SIX YEARS data.

such weights to remain smaller than the unit throughout the learning is to try to diminish the
importance of one variable in the output of the node 1t belongs to.

In a Neural Network each node acts as a modelling unit with a certain amount of free parameters.
The same output can be obtained with very different combinations of weights. Inhibition weights
connecting inputs with the first hidden layer appear when the node tries to weaken the contribution
of a variable. If we randomly introduce a small penalization of such weights during the training, as
the correction of weights 1s proportional to the input variables, the weights smaller than the unit
tend to remain small. In the same way, the large weights tend to have their values strengthen.

The final result 1s a contrasted set of weights: The first layer now contains only very large or very
small weights. The information concerning the modelled relation is concentrated in a few weights
instead of distributed by all of them. If the relation to be modelled is consistent with such a contrast,
then there is no reason to expect that the described manipulation will damage the performance of

the model.

The algorithm: The procedure we follow to achieve interpretability involves the following steps:

e Let one node in the first hidden layer model the strong common effect and introduce it in
subsequent layers. Input variables not convenient for the modelling of size (Debt is an example)

have weights connecting to this node set to zero. The others have fixed and equal weights.

e During training, and whenever a new presentation of the entire training set is to begin, one of
the remaining nodes of the first layer is randomly selected. Their weights are examined and

those with inhibitory weights are penalized by a small factor, typically 0.98.
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e Before the end of training, all the weights connecting inputs to the first layer and exhibiting

very small values are set to zero and fixed.

Such procedure is applied only after the discovery of the topology yielding the best results.

Just by dedicating one node of the first hidden layer to the modelling of the strong effect we
notice an improvement in speed of convergence and in the final generalisation. Adding the ran-
dom penalization of inhibitory weights, both speed and generalisation receive a further, significant,

improvement. When the topology is not the best, this procedure can worsen the generalisation.

Complementary remarks: The method described here was the one used for this particular
experiment. In different cases we found that the performance would not suffer if all the weights
below an inhibitory threshold were penalized at the beginning of each new presentation. This
threshold typically would begin in 0.1 with the training and then it would be updated to larger
values later on. Instead of fixing the weights just before the end of the training we also introduced
their fixing during training whenever they would become small enough.

This simple procedures enhances performance and generalisation considerably. The fact that by
the end of the training the real number of free parameters is much reduced is also rewarding.

Notice that we never tried this method with the usual, simple, Back-Propagation algorithm.
Each one of the weights in our MLP has its own increment, adjusted as described in Silva and
Almeida [116]. Tt may well be that our algorithm’s performance is contingent on such a procedure.

Other popular methods for pruning the MLP are the “Skeletonization” [90] and “Optimal Brain
Damage” [76]. The first one is intended to reduce the number of nodes, not weights. The second

one is too general for this task.

Results: When the training finishes the number of variables to consider in each node is very small
and characteristic. Looking at the non-zero weights 1t is possible to understand, in accounting terms,
what the free-slope ratios formed in each node are doing.

Table 31 shows the extended ratios formed in a net with 8 inputs, 6 nodes in one hidden layer and
14 output nodes, trained with 1984 data. The emerging organization reproduces the way an expert
in ratio analysis chooses variables. It is usual to build several ratios around one or two variables
judged as important to capture a relation. As an example, efficiency is modelled around capital
turnover, stock turnover and so on. Profitability is built around profit margin, return on equity, etc.

Experts put together several points of view around a few significant variables by using them to
contrast others. Extended ratios seem to be trying the same sort of procedure. The item EX has
been used in all hidden nodes to contrast others. It seems as if it were important for this problem.

The ratios the MLP discovers are not always simple. Ratios like (C' x FA)/(W x EX) are not
the most familiar ones to accountants. However, in general the combinations of items which emerge

as interesting are clearly visible when examining the organization of the hidden nodes.
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Variable Node Number 21 34| 5| 6
Long Term Debt -6

Net Worth 8

Wages 1 -6
Inventory 8

Debtors 2 -2
Creditors 3
Fixed Assets -9 -4 6| -4
Operating Expenses less Wages -10) 4 81-2| 3

Table 31: Approximate values of weights connecting input variables with nodes in the first hidden
layer after training with random penalization.

Testing the Performance of the Devised Ratios: Our interpretation of the ratios formed in

N 1
In the 2" node: Wl
FAxXx EX
X
In the 3" node: —_—
n the node A
th . EX
the hidden nodes according to table 31 is as follows: In the 4™ node: DB We tested
FA
In the 5% node: 7XC
W x EX
X
In the 6" node: ——nu.
VvVFAXD

the performance of such ratios when used as inputs for linear classifiers in the described problem.
The five ratios plus the size effect actually classify the 14 industrial groups with the same accuracy
as the original 18 variables.

The gain in performance by using the MLP is, of course, much more visible. Apart from its non-
linear modelling capacity — which in this particular problem didn’t seem to be very important —
such a gain is due to its superior generalisation. Analytic tools cannot control the relative importance

of parameters during training nor stop the optimization process before its end, to avoid over-fitting.

7.4.3 Post - Processing of Outputs

Discrimination, when overlapping distributions are present, implies a probabilistic interpretation of
outputs. In accounting research, Bayesian considerations are in general independent of the pro-
portions observed in the sample. Neural Network application to other sciences can be misleading.
There, proportions observed in the sample are generally taken as acceptable prior probabilities.
Following suggestions like those of Baum and Wilczek [6] several authors advocate a direct
interpretation of outputs as probabilities [61] [120] and show how the usual squared error criterion
can be corrected to achieve likelihood maximization. In such case, the weights are corrected in the

gradient direction of the log-likelihood rather than on the gradient of the squared error.
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Figure 58: On the left, classification results after post-processing (1984 sample and prior probabilities
proportional to the size of the group). On the right, the same with direct interpretation.

We found that node outputs — when interpreted directly as probabilities — produce a clear
reduction in accuracy. The final result is a severe loss of ability to distinguish small groups.

Thus, we decided to interpret outputs of the MLP as a multi-dimensional measure of distance
to outcomes. If departures from normality are not severe, this interpretation can be carried out
by using conventional statistics like Chi-Square, Penrose or Mahalanobis distances. Such measures
can be regarded as scores and conditional probabilities can be deduced from them, allowing further
Bayesian corrections, independent of proportions observed in the sample. Of course, a Bayesian
correction could be done directly over the outputs interpreted as probabilities. However, due to the

observed lack of accuracy, a direct correction would lead to a very bold classification.

An experiment: Using the MLP with the 1984 data set and implementing learning schemes
described by Hopfield [61] and Solla et al. [120] we tested the direct interpretation of node outputs
as probabilities comparing it with the usual correction of node outputs based on the way linear
discriminant analysis, for example, corrects scores. Results are reported in figure 58 when prior
probabilities are taken as equal to the size of the group. On the left we can see the result of using
post-processing. On the right, the corresponding result derived by directly interpreting node outputs
as probabilities.

The post-processing gives detailed classifications. Direct interpretation ignores 9 of the 14 groups,
the small ones, but finally achieves a better global performance by classifying the remaining 5 groups,
which are the bigger ones, very well. Therefore, although for the sake of efficiency of convergence
we adopted the likelihood cost function, node outputs were post-processed as distances. A short

description of this post-processing follows.
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MLP outputs as multi-variate distances: For a training set with N cases, consider ojy,, the
output produced in node m,m = 1, M by case j,j = 1, N. Compute K square deviations, dj;m,
between the m node’s output and each one of the 1,--- k,---, K possible outcomes: djm = (txm —
0jm)?. The mean sum of squares in node m for the whole sample will be: o7 = ij dijm/(N —1)
and the standardized distances between a node’s output and all possible outcomes can now be added

over all nodes:
M

Di; = Z dkzjm

m=1 Tkm

The minimum of these distances would identify the outcome predicted by the MLP if no Bayesian
corrections were needed — that is, if the assumption of equal prior probabilities is acceptable.
This distance has been compared with a more elaborated measure, the Mahalanobis distance, and
it was found that the latter would not achieve a more accurate performance. In order to introduce
Bayesian considerations, Dj; ought to be computed as a Chi-Square distance to outcomes. The

significance of this distance is the desired conditional probability.

7.5 Discussion and Conclusions

So far, expectations about Neural Networks are related to the modelling of difficult relations (pattern
recognition) or the mimicking of brain functions. There has been little emphasis in their potential
explanatory power. Here we argue that some statistical problems requiring self-explanatory power
can take advantage from the existence of meaningful internal representations.

Numerical, continuous-valued observations such as those found in stock returns, or data organized
in accounting reports, cannot be efficiently used by actual expert systems as a source of knowledge.
Algorithms intended to automatic extraction of rules from examples, such as the ID3 [96] cannot
perform efficiently with non-symbolic, non-hierarchical data. We explore this problem elsewhere [12].

Neural Networks can now be seen as an alternative self-explanatory tool. In our example, hidden
units were able to form more appropriate ratios than those commonly used. In other cases the

examination of such ratios could shed light in many important issues.

Self-explanatory models: The developments of this study are closer to Beaver’s original works
than its successors. Beaver tried to discover the most appropriate ratios to model a relation. The
goal was not just an efficient modelling. It was mainly the discovering of simple tools for doing
the job. After him, statistical modelling focuses on efficiency. The practice of using multi-variate
techniques and a large amount of ratios as inputs — along with the trimming, ad-hoc transforming
and rotating of inputs — made impossible any interpretation of results. Modelling became a blind
automatism.

In order to return to interpretable models it is important to understand the statistical behaviour

of items. And also to use tools able to implement such behaviour in a transparent way.
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1984 Six Y.
INPUT MDA | MLP | MDA | MLP
18 ratios 29% 30%
8 variables 38% 45%

Table 32: The best classification results when using the MLP compared with the best ones when
using MDA (Multiple Discriminant Analysis) for the two data sets.

The selected example: This specific application was chosen because it was likely to generate a
relatively complex network with multiple output neurons. Complexity was seen as desirable to allow
a richer investigation into the process of building and running networks. Choosing a classification
problem with a better developed theoretical underpinning might have been more sensible. As it is,
the also somehow complex ratios produced by the model are difficult to interpret. However, the
revised training process’s ability to generate simple structures promises much in other accounting

applications.

Improvements in performance: The emphasis on interpretation should not hide the other
findings of our study. The MLP proved able to outperform the classification performance of a
traditional discriminant analysis approach. Neither method came close to adequately classifying the
testing sets, but there was a substantial improvement when the MLP was used.

Table 32 shows the best generalisation results achieved with the traditional methodology (ratios)
and also with Neural Networks. As can be seen Neural Networks achieved a better performance,
with half the number of input variables and within a much simpler framework. Namely, the need for
forming appropriate ratios was avoided as well as the blind pruning, and the extraction of a somehow
arbitrary number of factors. Several accounting variables used to form the 18 original ratios were
not present in our 8 variable set.

It is perhaps worth pointing out that redoing the discriminant analysis using representations of
the ratios produced by the MLP captured some but not all of the MLP-based improvements. The
remaining may well be related to the ability of the MLP to cope with non-linear boundaries and

have a tight control over the number of free parameters.

Topology: The principle of parsimony should also be born in mind. If there are too many hidden
nodes the MLP will fail to identify key features and will model the particular randomness in the
data set as well. Generalisation will then be lost.

However, Back-Propagation shows a useful ability to take advantage of the topology of the net
to improve generalisation. Even with a large number of free parameters, if the number of nodes in

a hidden layer is in resonance with some internal feature of the data, high generalisation can arise.
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Chapter 8

Improving Diagnostic Specificity
With Neural Networks

In this chapter we show how Neural Networks can be used for automatic diagnosis based on account-
ing numbers. Our framework is intended to extract rules from large databases containing accounting
data. It can be seen as a pre-processor, able to bridge the gap between continuous-valued, stochastic,
data like the one found in accounting reports and symbol-based expert systems.

The rules resulting from using this technique can be fed into more general systems along with
other sources of knowledge. For example, several of the developed tools could cover each one a
particular feature of the firm — liquidity, capital turnover and so on — outputting rules that would

be jointly processed by an expert system.

Two-dimensional ratios: Our tool allows both cross-sectional positions of individual firms and
trajectories during a time period to be traced. It is close to ratios yielding similar diagnostics:
Whether a particular firm i1s above the standards; near the expected or below the standards. But
this, referred to two aspects of an accounting feature, not just one at a time. For example, whilst
ratios can assess liquidity either as a contrast between the amount of current assets and the one of
current liabilities or, alternatively, as a contrast between the amount of working capital and the size
of the firm, our tool can show both aspects of liquidity together.

The quality of the diagnosis and its interest rely on the selected variables as happens with ratios.
It is the experience of the analyst which dictates which items are to be used and how to interpret
the resulting maps. Since these tools are close to ratios, all the expertize of ratio analysis can be
directly implemented on them.

Given this, the expected improvements in diagnosis power and specificity are not based on any

new algorithm. Rather, they rely on the common experience of practitioners and in the models
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devised in chapters 3 and 5. In fact, it 1s common practice to assess a particular feature using more
than one ratio. Two or three ratios related to the same characteristic are generally called upon
and compared. Our two-dimensional ratios combine two aspects of any feature as described in the
mentioned chapters.

Also, it is an extended belief that the inclusion of information regarding size can be decisive for
a correct diagnostic in some problems. For example, the prediction of firm failure 1s enhanced just
by noticing that small firms are more likely to fail than the large ones. Ratios are size-adjusted
variables. They cannot convey this piece of information. Graphical ratios can be set to introduce
size so that the resulting tool will be sensitive to both the size-adjusted features and the position of

the firm regarding size.

Contents: In the next section we develop and discuss two-dimensional representations of account-
ing data. Then, we implement the second step, the mapping process. Finally we show some exam-
ples. The central reasoning determining the developments presented in this chapter is explained in

section 8.1.2.

8.1 Creating Two-Variate Tools

Ratios only use a small amount of the information needed for building them. For example, a
collection of ratios concerning different time periods can show the existence of a trend. But the
collection of items used to build them would show a trajectory in a two-dimensional space. This
could be far more revealing since it would allow the distinction between several directions for the
same trend.

In this section we are concerned with the manipulation of two and three-variate relations in log
space. We seek the building of tools able to be a natural extension of ratios to a second dimension.

The possibility of using two-dimensional representations of accounting data is a direct conse-
quence of the homogeneity of accounting information when examined in log space. The tools devel-
oped in this section would not be feasible in a space other than the logarithmic. As discussed in
chapter 2 the result would not be usable.

In this section we briefly discuss the interest for accounting research and the adequacy for financial

diagnosis of four kinds of two-dimensional representations increasingly elaborated:

e The simple scatter-plot of two log items and the mean-adjusted scatter-plot, adequate for

discovering and identifying forces which are external to the firm but not for financial diagnosis.

e The residual scatter-plot, intended to jointly examine the residuals of two 1items when deflated
by a third one. It will detect features which are internal to the firm such as correlations

between residuals.
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e The rotated scatter-plot, containing the same information as the simple X-Y plot but being
able to display it in a way adequate for financial diagnosis. This tool is the correct choice when

size 1s an important piece of information.

e The rotated residual scatter-plot, which stems from the previous two. It is able to show the
residuals of a ratio in log space against deviations of its components from the values expected

for the size of the firm. This tool is a generalisation of the ratio concept for two dimensions.

Assumptions and notation: We accept that it is possible to build a general deflator, s, reflecting
the component of the variability common to all items. We further assume that this s can be used
with any accounting item in a ratio model without causing asymmetric residuals. This issue has
been discussed in section 5.1.

In the case of residuals from the ratio y/a we used the notation gyl® (or the corresponding fyle
for the ordinary space) and so on. We use simply €%, the corresponding f* and so on for expressing
the residuals obtained from =z after being explained by s, a suitable proxy for the common effect.
We refer to departures from it as just residuals. Departures from a particular ratio standard are
referred to explicitly as contrasts.

In using this notation we emphasize the fact that the residuals of any item, z, when deflated
by s, are a proxy for the weak effect or particular contribution of x to the overall cross-sectional
variability. Inside firms the statistical behaviour of one item 1s different from the one of others
because the internal mechanisms commanding them are different. It seems potentially interesting to
isolate the particular variability of items related to important features like liquidity or profitability,
and then examine it. When the denominator of a ratio is any item, not a proxy for size, its residuals
reflect a contrast between two particular effects, not a unique particular effect. That’s why we call

them “contrasts”.

8.1.1 Non-Rotated Plots

In order to implement a simple visual inspection of a two-variate relation, a scatter-plot is enough.
When considering the ratio y/«, loga would be the abscissa and logy the ordinate. It is practical
to have the line y = x drawn in the scatter-plot.

Figure 23 on page 58 contains one of these plots. Simple scatter-plots in log space reveal the
existence of external forces when they affect the symmetry or the linearity of the relation. For
example, in the case of constraints introduced by accounting identities, all cases gather in one side
of the line y = x. If the constraint is strong (the axis y = x is very near the main dimension of
the distribution), the density of cases near the axis y = « becomes really anomalous. Figure 32 on
page 89 1s an example.

This tool also shows that the described class of constraints is not the only external force distorting

the distribution of ratios. Constraints imposed by managerial practice — for example, intended to
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avoid liquidity problems — are also visible. An example is the ratio CA/CL: The line y = 2 marks
the frontier between positive and negative Working Capital. Such a line also determines a gradient
in the density of cases.

Non-linear relations between logz and logy, revealing non-negligible base-lines, also become
apparent with simple scatter-plots of this kind. Ratios like EBIT/S (as those displayed on page 85)
or CA/F A exhibit, for a few industrial groups, traces of non-linearity consistent with this hypothesis.

Information content: The amount of information conveyed by one of such tools contains and
amplifies the information conveyed by ratios. The horizontal (or vertical) distances from any case
to the line log y — logy = loga — log , which is the axis with largest variability, measures the ratio
residual. As usual, logz stands for the log median (the mean of log ). For example, the scatter-plot
formed with log C'A in the abscissa and logC'L in the ordinate, yields, for any point {C'4;,CL;}
S = (log CAj —Tog CA) — (log CL; —Tog CL)
which is the ratio residual in log space. However, the way this measure would have to be carried out

representing the position of firm j, a measure of ¢

graphically cannot be considered as practical. Later on, we shall improve it by using rotated axis.

The mean-adjustment: A first step towards more practical tools is the mean-adjustment of the
data. Financial diagnosis is based on the magnitude of deviations from standards. The value of the
standard itself is important only in that 1t allows the calculation of such deviations. Therefore, the
mean-adjustment throws away a non-important piece of information. With this, the clarity of the

representations improves and the comparing of samples becomes feasible.

Controlling for joint trends: For example, mean-adjusted data is useful when it is convenient
to gather in the same scatter-plot data belonging to several years. In this case we would mean-adjust
separately each year. Trends like the evolution of the economy would be accounted for in this way.

In general, position measures (introduced on page 59) are often preferable to log items. Residuals
or contrasts are preferable to ratio outputs. Their expected value is the same — zero in log space

and one in the ordinary one — instead of varying from one sample to the other.

The residual plot: If we use, instead of mean-adjusted items, the residuals obtained after con-
trolling for s, the common effect, we get a scatter-plot of €¥ with £”. The reliability of this tool
depends on the quality of the proxy for size. Of course, any item could be used for deflating « and
y instead of s. In that case we would have a plot relating two contrasts.

The residual plot is adequate for detecting correlations between residuals. Since the strong,
common, effect has been accounted for, any residual relation becomes visible. Simple plots of log
items are not accurate in detecting residual relations since the common effect, having a much larger
variability, completely masks them. Figure 59 compares a mean-adjusted plot (left) with a residual

one for the same data (right). Notice that in the tool displayed on the right the 135° axis (the line
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Figure 59: On the left, a mean-adjusted scatter-plot of Current Assets (Y-axis) versus Current
Liabilities (X-axis). On the right, the corresponding residual plot. Electronics, 1986. The negative
sign means C'A < C'L.

y = —x) can be used for measuring the contrast (ratio residual) €¥/%  Notice also that residual plots
and rotated residual plots are not able to display relative size. Like ratios, they control for size.

Figure 64 on page 195 displays another residual plot showing a clear case of correlation between
two items after controlling for size. The items used in these plots (Wages and the number of
employees) are also interesting because of their ability to separate industrial groups.

Residual plots are considered here as a step towards more elaborate tools, the rotated ones.

8.1.2 Analyzing the Information Contained in Ratio Components

One feature common to the plots presented so far is that any measure intended to mimic ratios ought
to be done using the 45° or 135° axis instead of the natural ones. We avoid this inconvenience with
a simple rotation. In doing so, we make less intuitive the detection of asymmetry and non-linearity
but we facilitate the financial diagnosis.

This 45° rotation of axis produces two orthogonal views of the main dimensions of the distribution
of the ratio components in log space. Therefore, the whole of the information conveyed by the ratio
components is now present in these new variables in a complementary way.

We shall see that such a pair of new variables can answer two kinds of questions that specific pairs
of ratios seem meant to answer as well. From here we conclude that those pairs of financial ratios
convey complementary pieces of information. They are two aspects of the same two-dimensional

measurement.
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Figure 60: A graphical representation of the rotation leading to financial interpretability.

The difference between controlling for size and assessing financial features: It is often
mentioned in the literature that ratios are used because of the need for controlling for size. In
a cross-sectional context there are two meanings for this controlling for size, both interesting in
financial analysis. Ratios seem to be called upon in order to answer two different kinds of questions,
not just one.

Firstly, size can be viewed as a variable, s, reflecting the common variability as a statistical effect.
And secondly, size can also mean the magnitude of one item when compared with the magnitude of

another one. Therefore, two different questions can be asked when referring to size.

e What 1s the position of a particular item when contrasted with s, the size of the firm? This is
the problem of assessing deviations from standards for size. Financial ratios are set to answer
this question when the deflator is selected so as to reflect size. Sales, Net Worth or Total
Assets have often been the choices for such a size proxy. In our framework the answer to the

above question is given by the f” or, in log space, the £”.

e To what extent a given feature of the firm, like liquidity, is far away from the expected as a
feature, that is, regardless of the magnitude of its components when compared with the size of
the firm? This is the problem of measuring departures from standards describing features by
themselves. In such cases the deflator is selected so as to produce a contrast when compared

with the deflated item. Such a contrast is in our notation the ratio residual f¥/% or ¥/,

Some ratios seem more intended to answer the first question whilst others are intended to answering
the second. For example, in the two liquidity measures Working Capital to Total Assets and Current
Assets to Current Liabilities we notice that the first one seems to assess liquidity by referring it to
the size of the firm, whilst the second one assesses liquidity by itself — the feature emerging when
contrasting short term assets with liabilities — regardless of the size of the firm. Also the Debt Ratio
(DEBT/TA) yields a contrast with a typical measure of size. It tries to answer the first question.
But the Debt to Equity Ratio (DEBT/NW) answers the second one: Tt seeks a contrast of debt with
equity, not with the size of the firm.
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The two dimensions of the size-adjusted information: It is worth emphasizing that this list
of two questions is a consequence of the assumptions and models developed in chapters 3 and 5.
Given that it 1s possible to assess size, what kind of size-adjusted information the components of
ratios can yield?

They firstly yield two residuals, ¥ and €”. Then, a 45° rotation combines these residuals so as to
produce two new variables which are also orthogonal — thus capturing two complementary aspects
of the information contained in the original residuals.

Such two aspects are the eV — ¢” and the £¥ 4 £%. The first one contains the same information
accountants are used to find in ratios, but mean-adjusted. It is a contrast between two items. When
the y and x are conveniently selected, such contrasts are supposed to capture desired features.

The second one contains the information originally conveyed by z and y but not captured by
the ratio. Since the pair {z, y} conveys two-dimensional information and ratios or contrasts are just
one variable, when we use ratios instead of their components we put aside information. Not only
the one about size. We put aside also size-adjusted information, potentially interesting on financial
grounds. Such piece of information is the e¥ 4 £7.

It is easy to see that the two questions referred to above are answered by these two complementary
variables. Therefore, such two questions should be regarded as complementary as well. And they

represent the whole of the questions a pair of items can answer after being size-adjusted.

Is the second aspect important? Discussion. In his response to Barnes, Horrigan claims that
the main task ratios undertake 1s the assessment of specified relationships. “They adjust for the
data size effect only incidentally. (...) Size deflation is certainly an interesting property of financial
ratios, but it is hardly their major purpose.” [64]. Horrigan considers that only the ¢¥ — &% are
interesting. In his opinion, contrasts are the only piece of information worth considering. This is
equivalent to say that the information conveyed by the ¢¥ + £” is not worth taking into account.

On statistical grounds 1t is very difficult to sustain such a position since the two aspects carry
complementary information. On financial grounds, this author would need to explain why the
deviations from the expected for firms of a given size are necessarily not interesting for diagnosis.
We think that this restrictive view requires some explanation since it is not evident.

In next section we discuss the specific cases in which pairs of ratio components yield eventually

less interesting information.

8.1.3 Two Rotated Plots

The two rotated plots we present next are practical applications of the above considerations. The
first one, the rotated plot, preserves information regarding the size of the firm. There is a growing
conscience about the importance of size — not just deviations from expected size — in some specific

problems. The second one controls for size. It yields deviations from expected size, not size itself.
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Figure 61: On the left, a scatter-plot of Earnings (Y-axis) versus Sales (X-axis). On the right, the
corresponding rotated plot. Motor Components, 1984.

Taking size into account: The rotated plot. For any vector of two mean-adjusted observa-

tions, {logu,logv} there is a 45° anti-clockwise rotated vector {h1, ha} obtained by applying the

=[]

(a two-dimensional Hadamard rotation introduced in chapter 5) to the original log vector.

simple transformation

The resulting variables will be Ay = logu + logv and hs = logu — logv. Therefore, hy is now a
proxy for the effect common to the original items and hy is, in log space, the residual of u/v, that
is, the contrast. We can build a scatter-plot in which h; is the ordinate and hs is the abscissa. The
space spanned by {hi, ha} contains the same information conveyed by the usual scatter-plots but
arranged in a way that makes sense in financial analysis.

This rotated plot allows the straightforward measuring of contrasts along the X-axis. It is also
more accurate since the cases now span much more uniformly the whole of the neighbourhood about
the expected values of their variables. However, for observing possible asymmetry or non-linearity
this tool should not be used alone.

Figure 61 shows, on the left, the usual scatter-plot in log space and on the right the same data
after rotation. Notice how cases now span a larger portion of space. Notice also how the small
non-linearity on the left is now less evident as such.

Rotated plots like the one of figure 61 retain in the Y-axis the information regarding the size of
the firm. Therefore, they are ideal for studying features influenced both by one particular contrast
and by size. For example, when predicting firm distress, both the ratio Cash-Flow to Total Debt
and the size of the firm seem to be revealing. We can put together both pieces of information by

means of this plot.
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Figure 62: On the left, a mean-adjusted scatter-plot. On the right, the corresponding rotated
residual plot. Funds Flow to Total Debt, Electronics, 1986. Firms having negative EBIT in one or
more years in the period 1983-87 are highlighted.

The rotated residual plot: In the rotated plot the coordinates of any point, {hy, ho}, are ratio
residuals and joint measures of position. For the tracing of features not related to size we now
introduce the rotated residual plot. It uses, instead of the joint measure of position, another contrast.
For example, we can introduce s, a proxy for size, as a deflator for the Y-axis of a rotated plot. In
the ordinate, instead of u x v in log space, we would now have a ratio: (u x v)/s?. The abscissa
would remain unchanged.

It is such a framework which allows the answering of the two complementary questions described

in section 8.1.2. In fact, in this rotated residual plot,

o the X-axis measures [logy; — logy] — [logz; — log 2] which is e¥ — ¢”, the contrast or ratio
residual. Therefore, the first coordinate of any point will answer the second question. For

conveniently selected y and =z, this axis assesses a financial feature.

e The Y-axis measures [logy; —log y] + [logz; — logx] — 2 x [logs; — logs] which is e¥ 4+ ¢”. It
answers the first question. It measures the joint departure from the expected for firms with a

given size.

In other words, our plot will represent in log space the log residuals of any y/« ratio in the abscissa
and the log residuals of a new ratio, (z x y)/s? in the ordinate. The two complementary aspects
of the size-adjusted information referred to in section 8.1.2 (the ¢¥ 4+ &% and the ¢¥ — %) are thus
presented as the main axis of this plot.

Notice that the rotated residual plot is just a 45° anti-clockwise rotation (a Hadamard rotation)
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Figure 63: Diagnosis and location of firms in the rotated residual plot. Funds Flow to Total Debt.

of a residual plot in which, as we saw, €¥ is the abscissa and €% is the ordinate. Figure 61 on page 191

compares the usual mean-adjusted plot (left) with a rotated residual plot (right) for the same data.

Dimension reduction: The rotated residual plot can also be viewed as a way of reducing from
three to two the dimension of the information we are dealing with. In fact, the whole of the
potentially interesting information involving any two items y and z is a three-dimensional vector
{y, z, s}. For example, when we are measuring liquidity we could hesitate between using CA/CL,
thus getting an absolute (size-independent) liquidity measure, or using WC'/TA in order to have
insight into the position of liquidity regarding the particular size of the firm. In this case the three-
dimensional nature of the desired information is depicted by the fact that only by knowing C'A, C'L
and T'A would we be able to answer the two questions.

When using this rotated residual plot we can assess the liquidity, both by itself (X-axis) and
as referred to the size of the firm (Y-axis). The dimension reduction has been achieved by jointly
measuring the departures from size observed on y and z instead of assessing each one. In many

financial applications this reduction makes sense.

Diagnostics as a location in the rotated residual plot: Figure 63 shows the diagnostics we
could infer from the location of any firm in the rotated residual plot. As usual, when we use the
term “feature” we refer to any financial characteristic of firms able to be reflected in accounting
information: Liquidity, profitability, financial structure and so on. Ratios are supposed to assess

particular features. In the same way the diagnostics provided by the rotated residual plot for a given
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feature would be:
Position is A: Both the feature and its magnitude given the size of the firm are near the standards.

Position is B: The feature is near the standards but its magnitude is larger than the expected for

the size of the firm.

Position is C: Although the magnitude of the feature is near the expected for the size of the firm,

the feature itself i1s below the standards.

Position is D: The feature itself is near the standards. However, its magnitude for the size of
the firm is smaller than the expected. For example, the liquidity of a firm is all right if we
consider it as the contrast between short-term assets and liabilities. But both Current Assets

and Liabilities are smaller than the usual for firms with the same size.

Position is in between C and D: Both the feature and its magnitude given the size of the firm
is below the expected. This is a frequently observed situation with no correspondence in the

other quadrant. It means an over-sized firm regarding that feature.

Position is E: The magnitude of the feature is the expected one for firms of such size. But the

feature itself is above the standards.

A different way of reading positions in the rotated residual plot refers to the quadrant, not to the
Cartesian axis. Since it leads to diagnostics based on log items, not on contrasts, it is not as near the
accounting practice as the interpretation based on axis — the one presented above. But we think
that the diagnostics based on the quadrant the firm lies in are also simple and revealing.

For the ratio y/« and s, a proxy for size, we would have:

The firm lies in the first quadrant: Both x and y, the ratio components, are above their ex-

pected values for firms with that size.

The firm lies in the second quadrant: The denominator of the ratio, z, is below the expected

and the numerator, y, is above for firms of similar size.

The firm lies in the third quadrant: Both components are below the expected for a firm of that

size. The firm is therefore oversized in what concerns those two items.

The firm lies in the fourth quadrant: The numerator, y, is above the expected for firms with

that size. The denominator, x, is over-sized.

In the next section we give extensive examples of the use of the rotated residual plot for diagnosis.
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Applicability of the rotated plots: Discussion. Rotated residual plots will not be effective
when the two main variables are related by an accounting identity. Probability-like ratios — FA/T A
and similar (see chapter 4) — contain all the information the relation between its components can
yield. This is because the numerator is part of the denominator. These ratios are real propor-
tions between one part and a total. Not much improvement results from exploring the information
conveyed by the two components instead of using the ratio.

Also, this plot will not show all its power when the items selected along with logs are proxies
for size or taken as such.

Finally, correlated residuals make the decomposition of information described in section 8.1.2
less attractive. Correlation means redundancy. Figure 64 (below) shows the aspect of correlated
residuals in the rotated residual plot. Clearly, one of the items describes the other one.

On the contrary, ratios formed with items which are not bounded by one another and contain,
each one, a really original piece of information, will fully take advantage of the rotated residual plot.

In such cases, the positions and trajectories drawn in the rotated plots can be more revealing
than the examination of the two ratios underlying it. Firstly, because two dimensions allow an
increasing in specificity of diagnostics. Trajectories, recognized as such, are more accurate and easy
to interpret than the two trends underlying them. Secondly, because in some cases the information
conveyed by rotated plots is, not only more accurate and easy to interpret, but also unique. This
happens whenever the scatter of cases draw, in two-dimensions, a shape impossible to reduce to a
simple analytic form described by two observations.

For example, if the scatter of cases is less dense in one quadrant than in the others or if there is
a comet-like shape (a two-variate tail) the two-dimensional information cannot be reduced to a pair

of observations functionally linked.

8.2 The Mapping of Features Using Neural Networks

In this section we use the rotated plot or the residual one to trace trajectories of firms during a period
of five years. We further explain how this plot allows a scanning procedure for the automation of

financial diagnosis.

8.2.1 Modelling the Density Function

The spread of a set of stochastic variables defines a density function in the space they span. In
two dimensions, the density function would be the number of cases per square unit. Two-variate
Gaussian phenomena would exhibit a hill-shaped surface as its density function.

Statistical modelling techniques can be described as attempts to account for as many variability

as possible using as few descriptors as possible. For the usual applications the goal is estimation.
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This implies the finding of the best values for the parameters of some analytic formulation selected
a-priori. Such a formulation is supposed to govern a process we want to describe.

However, in other cases we wish to model the density function itself. That is, we want to build
a model — a representation as simple as possible — of the way cases spread but retaining the
information regarding where they lie. These models are known as maps.

Kohonen’s Self-Organized Maps are intended to undertake such a task. They output a collection
of positions which reproduce the original density of cases but using a smaller number of points
instead. Each one of the original cases relates to one of the new positions. The result is similar to
the division of cases into classes, but for more than one dimension.

After organizing cases in classes we obtain a model: A collection of values and the corresponding
frequencies. This model accounts for the density function observed in our data. The fact that it is
not the usual kind of model — analytic and oriented for estimation — doesn’t diminish its basic
quality of model. It is a simpler representation of the data.

Kohonen’s or similar maps are also models. In some cases they become the only possible model
since maps are the only way of accounting for spreads which are not simple enough for being

approached by analytic tools. Therefore, the reasons for using maps can be twofold:
e The information regarding the position of each case is relevant.
e The spread of the data draws a shape which is not geometrically simple.

Both reasons lead to the use of these tools as a way of modelling the rotated plots devised above. As
we stressed in the last section, each zone of a rotated residual plot is assigned a financial diagnostic.
It is the fact that a case lies in a particular zone that is important here. Also, rotated residual
plots and other similar tools often exhibit irregular shapes. For example, in rotated residual plots
reflecting profitability or flow of funds, it is frequent to observe a comet-like shape, with a high
density around the origin and the surroundings almost empty except for the third quadrant. Such
a shape would be difficult to account for with analytic approaches.

We shall use an abbreviation, RRP, to designate the rotated residual plot. We selected a par-
ticular industry, the Food Manufacturers and the profitability ratio to illustrate the use of maps
in RRPs and the possibilities they offer in the tracing of dynamic features. On the next pages we

describe, step by step, the procedure leading to automatic diagnosis.

8.2.2 Building the Rotated Residual Plot

For each year of the period 1983-1987 separately, we select two different samples. One contains the
cases with positive EBIT. The other one, those having negative EBIT. Then, a symmetric log
transform is applied (formula 2 on page 54). The items to be used, NW and EBIT, are mean-
adjusted year by year. Any joint trend related to an annual effect 1s thus accounted for. Also the

proxy for size to be used, log s, is mean-adjusted separately by year.
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Figure 65: Two rotated residual plots for assessing the liquidity of firms in the Food Manufacturers
industry, 1983 to 1987. On the left, cases with negative EBIT.

Next we find the Y-axis and the X-axis of the RRP, in the same way for the positive and negative
EBIT samples. For log residuals defined as

eBBIT — log EBIT —log EBIT — (log s — log s)

and

"W = log NW —Tog NW — (logs — log s)
we obtain the two axis

EBIT _ .NW

EBIT | -NW and r=ce

y=c¢

The final aspect of the two RRP is displayed in figure 65 (page 198).

As discussed in section 2.3, these scatters represent two different things and should be modelled
separately. On the other hand, when studying dynamic features, it is convenient to introduce some
form of continuity between one model and the other one thus allowing the tracing of firms which

EBIT emerges from negative to positive values and conversely.

Drawing the continuity between profits and losses: This task is facilitated by the fact that,
in the RRP of positive values, the third quadrant seems to be logically linked with the first quadrant
of the RRP for the negative ones.

In figure 63 (page 193), the third quadrant is the region delimited by “C” and “D”. It contains
the firms below the expected both in profitability and in the magnitude of this feature regarding
the size of the firm. Similarly, in the samples showing negative EBIT, the first quadrant — the
region between “E” and “B” in the same figure — contains firms with less severe losses and which

profitability is larger than the expected for negative-EBIT firms of that size.
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Figure 66: The joint RRP formed with the positive cases and the negative ones shifted so that they
occupy a region of the third quadrant far away from the rest of the data.

Let us suppose that a firm gradually falls into negative earnings. It will draw a trajectory towards
the second or the third quadrant and then into the first or fourth quadrant of the negative plot. But
the path through the third quadrant seems the most logical for leading to losses since it means a
firm too large for what it is worth and also for the generated profits. The path through the second
quadrant would mean a firm too large for the generated profits as well, but with a balanced capital
regarding its size.

Conversely, when a firm gradually emerges from a situation of poor profitability to a more healthy
state 1ts path will go along the first or the fourth quadrant of the negative plot until it reaches the
third or the second one in the positive plot. But the path through the first quadrant is the logical
one for getting out of a situation of loosing money since it means an improvement in both Earnings
and Net Worth regarding size.

The fact that firms often fall into negative earnings from quadrant other than the third one
doesn’t invalidate our reasoning. The logical path linking these two situations seems to be the
described one. It links the worst situation of positive earnings with the best one of negative ones.

We also observed that the position of firms having at least one year with losses during the usual
period tends to be in the third quadrant. Given this, it seems as if the continuity between profits
and losses should be drawn between the third quadrant of the positive sample and the first one of
the negative sample.

Accordingly, we place the negative plot in the third quadrant of the positive one, far away from
the rest of the data. This is done by shifting all the cases in the former by a negative amount and
then mixing both plots. The result i1s the joint RRP displayed in figure 66. Notice how the spread

of the negative cases is much larger than the spread of the positive ones.
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It is now possible to set the mapping algorithm to learn the joint density of cases as it appears
in figure 66. But before doing so it is convenient to gain insight in the way the RRP conveys known

accounting information regarding the evolution of a firm’s profitability.

8.2.3 Using the Rotated Residual Plot

In this section we compare the information conveyed by a set of ratios with the one of the RRP. The
goal is to provide a means to get acquainted with this new tool by putting it side by side with the
usual source of information for analysts, the ratios.

We selected nine firms from the Food Manufacturing industry. For each one of them we display
the ratios Sales to Net Worth, Funds Flow to Total Debt, EBIT to Net Worth, the Current Ratio
and also log s, our proxy for size. The evolution of these ratios during the considered period of five
years is displayed as a time-history.

For each of these nine firms we also present the trajectories drawn in the RRP described above.
The whole of the information is contained in figures 67 (page 201), figures 68 (page 203) and figures 69
(page 205). This graphical description is complemented with table 33 on page 206.

How to read the displayed material: The figures mentioned above compare ordinary ratios
with RRPs. For each one of the considered firms they display, on the left, a time-history of some
usual ratios. On the right, the RRP as described above. Each mark on the RRP represents the
position of the firm for one year. For example, “4” shows the position of the firm in 1984. In order
to interpret the RRPs, firstly notice that the nearest a firm is from the centre, the less 1t diverges
from the standards for the industry. Secondly, the scales assessing departures from standards are
visible at the edges of the plots. Since we are working in log space, these scales are relative.

In this particular case, the X-axis of the RRP measures the relative deviations of liquidity from
the expected. The Y-axis measures how much the magnitudes of Earnings and Net Worth taken
jointly diverge from the expected for the size of the firm.

It is also possible to interpret the RRPs in terms of the quadrant a case lies. The first one means
both earnings and capital larger than the expected. The second one means capital larger than the
expected but earnings smaller. And so on.

We shall now comment on each one of the presented cases.

Firms occupying a steady position in the RRP: The first two firms on the top of figure 67
are an example of a steady position in the RRP.

When reading the information conveyed by ratios about the evolution of UNITED BISCUITS, a
large firm, we notice that during this period their sales suffered a small decrease and their profitability
was steady. The reading of the RRP says that both the position of this firm in what concerns
profitability and the proportion of this feature regarding the size of the firm are the expected ones
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Figure 67: On the left, the evolution of a few ratios and a proxy for size during a period of five
years. On the right, the corresponding rotated residual plot — EBIT to Net Worth — showing the
trajectory drawn by the firm during the same period. Marks 1 to 7 indicate positions from 1983
to 1987.
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for the industry. Also, they didn’t change during the whole period. Both the profitability as a
contrast and the magnitude of earnings or Net Worth when compared with the expected for firms
with the same size stay near the standard for the industry for the whole period.

ASSOCIATED FISHERIES is another example of a steady position. Its profitability is half of a
point below the expected but it agrees with the expected given the size of the firm. The information
provided by ratios says that sales increased until 1986 and then broke down to the values of 1983.
Profitability was steadily increasing during the whole period while the size of the firm seems to

decrease — or, more likely, it is not in step with the growth of the industry.

Clear trends in the RRP: MAUNDER (LLOYD) in figure 67 and NESTLE (UK) on top of
figure 68 show a clear trend towards a better performance during the five years considered. The
first one is a small firm. It recovers from a dangerous position of profitability one point below
the expected and over-sized regarding profits to a comfortable new one agreeing with the standard
for the industry. The second firm is larger than the expected for the industry. It improved its
profitability from a standard state to almost one point above such standard. This was achieved
without disturbing the magnitude of this feature when compared with the size of the firm. Such

proportion was kept within the standard for the industry.

More complicated trends: CAMPBELL FROZEN FOODS (figure 68, page 203) is an example
of a more complicated evolution. The Sales to Net Worth ratio broke a bit after 1985 and the
final picture, in 1987, is the one of a not very profitable firm. The RRP shows an increase in the
importance of profitability inside the firm, followed by a severe break of one point in the profitability
as a feature.

The whole of the trajectory lies in the upper two quadrant which means an excess of Net Worth
when compared with the standard for the industry. The second quadrant explicitly means that such
an excessive capital is not actually producing the expected profits.

OVERSEAS FARMERS is a typical case of increasingly poor profitability. Since the volume of
sales didn’t break down in the last two years of the period, we must conclude that other factors are
affecting the performance of this firm. The RRP shows, in these two years, a sliding of almost one
point in profitability and of almost two points in the importance of this feature inside the firm. This

firm is too large for what it is worth and also for the generated profits.

Cases of negative EBIT: Figure 69 (page 205) focus on three firms having negative EBIT in at
least one year of the considered period. Above, a medium-sized firm, BOWYERS, shows a severe
break in earnings in 1985 followed by an immediate recovery. FOODANE, the next firm to be
displayed, jumps between positive and negative earnings during the period. Finally, G. P. LOVELL,

a small firm, shows an excursion into profitability in 1985 and 1986.
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Figure 68: On the left, the evolution of a few ratios and a proxy for size during a period of five
years. On the right, the corresponding rotated residual plot — EBIT to Net Worth — showing the
trajectory drawn by the firm during the same period. Marks 1 to 7 indicate positions from 1983
to 1987.
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When compared with the standards for the industry the above firms are all over-sized for what
they are worth and for the profits they generate. As remarked, the third quadrant in the RRP seems

to be a dangerous zone when both ratio components are related to positive aspects of the firm.

Discussion and conclusions: We expect to have shown that this simple tool, the RRP, is able
to convey interesting information regarding the feature being analyzed. It shows itself as a different,
vet familiar, way of reading accounts.

It is different from simple ratios in that it conveys more than one piece of information at a time.
But it is based on the same principles: The contrasts between two magnitudes are able to capture
features and the value expected for the industry sets the standard of normality.

In this particular application we focus on liquidity. The two axis were useful in characterizing
the behaviour of firms and, in some cases, in drawing meaningful trajectories. Such trajectories are
unique to the RRP. They reveal a certain behaviour valuable for financial analysis and less explicit
when using ratios solely.

One very particular characteristic of the RRP 1s that it emphasizes the difference between positive
and negative earnings. When we study the cases displayed in figure 69 by means of the usual ratios
we notice that a jump into negative EBIT can appear just as a small or even very small break in
the value of the ratio. But when using the RRP for examining the same firms this break is outlined.
This is caused by the lack of continuity between the two plots forming the RRP.

Such a feature of the RRP is, in our opinion, desirable. It is good to stress the difference between
two so different states as those of having profits or losses, even when the profits were small and the

losses were small too.

8.2.4 Automating Financial Diagnosis

We now return to the mapping process. By exposing the spread of cases displayed in figure 66 to an
appropriate mapping algorithm we obtain a smaller number of points in IR? reflecting its density.
When the used algorithm is a self-organized mapping, each coordinate of this reduced set of points
is the value a given weight has learned. And whenever a case lies in the neighbourhood of such
points, the node or neuron to which these weights are linked will fire or get “excited”.

Figure 70 on page 207 shows the positions, after the learning process has finished, of the reduced
set of points or neurons superimposed to the scatter used to train them. These positions are only
approximations of the real ones. Straight lines link nodes that are neighbours.

The number of neurons and its form was determined prior to the learning. We decided that the
final map would be a rectangle with three rows of nine neurons each. Hence, it would be prone for
adopting an oblong shape like the one it was to be set to learn. We refer to any position within this
topography by saying that the index ¢, = 1,9 is a counter of the rectangle’s row number and the

index j,j = 1,3 is a counter of its column number. Any neuron will be determined by a pair {i,j}.
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Figure 69: On the left, the evolution of a few ratios and a proxy for size during a period of five
years. On the right, the corresponding rotated residual plot — EBIT to Net Worth — showing the
trajectory drawn by the firm during the same period. Marks 1 to 7 indicate positions from 1983
to 1987.
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Company 1983 | 1984 [ 1985 | 1986 | 1987
Mean-adjusted log size

8 ASSOCIATED FISHERIES PLC 0.230 | 0.184 | 0.179 | 0.201 | 0.219
21 BOWYERS (WILTSHIRE) LTD 0.170 | 0.124 | 0.048 | -0.03 | 0.025
26 CAMPBELL FROZEN FOODS LTD | -0.24 | -0.24 | -0.25 | -0.15 | -0.16
38 FOODANE LTD -0.87 | -1.02 -0.92 | -1.13 | -1.43
51 LOVELL (G.F.) PLC -1.09 | -1.11 -1.18 | -1.15 | -1.16
55 MAUNDER (LLOYD) LTD -0.26 | -0.23 | -0.27 | -0.31 | -0.27

60 NESTLE HOLDINGS (UK) PLC 0.975 1.005 0.998 | 0.991 | 0.988
62 OVERSEAS FARMERS’CO-OP FE -0.88 -1.01 -1.05 | -0.94 | -0.87
86 UNITED BISCUITS (HOLDINGS) 1.397 | 1.447 | 1.439 | 1.447 | 1.448
Funds Flow to Total Debt

8 ASSOCIATED FISHERIES PLC 0.221 | 0.265 | 0.226 | 0.228 | 0.261
21 BOWYERS (WILTSHIRE) LTD 0.318 | 0.357 | -0.02 | 0.224 | 0.407
26 CAMPBELL FROZEN FOODS LTD | 0.478 | 0.524 | 0.866 | 0.599 | 0.419
38 FOODANE LTD 0.047 | -0.08 | 0.037 | -0.38 | -2.45
51 LOVELL (G.F.) PLC 0.043 | 0.122 | 0.159 | 0.387 | -0.01
55 MAUNDER (LLOYD) LTD 0.179 | 0.207 | 0.161 | 0.157 | 0.206

60 NESTLE HOLDINGS (UK) PLC 0.223 0.301 0.338 | 0.442 | 0.477
62 OVERSEAS FARMERS’CO-OP FE 0.204 | 0.213 | 0.158 | 0.057 | 0.033
86 UNITED BISCUITS (HOLDINGS) 0.323 | 0.274 | 0.329 | 0.332 | 0.420
EBIT to Net Worth

8 ASSOCIATED FISHERIES PLC 0.117 | 0.104 | 0.150 | 0.166 | 0.182
21 BOWYERS (WILTSHIRE) LTD 0.089 | 0.128 | -0.20 | 0.271 | 0.368
26 CAMPBELL FROZEN FOODS LTD | 0.218 | 0.232 | 0.227 | 0.100 | 0.064
38 FOODANE LTD 0.208 | -4.11 0.019 | -0.43 | -2.22
51 LOVELL (G.F.) PLC -0.01 -0.03 | 0.020 | 0.138 | -0.12
55 MAUNDER (LLOYD) LTD 0.026 | 0.073 | 0.053 | 0.091 | 0.227

60 NESTLE HOLDINGS (UK) PLC 0.152 0.310 0.366 | 0.538 | 1.336
62 OVERSEAS FARMERS’CO-OP FE 0.192 | 0.299 | 0.203 | 0.097 | 0.057
86 UNITED BISCUITS (HOLDINGS) 0.394 | 0.372 | 0.307 | 0.325 | 0.338
Sales to Net Worth

8 ASSOCIATED FISHERIES PLC 2.85 2.95 3.17 3.30 2.86
21 BOWYERS (WILTSHIRE) LTD 7.70 7.55 10.04 | 15.54 | 14.04
26 CAMPBELL FROZEN FOODS LTD | 3.37 3.01 2.67 1.51 1.51
38 FOODANE LTD 87.30 | 502.00 | 21.34 | 34.08 | 79.65
51 LOVELL (G.F.) PLC 3.26 4.67 3.19 3.30 3.81
55 MAUNDER (LLOYD) LTD 10.27 | 12.70 | 13.81 | 17.54 | 16.22
60 NESTLE HOLDINGS (U.K.) PLC 5.60 4.56 5.21 6.02 9.55

62 OVERSEAS FARMERS’CO-OP FE 9.22 13.70 | 11.04 | 15.96 | 31.90
86 UNITED BISCUITS (HOLDINGS) 5.26 5.51 4.36 4.02 3.74

Current Assets to Current Liabilities

8 ASSOCIATED FISHERIES PLC 1.50 1.88 1.51 1.45 1.73
21 BOWYERS (WILTSHIRE) LTD 1.54 1.72 1.25 0.20
26 CAMPBELL FROZEN FOODS LTD | 1.75 1.98 3.08 4.60 3.05
38 FOODANE LTD 1.08 0.90 1.91
51 LOVELL (G.F.) PLC 1.81 2.14 1.96 2.04 1.79
55 MAUNDER (LLOYD) LTD 1.17 1.15 0.85 1.03 1.04
60 NESTLE HOLDINGS (U.K.) PLC 1.12 1.25 1.32 1.20 0.93

62 OVERSEAS FARMERS’CO-OP FE 2.21 1.96 1.74 1.28 1.09
86 UNITED BISCUITS (HOLDINGS) 1.19 1.12 1.41 1.45 1.30

Table 33: Some ratios and a proxy for size during the period 1983-1987 for the nine firms examined.
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Figure 70: The position of each one of the 9 x 3 neurons after learning, superimposed to the shape
they have learned. Neurons which are neighbours in the discrete space have been linked by solid
lines.

As a result of the learning process we obtain a model. This model consists of:

e A set of 9 x 3 nodes, each one with two weights, {wfj,wfj},i =1,9,7 = 1,3 fixed in some
learned values. The weight w® links to the X-coordinate of the input vector. The weight wY

links to the Y-coordinate.

e A neuron which measures the distance between the weight vector and the input vector and
fires if this distance is the smallest amongst all the neurons. In our example the distance used

was the Euclidean one:

d=/[wr =2 + (w? = )’

Other distance frequently adapted is the inner product X - W. It provides a measure with

some interesting qualities. Tattersall [126] explores this subject.

The output of this model is the pair {7, j} identifying the neuron which fired. For each input vector
{@,y} the corresponding output is this pair {i,j}. Hence, the described learning process can be
viewed as a map of a continuous-valued space onto a discrete one. In the literature this kind of

mapping 1s known as a quantization.

Trajectories in the reduced space: Now, if we input the model with a sequence of vectors
representing the same firm during a period of five years it will output the corresponding sequence of
fired neurons. This output sequence defines a trajectory in the reduced or discrete space. Figure 71

on page 208 shows several of these trajectories.
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Figure 71: Three reproductions of the set of neurons supporting a few trajectories of firms in the
discrete space they define.

Regions and rules: Since each neuron, after training, acquires a mapping quality, its firing has
a precise meaning on financial analytic grounds. This is because each region of the mapped RRP
also has a precise meaning.

Therefore, it makes sense to build a set of rules or a diagnostics table relating the ¢ and j of a
fired neuron to liquidity and the magnitude of its components inside the firm. In our example, for

instance, we could set a few rules like

if ¢ > 2 then
if j = 1 then too much size for what the firm is worth.
if j = 2 then size 1s correct for the worth of the firm.

if j = 3 then too much capital for actual size.

and so on. A similar set of rules, or a diagnostics table, could be more or less detailed depending on
the number of neurons used. If, in our example, we were to use a larger number of neurons in the j
dimension (for example, 5 instead of 3) we would get more specific diagnostics. But it is not clear

whether such an increase would be desirable.

Robustness of the obtained model: Since the RRP uses mean-adjusted values and the basis
of each diagnostic is the extent to which each case departs from this central trend, it follows that
the displayed table of correspondence 1s expected to be, to some extent, independent from changes
introduced in the data. After building a model for a given industry it is not likely to be necessary

to adjust it frequently.

208



It would be necessary to undergo the building of a new map only when the spread suffers itself a
noticeable distortion. Strong external influences could introduce real modifications in the whole of a
statistical distribution of an industry for some specific features. For example, a period of expansion
or collapse would substantially modify patterns of profitability.

A drawback of this algorithm is that sometimes it is difficult to make the map span the whole
of the scatter. Cases may occur that will not fire any neuron at all. But this happens mainly
when, during training, the neighbourhood of neurons is defined in a simplistic way. Any attempt to
reproduce Kohonen’s algorithm should use more elaborated definitions of neighbourhood than those
given as examples in introductory texts.

Kohonen’s algorithms also seem to have difficulties when the spread to be mapped has regions
with very different densities. In our case the algorithm was unable to cover the whole region of
negative EBIT. Therefore, the diagnostics we obtain for this zone are very general — contrasting

with the detail obtained for the positive ones.

8.2.5 Discussion and Prospects For Future Applications

Besides Kohonen’s Self-Organized Maps, other algorithms exist able to perform the same task. Any
of the tools known as “quantizers” — for instance, the nearest-neighbour one — could be used
instead to obtain the reduced set.

We selected this particular model because 1t illustrates a practical use of the Hebb’s Rule. Com-
petitive Learning and in general the Connectionist approaches to known problems have some inter-
esting features though. They are parallel in structure, which makes them ideal for implementation

on future machines. And they are also robust regarding assumptions about the data.

The RRP as a pre-processor for expert systems: The rules resulting from using this tech-
nique can be fed into a more general system along with other sources of knowledge. Automatic
diagnostics could be extracted from large databases containing accounting data. Several RRP with
the corresponding maps could cover more than one feature of the firm outputting rules that would
be jointly processed by this system along with related information.

In such an environment, the RRP plus quantizer would act as a pre-processor allowing bridging

the gap between continuous-valued, stochastic data and symbol-based systems.

Other promising plots: Predicting the future failure of firms. Profitability is perhaps not
the most adequate feature for testing the real possibilities of the devised tools. Unfortunately we
were not able to test them in firm distress prediction. We think that simple rotated plots along with
our maps are ideal for tracing strong, low-dimensional, relations such as those linking accounting

information and the distress of firms.
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Early attempts to diagnose firm distress using accounting information date from 1966 when
Beaver [7] [8] identified the ratio that would predict failure more accurately. Altman [3] and others
centred their efforts in the problem of performance. Indeed, they improved performance using mul-
tivariate techniques. Altman’s last published results (the Zeta model, 1978 [4]) showed a remarkable
ability to forecast failure.

From 1970 on, the number of published works on this very subject has been enormous. However,
the original challenge suggested by Beaver — the identification of simple, useful, tools able to perform
a task reasonably well — deserved much less attention.

A review of this research can be found in Foster [44] (chapter 15). Taffler [125] is the most
representative study of this kind in the U.K.

It seems clear that little improvements in performance can now be expected when predicting firm
failure. However, if the reasons leading to distress are more than one, and if these differences can
be captured in a firm’s accounts, it would be interesting to test the use of our rotated plots along
with the dynamic tracing capabilities of Kohonen’s maps to identify trajectories leading to disaster.
Perhaps it would emerge that there are more than one paths leading to insolvency. In that case, a
better understanding of the distress process and the mechanisms internal to the firm could emerge,

balancing a common weakness of these studies.

8.3 Summary

In this chapter we used Kohonen’s Maps to automate financial diagnosis. Firstly, we explored the
graphical possibilities offered by the homogeneity of two-variate relations in log space. We outlined
the two kinds of complementary questions ratios are called upon to answer and we described graphical
tools able to give joint answers to those questions. Secondly, Kohonen’s Maps were used to perform
a quantization allowing the assigning of a diagnostic to each region in such graphical tools. The
set of rules automatically generated in this fashion can be seen as the result of a pre-processing for
symbol-based expert systems.

Rotated plots can be used as direct tools for diagnosis in the same way financial ratios are. But
they yield a richer information, namely by incorporating relative size — or, alternatively, a contrast

with size — and allowing the study of trajectories.
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Chapter 9

A Taxonomy of Risk in Large U.K.

Industrial Firms

Can Neural Networks capture the relation between the expectations of investors and the character-
istics of traded assets? In this chapter we investigate this possibility using a particular kind of asset,
the large and frequently traded industrial firms in the U.K. We rely on considerations similar to
those of Ross’s APT [104] to breakdown the market returns into four main orthogonal forces. Then
we build models to explain the sensitivities of our set of industrial firms to each of these forces in
terms of accounting information.

Our experiment comprises four steps. Firstly, sensitivities are extracted from the time-history of
121 returns. Secondly, the statistical behaviour of these sensitivities is described. The third step is
the modelling of the relation between the sensitivities and accounting information using the MLP.
Finally, we study the behaviour of the obtained models.

This research found a clear relation between some specific features of accounting reports, and
a firm’s appraisal by the market. A Multi-Layer Perceptron was able to approach the sensitivities
of firm’s returns to market forces using data reflecting stable features of a collection of firms: Size,
industrial group, work force and payment patterns. It turns out that a very significant portion of
the cross-sectional variability of these sensitivities can be explained by accounting numbers. It also
emerged that the map relating stable features of firms to sensitivities is a complex one.

A promising characteristic of the studied relation is that, to some extent, particular forces impinge
upon specific features. For example, the fourth orthogonal factor extracted from returns is the only
one relating to Inventory. The third factor relates mainly to Wages and the second one to Net
Worth. The first and second factors’s sensitivities depend strongly on the size of the firm but in
opposite directions. The third factor doesn’t recognize size. All the factors’s sensitivities recognize

industrial grouping but the fourth one to a smaller extent. In some cases, a given force clearly reacts
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Figure 72: Time-history of six monthly returns on assets traded in the LSE. Co-variance is clearly
visible.

in opposite directions for the same feature in two industries.

The method developed here opens the possibility of building a taxonomy of risk. This would be
interesting for investment appraisal. Also, the knowledge about the way each market force impinges
upon specific features of the firm is potentially valuable in understanding and identifying the real

nature of such forces.

9.1 Introduction: Financial Risk and Asset’s Features

This study relates the co-variance structure of returns on assets to the accounting features of such
assets. Co-variance is a basic characteristic of returns (see figure 72 on page 212). This section

explains the basis leading to expect such a relation.

9.1.1 Capital Markets and the Trading of Assets

Decisions by firms and investors are typically made under conditions of uncertainty. Unique events
which frequency distribution can not be objectively specified are known as uncertain events. In the
case of a known frequency distribution it is usual to talk about risk rather than uncertainty [139].

Uncertainty, as well as riskiness, can vary between a maximum and a total absence (certainty). An
adequate measure for uncertainty could be the expected missing information about future mutually
exclusive events. However, it doesn’t take into account the values under risk.

A more useful proxy for risk is the variability future outcomes exhibit. But measures of vari-
ability with practical use are parametric-dependent. They require precise assumptions about the
distribution of the data. Unfortunately, the spread observed in returns is usually leptokurtic, thus

allowing the parameterization of central trends but not the one of the spread.
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Finally, risk can also be seen as the sensitivity of an asset’s expected return to unanticipated
changes in some external factors. This proxy is free from assumptions about the spread of returns.
Instead, it implies the assumption that there is some general stable model linking risk to the expected
return on an asset. In a capital market this seems to be the case.

Capital markets, when available, trade-off risk and return. Actual prices of an asset are deter-
mined by the investors’s expectations about its future returns.

The expected return of every asset must be proportional to the investor’s perception of risk. Risk
and expected return will be linearly related — otherwise arbitrage opportunities would emerge.

If the expected return on assets traded in capital markets are influenced by more than one
economic force the distribution of expected returns will display more than one dimension. Absence
of arbitrage opportunities will imply, in this case, that the expected return on each asset must be a

linear combination of its sensitivities to such external forces.

Relating risk to return on assets: Finance theory requires that discounting of future expected
cash flows ought to be made with discount rates similar to those observed in assets bearing the same
risk. If there is a general and tested model relating risk, whatever it is, to expected return, and if
the way assets are similar before risk 1s also well known, this can be done. Otherwise, discounting
becomes a rather empirical exercise and probably will lead to wrong decisions.

When an asset is traded in capital markets the former requirement is fulfilled with the model out-
lined above, based on arbitrage, or using other models. But the relation that the market establishes
between sensitivities to unanticipated changes in forces impinging upon it and the different possible
characteristics of every asset is not well understood yet despite the large amount of research devoted
to this issue. Even restricting ourselves to specific groups of assets like productive commitments
(industries, trade or services), there is no available guidance to relate expected returns to the main
features of such assets.

The information investors use in the appraisal of assets mainly includes the one contained in
periodic reports and accounts, as well as in other related sources. For each traded asset there is
an information content available to the market. It is natural to suppose that this content i1s not
one-dimensional. Therefore, it could perhaps be decomposed into more simple and more general
features like size and industrial group, each one of them perceived and traded by investors in a
consistent way.

If that is so, the different forces impinging upon the market would produce particular contrasts
when compared with each one of the features mentioned above. These contrasts would be complex,
though. For example, inflation could make leveraged firms belonging to a particular industry less
attractive to investors while others, belonging to a different industry, would appear as more attractive
because of precisely the same reason. As a result, when modelling investor’s expectations using long

term debt and inflation as input variables, a second-order effect would emerge.

213



Diversifiable and non-diversifiable risk: Assets are traded by what they are worth in the
market’s eyes. But the holders of traded assets are not risking their wealth in a way that directly
relates to the risk of each asset they hold. Just by holding many assets investors avoid a great
deal of the variability of their wealth created by fluctuations in the price of their risky assets. The
only variability they can’t avoid is the background movement of the whole market, the one which is
impossible to cancel out.

This background movement is a unique time-history. But it can be viewed as the result of a
few orthogonal forces, each one of them capturing the largest dimensions of the joint variability of
returns on all the traded assets.

Notice that we are not considering here any decomposition of the auto-correlation eventually
present 1n the time-history of this background movement. Instead, we consider such a movement as
the result of a few forces influencing all assets. Such forces are obtained from many time-histories of

returns on assets by decomposition of their joint variability into 1ts main orthogonal co-movements.

9.1.2 The APT: Diversifying the Points of View

After Ross’s seminal paper in 1976 [104], arbitrage models became present in finance research but
scarcely in finance practice. The first signs of practical use of the APT only nowadays seem to
appear [97]. The reason for this delay may well be the intuitive simplicity and the immediate interest
of the Betas, the sensitivities to non-diversifiable risk when compared with APT’s sensitivities.

In our opinion the original APT, despite being presented as an alternative to the existing models
for the appraisal of risk by investors, is not really an alternative. It makes interesting progress in

matters investors seem not to be interested in.

The point of view of investors: For example, the APT offers four or five independent forces
instead of one. But investors are only concerned with non-diversifiable risk. By definition, it 1is
impossible to have more than one non-diversifiable force. Two non-diversifiable forces could be
added and they would yield a unique one. Forces which cannot be added because they scatter in all
directions are diversifiable.

The APT gives the impression of having more to say about co-variance with the market portfolio
just by decomposing it into four or five components. But it hasn’t. Following an example given by
Copeland and Weston [26], if we are the pilots of a plane in danger, the APT would give us the
latitude, the longitude and the altitude whilst the CAPM only gives the distance to the airfield.
But our case is a particular one. We are running out of fuel. We can see the airfield in the distance.
Only, we don’t know if we should try to hold the plane or else to search for a place suitable for an
emergency landing. In this case, it seems as if the distance to the airfield is the piece of information
capital for getting out of trouble. And by knowing the longitude, the latitude and the altitude we

are not much better off. We would have to go through an awful lot of algebra for reaching the
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same conclusion. In other words, it is clear that if a thoroughly calculated Beta really expresses the
co-variance with the market portfolio, then investors don’t need anything else. The APT cannot
say more about non-diversifiable risk than the CAPM does. The co-variance with the market is the
only portion of an asset’s spread investors will pay to avoid. It is also the only piece of information
investors are likely to pay to know.

Also, the APT can present diversifiable risk as non-diversifiable. When the market forces are
extracted via a Principal Components rotation of returns, nothing prevents a small portion of diver-
sifiable variability to creep in a factor taken as an overall force. The smallest amongst the accepted
factors can be the result of the existence of large clusters of firms sharing similar sensitivities, not
of any overall force.

When a factor succeeded in capturing an overall market force it’s clear that such a factor rep-
resents non-diversifiable risk. But if it represents a large cluster of firms sharing similar features
regarding the way they are traded, the risk they introduce in the model is diversifiable. If the method
of regressions is used instead, we can’t be sure to be using real overall forces. Perhaps one of the
forces used has an overall effect in our sample but not to the whole market.

The CAPM is more robust regarding this problem since indices are built on purpose to avoid
diversifiable risk. The idea of diversification of risk is in the core of the way CAPM betas are
estimated. In the APT we can just expect it.

The point of view of individual assets: However, there are cases in which the APT could
become useful for financial practice. Whenever a more precise understanding of the way assets
are traded 1s required the APT is the choice. This is the case for the appraisal of productive
commitments. It is also the case of studies concerned with the market itself.

When searching for a general asset’s taxonomy of risk, arbitrage models seem very promising.
They are a breakdown of an information content into features. They should allow a better discrimi-
nation, each of the orthogonal forces showing particular affinity towards some aspects of assets. The
APT offers the possibility of looking onto an asset’s expected returns from several points of view.

The investor’s point of view is the one of an asset’s holder. When the emphasis is not in the
holder but in the asset itself, the APT becomes the adequate instrument for assessing the variability

of returns.

9.1.3 The Trading of Stable and Fluctuating Features of Assets

A basic concept in our research is the hypothesis that the market trades differently the stable or
intrinsic features of assets and the more fluctuating ones.

A rapidly growing body of research documents components which can be forecasted in asset’s
returns (see for example Fama [40], [41] or Keim [70]). Predictability is not necessarily inconsistent

with market efficiency. Stock prices need not follow a random walk to be efficient. Given this, it
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is reasonable to divide investor’s movements in two categories: Their expectations created by the
predicted component of prices, and their reaction to unanticipated changes with regard to such
prices. In other words, since the return on assets is a sum of two components — the expected
or anticipated returns plus the unanticipated ones — all the perceived trends would influence the
expected returns, not the unanticipated ones.

Arbitrage considerations lead to models in which sensitivities to unanticipated economic forces
play a role. The APT explains the second component of returns.

It is also known that economic trends seem capable of influence accounting numbers to some
extent and for particular reports. Linear models relating fluctuations in accounting figures to eco-
nomic trends have been tried by Brown and Ball [20], Gonedes [50], Magee [81], Lev [78] and others.
Such models seem to show that the expected component of prices — the trends — would relate to
some changes in accounting figures. However, there are numbers which can’t adapt themselves to
economic trends because they reflect features which are stable or intrinsic. Obviously, only those

numbers which can fluctuate with the economy will actually do so.

Stability and sensitivity: It is reasonable to suppose that, if fluctuations in a few features of
the firm can be dictated by the expected component of economic forces, the firm’s stable attributes
would create in investors the sensitivity to unanticipated forces. This is because only stable features
can have sensitivity. The fluctuating ones are not sensitive: They move along with the forces.

Stable features seem more promising in explanatory power than the fluctuating ones: The last
ones, incorporating the co-movement with broad economic trends, would be in some extent antic-
ipated by investors. In other words, the most stable features of firms would explain why investors
see assets differently, regardless of economic trends. For example, the industrial group and size of
firms would explain their sensitivity to unexpected returns for they cannot adapt their size or change
sector to face inflation or other trends. Conversely, less stable — less intrinsic, more contingent —
features like the financial structure or the dividend policy, would relate to trends in economic forces
and to expectations observed in prices.

If that is so, this study should search for relations between the most stable features of assets
and their sensitivities to the market forces. We consider industry group, location, size, operating
leverage, labour and capital intensity, payment pattern (hence, the short-term debt) as candidates
for explaining market sensitivity. Dividend policy, some component of capital structure, are less

intrinsic.

9.2 Existing Research

Our research relates mainly to the APT. Other somehow similar topics could be the “Accounting

Beta” or other econometric models relating Beta to firm features.
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The APT today: After facing some queries about its testability [111] [33] [112] and partially be-
cause of 1t, the APT incorporated equilibrium considerations as well as market portfolio equivalences
[52] [32] [24]. The generally accepted factors have being labelled in the following way: Inflation, In-
dustrial Production, Risk Premium in the market and Interest Rate’s term structure growth.

The tests of APT validity (see, for example [23], [101] and [117]) are generally considered as
non-conclusive. The main issues are the intercept term of the model, the independence of residual
risk, the lack of significance of the model in seasonal periods [53], and estimation problems [113].

The number of factors, their interpretation and stability have also been explored, leading to not
very consistent conclusions. See [28] for a study based on the LSE and [113] for remarks on the
influence of the estimation technique on the number of factors.

Three irregularities have been the subject of much interest:

e The small firm’s effect. There 1s considerable evidence that the mean returns of small firms

exceed those of large firms [30].

e The January effect. Mean returns in January exceed the mean returns in other months for

small firm categories [69]. The model seems to loose significance in other months [53].
e The weekend effect [71].

An excellent yet simplified discussion of arbitrage pricing models and their evolution can be found

in Jarrow [66].

Accounting measures of Beta: Much research has been published on the relation between
specific characteristics of the firm like operating leverage, gearing, or size, with Beta, the covariance
of an asset’s expected return with the market portfolio. Gahlon [47], Hamada [55], Hill [58] are some
examples.

An accounting proxy for Beta has been discussed in 1970 by Beaver, Kettler and Scholes [9], and
later by Thompson [127], and Beaver and Manegold [10]. After this, Bildersee [13], Blume [15], Bow-
man [18], [19] and others, did the same, achieving small but significant relations between accounting
and market measures of risk.

Traditional accounting measures of risk are attempts to highlight the uncertainty associated
with earnings of the firm. They are surrogates for the total variability of returns. Accounting Betas
reflect both the systematic component of risk and the residual one. Thus, the quality of accounting
betas as measures of real market expectations depend on the existence of a strong positive correlation
between this systematic risk and the residual component — the one the market doesn’t contemplate.

See [9].

Models of asset valuation: Another related body of research is the one concerned with the

valuation of assets. Foster’s chapters 9 and 12 [44] review two branches of such research. Chapter
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9 i1s concerned with capital markets and information efficiency. For example, the “Fundamental
Analysis” assumes that each asset has an intrinsic value that can be determined on the basis of
earnings, dividends, capital structure and growth potential.

Chapter 12 reviews the use of financial statement information in the trading of equity. Equity
valuation models focus on one or several features like predicted earnings, dividends, cash-flows or
the value of the assets owned by a company. They have been used for the valuation of non-traded
firms, and for supporting investment decisions.

Most of the methods referred to above are based on time-series prediction. They could be
described as projections based on the past. It is expected that they will explain the market reaction
to each asset’s performance. Rosenberg and Guy [102] are an example. Their research relates Betas
to fundamentals. For each particular firm, they attempt to increase the quality of this measure of
risk by incorporating corrections based on industry group, growth, the spread of earnings over time,

the financial structure, size and others.

Differences from our study: We would like to underline the fact that such models are not the
kind of relation we are interested in here. We are not using individual histories of firms to extract
variables and then correlate them with betas. We estimate the relation between the co-variance of
many assets with market forces and cross-sections containing accounting features of the same assets.
Individual histories reflect individual performance. Based on them it is possible to anticipate future

performance. Hence, these models can hide sensitivity to unanticipated forces.

9.3 The Data

The firms selected for this experiment belong to the usual set of industries we refer to in many
occasions during this study.

Prior to the final selection of the set of firms to be used we examined three kinds of returns. Daily
returns for a period of five years (1985-1990). Weekly returns for the same period. Monthly returns
for a period of 15 years from January 1974 to December 1988 and listed in the FTA All Shares Index.
For these three sets, returns were checked for the frequency of non-traded cases. The daily returns
yielded only 60 in a total of about 500 firms with a reasonably small number of non-traded days.
The weekly set yielded 71 such firms. We considered as reasonably small a number of non-traded
periods of 10% or less.

It was decided that it would be desirable to avoid the use of infrequently traded assets. The
known means for circumventing this problem [29] [109] would introduce in our experiment an extra
manipulation of information. Therefore, the daily returns and the weekly ones were discarded as
not suited for the experiment.

In the case of monthly returns there is a natural limit for the number of assets to be used.
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Fifteen years contain 180 time periods. It is impossible to extract real new information from more
companies than time periods: There would be more variables than equations.

From the set of monthly returns we obtained 121 industrial firms having both the quality of
belonging to our set of industrial firms and being frequently traded. A third characteristic i1s that
all of them are listed in the FTA All Shares Index. The institution providing the monthly returns
is the London Business School. Returns are calculated as

_ (pt + dt)
r = log,
Pt-1

in which p stands for traded price in month ¢, p,_; is the last traded price in month ¢ — 1 and d;
is the dividend declared adjusted to a month-end basis. All adjustments are based on the principle
that the value of a share i1s unaltered by a change in capital structure.

We decided to use these 121 collections of monthly returns for the extraction of sensitivities.
From such 121 firms, 77 belonging to 7 industries were used for building the model. It is possible to
access the accounting reports of these 77 firms for a period of four years, from 1983 to 1986. Each
example in our learning set is built with the accounts of one firm for one of these years and having
as outcome one sensitivity. Therefore, there are 77 x 4 = 308 examples.

The 77 selected firms and their industrial group are listed at the end of this chapter, in table 36

and the one on next page. The total number of examples 1s 308. By industry it is:

Industry N. Cases | Percent
Building Mats. 44 14.3%
Paper & Pack 40 13.0%
Chemicals 68 22.1%
Electrical 24 7.8%
Electronics 36 11.7%
Textiles 40 13.0%
Food 56 18.2%

The selection of the 77 final firms was made on an industry basis. Only seven industries were
selected. The reason for putting aside the other industries is twofold. Some of them, like Metallurgy
and Leather, were likely to introduce a very particular behaviour in the overall variability. Also,
some industries were discarded due to the small number of firms represented. On the whole, since
one of our goals was the assessment of the effect of industrial grouping, it didn’t seem appropriate

to gather in the same sample a large number of industries.

9.4 The Market Forces

Our experiment comprises four steps. First, the extraction of sensitivities from the time-history of

121 returns. Second, the study of the statistical behaviour of these sensitivities. Third, the modelling
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of the relation between them and accounting information, using the MLP. Finally the study of the
behaviour of the obtained models. In this section we describe the two initial steps.
Notice that the used marginal returns belong to a very particular kind of asset: Large and

frequently traded industrial firms in the U.K.

9.4.1 Extracting Sensitivity

Given the returns of 121 companies during the referred period, a Factor Analysis was performed on
their time-history taken as stochastic variables. The aim was to rotate the variance and co-variance
matrix so that a few minimum co-variance axis would emerge.

Four specific sensitivities of each asset to corresponding external forces were calculated as the

loadings of the four main factors present in returns. We obtained, for the j* asset’s return, T,
rj—roj =bij X fi+bay X fat o bay X fatg

in which rp; is the expected return on asset j and the b;;, k = 1,4 are estimations of the influence or
sensitivity of asset’s j return to the discovered forces fi, k = 1,4. Large b mean a large influence,
small by mean a small one. When a b; 1s negative, the influence and the force go in the opposite
directions. Any anticipated return will be incorporated into the rq.

Clearly, what we obtain in this case is a breakdown of the cross-correlation between time-histories
into its main components. In order to maintain a minimal level of comparability with other studies
we used Maximum-Likelihood, not Least-Squares, as the criterion for the extraction of factors. This
issue 1s not important, as far as our data is concerned.

The resulting factors are supposed to be a linear composition of a few main economic forces
impinging upon the market. In our case the five larger factors explained half the total variability.

Their Eigenvalues are displayed next.

factor | Eigenvalue | Percent | Acc. Percent
1 40.6 39.5% 39.5%
2 3.1 3.0% 42.5%
3 2.5 2.4% 44.9%
4 2.1 2.0% 46.9%
5 1.9 1.9% 48.8%

Apart from the first factor all the others decay smoothly towards smaller explained variability.
Table 36 on page 238 and the one on the page next to that one display the commonality of each firm
and the loadings corresponding to the four largest factors. The commonality ranges from 0.15 to
0.75. It is approximately Gaussian with a mean of 0.5 and a standard deviation of 0.11. Therefore,
for most of the firms, half the variability of their returns can be explained by these four factors.

The factor loadings are the main object of this experiment. They are supposed to represent sensi-

tivities of assets to unanticipated changes in market forces. In next section we examine them briefly.
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Figure 73: Mean values of the four sensitivities by industry. The displayed values show positions of
industrial groups (X-axis) regarding deviations from the overall mean of each sensitivity (Y-axis).

9.4.2 Preliminary Study of Sensitivity

In order to gain insight in the broad rules governing the relation between sensitivities and features
of the firm, preliminary studies were carried out. The results are important since they allow us to
highlight the differences between the MLP and linear tools.

We first observed the statistical behaviour of each sensitivity individually. Then we studied
their mean values by industry. Next, the co-movements of accounting items with each sensitivity
regardless of the industrial group were also assessed. Finally we built a linear model explaining

sensitivities in terms of both industrial groups and items.

Statistical behaviour of each sensitivity: The four variables containing the sensitivities are

broadly homogeneous. No real influential points were found. In the next table we display their basic

statistics.
Factor | Skewness | Kurtosis Mean Standard Deviation
1 -0.882 -0.122 | 0.41176 0.18900
2 -0.478 0.195 | 0.26898 0.12415
3 0.404 0.605 0.26286 0.14825
4 1.881 1.034 0.18363 0.12611

There are no strong differences between the sensitivities in what concerns these values. The
fourth sensitivity is less homogeneous than the others.

These variables are not correlated. Despite the factors being orthogonal, the sensitivities they
generate could be correlated. But only the fourth sensitivity seems to show traces of negative

correlation with the first and second ones.
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Sensitivity by industrial group: Next table summarizes the influence of industrial grouping
in these four variables. It shows the mean values and standard deviations of each sensitivity by
industry. The displayed values are the deviations from the overall mean for each industry. This

makes the interpretation easier. Figure 73 on page 221 is the graphical representation of this table.

Industry Factor 1 Factor 1 Factor 1 Factor 1
mean  st. dev. | mean st. dev. | mean st. dev. | mean st. dev.
BUIL -0.030 0.164 -0.069 0.105 0.011 0.102 0.037 0.114
PAPR 0.153 0.151 -0.100 0.117 0.061 0.125 0.011 0.143
CHEM -0.015 0.141 0.002 0.118 0.005 0.112 -0.025 0.100
ELEC 0.055 0.184 0.017 0.113 0.042 0.164 0.063 0.101
ELTN 0.070 0.124 0.111 0.083 -0.246 0.151 -0.008 0.178
TEXT 0.084 0.160 -0.071 0.080 0.001 0.103 -0.024 0.114
FOOD -0.196 0.171 0.095 0.066 0.081 0.071 -0.011 0.119

The effect of industrial grouping is significant for all the four variables. However, it is very strong
in the first three and it is weak in the fourth. The observed intra-class correlations (introduced in

chapter b) were:

Factor 1 | Factor 2 | Factor 3 | Factor 4
35.4% 39.9% 43.1% 3.4%

The three main factors are correlated with industrial grouping to an extent none of the accounting
items observed in previous chapters seem to attain. The fourth factor is also correlated — its F' 1s
significantly different from 1 — but to a much smaller extent.

We use the convention of calling “positive” to influences which are above the expected for that

sample. We call “negative” otherwise. In this fashion, the features of this effect are:

Force 1 strongly influences the prices on the Paper industry. It is also very influential for the Food

industry, but in the opposite direction.

Force 2 yields a positive sensitivity in Food Manufacturers or Electronics. It has a negative or

neutral effect on the other industries.

Force 3 has a strong, negative, influence on the Electronics industry. It is positive for Food Man-

ufacturers and Paper industries.

Force 4 generates a positive sensitivity in industries like Building Materials and Electricity. It

generates a negative one on the other industries.

This simple observation of means by industries is likely to help in elucidating the meaning and origin
of each one of the four forces. Notice that the above description is specific to this sample since it

relates to an expected value.
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1983 1984 1985 1986
Sign of slope + - + - + - + -
Fac. 1 Size Invent Size Invent. Size Invent. Size Invent.
G. Fund Sales
R? 52% 53% 50% 49%
Fac. 2 EBIT G. Fund G. Fund G. Fund
Sales Sales Sales Sales
R? 15% 11% 19% 13%
Fac. 3 C. A. C. A. W.Cap. Net W. W.Cap.
G. Fund G. Fund
R? 26% 16% 29% 17%
Fac. 4 Size Size Size Size
Debtors Debtors Debtors Debtors
R? 18% 10% 13% 10%
Comm. Size Size Size Size Credit.
G. Fund G. Fund G. Fund
R? 46% 44% 44% 40%

Table 34: Results of the preliminary regressions. For each period and factor, this table displays the
items that turned out to be relevant and the proportion of explained variability. The sign (+) means
a positive correlation with the sensitivity under question. The sign (—), a negative one.

Regressing items with sensitivities for individual periods: We selected four years of ac-
counting reports — 1983 to 1986 — matching the firms which sensitivities we had extracted. For
each one of these periods we examined the linear models obtained when explaining such sensitivities
in terms of accounting information.

We first used size-adjusted residuals, ” = (log # —log ) — (log s —log s), along with our proxy for
size, log s —log s, as the input variables. The outcomes, the sensitivities, suffered no transformation.

Table 34 on page 223 displays the results. For each period, the items that turned out to be
significant in explaining sensitivities are displayed along with the proportion of explained variability.
Also possible correlations with the commonality were investigated.

The only sensitivities clearly explained by accounting numbers are the ones related to the first
factor. Investors seem to reward Size and penalize Inventory. This, when no distinction between
industrial groups is introduced. The remaining factor’s sensitivities are very little explained by the
features of the firm, at least in this linear way. The second factor must represent something negative
to the economy since its sensitivities are negatively correlated with Earnings and Sales. The third
factor shows some affinity with short term features of the firm, but a small one. And the fourth
factor 1s negatively correlated with Size and Debtors.

The results are generally consistent during the observed period, the third factor being the ex-
ception: Its R? is dependent on the period.

The commonality 1s an expression of the variability explained by the four factors. It is clearly
explained by Size and Earnings. This means that the largest firms and the most profitable ones are
also the ones traded in a more regular, predictable, way. The market trades large and profitable
firms in a way that is more similar than the way it trades other assets. An interesting study related

to this issue is Roll’s “R?” (1988) [100]. It is an empirical assessment of the variability explained in
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Figure 74: The first factor’s sensitivities (Y-axis) against the relative size of firms (X-axis).

stock returns by the market models. Roll correlates the collection of R? observed in several kinds
of market models with a few characteristics of the firm.

Scatter-plots of sensitivities against size-adjusted items were also observed as part of this pre-
liminary study. Figure 74 on page 224 shows a typical shape obtained by plotting log s against the
first factor’s sensitivity. Clear correlations were observed between Size and the first two factor’s
sensitivities. The correlation between Size and the first one i1s non-linear. The second one exhibits
a negative linear correlation with size but industrial groups form visible clusters. Also Gross Funds
From Operations and Inventory show significant correlation with some sensitivities and they form

clusters as well.

Regressions including industry grouping as inputs: This second group of regressions ex-
plained each one of the four sensitivities in terms of accounting items plus a set of dummy variables
representing industrial grouping. It was meant to directly assess the gain in explained variability re-
sulting from using the MLP. The input space was similar to the one we used in the MLP experiment.

Therefore, we report these results later on together with the MLP ones.

9.5 Modelling Sensitivity With the MLP

Using the procedures explained in chapter 7 we modelled sensitivities in terms of accounting in-
formation using the Multi-Layer Perceptron. Since the four outcomes are almost orthogonal there
is nothing to be gained from showing them jointly to the MLP. Hence, we built four independent

models, one for explaining each sensitivity.
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Topology: In chapter 7 the problem was one of classification. In this case it is one of regression.
The only difference in what concerns the MLP is the use of linear transfer functions in the last layer
of nodes and Least-Squares as the success criterion.

The used topology and input variables were similar in the four cases. Two models were built for
each of them. First, one with 17 input variables corresponding to 10 residuals and 7 groups. The
topology was 4 nodes in the first hidden layer, 1 node in the second hidden layer and one output
node with a linear transfer function. Second, another one with 8 input variables corresponding to
Size plus 7 groups. Similarly, the topology was 4 nodes in the first hidden layer, 1 node in the second

hidden layer and one output node with a linear transfer function.

Description of the input variables: Table 35 shows these 17 input variables. Ten of them
correspond to items and seven are dummy variables taking the value 1 when a case belongs to a
particular industry and 0 otherwise.

One major difference with respect to the experiment carried out in chapter 7 was the nature of
the input variables used. Instead of raw data in log space we used the residuals or the size-adjusted
items, €%, along with Size itself. The procedure for obtaining this proxy for size is described in
chapter 5. We recall that in chapter 7 the size component was not introduced explicitly as an input
variable. Size was formed in one of the first hidden layer’s nodes. Here we introduce size explicitly
as one of the inputs and all the other items are size-adjusted.

The reason for not using log items is related to the goals of this experiment and the nature of
the problem. In chapter 7 our goal was to test the ability of the MLP to form meaningful structures
interpretable in terms of ratios. The relation itself was not difficult to model since it was near
linearity. Therefore it made sense to use afterwards the obtained ratios as predictors instead of
the MLP. In this case we face a complex model, highly non-linear. What would we do with the
ratios the MLP would form in the nodes of the first hidden layer? We couldn’t use them instead of
the model. The weight of the model in this problem is heavy.

Therefore we decided to use the size-adjusted items. They offer a ready interpretability of results.

They are also mean-adjusted so that the exploring of the model is straightforward.

Description of the training sets: Data from four time-periods (1983 to 1986) were gathered in
the sets to be used in the learning and test of the generalisation performance. For each firm — and
outcome — there were four input vectors. The total number of cases was enlarged in this way to a
reasonable value.

The randomization process leading to the division into two samples — the test and the learning
set — was carried out by blocks on an industry basis. As a result, firms were divided randomly in
two groups but since the randomization was made inside the same industry the two sets didn’t yield

large differences in their proportion of cases for each industry.
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Input variable Number of parameters engaged Total
Factor 1 | Factor 2 | Factor 3 | Factor 4
1 1

1

—_

Chemical dummy 3
Electronics dummy
Size

Textiles dummy
Wages

Current Assets

Debtors

Electrical dummy
Net Worth

Paper and Packing dummy
Building Materials dummy
Sales

Fixed Assets

Food Manufacturers dummy
Gross Funds From Ops.

Debt

Inventory 1

2
2
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Table 35: The number of free parameters (first hidden layer) engaged in the modelling, by input
and by factor. The table is ranked by total degrees of freedom.

The learning itself was performed at random too. Each example, comprising the inputs for a given
period and the outcome, was randomly selected before being present to the MLP. This procedure
avoids the modelling of any auto-correlation present in the data due to the mixing of four year’s
accounts.

As usual, the checking of the performance of the model was made in the test set, not in the
learning set. Since in this case the outcomes were continuous-valued the adequate measure to assess
the quality of the fit was the proportion of explained variability, R?, corrected for the degrees of

freedom engaged.

9.5.1 Allowing Complexity to be Accounted For

The adapted topology i1s somewhat austere. Since the number of cases to be used as learning and
testing sets was smaller than desirable, the number of free parameters should be kept as small as
possible as well.

The random penalization of weights linking input variables with the first hidden layer of nodes
further reduced them in a very significant way. During training we allowed this penalization to
continue even beyond the point at which the performance of the fitted model degrades. In other
words, we allowed a few weights which values were near the inhibition frontier but who were not
inhibitory themselves to be eliminated. This explains why, in the final models, some industrial
groups overlap so perfectly.

Table 35 on page 226 shows, for each one of the four models, the number of free parameters
remaining after the training finished. Since the number of nodes in the first hidden layer was 4, the

maximum number of free parameters per input variable would be four. This never happened. The
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training started with 68 free parameters and finished with 27 remaining ones (the first model), 20
(the second), 9 (the third), and 12 (the fourth).

The next table displays the R? observed in all models. In the MLP, values are similar except for
the third model in which the variability each parameter explains is higher. This model is the most

efficient one.

R? Factor 1 | Factor 2 | Factor 3 | Factor 4
MLP, all input variables 1% 48% 69% 36%
MLP, only Size plus industry 59% 36% 60% 22%
REG, all input variables 60% 42% 52% 21%
REG, only Size plus industry 52% 31% 42% 12%

As noticed before, industrial grouping is an important source of explained variability.

The number of parameters engaged is a rough measure of the complexity of the relation. When
looking into the behaviour of continuous-valued inputs we notice that Size and Wages engage six
parameters. Debt and Inventory merely engage one. In general, the dummy variables engage more
parameters than the continuous-valued ones. Chemicals and Electronics require six parameters

whilst Food only requires one.

Discussion: The overall proportion of explained variability in the test set is the most remarkable
characteristic emerging from this experiment. Especially in the case of factors other than the first.
When comparing these numbers with those of linear regressions it is clear that the MLP made
a significant improvement in capturing the relation. The conclusion is that the relation linking
accounting information with sensitivities is non-linear. This problem contains higher order effects,
created by the different behaviour of the relation to be modelled when in the presence of industrial
groups. In next section we shall highlight some of these interactions.

The variability explained just by the size of the firm and the grouping puts the above results
in perspective. Size and industrial group are the two factors which clearly explain the market’s
sensitivities. The first regression we performed didn’t have the information regarding groups. This
explains its poor performance. Inventory emerged, in such a situation, as the most suitable proxy
for the grouping effect.

Factor three’s sensitivities are not affected by size and both factor two and four ones are negatively

correlated with it. But all the four sensitivities are akin on grouping information.

9.5.2 Exploring the Models

This section describes how the exploring of the resulting models was carried out. We used an “other
things being equal” approach. It consists of varying one of the inputs at the time and maintaining
all the others fixed in their mean values. The observed outputs can then be compared.

The chosen approach is the only one available in this case. The model the MLP yields is far

too complicated for direct interpretation. The used procedure allows an effective look into what
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Figure 75: The first factor’s sensitivities (Y-axis) against size-adjusted Sales (X-axis) as predicted
by the “other things being equal” technique.

the model really does. However, the description that follows should be accepted with caution. In
some cases the “other things being equal” techniques yield misleading results just because the other
things cannot remain equal in the real world. No extrapolation beyond the neighbourhood of the
mean values of the inputs should be taken seriously.

In all that follows it is also important to remember that our experiment was carried out with far
fewer cases than the adequate. The results are interesting, not so much because of what they show

but more because of what the method promises.

How to read and interpret the displayed results: The figures related to this section are at
the end of the chapter, between pages 232 and 237. Figure 75 shows how these results are presented.
The X-axis measures Sales and the Y-axis the first factor’s sensitivity. Notice that, since we are
using size-adjusted items, zero sales means the value of sales which is expected for the size of the
firm. Values larger than zero mean sales above the expected for firms of that size and conversely.
This figure says that Sales and the first factor’s sensitivity are positively correlated. But Elec-
tronics is the industry with the largest sensitivity while Building Materials is the one with the
smallest. However, since in factor analysis the sign of the factors is arbitrary, the displayed figures
yield a coherent view but not one directly comparable with studies based on correlations with Beta.
For example, the trends we observe in the case of the first factor are the inverse of the ones Beaver,

Ketler and Scholes [9] obtained for similar variables.

The linear behaviour of factor’s sensitivities: We first comment on the simplest relations —
the ones which are linear regarding industrial grouping. Next, we comment on those cases in which

the model shows industries reacting in different directions to the same force.
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Figure 76 on page 232 shows the relation modelled by the MLP when explaining the first factor’s
sensitivity in terms of Size, Gross Funds, and Long Term Debt. These are easy to explain relations.
Each line is an industrial group. Sales, as seen, shows a similar pattern.

The first factor rewards positive features of the firm and penalizes Debt. None of the displayed
curves deserved from the MLP the engagement of many free parameters.

Figure 77 on page 233 shows the most linear relations with the sensitivities to the second factor.
They reward Wages, Debtors and penalize Earnings. But it is clear that some industries are more
sensitive than others. Electronics and Paper are slightly penalized. Notice that, since we are working
with size-adjusted variables, the meaning of Wages or Sales being large 1s that they are large for the
expected given the size of the firm.

The third factor’s sensitivities reward Net Worth and penalize Fixed Assets for some industries.
And they reward Wages if near the expected, penalizing both higher and smaller ones (figure 78 on
page 234). Both the Net Worth and the Fixed Assets of the Electronics industry seem not to be
affected by this force. On the contrary, its Wages are penalized while this 1s not the case for the
other industries.

Finally, the fourth factor’s sensitivities penalize Size and Debtors and reward Inventory (figure 79
on page 235). But Inventory and Debtors of the Electricity industry seem not to be disturbed. The
most affected industries are Electronics and Food.

So far, we described the linear models, that is, those in which the sensitivities of industrial groups

react in the same direction for the same force.

Higher order effects: If we examine the number of parameters engaged by the MLP we notice
that, except for Size, none of the relations commented above deserved the use of many degrees
of freedom. Size needed more degrees of freedom because it is a very strong non-linear though
monotonic relation.

We now study a few cases in which the MLP put a great deal of effort. The first one is displayed
in figure 77 on page 233. It is clear that the first factor’s sensitivities reward Debtors for industries
like Textiles or Paper and penalize it for industries like Food Manufacturers. It also seems as if they
would reward Wages in the case of industries like Textiles, Electricity and Food whilst penalizing it
in the Electronics industry. Chemicals and Building Materials seem not to be affected.

The interaction of Current Assets with the first force is particularly awkward. It seems as if there
is a penalization of the values expected for a given size in industries like Chemicals and Building
Materials along with a rewarding of the same situation in Electronics and Food.

Factor 2 also displays this non-linear kind of behaviour. Figure 81 on page 237 shows the
complicated pattern of its relation with Net Worth and Size. Again, industries seem to be affected
in different directions by the same market force. It rewards Net Worth if it is reasonable for the size
of the firm in industries like Textiles and Paper. But it penalizes the same situation if the industry

is Food. In the Electronics industry this force simply rewards capital.
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A standard size is rewarded by this factor if the industry is Textiles. It is penalized if it is Food.
Small firms are, in general, rewarded by this factor. But there is one exception, Textiles. On the
contrary, in the case of Electronic firms, the smaller the better — with regard to the second factor.

The remaining two factors didn’t show complex relations of this sort.

9.6 Conclusions: Towards a Taxonomy of Risk

The sensitivities of assets to unanticipated market forces seem to be closely related to features
identifiable and measurable in assets. Size and industrial grouping are the characteristics of assets
which mostly explain sensitivities. But other stable ones explain sensitivities as well. This is the
case for deviations from the expected for size in Wages, Net Worth and Sales, along with the short-
term structure. However, the relation between sensitivities and features is complex. The industrial
grouping interacts with features like Net Worth, Current Assets or size. The same market force

reacts in opposite directions to the same feature in different industries.

The sample: The use of the MLP and its ability to model higher order relations, along with our
framework, seem able to achieve a significant improvement in our knowledge of the way the market
recognizes and rewards features of assets. However, the results were obtained from less cases than
desirable and further experiments involving more firms should be carried out before practical uses
were to be attempted.

The fact that our sample of firms is a dated one — it belongs to a period of stability and
expansion — seems fortunate to us. It is clear that the relation we explored would be more difficult
to model with data from difficult periods.

The firms used are also from a very particular set. They are large and frequently traded. They
were drawn from well known and homogeneous industries. Therefore, the results should be always
referred to such set. The contingency of the selected sample is a desired advantage. This problem

couldn’t be equated with all generality. It is a problem to be solved one piece at a time.

How to explain the high R? obtained: There are many studies of this kind in the accounting
and finance literature. Though they found significant correlations between accounting and market
variables, they also convey the general impression that the explained variability is not very high.

Why did our results find high R?? The main reasons seem to be:

e We defined an input space based on the framework described in the first part of this study. It
may well be that such inputs are suited for statistical modelling to an extent so far unattained

by other studies.

e We used homogeneous samples obtained from a stable period of growth. The homogeneity

of the sample is granted by a background study (chapter 5). Too particular industries were
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removed from the experiment.

e The firms allowed in the sample are large and frequently traded. It is known that the co-

variance of such assets with market forces is larger than the expected.

e We modelled joint trends in cross-section, not indices extracted from individual histories. Thus

we avoided using pieces of information the market regards as predictable.

e We used non-linear tools for modelling relations which are complex. The improvements over

the linear ones were in some cases more than 10% of extra variability explained.

e We modelled four different points of view, not just one. This allows a better scanning of the

variability to be explained.

It seems now clear that there 1s room in finance research for the use of MLPs. They can apportion
very significant improvements in the amount of explained variability in some crucial problems. This

is because they are able to model higher order relations without damaging generalisation.

Stability and unanticipated movements: We would like to underline the fact that most of
the existing studies on this subject use earnings and dividends and their standard deviations to
predict Betas. But these features are case-dependent and to some extent expected. They rely
upon the quality of management and on his policy. They have little in common with the unantici-
pated components of overall forces — the co-variances with the market movement. Betas are about
unanticipated overall forces, not about management policy or success. It is natural to find small
correlations between these two variables.

We think that the way investors react to really unanticipated changes is very dependent on a few
stable characteristics of assets. An accounting proxy for Beta should be searched mainly amongst

those features which actually are sensitive to unanticipated movements, the intrinsic ones.

A taxonomy of risk: Our results show that it is possible to build, for each group of assets, a real
taxonomy of risk in terms of their characteristics. Expected returns can then be calculated on the
basis of such characteristics allowing a less blind discounting of future case-flows.

For example, if a productive commitment is to be undertaken, the models produced by the MLP
could be fed with its budgeted numbers. As a result they would yield four sensitivities. Then the

APT would predict its return based on these sensitivities.

The identification of market forces: This experiment also shows that it is possible to achieve
a better understanding of the forces impinging upon the market by examining the features of firms
and industries affected by each force. A further exploring of this particular subject is not in the

main line of this study.
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Figure 76: Other things being equal, the model obtained with the MLP predicts these relations
between accounting features (X-axis) and sensitivity to the first factor (Y-axis).
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Figure 77: Other things being equal, the model obtained with the MLP predicts these relations
between accounting features (X-axis) and sensitivity to the second factor (Y-axis).
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Figure 78: Other things being equal, the model obtained with the MLP predicts these relations
between accounting features (X-axis) and sensitivity to the third factor (Y-axis).
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Figure 79: Other things being equal, the model obtained with the MLP predicts these relations
between accounting features (X-axis) and sensitivity to the fourth factor (Y-axis).
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Figure 80: Other things being equal, the model obtained with the MLP predicts these relations
between accounting features (X-axis) and sensitivity to the first factor (Y-axis).
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Figure 81: Other things being equal, the model obtained with the MLP predicts these relations
between accounting features (X-axis) and sensitivity to the second factor (Y-axis).
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ind Name Commonality Size | Factor 1 | Factor 2 | Factor 3 | Factor 4
BUILD BPB INDUSTRIES PLC 63.6% 1.18 0.604 0.305 0.381 0.138
EVERED PLC 24.1% 0.38 0.209 0.127 0.043 0.045
EXPAMET INTERNATIONAL 44.7% 0.14 0.329 0.474 0.130 0.188
HEPWORTH PLC 65.7% 1.04 0.493 0.433 0.361 0.156
HEYWOOD WILLIAMS GROUP 40.3% 0.38 0.201 0.416 0.136 -0.030
JOHNSTON GROUP PLC 45.4% 0.21 0.331 0.215 0.315 0.375
MARLEY PLC 58.5% 1.15 0.599 0.295 0.283 0.138
NEWMAN TONKS GROUP PLC 52.6% 0.40 0.321 0.358 0.264 0.309
PILKINGTON PLC 65.3% 1.68 0.627 0.384 0.273 0.181
STEETLEY PLC 58.8% 1.03 0.492 0.455 0.267 0.069
TARMAC PLC 67.5% 1.51 0.656 0.259 0.322 0.041
PAPER | ASSOCIATED PAPER INDUS. 43.0% 0.12 0.269 0.209 0.256 0.062
BLAGDEN INDUSTRIES PLC 47.9% 0.31 0.113 0.528 0.346 0.022
BUNZL PLC 49.0% 1.09 0.463 0.310 0.281 0.204
FERGUSON INDUSTRIAL 45.3% 0.54 0.249 0.406 0.358 0.287
LOW & BONAR PLC 49.6% 0.77 0.279 0.578 0.015 0.234
MACFARLANE GROUP 25.8% 0.06 0.012 0.327 0.015 0.260
METAL CLOSURES GROUP 48.0% 0.42 0.437 0.246 0.271 0.064
ROCKWARE GROUP PLC 43.9% 0.56 0.442 0.332 0.269 0.020
SMITH(DAVID S.) 36.2% -0.78 0.084 0.287 0.084 0.484
WADDINGTON(JOHN)PLC 32.4% 0.28 0.240 0.469 0.127 0.088
CHEM ALLIED COLLOIDS GROUP 50.5% 0.34 0.490 0.112 0.361 0.089
BOC GROUP PLC 67.7% 1.81 0.677 0.268 0.246 0.203
BRENT CHEMICALS INTERN. 51.8% 0.16 0.323 0.375 0.459 0.179
BTP PLC 39.7% -0.13 0.332 0.415 0.265 0.186
CANNING(W.)PLC 46.6% 0.09 0.228 0.487 0.257 0.301
COALITE GROUP PLC 55.8% 0.96 0.474 0.051 0.273 0.329
COATES BROTHERS PLC 53.4% 0.72 0.235 0.231 0.363 -0.036
CRODA INTERNATIONAL PLC 56.2% 0.95 0.471 0.246 0.129 0.295
ELLIS & EVERARD PLC 52.3% 0.03 0.228 0.273 0.233 0.391
EVODE GROUP PLC 45.3% 0.22 0.421 0.128 0.249 0.310
FOSECO PLC 57.6% 1.14 0.600 0.370 0.135 0.150
HICKSON INTERNATIONAL 68.6% 0.56 0.485 0.436 0.362 0.186
IMPERIAL CHEMICAL INDUS. 64.7% 2.42 0.642 0.304 0.258 0.121
LAPORTE PLC 62.0% 0.92 0.535 0.249 0.251 0.169
LEIGH INTERESTS PLC 38.8% | -0.14 0.268 0.246 0.247 0.277
RENTOKIL GROUP PLC 46.1% 0.73 0.496 0.158 0.342 0.181
YULE CATTO & CO PLC 37.5% 0.44 0.346 0.191 -0.054 0.216

Table 36: The list of firms used in this study by industry. First table. The commonality, the size
and the four factor loadings obtained is also displayed.
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ind Name Commonality Size | Factor 1 | Factor 2 | Factor 3 | Factor 4
ELEC BICC PLC 64.2% 1.73 0.603 0.274 0.361 0.075
CHLORIDE GROUP PLC 46.8% 1.07 0.520 0.353 0.164 -0.023
DOWDING & MILLS PLC 47.9% | -0.14 0.382 0.272 0.021 0.192
SCHOLES GROUP PLC 44.2% -0.04 0.131 0.110 0.132 0.039
VOLEX GROUP PLC 44.6% 0.27 0.385 0.395 0.149 0.262
WHOLESALE FITTINGS PLC 40.1% | -0.05 0.121 0.106 0.500 0.182
ELTN A B.ELECTRONIC PRODUCTS 46.9% 0.45 0.150 0.176 0.572 0.297
BOWTHORPE HOLDINGS PLC 51.2% 0.58 0.372 0.223 0.499 0.138
CRAY ELECTRONICS HOLD. 47.9% 0.00 0.164 0.030 0.169 0.641
CRYSTALATE HOLDINGS PLC 24.8% 0.37 0.240 0.082 0.382 0.190
DIPLOMA PLC 64.6% 0.38 0.370 0.217 0.637 0.109
ELECTROCOMPONENTS PLC 61.2% 0.52 0.436 0.182 0.608 0.027
FARNELL ELECTRONICS PLC 73.6% 0.28 0.462 0.205 0.666 0.048
PLESSEY CO PLC(THE) 51.2% 1.66 0.516 0.036 0.445 0.146
UNITECH PLC 59.5% 0.64 0.368 0.268 0.599 0.133
TEXT | BAIRD(WILLIAM)PLC 56.5% 0.88 0.413 0.282 0.453 0.179
DEWHIRST(I.J.)HOLDINGS 34.7% -0.05 0.085 0.226 0.193 0.464
ALLIED TEXTILE COMPAN. 57.8% 0.23 0.456 0.272 0.265 0.195
DAWSON INTERNATIONAL 49.0% 0.81 0.199 0.427 0.417 0.281
ILLINGWORTH,MORRIS PLC 31.3% 0.40 0.294 0.332 0.111 0.177
COATS VIYELLA PLC 48.2% 1.32 0.324 0.458 0.268 0.191
LAMONT HOLDINGS PLC 16.2% 0.12 0.067 0.293 0.180 0.100
READICUT INTERNATIONAL 41.6% 0.47 0.403 0.458 0.174 0.036
SCAPA GROUP PLC 52.9% 0.65 0.485 0.287 0.276 0.303
TOOTAL GROUP PLC 57.9% 1.09 0.557 0.362 0.288 0.155
FOOD | ASSOCIATED BRIT. FOODS 62.1% 1.75 0.639 0.188 0.301 0.189
BERISFORD INTERNATIONAL 50.9% 1.67 0.626 0.135 0.271 0.047
BOOKER PLC 47.8% 1.24 0.561 0.243 0.166 0.130
CADBURY SCHWEPPES PLC 64.4% 1.71 0.699 0.197 0.177 0.271
DALGETY PLC 61.6% 1.61 0.670 0.207 0.183 0.142
FITCH LOVELL PLC 57.5% 0.88 0.681 0.060 0.084 0.141
HAZLEWOOD FOODS PLC 41.1% 0.01 0.083 0.070 0.105 0.552
MATTHEWS(BERNARD)PLC 49.0% 0.39 0.405 0.251 0.103 0.276
NORTHERN FOODS PLC 71.9% 1.36 0.791 0.080 0.103 0.213
RANKS HOVIS MCDOUGALL 56.3% 1.48 0.633 0.239 0.148 0.194
TATE & LYLE PLC 53.0% 1.39 0.610 0.192 0.186 0.197
UNIGATE PLC 62.6% 1.54 0.741 0.156 0.160 0.059
UNILEVER PLC 64.1% 2.20 0.681 0.259 0.276 0.143
UNITED BISCUITS 65.7% 1.57 0.686 0.155 0.278 0.173

Table 37: The list of firms used 1n this study by industry. Second table. The commonality, the size
and the four factor loadings obtained is also displayed.
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Chapter 10

Conclusions

This study attempted a development of concepts and tools for the extraction of knowledge from
past experience contained in accounting and financial data. Its first part described the statistical
characteristics of accounting data. Neural Networks were then used to solve three characteristic

problems.

Main achievements: Our programmatic statement for the assessment of the statistical charac-
teristics of accounting data was to study items first and then ratios. Items prove to be much more
regular than ratios. The observed ones — extracted from the reports of industrial firms during the
period 1983-1987 — were two or three-parametric lognormal. McLeay [86] observed lognormality in
large samples of items which are sums of similar transactions with the same sign. We extended this
empirical finding: Lognormality cannot be rejected also for stocks like Fixed and Total Assets or
Net Worth and non-accounting items related to size like the number of employees. Positive values of
accounting items having both positive and negative cases as well as the absolute value of the negative
ones are lognormal too. We also gathered detailed evidence on the lognormality of homogeneous
samples formed with one industry at a time.

Lognormality allowed us to explain the existence of outliers and the heteroscedasticity of ac-
counting data often referred to in the literature. We have shown that regressions should not be used
to model relations between lognormal variables and that weighting is not an adequate recipe since
it simply transfers the influence from the largest to the smallest cases in the sample. Finally, we
pointed out that the trimming of outliers is useless for two-variate lognormal data.

Another important empirical finding of this study is the existence of a common source of vari-
ability in the observed log items. In log space these variables are the addition of two processes.
The first one 1s common to all items and seems to reflect the relative size of firms. The second one,
particular to each item, reflects its uniqueness. Hence, items should be explained in terms of size

and deviations from size. Instead of viewing each item individually — eventually correlated with
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other few ones — we should first account for an effect common to them all and then take the residual
variability as the contribution of that item.

We also studied the problems posed to cross-sectional models by items having both positive
and negative cases. There is no continuity between the positive cases and the negative ones. We
remarked that negative cases should be viewed as a different group.

Based on these findings we extended ratios so as to cope with non-proportionality and non-
linearity. We based our approach on the existence of a common effect and on the three-parametric
lognormality observed in a few items. Three extensions of the ratio concept were developed: Firstly,
ratios can have more than two components. The sole requirement for the statistical validity of such
ratios is the use of multiplicative residuals. Next, ratios can also be viewed in log space as a re-
gression. Such free-slope ratios preserve proportionality. Finally, the three-parametric lognormality
present in a few samples leads to base-line ratios. Base-line ratios account for the non-proportionality
often mentioned in the literature. They seem promising for ratio analysis and statistical manipula-
tion. They are robust, easy to estimate and it is likely that they will be able to gather in one unique
relation financial features of firms with very different sizes.

Finally, we remarked that the reasons often invoked in the literature for expecting significant
intercept terms in cross-sectional samples don’t lead to non-proportional relations. Only an overall
cost or income impinging upon the whole of the sample is able to yield non-proportionality. This
overall base-line couldn’t be very far away from the smallest case in the sample. And the effect of
such a translation would not be noticeable except for small firms.

We also studied the distribution of ratios. We found a clear trend towards positive skewness, as
expected. However, a few factors affect the distribution particular ratios assume. Firstly, accounting
identities and other external forces act as constraints, hiding its skewed distribution. This explains
why ratios like NW/T A and T'D/T A are so often reported in the literature as being near normality.
Secondly, when observing the multiplicative residuals in log space, leptokurtosis becomes visible. We
identified the particular variability of each item as the source of leptokurtosis in accounting data.
The source of their Gaussian behaviour is the strong effect common to all items. Next we argued
that ratios are ordinal and ratio standards are not affected by any anomalies in their distribution
because they only use one degree of freedom. No consideration of the spread of items is required to
model with ratios. Conversely, no disturbances in their spread can affect ratio standards.

Before finishing this part we studied the problem of building an estimator of the common effect.
Such a general deflator can enhance the interpretability of results in statistical models. We have
shown that simple case-averages of selected items approach the common effect. We also discussed
the reduction of the dimension of the input space in statistical models. We suggested the use of the
Hadamard rotation, able to isolate the common effect and re-distribute the remaining variability by
a number of factors. Finally, we studied the importance and effect of the SEIC industrial grouping

using intra-class correlations. Both the spread of size and the one of financial features of firms are
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dependent on the group to which each case belongs. We identified higher order effects in the space
of firm’s features, demanding the use of algorithms able to model them.

In the second part of this study we have shown that Neural Networks are self-explanatory tools
when extracting knowledge from accounting data. Based on a known problem, the discrimination
between industries using accounting numbers, we enhanced a Multi-Layer Perceptron so as to form in
its hidden units ratios appropriate to model that relation. The MLP also proved able to outperform
the classification of a traditional discriminant analysis approach. This performance was achieved
with half the number of inputs and within a much simpler framework. Namely, the search for
appropriate ratios, the pruning of outliers and the extraction of a somehow arbitrary number of
factors were avoided.

Next, Kohonen’s Maps were used to automate financial diagnosis. Firstly, we explored the
graphical possibilities offered by the homogeneity of two-variate relations in log space. We outlined
the two kinds of complementary questions ratios are called upon to answer and we described graphical
tools able to give joint answers to those questions. Secondly, Kohonen’s Maps performed quantization
of these maps, allowing the assigning of a diagnostic to each region in such graphical tools. The
devised plots can be used as direct tools for diagnosis in the same way financial ratios are. But
they yield a richer information, incorporating relative size — or, alternatively, deviations from the
expected for a given size — and allowing the study of trajectories. The examination of trajectories
instead of simple trends is potentially revealing for financial analysts. Size is important in specific
problems like the prediction of firm failure. The set of rules automatically generated in this fashion
can be seen as the result of a pre-processing for symbol-based expert systems.

The last experiment of this study was meant to test the ability of Neural Networks to model
complex maps like the relation between the expectations of investors and the characteristics of traded
assets. Using a particular kind of asset, the large and frequently traded industrial firms in the U.K.
we extracted sensitivities from the time-history of 121 returns. Then, we modelled the relation
between these sensitivities and accounting information using Neural Networks. Finally, we studied
the behaviour of the obtained models. We found a clear relation between features of accounting
reports like size, industrial group, work force, payment pattern and a firm’s appraisal by the market.
It turns out that a very significant portion of the cross-sectional variability of these sensitivities
can be explained by accounting numbers. The developed method opens the possibility of building
a taxonomy of risk. Also, the knowledge about the way each market force impinges upon specific

features of the firm is potentially valuable in the identification of the nature of such forces.

Limitations and other negative aspects: The second part of this study would require further
research. Namely, it would be interesting to replicate the building of ratios by MLPs using other
problems. Apart from this, we didn’t succeed in incorporating base-lines into the Back-Propagation
algorithm and in further improving the interpretability of the ratios discovered by the MLP. Also

the study of two-dimensional tools and the automatic extraction of rules would have benefitted from
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a diversification of the features explored.

Directions for future research: This study opens up a large field of rich possibilities for future
research. In the first place, it is important to find out to what extent the promising regularities
observed in accounting items — lognormality and the strong, common, effect — can be extrapolated
to different samples: Small or non-industrial firms, items other than the observed ones.

Base-lines should be searched and related to other characteristics of the firm. Their internal
mechanism, if any, should be sorted out. This should be done using samples containing firms
covering very different sizes. The effectiveness of base-line ratios for setting standards could then
be established. The leptokurtosis observed in ratios would be, in our opinion, the next subject
of investigation.

It seems also promising to try and build a proxy for the common effect with case-averages
containing many items. A reliable estimation of the common effect would allow the exploring of
residuals, that is, the particular contribution of each item to the overall variability.

The logarithmic nature of accounting data allows a systematic study of ratios: The way they
behave inside industries, the stability of their expected values, the search for the most promising
ones for specific tasks, the way their information can be complemented by other ratios, the ones
more affected by base-lines and in what industries; their range of application to firms of different
sizes and so on. In the same line, the behaviour of industrial groups should be studied one by one.

Neural Networks deserve further research. Aspects related to ours are the direct modelling of
base-lines by the Back-Propagation algorithm, the study of learning procedures aimed at enhancing
the interpretability of the ratios formed in the hidden layers, the testing of more effective learning
techniques and distance measures in Kohonen maps. The possibility of drawing a taxonomy of risk
as shown in the last chapter of this study should, of course, be explored. Larger learning sets would

allow the building of more detailed and reliable models.
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Appendix A

The Statistical Description of

Accounting Items

This appendix contains detailed results or developments related to the first part of our study. They
were relegated to an appendix because they would break the sequence of the presentation should
they remain in the main text.

Some of the sections presented here are self-contained and eventually important for the under-
standing of the main body of research. Therefore, this appendix should not be regarded as a simple
storage place for large tables.

However, large tables do exist as well. And owing to the need for printing a huge amount of
such tables the organization of this appendix doesn’t follow the sequential order of the main text.
Subjects requiring the displaying of many tables alternate with others not demanding it. Even so,

some sets of tables had to be placed at the end.

A.1 Persistency of Deviations from Two-Parametric Lognor-
mality

We measured the number of times a significant departure from a two-parametric lognormal distri-
bution was observed during the whole period of five years for a given sample. Such a measure can
give us an idea of the persistency of two-parametric lognormality.

Tables 38 on page 246, and the one on next page show, by items and by industrial group, the
number of times a significant departure from a two-parametric lognormal distribution was observed
during the five-years period.

As an example, Sales had 3 groups which exhibited departures once in five years, another group

had three departures in the same period and finally there were two industrial groups which were
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Ttem: ONCE | TWICE | THREE | FOUR FIVE
TIMES | TIMES | TIMES

Sales

Net Worth

Wages

Inventory

Debtors

Creditors

Current Assets
Fixed Assets

Total Assets
Current Liabilities
Number of employees
Expenses

Tot. Capital Empl.
EBIT

Operating Profit
Long Term Debt
Funds Flow Fr. Ops.
Working Capital

W W N [\R W = W W
[ VI VR — N W= W -
== W W =
—

Table 38: Persistency of departures from the two-parameters model. By item.

non-significantly two-parametric in four of the five years considered. And the industrial group Wool
had two variables which departed from the two-parametric hypothesis once in five years. Working
Capital — in three industrial groups — departed once in five years. Two other groups departed
twice. And when considering groups instead of items, metallurgy had no departures at all, Building
Materials had three items which departed once in five years and one item which departed twice.
And so on.

As we can see departures are sporadic. They hardly occur in more than one or two years. Only
Wages (Electronics) is persistently three-parametric lognormal.

Apart from the 20 cases known as “bad cases”, all the departures from the two-parametric model
are three-parametric lognormal: There is always a small § for which the Shapiro-Wilk W becomes

non-significantly different from 1.

A.2 Simulation of Working Capital

The distribution of x, a desired p-variate normal deviate, can be represented as a linear transforma-
tion of p independent normal variates g = (g1, - -, gp)l as x = Ag + p.

A is any p X p matrix for which A A" = ¥. This matrix is not unique. If, for instance

Lop
p 1

Y=

a 2 x 2 correlation matrix, then a particularly simple A yielding A A =Y is

1 0
poV1=p?
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Industrial Groups ONCE | TWICE | THREE FOUR FIVE
TIMES TIMES | TIMES

Building Materials 3 1

Metallurgy

Paper and Packing 3 1 1

Chemicals 4 1 1

Electricity 3 3 2 1

Industrial Plants 7 9 1 1

Machine Tools 4

Electronics 2 7 3 1 1

Motor Components 2

Clothing 3 1

Wool 2

Textiles Mix.

Leather

Food Manufacturers 3 4 3 4

Table 39: Persistency of departures from the two-parameters model. By industry.

In general, a possible choice for A is provided by the Cholesky factorization, that is, the lower
triangular matrix A for which A A" = ¥, In multi-variate simulations we used such procedure.
In the case of a two-variate distribution of & and y it yields a simple expression. For a desired p

and using g1, g2 independent random deviates,

{

E(z), E(y) are the expected values of the variates we want to simulate. This simple manipulation

+91

+g91 X p+ g2 X E

Yy = 1—p

can be carried out easily.

In the first mentioned simulation we used these starting values

p = 0.98043
TogCA = 4.343
TogCL = 4.192

inspired in the parameters observed in the Electronics industry (1987). We simulated 2000 values
and observed the lognormality of the resulting WC' = C'A — C'L in two separate cases, positive

deviates and absolute values of negative deviates. The results are displayed in next table.

Statistic | CA for WC' < 0 | CL for WC < 0 | Positive WC' | Negative WC
SKEW -0.217 -0.242 -0.055 -0.471
KURT 0.592 0.753 0.301 1.106
w 0.9837 0.9839 0.98 0.9838
sig W non-sig. non-sig. non-sig. non-sig.
N. Cases 463 463 1537 463

Therefore simulated results agree with empirical observations that absolute values of negative

accounting items are lognormally distributed.

The following is an example of multi-variate simulation.
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We based the starting values in the building materials group (1983) and we selected the four

variables displayed next.

Item Mean St. deviation Item Mean St. deviation
Sales 4.6253 0.605 Current Assets 4.2339 0.583
Fixed Assets | 4.0532 0.599 Current Liabilities | 4.0273 0.607

S CA FA CL
0.366
The ¥ used in this case was the variance and co-variance matrix: | 0.344 0.339
0.341 0.324 0.359
0.353 0.339 0.327 0.369
After generating 2,000 cases with multivariate lognormality we obtained 211 of them with negative

Working Capital. The mean values and standard deviations for such item, as well as the skewness

and kurtosis were

Mean | St.d. | N. cases | Skewness | Kurtosis
for WC' >0 3.754 0.67 1789 -0.162 -0.023
for WC' < 0 3.272 0.85 211 -0.442 0.551

As seen, both positive and negative cases were lognormal. The resulting co-variances are

S Fi CL Ca We S Fi CL Ca We
0.367 for WC > 0 0.384 for WC < O S
0.346 0.369 1789 cases 0.348 0.355 211 cases FA
0.348 0.327 0.354 0.371 0.335 0.376 CL
0.344 0.327 0.335 0.338 0.370 0.335 0.370 0.369 Ca
0.336 0.325 0.300 0.341 0.450 0.396 0.350 0.419 0.386 0.722 WC

The results of simulation agree with the few observed real cases. Negative cases also exhibit the

common effect but they spread more than the positive cases.

A.3 Description of the Extreme Departures From Lognor-

mality

We pointed out in chapter 1 that a few tests of lognormality yielded values of P (Shapiro-Wilk’s W
significance) which were so small that it would not be possible to apply logits.

We also noticed that such a set of bad cases behave differently from the other ones. The signifi-
cance (P values) obtained from all other tests form in logit space a normal distribution. Bad cases
do not fit well in such a distribution. They are more numerous than the expected and they form a
cluster sticking out well below the lower normal values of Logit P.

They are also insensitive to a three-parametric transformation. No § exists able to turn them
lognormal. This feature is a very particular one since in all the other cases yielding significant

departures a d exists able to bring W to non-significant values.
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We examined each one of such bad cases in order to find out the reasons for their erratic behaviour.

Here we present the results.
1983: In 1983 there were no bad cases.
1984: There are bad cases in two industries.

CLOTHING: Sales and Expenses. The firm STORMGARD PLC sold 54 (units are thou-
sands of pounds) and had also very small expenses. The sample has only 46 cases and
the next smallest value of sales is 2402. STORMGARD turns out to be a strong outlier
in a very small sample. We further notice that this firm has sales which are larger than

earnings.

ELECTRONICS: Wages and Number of Employees. There are three clear clusters. A
cluster of eight large firms is clearly detached from the rest of the distribution. It is
interesting to notice that neither the skewness nor the kurtosis exhibit values far from

the acceptable.
1985: There are bad cases in three industries.

PAPER AND PACKING: Current Assets and Expenses. In 57 cases there is one firm,
EAST LANCASHIRE PAPER GRO, with CA = 1. The next smallest value in the
sample is 1265. The same as Expenses. EAST LANCASHIRE 1s also one of the 5 firms
exhibiting EBIT larger than Sales during one or two years of the period.

FOOD: Current Assets. There are three clear clusters. Again, Skewness and Kurtosis are

unable to trace the irregular shape of this distribution.

CLOTHING: Operating Profit. The firm UNIGROUP PLC appears in the database with
OPP =1, and such a profit turns out to be a strong outlier in a small group. The next

smallest case is OP P = 52. The sample has 44 cases.
1986: There are bad cases in three industries.

ELECTRONICS: Wages, Number of Employees and Current Liabilities. Again three clus-

ters, large firms well separated from the distribution. Skewness and kurtosis are normal.

INDUSTRIAL PLANTS: Inventory. BIMEC PLC has I = 1. Next smallest value, 278.

In a sample of 22 cases this is enough to influence normality tests.

FOOD: Long term Debt. Very clear three-modal distribution.
1987: There are bad cases in three industries.

FOOD: Sales, Expenses and Earnings. Again, three very clear clusters but in this case the

cluster of small firms is detached from the others. Then, there is also a peaking central
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cluster. Skewness and kurtosis again fail to trace the lack of normality. In this group

there are four firms with EBIT larger than Sales.
ELECTRONICS: Wages, Number of Employees and Total Capital Employed. There are

three clusters as in two previous years. But the group of eight very large firms is now less

detached from the others than it was in previous years.

CLOTHING: Funds Flow From Operations. The firm GOODMAN GROUP PLC displays
a FL =9 which is a clear outlier. The next smallest cases have F'L = 339. The sample

has 45 cases.

In short: The causes for the existence of the described bad cases seem to be twofold:
Anomalous Cases. Errors, extreme outliers, very particular situations.

Non-Homogeneous Groups. The existence of clusters of firms well detached inside the same
industrial group is perhaps a result of a temporary expansion of the sector. Or it can be a
consequence of an intrinsic non-homogeneity of an industrial group. It happens from 1984 to
1987 in the Electronics and Food industries, affecting Sales, Number of Employees and Wages

mainly.

We conclude that there seems to be an explanation or cause for each one of the observed strong
departures from the lognormal hypothesis. These causes should be considered as external to the
generative mechanism governing the cross-sectional characteristics of accounting items since their

frequency, 20 cases in 1260 different samples examined, makes them exceptional.

A.4 Results of Lognormality Tests

A.4.1 All Groups Together

In this section we display and comment the detailed results obtained when measuring the kurtosis,
the skewness and the Shapiro-Wilk’s W of each of the 13 positive-valued accounting items and the
positive values of the 4 items having both positive and negative cases, during a period of five years.

We also include Long Term Debt for which only the non-zero cases were selected.

Such results are contained in three tables: Table 40 on page 251, for the items Sales, Net Worth,
Wages, Inventory, Debtors and Creditors. In the one on page next to this one, for Fixed Assets,
Total Assets, Current Assets, Current Liabilities, the number of employees and Expenses. Finally,
in the next one for Total Capital Employed, Earnings, Operating Profit, Long Term Debt, Gross
Funds From Operations and Working Capital. The items selected for testing represent very different

situations and manipulations of data.
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Ttem Year 1983 1984 1985 1986 1987
N. Cases 555 649 677 702 688
Sales SKEW 0.058 -0.035 0.126 0.107 -0.08
KURT 0.765 0.842 0.604 0.39 0.854
A 0.982 0.983 0.984 0.983 0.982
sig W
best W
Net SKEW 0.174 0.163 0.253 0.289 0.289
Worth KURT 0.468 0.402 0.255 0.263 0.353
A 0.987 0.985 0.984 0.983 0.983
sig W
best W
Wages SKEW 0.322 0.246 0.384 0.35 0.239
KURT 0.177 0.252 0.067 0.091 0.266
A 0.978 0.984 0.975 0.977 0.98
sig W 0.015 0.001 0.01 0.02
best W 0.988 0.988 0.989 0.981
Inventory SKEW -0.089 -0.117 0.019 -0.202 -0.302
KURT 0.69 0.577 0.572 1.217 1.331
A 0.985 0.986 0.989 0.986 0.985
sig W
best W
Debtors SKEW 0.052 -0.003 0.066 0.126 -0.036
KURT 0.309 0.411 0.386 0.318 0.76
A 0.984 0.987 0.986 0.987 0.991
sig W
best W
Creditors SKEW 0.285 0.176 0.236 0.242 0.196
KURT 0.307 0.331 0.356 0.289 0.369
A 0.978 0.983 0.981 0.979 0.982
sig W 0.014 0.06 0.006
best W 0.985 0.985

Table 40: Lognormality of all groups together. First table.

Samples were drawn directly from the Micro-EXSTAT data-base. No pre-conditions were estab-
lished, apart from the one of firms being in the U.K. None of the cases was considered as an outlier.
Therefore, samples are quite representative.

The number of cases in each sample i1s displayed in the tables referred to along with the other
statistics.

The results show that 11 of the 18 items — Sales, Net Worth, Debtors, Fixed Assets, Expenses,
Inventory and Total Capital Employed, along with the positive values of Earnings, Operating Profit,
Long Term Debt and Working Capital — are two-parametric lognormal in the whole period of 1983
to 1987.

The remaining 7 variables are either two-parametric or three-parametric lognormal depending
on the year. None is persistently three-parametric during the five years. In at least one year all
variables achieved lognormality with just a simple log transformation.

The most three-parametric cases are Total Assets and Wages with four years in five requiring a
three-parametric transformation. In general, the positive values of McLeay’s A variables are more
near two-parametric lognormality than the ¥ ones. Only Gross Funds From Operations exhibit one
departure from a two-parameters distribution, in 1987.

Only when P < 0.05 is very near this value we display its value (sig ). In such cases we also
show the value of W obtained by introducing an optimal ¢ in the log transformation (best ).

The algorithm for assessing skewness and kurtosis are those adapted by the SPSS-X package.
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(cont.) 1983 1984 1985 1986 1987
Fixed SKEW 0.097 0.177 0.119 0.124 0.159
Assets KURT 0.421 0.11 0.114 0.113 -0.008
A 0.988 0.983 0.984 0.987 0.984
sig W
best W
Total SKEW 0.301 0.351 0.404 0.343 0.425
Assets KURT 0.546 0.276 0.228 0.349 0.309
A 0.983 0.979 0.978 0.979 0.978
sig W 0.01 0.005 0.01 0.005
best W 0.985 0.987 0.983 0.984
Current SKEW 0.237 0.349 0.056 0.295 0.345
Assets KURT 0.372 0.374 1.84 0.345 0.48
A 0.982 0.984 0.985 0.98 0.979
sig W 0.03 0.02
best W 0.985 0.985
Current SKEW 0.26 0.155 0.21 0.273 0.262
Liabilities KURT 0.366 0.446 0.462 0.36 0.417
A 0.979 0.983 0.984 0.981 0.982
sig W 0.026 0.04
best W 0.986 0.988
Number SKEW 0.171 0.191 0.283 0.221 0.159
of KURT 0.282 0.181 0.187 0.251 0.346
Employees A 0.981 0.982 0.98 0.981 0.981
sig W 0.02 0.04 0.05
best W 0.985 0.985 0.983
Expenses SKEW 0.093 -0.108 -0.043 0.012 -0.124
KURT 0.327 0.738 0.742 0.29 0.641
A 0.981 0.986 0.988 0.985 0.984
sig W
best W

Table 41: Lognormality of all groups together. Second table.

One interesting feature of the distribution of the observed items is the positive nature of its
kurtosis. With very few exceptions the values obtained for the kurtosis are positive. We saw in
section 4.1 (page 90) that the distribution of the ratio residuals is characterized by the same feature

but magnified.

A.4.2 By Industrial Group

Tables 44 and the next five tables contain the detailed results of the tests of lognormality of the
observed eighteen items by industrial group and by year. They can be found on pages 259 and the
next five pages towards the end of this appendix.

Each table displays, for a particular item, the number of cases, the Shapiro-Wilk’s W, and the
associated probability P. This P should be interpreted as the likelihood of obtaining a W as small as
that observed, when, in the population from which the sample was drawn, W would have the value
of 1. Since a W of 1 means lognormality, any small P will denote a departure from the lognormal
hypothesis. It is usual to reject the null hypothesis of no departure from lognormality for P < 0.05.
In this case we know that there are less than five chances in one hundred that some hazardous
circumstances of sampling would lead to a value of W as small as the observed one despite our
sample being drawn from a lognormal population.

When P is displayed as having a value of 0 it means that P is smaller than the precision of the

algorithm. Values of 0.00 mean a P < 0.005. The values of P = 0 are denoted in our study as the
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(cont.) 1983 1984 1985 1986 1987
Total SKEW 0.28 0.156 0.322 0.338 0.34
Capital KURT 0.35 0.449 0.126 0.18 0.282
Employed W 0.9828 0.9854 0.9819 0.9823 0.9815
sig W
best W
EBIT SKEW -0.061 0.094 0.165 0.232 0.305
KURT 0.678 0.244 0.409 0.402 0.451
W 0.9846 0.9887 0.9841 0.9854 0.9823
sig W
N. Cases 514 606 629 645 641
Operating SKEW -0.097 -0.053 -0.13 0.128 0.176
Profit KURT 0.68 0.36 0.81 0.215 0.469
W 0.9898 0.9918 0.9854 0.9843 0.9848
sig W
N. Cases 497 589 615 627 619
Long Term SKEW -0.106 -0.049 0.029 -0.01 -0.059
Debt KURT 0.095 -0.023 -0.101 -0.15 -0.016
W 0.9868 0.9842 0.9839 0.9857 0.985
sig W
N. Cases 358 439 479 518 510
Gross Funds SKEW 0.084 0.049 0.228 0.176 0.1
From KURT 0.492 0.448 0.286 0.4 0.938
Operations W 0.9867 0.9872 0.9842 0.9833 0.98
sig W 0.026
N. Cases 527 625 647 666 650
Working SKEW -0.093 0.215 0.103 0.061 0.288
Capital KURT 0.487 -0.062 0.532 0.269 0.311
W 0.9926 0.9839 0.9881 0.9850 0.9807
sig W 0.052
N. Cases 505 587 610 641 626

Table 42: Lognormality of all groups together. Third table.

bad cases. Each of these samples have been observed and discussed elsewhere.
The minimum sample size is 6. The maximum is 145. Most of the samples have sizes between

20 and 60.

A.5 The Estimation And The Significance of a Base-Line

We suggest two methods for estimating base-lines. Firstly, base-lines can be estimated for each
item individually using the method described by Royston [105] and explained at the beginning of
chapter 1: The estimated d is the one which maximizes any statistic linked with a test of normality.
Secondly, base-lines can be estimated in ratios by building models in log space and then using an
iterative Least-Squares algorithm for finding both the expected value of the ratio and the base-line
in the denominator.

The first method is the only one available for multi-variate modelling. Its drawback 1s the over-
estimation introduced by the Shapiro-Wilk test. The second one should be tried when working with
simple ratios since it is easier to carry out and more robust to problems of over-precision. But it
has a few problems of its own.

To illustrate both methods we are going to use five pairs of samples obtained from simulated
data as explained in section 3.4.3. Figures 27 on page 78 and figures 28 on page 79 are a graphical

representation of such a set when different base-lines are simulated.
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Figure 82: Estimation of ¢ using the method based on tests of lognormality. This figure shows the
evolution of P(W) for several ¢ in the Electronics industry.

A.5.1 The Method Based On Tests of Normality

This method consists of detecting the  which makes the sample closer to normality. When using
the Shapiro-Wilk test the statistic to optimize is W. For estimating § we find the maximum W
obtained when performing normality tests of log(x + §). The use of W yields sharp, easy to obtain
J (see figure 82).

As an example, we used the simulated five sets of lognormal data mentioned above, each one
with a known base-line. Then, we estimated the § using W. Next table compares the simulated with
the estimated base-lines. Notice that there are two samples in each set, the one named “Numerator”
and the one named “Denominator”. This is because we are going to use these sets later on as the

numerator and the denominator of ratios.

Sample number Simulated base-lines W estimated §
Numerator | Denominator | Numerator | Denominator

1: No base-lines 0 0 140 120

2: 4+ in Numerator 300 0 -160 120

3: + in Denominator 0 300 140 -180

4: - in Numerator -50 0 200 120

5: - in Denominator 0 -30 140 140

Firstly, we notice that the samples with no simulated base-lines optimized W for values of ¢ of
140 and 120. They were lognormal even with no § at all but an optimum W corresponds to these
values, not the zero ones. Notice also that a § of 140, as detected by the Shapiro-Wilk test, means
that we have to add 140 to all the cases in the sample in order optimize W. Therefore, if we were
to simulate such a base-line using a perfect lognormal sample, we should subtract — not add — 140

from it. The conclusion is that in order to estimate the real base-line we invert the sign of the §
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obtained from optimizing W.

Secondly, we observe that when a simulated base-line of +300 was introduced, the § detected by
the Shapiro-Wilk test was -160. The meaning of this is straightforward. Since the original sample
had already a supposed base-line of -140, by adding to i1t the simulated +300 we obtain a sample
with a base-line of +160. The estimated J is then expected to be -160.

The § obtained for all the other samples are explained in the same way.

Over-estimation of 6: The J estimated by the Royston method are in general too large. To avoid

over-estimations it seems a good practice to follow these rules:

1. Any item achieving two-parametric lognormality should be considered as not having a signif-
icant base-line as well. In figure 82 (right) the probability of the sample being drawn from a
two-parametric population is about 20%. Therefore we conclude that there is no significant
base-line despite the fact that the introduction of one would make the significance of W attain

almost 100%.

2. Only those items not achieving a two-parametric lognormality should be candidates for having
significant base-lines. In that case, instead of finding the maximum W, we just find the
smallest § able to render the sample two-parametric. In the same figure (left) a base-line of
about 300 is required to bring the transformed sample to a state of non-significant departure
from normality. We accept this value of § &~ —300 despite being possible to attain a much

more significant W with larger absolute values of J.

These rules ensure a better estimation of base-lines. They are justified by our experience and by the

theory of significance of estimators.

A.5.2 The Method Based On Iterative Least-Squares Estimation

We now use the previous samples to form base-line ratios. Then we estimate jointly the expected
value of such ratios and the base-line impinging upon the denominator. The appropriate tool is an
iterative Least-Squares algorithm. If N stands for the numerator and D stands for the denominator,

our problem consists of finding the § and Ay such that, in

N/D

log Nj = Apunyp +log(D; +8p) + &) 7

orin  logDj = App/n +log(Nj +6n) +¢;

the sum of squared ¢; is minimized.
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For the above samples we obtained the following estimated models:

1: No base-lines: logN = 0.131 + log(D+9)

2: 4300 in Numerator: logD = —-0.12 + log(N —373)
3: 4300 in Denominator: logN = 0.131 + log(D + 291)
4: -30 in Denominator: loghN = 0.131 + log(D+39)
5: -50 in Numerator: logD = -0.13 + log(N +51)

These estimated parameters seem to comply with the simulated base-lines, thus ignoring the over-
estimated base-lines detected by the Shapiro-Wilk test in the non-displaced samples.

Two drawbacks specific to this method are:

e The algorithm is not guaranteed to converge, or to converge in an acceptable way. For example,
the algorithm frequently generates § which, when added to the observations in the sample, yield
negative values. Hence, a few or even a lot of cases are thrown away from the sample during

the iterative computation. The resulting parameters are useless.

e In the previous example we knew in advance where each base-line was. But in the real cases
we don’t know how to build the model so that the base-line appears in the denominator. The
resulting models — when we try to estimate base-lines by putting them in the denominator
when they should be in the numerator — yield ratios which are formally correct but of not so
easy interpretation. Since a base-line, when accounted for in the wrong member, has a value
which can be very far away from the real one, these ratios suggest the existence of exaggerated

or smoothed base-lines.

We think that both methods should be used for building correct base-line ratios. They complement
each other. First, the Shapiro-Wilk test or any similar one can determine where the strong base-lines
are and their approximated magnitude. Then, a Least-Squares modelling in log space will hopefully
yield the estimated parameters for ratio analysis. When the problem is the estimation of base-lines

for multi-variate models, the former technique is the only one available.

A.5.3 The Significance of a Base-Line

The examination of two-variate scatter-plots of accounting variables in logarithmic space can de-
tect departures from strict proportionality when they turn out to be significant. In fact, the log
transformation — and also the ratio one — produces a trade-off between non-proportionality and
non-linearity so that even small departures from proportionality result in clear departures from
linearity.

Given this, any of the usual methods for tracing non-independence of residuals could be used
in log space to detect non-negligible 6. The plots developed in chapter 3, page 73 are a simple

application of these principles.
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However, some advantages would arise from applying methods able to explore the particular
nature of the distortion. Next we suggest two procedures.

For a given two-variate sample {y,«}, we could consider any constant term a as significant
regarding the introduction of non-proportionality in a relation y = a+x if it would produce significant
non-linearity in log or ratio space. The significance of such a non-linearity could be assessed by
comparing the variability explained by a linear model with the one the introduction of a quadratic
term would account for.

Such a method is formally correct but i1t is open to misleading influences. A few cases could
dictate the final result.

Another possible way could be the following procedure:

e Create two new variables each containing the ranking of the ratio by ascending order of the

numerator and denominator. For each of these ranks,

o identify the samples containing the first N percentiles (typically, the first 5 percentiles) and

the central ones (the 3" quintile).

e Compare the log mean-values of the ratio in the centre with the sample containing the first

percentiles. A simple t-test can be used for this.

Significant mean differences in any of the cases indicate a perceptible base-line. This procedure is
effective because, as we saw, base-lines only affect the smallest cases in the sample. Notice that the
ratios should be handled in log space.

This method is more robust than the first one but it is more empirical too. For example, the
ambiguity in the size of the samples to be compared introduces arbitrariness.

As an example, we assessed the non-proportionality in the relation between Earnings and Sales
for the Electronics industry in 1987. The mean of the log ratio in the first decile was -0.73. The mean
for the central quintile was -1.10. The difference between these means is significant (P < 0.001).
After computing the model

log EBIT) = —2.02+ 1.12 x log(S; + 5510) + ¢,

we observed the mean values of the residuals, €; in the same places as before. Both mean values
yielded the same value of approximately zero.

In general, the simple examination of scatter-plots of any two accounting items in log space is
enough to detect base-lines. They draw very homogeneous, highly correlated, linear scatters, always
with a slope of 45° corresponding to the common, strong effect. A typical example is displayed in
figure 23 on page 58. In most of this relations traces of non-linearity cannot be observed. However
in a few cases a real convexity affecting small values is clearly visible. This convexity 1s consistent

with figure 26 (left) on page 77.
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Minimum 1983 1984 1985 1986 1987
Building Materials 0.29 | 040 | 0.36 | 0.35 0.34
Metallurgy 0.25 | 0.20 | 0.36 | 0.34 | 0.29
Paper and Packing 040 | 0.34 | 0.32 | 0.34 | 0.35
Chemicals 0.32 0.30 0.29 0.27 0.29
Electrical 0.39 0.35 0.30 0.28 0.28
Industrial Plants 0.21 0.23 0.28 0.37 0.33
Machine Tools 0.16 0.23 0.18 0.19 0.16
Electronics 0.41 0.46 0.43 0.43 0.39
Motor Components 0.49 0.49 0.46 0.44 0.42
Clothing 0.16 0.15 0.14 0.13 0.14
Miscellaneous Textiles | 0.11 0.20 0.21 0.21 0.21
Wool 0.40 0.50 0.61 0.58 0.56
Leather 0.30 0.49 0.49 0.44 0.40
Food Manufacturers 0.56 0.58 0.52 0.56 0.56

Table 43: Minimum variance and co-variance obtained from ¥ matrices by industry and year.

A.6 The Common Effect

In this section we replicate the experiment carried out by Fieldsend et al. [42] but always using
the same independent log variable, the proxy for size, s, developed in section 5.1. For 14 industrial
groups during a period of five years (1983-1986) we observe the slopes, b, and the proportion of

explained variability, R?, of regressions in which log s explains individual log items. For models like
logz; =a+0b6xlogs; + ¢;

in which z; is an accounting item, the estimated values of b should scatter around 1. In tables 50
and next, on pages 265 and the next one towards the end of this appendix we display the resulting
slopes. Tables 52 and next, on pages 267 and the next one towards the end of this chapter display
the obtained R2. Long Term Debt is the item with largest departures from the simple ratio model
(b =1). Metallurgy is the industry with the same quality.

On the whole, the displayed results are an argument in favour of a unique, strong effect repre-
senting the relative growth of accounting items. The slope emerges as a non-important parameter.
Its value is predictable and departures from such a prediction are very small. They can be ex-
plained by the bias resulting from using regressions instead of algorithms able to deal with this

errors-in-both-variables model.

A.7 Variance and Co-variance Matrices

In this section we display a few more variance and co-variance matrices of accounting items in log
space illustrating their particular features. Very typical shapes are displayed in figures 83 and next
on pages 269 and the next one towards the end of this appendix.

It is also interesting to observe the minimum variance or co-variance in X matrices belonging to

the 14 industrial groups during the five-year period. Table 43 shows these values.
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1983 1984 1985 1986 1987

\ ind N W P N W P N W P N W P N W P
S BUIL 29 0.94 0.18 34 0.96 0.43 36 0.97 0.66 39 0.96 0.43 38 0.97 0.56
METL 29 0.98 0.95 32 0.98 0.97 33 0.97 077 34 0.96 0.50 33 0.97 0.64
PAPR 50 0.95 0.06 56 0.95 0.08 57 0.94 0.02 60 0.96 0.12 58 0.96 0.17
CHEM 53 0.95 0.09 55 0.95 0.12 56 0.96 0.20 55 0.96 0.19 55 0.96 0.30
ELEC 37 0.95 0.16 44 0.93 0.02 48 0.96 0.22 49 0.97 0.40 46 0.96 0.28
IL.PL 19 0.91 0.10 20 0.84 0.00 22 0.83 0.00 23 0.89 0.02 23 0.90 0.02
TOOL 22 0.91 0.05 24 0.95 0.29 24 0.97 0.68 26 0.97 0.84 25 0.95 0.29
ELTN 98 097 0.33 130 0.96 0.03 138 0.96 0.04 145 0.96 0.02 143 0.97  0.07
MOTR 25 0.92 0.08 30 0.95 0.26 31 0.96 0.36 30 0.96 0.42 29 0.96 0.46
CLOT 39 0.98 0.92 46 0.89 0 48 0.98 0.94 52 0.97 0.70 50 0.99 0.98
WOOL 15 0.93 0.36 21 0.97 0.82 20 0.96 0.62 20 0.97 0.84 20 0.96 0.55
TX.M 32 0.95 0.31 36 0.97 0.75 36 0.96 0.37 37 0.97 0.66 38 0.97 0.67
LEAT 13  0.95 0.65 16 0.95 0.52 16 0.95 0.50 16 0.94 0.42 16 0.96 0.79

FOOD 94  0.96 0.03 105 0.96 0.03 112 0.95 0.00 116 0.96 0.05 114 0.93 0
NwW BUIL 29 0.93 0.08 34 0.94 0.11 35 0.93 0.04 38 0.96 0.29 38 0.94 0.07
METL 29 0.96 0.49 32 0.97 0.65 32 0.98 0.87 33 0.97 0.78 31 0.97 077
PAPR 48  0.98 0.90 55 0.98 0.96 56 0.98 0.84 60 0.98 0.80 58 0.97 051
CHEM 52 0.97 0.70 54 0.98 0.74 55 0.98 0.79 54 0.98 0.91 54 0.97 061
ELEC 37 093 0.03 44 0.94 0.05 48 0.94 0.04 49 0.95 0.09 46 0.94 0.05
IL.PL 19 0.91 0.10 20 0.90 0.05 22 0.89 0.02 23 0.91 0.04 23 0.93 0.13
TOOL 22 0.95 0.36 24 0.96 0.47 24 0.96 0.6 26 0.97 0.71 25 0.96 0.60
ELTN 97  0.98 0.58 130 0.98 0.5 134 0.96 0.04 142 0.98 0.45 138 0.96 0.00
MOTR 25 0.96 0.61 30 0.97 081 31 0.97 0.64 30 0.97 077 29 0.96 0.42
CLOT 39 0.97 0.75 46 0.97 0.49 48 0.98 0.88 52 0.98 0.94 50 0.98 0.95
WOOL 15 0.94 0.37 21 0.97 0.76 20 0.97 0.75 20 0.95 0.53 20 0.96 0.64
TX.M 32 0.94 0.14 36 0.97 061 36 0.97 0.73 36 0.97 0.79 37 0.97 0.64
LEAT 13 087 0.05 16 0.90 0.08 16 0.93 0.29 16 0.94 0.38 16 0.95 0.52
FOOD 94  0.98 0.81 104 0.97 0.24 109 0.98 0.65 111 0.96 0.04 113 0.97 0.24
W BUIL 29 0.97 0.72 34 0.97 0.64 36 0.97 0.64 39 0.97 0.53 38 0.97 0.57
METL 29 0.97 0.65 32 0.95 0.26 33 0.95 0.23 34 0.96 0.49 33 0.95 0.25
PAPR 50 0.97 0.58 55 0.97 0.38 56 0.97 042 59 0.96 0.23 57 0.96 0.31
CHEM 52 0.95 0.09 54 0.96 0.16 55 0.96 0.20 54 0.96 0.33 54 0.97 0.40
ELEC 37  0.94 0.10 44 0.94 0.05 48 0.94 0.04 49 0.95 0.06 46 0.94 0.05
IL.PL 19 0.94 0.32 20 0.89 0.04 22 0.93 0.12 23 0.93 0.12 23 0.95 0.45
TOOL 22 0.93 0.15 24 0.93 0.14 24 0.93 0.10 26 0.94 0.16 25 0.94 0.18

ELTN 97  0.95 0.02 130 0.96 0.00 138 0.93 0 144 0.94 0 143 0.94 0
MOTR 25 0.95 0.33 30 0.95 0.28 31 0.95 0.33 30 0.95 0.34 29 0.96 0.43
CLOT 39 0.97 0.75 45 0.99 0.99 48 0.97 0.66 52 0.97 0.45 50 0.98 0.73
WOOL 15 0.94 0.47 21 0.98 0.93 20 0.97 0.89 20 0.98 0.96 20 0.97 0.88
TX.M 31 0.94 0.16 35 0.96 0.29 35 0.95 0.15 36 0.94 0.09 37 0.95 0.18
LEAT 13  0.95 0.68 16 0.91 0.15 16 0.92 0.22 16 0.93 0.26 16 0.93 0.26
FOOD 92 0.97 0.40 105 0.96 0.02 111 0.96 0.02 116 0.96 0.05 114 0.96 0.08

Table 44: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the

number of cases. First table.
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1 BUIL 29 0.96 0.45 34 0.96 0.40 36 0.96 0.28 39 0.95 0.21 38 0.94 0.11

Table 45: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the
number of cases. Second table.
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FA BUIL 29 0.92 0.04 34 0.95 0.28 36 0.95 0.15 39 0.93 0.04 38 0.94 0.11

TA BUIL 29 0.94 0.12 34 0.96 0.39 36 0.95 0.24 39 0.94 0.07 38 0.94 0.06

Table 46: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the
number of cases. Third table.
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1983 1984 1985 1986 1987

\ ind N W P N W P N W P N W P N W P
CL BUIL 29 0.95 0.29 34 0.97 0.66 36 0.97 077 39 0.97 061 38 0.97 0.56
METL 29 0.97 0.83 32 0.98 0.97 33 0.97 081 34 0.96 0.51 33 0.97 061
PAPR 50 0.96 0.20 56 0.96 0.13 57 0.96 0.11 60 0.96 0.29 57 0.96 0.31
CHEM 53 0.94 0.04 55 0.92 0.00 56 0.93 0.00 55 0.95 0.05 55 0.95 0.05
ELEC 37 0.93 0.05 44 0.97 0.66 48 0.95 0.13 49 0.97 0.40 46 0.94 0.07
IL.PL 19 0.96 0.57 20 0.86 0.01 22 0.86 0.00 23 0.93 0.17 23 0.97 0.71
TOOL 22 0.94 0.22 24 0.95 0.38 24 0.97 084 26 0.95 0.39 25 0.96 0.64
ELTN 98 0.97 0.35 130 0.97 0.21 138 0.96 0.02 145 0.95 0 143 0.95 0.00
MOTR 25 0.95 0.42 30 0.95 0.30 31 0.97 0.62 30 0.95 0.27 29 0.96 0.48
CLOT | 39 0.98 0.88 46 0.97 0.72 48 0.97 057 52 0.97 061 50 0.98 0.96
WOOL 15 0.90 0.09 21 0.96 0.70 20 0.98 0.97 20 0.97 0.83 20 0.96 0.66
TX.M | 32 0.97 0.56 36 0.97 0.8 36 0.97 0.79 37 0.98 0.93 38 0.98 0.92
LEAT 13 0.95 0.67 16 0.94 0.43 16 0.92 0.23 16 0.94 0.41 16 0.96 0.64
FOOD 94 0.95 0.01 105 0.96 0.02 112 0.95 0.01 116 0.96 0.06 113 0.96 0.05
N BUIL 28 0.97 0.64 34 0.96 0.5 36 0.97 061 39 0.97 0.50 38 0.96 0.44
METL 29 0.97 0.73 32 0.95 0.19 33 0.94 0.13 34 0.95 0.20 33 0.94 0.15
PAPR 50 0.96 0.35 55 0.98 0.82 56 0.97 0.62 59 0.97 0.52 57 0.97 0.59
CHEM 52 0.97 0.70 54 0.97 0.36 55 0.97 0.46 54 0.97 061 53 0.97 0.53
ELEC 36 0.94 0.11 43 0.96 0.20 47 0.95 0.10 49 0.94 0.03 46 0.94 0.02
IL.PL 19 0.92 0.14 20 0.87 0.01 22 0.90 0.03 23 0.91 0.04 23 0.94 0.18
TOOL 22 0.91 0.07 24 0.94 0.19 24 0.92 0.06 26 0.91 0.03 25 0.92 0.05

ELTN 97  0.96 0.10 130 0.95 0.00 138 0.94 0 145 0.94 0 143 0.94 0
MOTR 25 0.95 0.42 30 0.95 0.31 30 0.96 0.53 30 0.96 0.52 29 0.96 0.55
CLOT | 39 0.98 0.88 45 0.99 0.99 48 0.98 0.77 52 0.98 0.78 50 0.98 0.86
WOOL 15 0.95 0.57 21 0.98 0.99 20 0.99 0.99 20 0.99 0.99 20 0.98 0.99
TX.M | 32 0.95 0.19 36 0.97 0.73 36 0.96 0.45 37 0.96 0.31 38 0.97 0.56
LEAT 13 0.92 0.29 16 0.91 0.12 16 0.91 0.16 16 0.92 0.17 16 0.92 0.21
FOOD 92 0.97 0.50 105 0.97 0.26 111 0.97 0.29 116 0.98 0.53 113 0.98 0.50
EX BUIL 29 0.93 0.08 34 0.96 0.36 36 0.97 0.58 39 0.97 0.60 38 0.97 077
METL 29 0.98 0.98 32 0.98 0.97 33 0.95 0.23 34 0.96 0.47 33 0.97 0.80
PAPR | 49 0.96 0.18 56 0.94 0.01 57 0.90 0 60 0.95 0.06 58 0.94 0.02
CHEM 53 0.96 0.20 55 0.96 0.21 56 0.96 0.14 55 0.96 0.25 55 0.97 0.44
ELEC 37 0.95 0.23 44 0.97 0.65 47 0.96 0.27 49 0.96 0.35 46 0.96 0.29
IL.PL 19 0.92 0.13 20 0.87 0.01 22 0.91 0.05 23 0.92 0.10 23 0.93 0.12
TOOL 22 0.93 0.14 24 0.95 0.32 24 0.97 0.74 26 0.98 0.92 25 0.95 0.33
ELTN 98 0.98 0.84 130 0.98 0.75 138 0.98 0.80 145 0.98 0.67 | 143 0.98 0.87
MOTR 25 0.92 0.07 30 0.95 0.28 31 0.95 0.22 30 0.96 0.43 29 0.95 0.25
CLOT | 39 0.98 0.86 46 0.84 0 48 0.97 0.69 52 0.97 0.69 50 0.98 0.97
WOOL 15 0.96 0.70 21 0.98 0.95 20 0.98 092 20 0.97 0.88 20 0.97 0.78
TX.M | 32 0.97 0.80 36 0.98 0.87 36 0.96 0.49 37 0.98 0.92 38 0.98 0.84
LEAT 13 0.95 0.63 16 0.96 0.73 16 0.95 0.54 16 0.93 0.31 16 0.95 0.61

FOOD 94 0.96 0.06 105 0.96 0.02 112 0.95 0.00 116 0.96 0.04 114 0.94 0

Table 47: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the

number of cases. Fourth table.
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1983 1984 1985 1986 1987

\ ind N W P N W P N W P N W P N W P
TC BUIL 29 0.94 0.15 34 0.94 0.12 35 0.93 0.06 38 0.95 0.13 38 0.94 0.08
METL 29 0.96 0.47 32 0.96 0.34 33 0.98 0.88 34 0.98 0.86 32 0.98 0.92
PAPR | 49 0.98 0.91 55 0.98 0.74 57 0.97 0.63 60 0.97 0.52 58 0.97 061
CHEM 53 0.97 0.57 55 0.97 0.46 56 0.97 0.38 55 0.97 0.62 55 0.97 0.35
ELEC 37 0.93 0.02 44 0.94 0.04 48 0.94 0.04 49 0.95 0.06 46 0.94 0.04
IL.PL 19 0.90 0.07 20 0.90 0.06 22 0.88 0.01 23 0.90 0.03 23 0.92 0.10
TOOL 22 0.93 0.19 24 0.95 0.28 24 0.95 0.40 26 0.97 0.72 25 0.95 0.41

ELTN 97  0.98 0.72 130 0.98 0.62 135 0.96 0.01 143 0.97 0.10 138 0.95 0
MOTR 25 0.95 0.30 30 0.97 0381 31 0.97 0.75 30 0.96 0.51 29 0.95 0.24
CLOT | 39 0.98 0.93 46 0.97 042 48 0.98 0.88 52 0.98 0.94 50 0.98 0.77
WOOL 15 0.95 0.63 21 0.96 0.66 20 0.96 0.69 20 0.95 0.53 20 0.95 0.50
TX.M | 32 0.93 0.09 36 0.97 0.58 36 0.97 061 36 0.97 0.59 37 0.97 0.57
LEAT 13 0.88 0.09 16 0.90 0.11 16 0.93 0.26 16 0.94 0.41 16 0.95 0.60
FOOD 94 0.98 0.56 105 0.97 048 111 0.96 0.04 112 0.96 0.02 113 0.96 0.05
EB BUIL 29 0.96 0.43 33 0.88 0.00 36 0.97 0.59 38 0.97 0.49 38 0.94 0.07
METL 25 0.96 0.56 29 0.97 0.82 27 0.95 0.28 31 0.98 0.84 29 0.95 0.30
PAPR | 45 0.98 0.84 53 0.99 0.99 57 0.97 0.50 59 0.97 0.46 57 0.97 0.56
CHEM 51 0.96 0.18 54 0.97 047 54 0.98 0.80 53 0.97 0.69 52 0.95 0.11
ELEC 37 0.98 0.84 41 0.98 0.91 47 0.96 0.26 46 0.98 0.92 43 0.96 0.33
IL.PL 17 085 0.01 18 0.90 0.05 21 0.92 0.12 19 0.94 0.27 19 0.92 0.13
TOOL 17 0091 0.14 23 0.98 0.95 22 0.97 0.72 24 0.97 0.71 25 0.96 0.59
ELTN 91 0.98 0.76 122 0.97 0.28 121 0.96 0.05 121 0.95 0.00 128 0.95 0.00
MOTR 22 0.95 0.38 28 0.98 0.87 27 0.97 0.67 27 0.96 0.55 27 0.97 0.80
CLOT | 36 0.96 0.41 39 0.97 0.69 44 0.97 0.50 50 0.98 0.90 45 0.98 0.93
WOOL 15 0.95 0.57 21 0.96 0.69 20 0.96 0.60 20 0.97 0.88 20 0.98 0.97
TX.M 29 0.93 0.07 33 0.96 0.45 32 0.95 0.26 34 0.95 0.26 36 0.97 0.79
LEAT 13 0.91 0.20 15 0.95 0.60 15 0.96 0.73 16 0.95 0.62 16 0.95 0.62

FOOD 87 0.96 0.10 97 0.96 0.02 106 0.97 0.16 107 097 0.12 106 0.93 0
opP BUIL 29 0.96 0.53 33 0.96 0.54 34 0.97 0.68 36 0.97 0.75 37 0.94 0.06
METL 24 0.95 0.38 28 0.96 0.50 26 0.97 0.73 31 0.98 0.89 28 0.97 0.67
PAPR | 44 0.98 0.86 51 0.95 0.14 55 0.96 0.21 58 0.97 0.55 57 0.97 0.43
CHEM | 49 0.97 0.58 54 0.97 0.59 53 0.97 0.65 51 0.97 0.63 52 0.97 0.37
ELEC 33 0.97 0.79 40 0.98 0.80 45 0.97 0.49 43 0.97 0.58 41 0.96 0.39
IL.PL 17 086 0.02 18 0.88 0.03 19 0.92 0.14 18 0.91 0.11 16 0.94 0.46
TOOL 16 0.95 0.60 21 0.97 0.85 20 0.97 086 23 0.97 0.70 24 0.98 0.90
ELTN | 87 0.98 0.81 118 0.97 047 121 0.96 0.09 120 0.96 0.04 126 0.96 0.01
MOTR 22 0.95 0.36 26 0.97 0.65 27 0.96 0.61 25 0.97 0.75 26 0.96 0.47
CLOT | 35 0.95 0.14 38 0.97 051 44 0.86 0 50 0.97 0.70 43 0.98 0.8
WOOL 14 0.96 0.72 21 0.96 0.65 20 0.97 087 20 0.98 0.95 20 0.96 0.56
TX.M 27  0.95 0.25 31 0.96 0.50 32 0.96 0.55 32 0.96 0.46 35 0.98 0.93
LEAT 13 0.91 0.18 15 0.95 0.57 15 0.95 0.64 16 0.97 0.86 16 0.96 0.78
FOOD 87 0.98 0.64 95 0.96 0.05 104 0.97 0.26 104 0.97 0.27 98 0.95 0.00

Table 48: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the

number of cases. Fifth table.
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FL BUIL 29 0.96 0.43 34 0.91 0.01 36 0.96 0.27 39 0.95 0.23 38 0.95 0.13

Table 49: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is the
number of cases. Sixth table.
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item ind 1983 1984 1985 1986 1987 item ind 1983 1984 1985 1986 1987
C 1 1.00 1.00 1.01 1.00 1.02 FA 1 0.97 1.05 1.05 1.05 1.11
2 1.03 0.97 1.03 1.01 1.00 2 0.97 0.96 1.18 1.20 1.07
3 0.96 1.06 1.04 1.03 1.04 3 0.94 0.94 0.87 0.99 0.99
4 0.97 0.96 0.99 0.98 0.96 4 1.28 1.25 1.24 1.25 1.21
5 1.11 1.12 1.11 1.12 1.14 5 0.98 0.89 0.93 0.93 0.89
6 1.08 1.06 1.04 1.06 0.99 6 0.95 0.81 0.87 0.98 0.89
7 0.87 1.10 1.05 1.03 1.06 7 0.70 0.83 0.93 0.98 1.16
8 1.00 0.98 1.01 0.98 1.02 8 1.03 1.00 1.07 1.04 1.09
9 1.00 0.93 0.97 0.96 1.00 9 1.12 1.02 1.10 1.08 1.08
10 1.01 1.07 1.03 1.02 0.98 10 1.03 1.13 1.06 1.11 1.04
11 1.03 0.98 0.94 1.03 0.97 11 0.89 0.93 1.00 1.04 0.97
12 1.02 0.99 0.99 0.99 0.98 12 1.03 1.04 1.04 1.04 1.04
13 1.05 1.01 0.96 0.96 0.97 13 1.07 1.19 1.20 1.19 1.22
14 0.97 0.98 0.99 1.00 0.98 14 1.12 1.11 1.16 1.10 1.09
D 1 1.00 0.98 0.97 0.97 0.97 FL 1 0.97 1.13 1.07 1.06 1.08
2 1.02 0.92 0.92 0.91 0.94 2 1.13 1.02 0.92 1.07 1.09
3 1.08 1.01 1.04 1.04 1.06 3 1.13 1.07 1.02 1.02 0.98
4 0.90 0.90 0.90 0.89 0.91 4 1.11 1.14 1.12 1.08 1.12
5 0.97 0.93 0.98 1.00 1.01 5 0.97 1.00 0.94 0.93 0.89
6 0.94 1.01 0.97 0.95 1.01 6 1.05 1.04 0.95 1.01 0.78
7 1.07 1.11 1.00 0.90 0.85 7 0.90 0.98 1.08 1.27 0.99
8 0.95 0.93 0.97 0.96 0.98 8 0.91 0.96 0.93 0.99 0.98
9 0.96 1.00 1.09 0.98 1.00 9 0.95 1.03 1.00 0.95 1.13
10 1.03 0.94 0.87 0.83 0.86 10 0.98 1.06 0.97 0.89 1.06
11 0.95 0.95 0.93 0.96 1.01 11 1.16 1.14 1.15 1.06 1.04
12 0.96 0.97 0.96 0.95 0.99 12 1.14 1.19 1.07 1.10 1.10
13 0.99 0.97 0.93 0.91 0.94 13 1.00 1.11 1.10 1.09 1.03
14 0.94 0.94 0.93 0.96 0.94 14 1.12 1.06 1.12 1.08 1.03
1 1 1.13 1.06 1.04 1.08 1.05 NwW 1 0.94 0.98 0.98 1.03 1.02
2 1.19 1.18 1.07 0.99 1.18 2 1.01 1.01 1.03 0.96 0.94
3 1.03 1.02 1.00 1.05 1.05 3 0.92 0.89 0.80 0.97 0.90
4 1.00 1.02 1.00 0.99 0.96 4 1.18 1.16 1.14 1.12 1.07
5 0.99 1.03 1.00 1.02 1.02 5 0.89 0.84 0.88 0.87 0.85
6 1.07 1.13 1.11 1.15 1.12 6 0.95 0.78 0.87 0.87 0.88
7 1.02 0.98 1.00 1.02 1.06 7 0.93 0.80 0.94 1.01 0.98
8 1.07 1.10 1.05 1.06 1.07 8 1.03 1.05 1.04 1.05 1.04
9 1.07 0.99 1.00 1.01 1.03 9 1.06 0.99 1.03 0.98 0.96
10 1.16 1.15 1.08 1.13 1.13 10 1.01 0.94 0.96 0.98 0.90
11 0.92 0.96 0.98 0.95 0.93 11 1.05 1.02 1.06 1.03 1.00
12 1.08 1.06 1.07 1.16 1.10 12 0.98 0.98 0.99 0.99 0.98
13 1.09 1.08 1.06 1.08 1.07 13 0.95 1.06 1.08 1.10 1.11
14 1.09 1.08 1.07 1.07 1.04 14 1.06 1.08 1.07 1.01 0.99

Table 50: Slopes of the regression in which size explains twelve accounting items by industry and
by year. First table.
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item ind 1983 1984 1985 1986 1987 item ind 1983 1984 1985 1986 1987
S 1 1.01 0.99 1.01 0.98 1.00 WC 1 1.14 0.95 0.91 1.16 1.06
2 0.91 0.97 0.93 1.01 0.93 2 1.02 0.95 0.97 0.92 0.81
3 1.10 1.07 1.05 1.04 1.05 3 0.90 0.95 0.94 1.04 0.99
4 0.91 0.92 0.94 0.89 0.88 4 1.07 1.09 1.07 1.06 0.96
5 0.98 1.11 1.01 1.02 1.04 5 0.91 0.90 1.02 0.91 0.92
6 1.03 1.13 1.14 1.11 1.09 6 1.19 0.79 0.93 0.82 0.85
7 1.17 1.14 1.13 1.07 1.05 7 1.22 0.98 1.14 1.27 1.09
8 0.97 0.97 1.00 1.01 1.01 8 1.13 1.09 1.04 1.08 1.07
9 1.01 1.02 0.95 0.96 0.98 9 1.17 1.09 0.99 0.92 0.92
10 0.97 1.11 0.97 0.93 0.96 10 0.86 0.82 0.83 0.91 0.75
11 0.92 0.94 0.93 0.91 0.94 11 1.12 1.01 1.02 0.99 0.94
12 0.99 0.97 0.96 0.98 1.00 12 1.01 0.97 0.94 0.90 0.89
13 1.01 0.99 1.03 1.05 1.05 13 0.76 0.87 0.95 0.80 0.94
14 0.96 0.92 0.92 0.92 0.99 14 0.97 0.95 0.95 0.99 0.87
W 1 1.01 1.04 1.05 1.02 1.02 DEBT 1 1.25 1.23 1.35 1.15 1.42
2 1.04 1.09 1.10 1.11 1.12 2 1.02 0.86 1.06 1.28 1.32
3 1.03 1.05 1.04 1.03 1.04 3 1.26 0.95 0.90 1.14 1.18
4 1.03 1.06 1.07 1.10 1.06 4 1.29 1.26 1.19 1.19 1.09
5 1.02 1.14 1.06 1.03 1.01 5 1.00 0.93 1.05 0.96 0.91
6 1.03 1.06 1.00 1.04 1.05 6 0.96 1.27 1.35 1.04 0.72
7 0.98 1.00 1.01 1.07 1.06 7 0.42 0.94 0.90 1.00 1.41
8 1.02 1.04 1.00 0.99 0.97 8 0.88 0.91 0.94 0.99 1.03
9 1.01 1.08 1.03 1.04 1.06 9 1.41 1.27 1.09 1.25 1.18
10 0.98 1.05 1.09 1.10 1.12 10 0.99 0.92 1.07 1.07 0.82
11 0.92 0.99 0.99 1.00 0.98 11 0.63 0.59 1.17 1.04 1.34
12 1.03 1.03 1.06 1.04 1.01 12 1.13 1.17 1.11 1.20 1.11
13 0.87 0.92 0.93 0.92 0.92 13 0.66 0.83 1.21 0.79 0.87
14 1.05 1.05 1.07 1.04 1.07 14 1.17 1.14 1.13 1.05 1.11
CA 1 0.98 0.97 0.97 1.01 0.99 EBIT 1 0.94 1.09 1.03 1.06 1.08
2 0.99 0.96 0.93 0.88 0.89 2 1.04 0.98 0.83 1.02 0.99
3 0.93 0.97 0.96 1.00 1.00 3 1.17 0.99 1.03 0.96 0.98
4 0.99 0.98 0.98 0.98 1.01 4 1.10 1.17 1.14 1.09 1.05
5 1.01 0.96 1.02 1.02 1.02 5 1.04 1.00 0.95 0.95 0.93
6 1.04 0.89 0.95 0.92 0.91 6 1.14 1.10 0.94 1.04 0.88
7 1.03 0.97 1.01 1.01 1.02 7 1.00 1.09 1.06 1.22 0.94
8 1.03 1.02 1.00 1.02 1.03 8 0.88 0.93 0.92 0.94 0.96
9 1.00 0.95 0.97 1.02 0.96 9 0.97 0.98 0.99 0.93 1.00
10 1.00 0.95 0.97 0.98 0.92 10 0.82 0.91 0.92 0.79 0.80
11 1.20 1.06 1.06 1.03 1.02 11 1.26 1.19 1.20 1.07 1.06
12 1.01 0.99 1.00 0.99 0.98 12 1.27 1.20 1.08 1.13 1.10
13 1.02 1.00 0.99 1.00 0.98 13 1.03 1.05 1.17 1.22 1.11
14 0.97 0.99 0.96 1.00 0.94 14 1.08 1.05 1.14 1.07 0.98

Table 51: Slopes of the regression in which size explains twelve accounting items by industry and
by year. Second Table.
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item ind 1983 1984 1985 1986 1987 item ind 1983 1984 1985 1986 1987
C 1 0.89 0.9 0.91 0.92 0.91 FA 1 0.9 0.89 0.85 0.86 0.88
2 0.8 0.86 0.81 0.74 0.77 2 0.62 0.5 0.6 0.63 0.6
3 0.89 0.89 0.92 0.93 0.94 3 0.76 0.76 0.72 0.83 0.83
4 0.91 0.92 0.9 0.9 0.88 4 0.89 0.86 0.86 0.81 0.8
5 0.95 0.96 0.96 0.95 0.94 5 0.81 0.72 0.74 0.74 0.71
6 0.86 0.91 0.93 0.95 0.87 6 0.82 0.81 0.83 0.87 0.8
7 0.92 0.96 0.92 0.9 0.91 7 0.82 0.83 0.85 0.88 0.81
8 0.9 0.9 0.9 0.9 0.91 8 0.75 0.83 0.85 0.84 0.81
9 0.94 0.86 0.93 0.92 0.92 9 0.94 0.92 0.96 0.93 0.91
10 0.88 0.9 0.88 0.84 0.8 10 0.76 0.82 0.75 0.73 0.76
11 0.8 0.87 0.86 0.85 0.89 11 0.67 0.82 0.83 0.87 0.87
12 0.91 0.93 0.96 0.95 0.94 12 0.78 0.81 0.83 0.85 0.83
13 0.92 0.94 0.96 0.95 0.95 13 0.82 0.88 0.9 0.87 0.88
14 0.93 0.94 0.93 0.94 0.94 14 0.84 0.9 0.89 0.87 0.84
D 1 0.96 0.97 0.96 0.97 0.97 FL 1 0.86 0.79 0.9 0.87 0.9
2 0.85 0.89 0.84 0.79 0.78 2 0.73 0.81 0.81 0.83 0.75
3 0.9 0.84 0.83 0.87 0.87 3 0.85 0.82 0.9 0.83 0.91
4 0.9 0.89 0.91 0.85 0.87 4 0.91 0.89 0.9 0.88 0.67
5 0.93 0.92 0.91 0.92 0.92 5 0.88 0.88 0.86 0.82 0.8
6 0.92 0.95 0.95 0.95 0.89 6 0.81 0.82 0.82 0.84 0.6
7 0.86 0.88 0.87 0.83 0.71 7 0.52 0.75 0.71 0.58 0.91
8 0.91 0.92 0.95 0.95 0.95 8 0.87 0.89 0.84 0.82 0.91
9 0.98 0.97 0.93 0.97 0.96 9 0.95 0.84 0.87 0.91 0.85
10 0.85 0.84 0.78 0.72 0.78 10 0.76 0.6 0.78 0.6 0.63
11 0.85 0.89 0.91 0.91 0.9 11 0.78 0.88 0.89 0.87 0.89
12 0.93 0.95 0.95 0.95 0.94 12 0.92 0.87 0.95 0.94 0.94
13 0.8 0.86 0.89 0.88 0.87 13 0.96 0.9 0.96 0.96 0.96
14 0.95 0.93 0.94 0.94 0.94 14 0.89 0.92 0.89 0.91 0.91
1 1 0.93 0.94 0.92 0.92 0.92 NwW 1 0.85 0.9 0.89 0.9 0.9
2 0.84 0.87 0.79 0.87 0.69 2 0.7 0.82 0.8 0.8 0.77
3 0.95 0.95 0.94 0.79 0.8 3 0.89 0.81 0.79 0.8 0.89
4 0.82 0.8 0.79 0.83 0.78 4 0.88 0.9 0.9 0.89 0.88
5 0.93 0.91 0.89 0.91 0.91 5 0.9 0.85 0.85 0.84 0.83
6 0.83 0.85 0.91 0.91 0.9 6 0.75 0.77 0.84 0.86 0.79
7 0.87 0.88 0.87 0.9 0.92 7 0.84 0.75 0.71 0.82 0.82
8 0.82 0.81 0.78 0.82 0.73 8 0.94 0.91 0.93 0.93 0.92
9 0.98 0.92 0.94 0.94 0.92 9 0.94 0.95 0.91 0.92 0.9
10 0.91 0.9 0.88 0.87 0.89 10 0.81 0.84 0.84 0.85 0.87
11 0.75 0.84 0.78 0.8 0.73 11 0.77 0.85 0.89 0.89 0.89
12 0.94 0.96 0.95 0.93 0.93 12 0.91 0.93 0.94 0.94 0.94
13 0.95 0.98 0.98 0.98 0.97 13 0.93 0.96 0.97 0.97 0.96
14 0.91 0.93 0.92 0.88 0.87 14 0.89 0.88 0.88 0.92 0.88

Table 52: Proportion of explained variability when a proxy for size explains twelve accounting items
by industry and by year. First Table.
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item ind 1983 1984 1985 1986 1987 item ind 1983 1984 1985 1986 1987
S 1 0.97 0.98 0.98 0.98 0.98 WC 1 0.64 0.81 0.75 0.78 0.75
2 0.64 0.66 0.65 0.68 0.64 2 0.87 0.87 0.77 0.75 0.82
3 0.95 0.88 0.94 0.9 0.91 3 0.52 0.75 0.74 0.77 0.81
4 0.9 0.88 0.88 0.86 0.86 4 0.87 0.83 0.81 0.61 0.71
5 0.96 0.9 0.94 0.93 0.94 5 0.61 0.81 0.74 0.62 0.82
6 0.97 0.98 0.96 0.97 0.94 6 0.68 0.69 0.7 0.56 0.76
7 0.94 0.97 0.96 0.95 0.92 7 0.72 0.7 0.64 0.84 0.78
8 0.94 0.94 0.93 0.93 0.93 8 0.85 0.87 0.88 0.8 0.84
9 0.99 0.95 0.97 0.96 0.95 9 0.75 0.86 0.86 0.78 0.79
10 0.96 0.9 0.96 0.91 0.92 10 0.72 0.49 0.62 0.56 0.41
11 0.86 0.93 0.93 0.92 0.94 11 0.68 0.84 0.83 0.83 0.73
12 0.95 0.96 0.97 0.97 0.97 12 0.88 0.79 0.58 0.87 0.81
13 0.99 0.99 0.98 0.98 0.98 13 0.91 0.96 0.92 0.92 0.82
14 0.91 0.93 0.92 0.92 0.89 14 0.8 0.8 0.74 0.78 0.74
W 1 0.98 0.98 0.98 0.98 0.97 DEBT 1 0.55 0.68 0.69 0.55 0.65
2 0.77 0.78 0.83 0.85 0.86 2 0.38 0.31 0.38 0.43 0.5
3 0.94 0.93 0.92 0.92 0.93 3 0.51 0.27 0.4 0.5 0.63
4 0.95 0.95 0.95 0.96 0.95 4 0.73 0.73 0.63 0.52 0.53
5 0.95 0.92 0.88 0.95 0.94 5 0.73 0.49 0.46 0.41 0.36
6 0.96 0.98 0.96 0.97 0.94 6 0.23 0.86 0.86 0.6 0.33
7 0.93 0.97 0.96 0.96 0.94 7 0.04 0.34 0.24 0.37 0.58
8 0.88 0.9 0.91 0.92 0.91 8 0.54 0.62 0.55 0.49 0.49
9 0.98 0.95 0.97 0.95 0.97 9 0.72 0.92 0.83 0.68 0.66
10 0.88 0.88 0.87 0.88 0.88 10 0.34 0.26 0.39 0.32 0.29
11 0.77 0.87 0.89 0.91 0.9 11 0.12 0.31 0.54 0.52 0.59
12 0.88 0.9 0.92 0.93 0.92 12 0.71 0.74 0.83 0.84 0.76
13 0.93 0.95 0.94 0.93 0.91 13 0.65 0.85 0.72 0.66 0.54
14 0.93 0.94 0.95 0.95 0.95 14 0.82 0.77 0.73 0.68 0.66
CA 1 0.98 0.99 0.95 0.98 0.99 EBIT 1 0.82 0.78 0.82 0.82 0.88
2 0.88 0.91 0.9 0.91 0.93 2 0.75 0.83 0.78 0.83 0.84
3 0.95 0.97 0.96 0.96 0.97 3 0.89 0.77 0.83 0.86 0.88
4 0.97 0.93 0.94 0.91 0.87 4 0.86 0.89 0.83 0.85 0.81
5 0.98 0.96 0.97 0.97 0.97 5 0.75 0.82 0.82 0.7 0.88
6 0.97 0.95 0.97 0.96 0.92 6 0.66 0.76 0.73 0.75 0.48
7 0.95 0.96 0.96 0.96 0.95 7 0.4 0.75 0.8 0.77 0.84
8 0.9 0.95 0.95 0.96 0.94 8 0.82 0.8 0.77 0.84 0.82
9 0.99 0.94 0.97 0.84 0.81 9 0.89 0.79 0.92 0.75 0.77
10 0.94 0.93 0.92 0.92 0.92 10 0.35 0.6 0.72 0.58 0.45
11 0.87 0.93 0.92 0.93 0.91 11 0.68 0.83 0.86 0.83 0.84
12 0.95 0.96 0.97 0.97 0.94 12 0.84 0.89 0.95 0.91 0.92
13 0.97 0.98 0.98 0.97 0.96 13 0.97 0.96 0.92 0.9 0.93
14 0.95 0.96 0.96 0.92 0.96 14 0.87 0.89 0.86 0.89 0.85

Table 53: Proportion of explained variability when a proxy for size explains twelve accounting items
by industry and by year. Second Table.
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Figure 83: Typical ¥ matrices

o O O OO

o O O OO

o O O OO

CA FA TA CL TC

1983, Building Materials

.339

.324 0.359

.334 0.338 0.336

.339 0.327 0.336 0.369

.336 0.356 0.343 0.321 0.369

1983, Clothing

.200

.184 0.262

.191 0.202 0.190

.198 0.209 0.199 0.235

.199 0.197 0.193 0.176 0.226

1983, Food
597
.634 0.904

.596 0.692 0.615
.579 0.633 0.586 0.589
.628 0.785 0.660 0.601 0.745
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S W I D C CA FA DEBT WC FL EBIT N

S 0.38

W 0.39 0.42 1985, Building Materials
I 0.40 0.42 0.46

D 0.33 0.35 0.35 0.31

C 0.35 0.36 0.37 0.32 0.35

CA 0.350.37 0.38 0.32 0.33 0.34

FA 0.43 0.46 0.48 0.39 0.40 0.42 0.60

DEBT 0.52 0.56 0.58 0.46 0.50 0.50 0.68 1.01

WC 0.350.36 0.40 0.31 0.31 0.36 0.44 0.52 0.48

FL 0.38 0.39 0.42 0.34 0.35 0.37 0.49 0.56 0.40 0.42

EBIT 0.36 0.37 0.41 0.33 0.34 0.36 0.48 0.53 0.42 0.42 0.44
U] 0.37 0.40 0.40 0.33 0.34 0.35 0.45 0.54 0.34 0.38 0.36 0.39
S 0.63

W 0.63 0.68 1985, Electronics

I 0.66 0.66 0.77

D 0.58 0.61 0.62 0.57

C 0.62 0.64 0.66 0.59 0.64

CA 0.61 0.63 0.66 0.59 0.62 0.63

FA 0.64 0.67 0.67 0.61 0.64 0.64 0.72

DEBT 0.54 0.59 0.63 0.55 0.59 0.58 0.63 0.93

WC 0.65 0.68 0.71 0.63 0.66 0.68 0.68 0.62 0.78

FL 0.60 0.62 0.63 0.58 0.61 0.61 0.63 0.53 0.65 0.63

EBIT 0.61 0.62 0.66 0.58 0.62 0.61 0.62 0.50 0.66 0.65 0.71
U] 0.61 0.65 0.65 0.58 0.62 0.61 0.63 0.57 0.65 0.59 0.60 0.64
S 0.18

W 0.20 0.27 1985, Clothing

I 0.19 0.23 0.22

D 0.16 0.16 0.17 0.18

C 0.18 0.20 0.18 0.16 0.19

CA 0.18 0.19 0.20 0.17 0.18 0.19

FA 0.19 0.24 0.21 0.16 0.20 0.19 0.26

DEBT 0.22 0.24 0.24 0.23 0.23 0.24 0.23 0.53

WC 0.16 0.17 0.19 0.18 0.16 0.19 0.17 0.27 0.25

FL 0.21 0.23 0.22 0.19 0.21 0.21 0.23 0.30 0.21 0.28

EBIT 0.21 0.21 0.21 0.20 0.21 0.21 0.21 0.29 0.21 0.27 0.28
U] 0.20 0.28 0.22 0.14 0.19 0.18 0.24 0.22 0.16 0.21 0.20 0.29
S 0.55

W 0.55 0.62 1985, Food

I 0.56 0.58 0.63

D 0.51 0.51 0.54 0.50

C 0.56 0.57 0.60 0.54 0.61

CA 0.54 0.55 0.59 0.52 0.57 0.56

FA 0.58 0.65 0.63 0.55 0.60 0.60 0.72

DEBT 0.58 0.60 0.61 0.56 0.60 0.58 0.65 0.87

WC 0.55 0.57 0.61 0.54 0.57 0.59 0.62 0.59 0.78

FL 0.58 0.63 0.64 0.56 0.62 0.61 0.68 0.64 0.67 0.71

EBIT 0.62 0.66 0.70 0.62 0.67 0.67 0.72 0.69 0.74 0.78 0.88
U] 0.52 0.61 0.56 0.48 0.56 0.53 0.63 0.57 0.54 0.60 0.63 0.61

Figure 84: Typical ¥ matrices. Only cases with positive items were accepted.
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Appendix B

Classification Results Using the
Multi-Layer Perceptron

In this appendix we gather information concerning the experiment described in section 7.3 about the
Multi-Layer Perceptron (MLP) as a modelling tool for accounting relations. But here we examine
the MLP as a classifier, intended to be used instead of Multiple Discriminant Analysis (MDA).
Therefore, we focus on the classification performance rather than on the acquisition of knowledge.

Each section of this appendix contains the description of a particular test. Firstly, the technique
usual in accounting research, involving 18 ratios as input variables, is described. The results of using
MDA are compared with those of using MLP. Next we apply the framework developed in the first
part of this study instead of the usual one, both with MDA and MLP modelling. It uses eight log
items as inputs. Finally, we show the classification obtained with the new ratios devised by the MLP
when used as inputs for MDA.

This appendix is intended to show the importance of implementing our framework in a particular,
well known, problem. Also, the circumstances leading the MLP to outperform the linear tools can

be devised.

B.1 Results: The Usual Technique

In this section we describe the procedures and results obtained when applying to the classification

problem the techniques which are usual in accounting research, that is,
e Input variables are ratios selected so as to reflect desired features.
e Ratios suffer ad-hoc transformations. The goal is to achieve improvements in their normality.

e Factor Analysis is used to extract a few variables from the set of transformed ratios.
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Ratio Skewness | Kurtosis Ratio Skewness | Kurtosis
log NW 0.42 0.01 log S 0.38 0.09
DD 0.59 1.60 FA/TA 0.33 -0.15
S/FA 1.5 28.5 W/TA 1.09 2.17
VA/TCE 2.5 13.8 OPP/S 0.17 6.05
EBIT/S 0.53 5.95 OPP/TCE 1.85 34.8
EBIT/TCE 1.25 24.5 S/TA 2.01 6.85
s/1 2.94 12.1 D/CA 1.45 9.70
D/I 2.41 11.2 D/C 1.78 5.74
DEBT/NW 3.31 18.1 DEBT/TCE 3.31 18.1

Table 54: Skewness and kurtosis of ratios used in the replica of the traditional study. The displayed
values were obtained after applying transformations. DD is the Days Debtors ratio.

e Multiple Discriminant Analysis uses such factors as input variables. In this case, the industrial

grouping according to the SEIC is the outcome.

Our study reproduces a reputed one, carried out in 1984 by Sudarsanam and Taffler [124] and

quoted by Foster. The ratios used and their transformations are displayed elsewhere (see page 174).

Normality of transformed ratios: We obtained a broad set of values for the skewness and
kurtosis of the ratios used in the replication of the study referred to. Such values are displayed in
table 54.

DEBT has a large number of zero cases corresponding to non-leveraged firms. It will not yield
homogeneous distributions with any transformation. The factor extracted from DEBT ratios exhibit

a very strong two-modality.

Extraction of factors from ratios: After obtaining the transformed ratios we extract the eight
largest components of their variability. Next we display the differences between our study and the

original one concerning the affinity of input variables with the resulting factors.
1. Operating Scale: We obtained the same groups.
2. Fixed Capital Intensity, the same groups.
3. Labour Capital Intensity, the same groups.
4. Profitability, the same groups.
5. Asset Turnover: This factor was formed with variability from S/TA and S/I mainly.
6. Short Term Asset Intensity, DD, D/C, D/CA and D/I.
7. Net Trade Credit, DD, D/C, D/CA and D/I.

8. Leverage, the same groups.
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Therefore, our study found differences in the interpretation of the factors related to Short Term. In
our data the three factors representing short-term features have their variables mixed up.

The co-variance matrix was almost singular. The main correlations were observed between
e log S and log NW (0.995),

VOPP/S and log(EBIT/S) (0.971),

\VOPP/TCE and \/EBIT/TCE (0.980),

VFA/TA and log(S/T A) (0.970),

o /S/TA and log(S/I) (0.922) and finally between

e /DEBT/NW and DEBT/TCE (0.970).

The eigenvalue sequence doesn’t exhibit the smallest trace of a break in the rate of decay. It decays

smoothly in an exponential way. The factors are, more or less, replicating the original variables.
Hence, there is no clear distinction between the selected factors and the rejected ones. There 1s
no real commonality or real uniqueness and each factor contains a good portion of the information
others contain. Since the purpose is the reduction in the number of dimensions, not the discovering
of features, this is just as well.

An eigenvalue sequence can have values like these:
20%, 19%, 15%, 15%, 13%, 9%, 8%, 6%

Typically, eight factors will account for more than 90% of the variability.

Transformations: We must remark that the effect of using different transformations inside the
same set of input variables introduces a non-negligible amount of non-linearity in input space. If
two linearly related variables are exposed to different transformations, say, one square root and the
other logs, the resulting relation between them is no longer linear. Afterwards, when factor analysis
1s used to extract new variables from these non-linear ones, the clear result will be that most of the
variability associated with the extreme values — the ones which are most curled by the non-linearity
— i1s flattened away. Factor analysis extract linear patterns.

Hence, the final result of this interaction between artificial non-linearity and linear factor analysis

1s that the extreme values of the distribution will be pushed towards the centre of the distribution.

Multiple Discriminant Analysis: A diversion from the original study consisted of dividing the
set of examples randomly in two approximately equal sized samples. The MDA model was built
with one of the samples but its performance was checked with the other one. In general, the size of

each group in one set and in the other are not very similar. This fact introduces a distortion in the
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N. | SEIC Code | Group Name N. Cases | Correct | N. Cases | Correct
1 14 Building Materials 8 3 23 1
2 32 Metallurgy 11 1 8 2
3 54 Paper and Pack 25 5 21 1
4 68 Chemicals 22 4 23 7
5 19 Electrical 16 3 18 4
6 22 Industrial Plants 8 2 9 1
7 28 Machine Tools 11 2 10 1
8 35 Electronics 49 11 35 14
9 41 Motor Components 17 4 6 5
10 59 Clothing 19 10 23 9
11 61 Wool 7 1 12 1
12 62 Miscellaneous Textiles 11 1 19 1
13 64 Leather 8 1 8 3
14 49 Food Manufacturers 43 25 37 23

Table 55: Classification results with MDA and 8 factors.

classification results since the likelihood of each group in the test set 1s different from the likelihood
in the training set. However, by imposing equal prior probabilities across groups this distortion is
minimized.

We are mainly interested in comparing the performance of MDA with that of the Multi-Layer
Perceptron. Provide the samples are the same and the prior assumptions coincide, this comparison
can be carried out.

Table 55 shows the classification results. N. Cases displays the number of cases in a group after
split in two random samples. Correct shows the number of correct classifications when that group
was used to model and the other group was used to test.

The displayed results and all the other results reported were obtained under the supposition of
equal prior likelihood of any firm to belong to this group or the other. There is no special reason
why a prior knowledge about relative size of groups should be included in this study.

For small groups the classification 1s very poor. It increases dramatically with the size of the
group. An overall 29% of success in both cases is attained almost because of very good classification

of groups like Food and Electronics.

B.2 MLP With 8 Factors as Input Variables

The same eight factors which were used as input variables for MDA were also tested as input for
an MLP. After several experiments we found that the best results would be achieved with an MLP
with one hidden layer and six nodes on it. Table 56 contains the number of correct classifications in
the test set, by group.

These results concern an MLP with six nodes in a unique hidden layer and 14 output nodes (one
per group). Outputs were post-processed as described in section 7.4.3, on page 180 but no random
penalization of weights were applied. The criterion used for convergence was the maximization of

the likelihood input-outcomes.
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N. | SEIC Code | Group Name N. Cases | Correct | N. Cases | Correct
1 14 Building Materials 8 3 23 0
2 32 Metallurgy 11 0 8 1
3 54 Paper and Packing 25 6 21 1
4 68 Chemicals 22 4 23 7
5 19 Electrical 16 4 18 6
6 22 Industrial Plants 8 2 9 0
7 28 Machine Tools 11 1 10 0
8 35 Electronics 44 12 35 16
9 41 Motor Components 17 3 6 5
10 59 Clothing 19 12 23 10
11 61 Wool 7 0 12 0
12 62 Miscellaneous Textiles 11 2 19 1
13 64 Leather 8 0 8 3
14 49 Food Manufacturers 43 28 37 24

Table 56: Classification results with MLP and 8 factors.

The training was interrupted when the likelihood, measured in the training set, reached a max-
imum. This procedure is therefore different from the one referred to in section 7.4.1, page 176. It
allows a direct comparison with the results of the MDA modelling.

Under the displayed conditions, the MLP shows a performance which is similar to the one of
MDA (about 30% of correct classifications), a linear, analytic tool. We believe that the improve-
ments in performance achieved in later experiments stem from the interruption of training before

its completion and also from the more robust pre-processing of the input data.

B.3 MLP and MDA With Eight Log Items as Input Variables

We now describe our procedure for modelling the relation between accounting information and
industry grouping.

We recall that the new approach consisted of using eight accounting variables directly, not in
the form of ratios. A simple two-parameter log transformation and a mean-adjustment was all the
manipulation suffered by the items before being used as input variables for classification. The logs
used were the decimal ones. Notice that there is a more subtle difference between the MLP and the
MDA procedures in what concerns the pre-processing of data. The MDA standardizes the input
variables one by one. The MLP uses all the information contained in the differences of spread.

The selected items were Fixed Assets, Inventory, Debtors, Creditors, Long Term Debt, Net
Worth, Wages and Sales less Operating Expenses. All these variables were present in the original
18 ratios, along with others like Earnings, Value Added, Total Capital Employed and Total Assets
which we didn’t use in the new approach.

All the log items were mean-adjusted before being presented as input. The overall mean, not
the industry-specific one, was used for this. Therefore, the input variables are not just log items but
what we call relative positions (see equation 4 on page 59). No correction for § was introduced.

When using the analytical tool for modelling with these eight positions we obtained about 33-34%
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N. | SEIC Code | Group Name N. Cases | Correct | N. Cases | Correct
1 14 Building Materials 8 2 23 1
2 32 Metallurgy 11 2 8 2
3 54 Paper and Packing 25 5 21 6
4 68 Chemicals 22 4 23 7
5 19 Electrical 16 5 18 4
6 22 Industrial Plants 8 1 9 2
7 28 Machine Tools 11 2 10 2
8 35 Electronics 44 21 35 14
9 41 Motor Components 17 4 6 5
10 59 Clothing 19 10 23 9
11 61 Wool 7 1 12 4
12 62 Miscellaneous Textiles 11 2 19 4
13 64 Leather 8 1 8 1
14 49 Food Manufacturers 43 26 37 23
Table 57: Classification results with MDA and 8 log items.
N. | SEIC Code | Group Name N. Cases | Correct | N. Cases | Correct
1 14 Building Materials 8 4 23 10
2 32 Metallurgy 11 1 8 1
3 54 Paper and Packing 25 5 21 2
4 68 Chemicals 22 4 23 9
5 19 Electrical 16 5 18 6
6 22 Industrial Plants 8 2 9 0
7 28 Machine Tools 11 5 10 1
8 35 Electronics 44 17 35 19
9 41 Motor Components 17 5 6 5
10 59 Clothing 19 10 23 11
11 61 Wool 7 2 12 0
12 62 Miscellaneous Textiles 11 2 19 2
13 64 Leather 8 1 8 3
14 49 Food Manufacturers 43 32 37 25

Table 58: The best classification results with MLP and 8 log items.

of correct classifications in the test set. The detailed results are gathered in table 57. It seems clear
that, just by avoiding all the entangling pre-processing of data traditional in accounting research
and using the log space instead, some improvements in performance can be observed.

Table 58 shows the best classification results the MLP is able to achieve. The improvement,
from 33%-34% to 37%-38%, is due to the interruption of training in the optimum for the test set
rather than in the optimum for the training set. It is also a consequence of the better generalisation

introduced by forcing a reduction in the number of free parameters in the net.

B.4 Using the Devised Set of Ratios With MDA

We now show the results obtained when using a devised set of ratios for modelling with analytic

tools. These ratios are a free interpretation of the best topology the MLP builds after learning the
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N. | SEIC Code | Group Name N. Cases | Correct | N. Cases | Correct
1 14 Building Materials 8 2 23 6
2 32 Metallurgy 11 2 8 2
3 54 Paper and Packing 25 4 21 5
4 68 Chemicals 22 4 23 4
5 19 Electrical 16 5 18 2
6 22 Industrial Plants 8 1 9 0
7 28 Machine Tools 11 0 10 2
8 35 Electronics 44 14 35 14
9 41 Motor Components 17 3 6 1
10 59 Clothing 19 10 23 7
11 61 Wool 7 0 12 3
12 62 Miscellaneous Textiles 11 1 19 3
13 64 Leather 8 1 8 1
14 49 Food Manufacturers 43 25 37 19

Table 59: Classification results with MDA and the five discovered ratios plus a proxy for size.

relation. We recall that the ratios used were five,

NW x I
st .
In the 2°° node: TAXEX
EX
In the 3% node: —
n the 3" node A
EX
In the 4% node: —
DB
FA
In the 5% node: 7XC
W x EX
EX
In the 6°¢ node: ———
VFAX D

along with a proxy for the strong, common effect.

Table 59 shows the best generalisation achieved. It is around 29%.

Though the results are not impressive by themselves, we must remember that they approach
those obtained with 18 ratios. Anyway, the important point here is to notice that the MLP was able

to point out the items which are important in the modelling of the relation.

B.5 Conclusions

Generalisation results show that under similar conditions little difference exists between the MDA
and the MLP results for the particular problem we studied. Clearly, the relation to be modelled must
be near linearity. This is a fortunate circumstance. It allows the strict comparing of these tools in a
problem for which the linear, analytical, procedure has not been put in a position of disadvantage.

An interesting achievement is the ability displayed by the MLP to deal with simple, linear,
relations with no losses in generalisation. Algorithms like polynomial fitting would perform badly if

required to model a straight line. The MLP did it easily. Hence, the Multi-layer Perceptron emerges

277



as a general-purpose tool, to which we can trust the task of modelling a broad class of relations,
ranging from the simple, linear, ones to the most complex ones.

When using 18 ratios and the procedures typical in accounting research — including the extrac-
tion of eight factors — both the MDA and MLP generalisation results range from 29% to 30%. The
use of eight log items instead of the eighteen transformed and rotated ratios introduces an expected
improvement in the generalisation achieved. Both the MLP and the MDA now range from 33% to
34% of correct classifications in the test set. This clearly shows the disadvantages of such techniques
based on standard recipes.

By stopping the learning process in the optimal classification for the test set rather than for
the learning one a considerable improvement is added to the experiment with eight items. The
generalisation is up to 37% - 38%. Naturally, analytic tools like the MDA cannot replicate this

experiment. The classification results are summarized in next table.

INPUT MDA | MLP
18 ratios 29% 30%
8 variables 34% 38%

Finally, the five ratios inspired by the ones formed inside the MLP plus the estimated size, are
able to achieve 28% - 29% of correct classification in the test set, which is similar to the performance
of the original 18 ratios.

All the results suffer from the same problem, the virtual disappearance of the small groups —
the overwhelming dominance of the large ones. The proportion of correct classification is related to
the proportion of cases in the learning set in the sense that large groups are correctly recognized

whilst the small ones are ignored.
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Appendix C

Tools And Algorithms Used In
This Study

This appendix enumerates the main tools and algorithms used during this study to perform data
manipulation.

Statistical computation was performed with the SPSS-X package. The values of skewness and
kurtosis, whenever displayed, refer to the corresponding algorithm of this package. Notice that the
normal kurtosis is zero. Intra-Class correlations (chapter 5) were computed from the mean-squares
obtained with SPSS-X. ALSCAL routines were used to build two-dimensional maps from standard
deviations (chapter 5).

The algorithms for simulation of Neural Networks were built in FORTRAN 77. All the main ma-
nipulation of data and calculations were also programed in FORTRAN 77. No external subroutines
were used. The code was written by the author.

The simulation of accounting variables and the testing of normality (chapter 1) was made also in
the same environment. In this case we used the NAG Mark 11 library of subroutines. For example,
the generation of random normal deviates used the NAG subroutine GOS5DDF and the Shapiro-Wilk
tests were performed with the algorithm GO1DDF.
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