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PrefaceThis study is about knowledge acquisition in Accountancy and Finance. It develops new conceptsand techniques for the extraction of meaningful information from data like returns on assets andaccounting reports.Traditional areas of concern such as the homogeneity of industrial groups and the relation betweenmarket perception of risk and accounting numbers are explored in the light of such concepts. Theresult is a uni�ed view and methodology, leading to an easier formulation and modelling of problems.The implementation of this formulation is carried out using 
exible tools, known as NeuralNetworks. The aim is to show how these tools are able to apportion qualitative, very signi�cantimprovements in areas where there is already a well developed set of results.We organized our research in two main bodies. The �rst one comprises �ve chapters and its goalis the building of a framework allowing for the statistical modelling of accounting information. Thesecond body includes an introduction to Neural Networks and three applications.Both parts contain a detailed introduction. We defer the usual comments on subjects to suchintroductions. Here, we would like to highlight just a few achievements of this study along withsuggestions for readers.Describing the cross-sectional characteristics of accounting data: Empirical evidence gath-ered in chapter 1 and 2 make it possible to develop appropriate models for the description of thecross-sectional behaviour of accounting information. Such models are extensions of �nancial ratioscontemplating deviations from linearity and proportionality (chapter 3).The most intriguing aspects of the cross-sectional behaviour of accounting data are explained inchapters 2 and 4. We focus on the existence of outliers, the heteroscedasticity found in models, thedistribution of ratios and the nature of their information content.Extracting appropriate ratios from examples: We show that Neural Network-like algorithmsare capable of implementing the developed models. Using them, they learn an accounting relationfrom sets of examples. As a result, this technique will build optimal structures interpretable in termsof �nancial ratios (chapter 7). iii



This approach e�ectively avoids the search of appropriate ratios by the analyst and some othermajor drawbacks of the multivariate statistical modelling techniques used in accountancy. It is alsoself-explanatory, yielding not just a model but also an interpretable set of ratio-like structures.Improving diagnosis speci�city with Neural Networks: Neural Networks are also used toautomate �nancial diagnosis (chapter 8). Firstly, graphical tools are developed so as to give a jointanswer to two complementary questions often found in �nancial diagnosis. Then, Neural Networksautomatically interpret them. The set of rules generated in this fashion can be seen as a pre-processing for symbol-based expert systems.Relating �rm features to expected return: Our study also typi�es �nancial risk according tothe features of large U. K. industrial �rms as perceived by the market (chapter 9). It uses arbitrageconsiderations to establish a relation between sensitivities to factors underlying expected returns andstable features of these �rms. The APT o�ers the possibility of looking into the expected returns of�rms from several points of view. APT indices are able to capture with more detail covariance of riskcomponents with some characteristics of the �rm. Neural Networks are especially good at modelinginformation-
ow relations involving cross-e�ects such as those which link accounting reports withmarket expectations.Complementary remarks: Appendices contain matters which, if placed in the main text, wouldbreak the 
ow of the reading.Figures and graphics were used generously throughout the text. The goal is to facilitate theunderstanding of the subject. Figures are not intended to provide evidence. In most cases theysimply show examples or characteristic features. In a few occasions it was impossible to ensure thatthe presentation of tables or �gures would be placed near and after their reference in the main text.This stems from their abundance.Suggestions for reading: The reader interested in knowledge acquisition in Accountancy andFinance | the subject of this work | should go through the original sequence of chapters. Suchreader needs to have a basic background in linear algebra and statistics.Accountants mainly interested in ratio analysis or in the building of simple statistical modelscould omit the reading of chapter 3 and the last section of chapter 5. From the second part of thestudy they would �nd the �rst two sections of chapter 8 eventually interesting. The contributions ofour research for the problem of the distribution of ratios can be found mainly in chapters 1 and 4.We would like to make this study accessible to a broad range of potential readers, especiallythose engaged in research requiring the use of numerical methods in Accountancy and Finance. Butit would be outside of the scope of this work to provide detailed explanations for concepts easilyfound in text-books. Anyway, we tried to avoid all unnecessary algebra.iv
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Part IThe Cross-SectionalCharacterization of AccountingData
1



Introduction To This PartThe subject of the following chapters is the description of the cross-sectional characteristics ofa set of accounting items. The �nal goal is the establishment of an appropriate framework for theextraction of knowledge from accounting reports and related outcomes.Accounting reports are an important source of information for managers, investors and �nancialanalysts. Statistical techniques have often been used to extract such information from databaseswhere accounting reports and related outcomes are gathered. The goal is to construct models suitablefor prediction or for isolating the main features of the �rm.An early model is that of Beaver [7] who used accounting ratios to predict �nancial distress.Many other researchers followed him, mainly using more sophisticated techniques (see [4] or [125]).Other examples of accounting statistical models are the prediction of bond ratings [63], the rela-tionship between market and accounting risk [9], and the structures of costs and output in variousindustries [51].The procedures used to obtain these models are quite similar. The �rst stage consists of forminga set of ratios from selected items on an accounting report. This selection is typically made inaccordance with the beliefs and expectations of researchers. Next, the normality of these variables isdiscussed. Outliers are discarded. Transformations are applied. Finally some linear modelling tech-nique is used to �nd optimal parameters in the Least-Squares sense. Linear Regressions and Fisher'sMultiple Discriminant Analysis are the most popular algorithms. However Logistic Regression canalso be found in some studies. Foster [44] o�ers a review of accounting modelling practice.Ratios as Input Variables for Statistical Models: All such models use ratios as predictors.The use of ratios as input variables in accounting statistical models seems to be an extrapolationof their normal use in Accountancy. Ratios are supposed to capture in a simple and standard waysome noteworthy feature of the �rm. However, there are di�culties involved in using ratios as inputvariables. As M meaningful accounting variables can generate up to M2 �M ratios, some researchseems to get lost in a proli�c use of all sorts of combinations of variables. It is easy to �nd in theaccounting literature models with forty and more predictors.The problem of selecting adequate ratios as input variables soon became a source of empiricism.It is very di�cult to justify the selection of one particular set of ratios instead of any other. Someresearch clearly opts by accepting them all. 2



In a survey study dating back to 1981, Chen et al. [22] report the use of 65 di�erent �nancialratios in 26 studies. From these,... \forty one are considered useful and/or are used in the �nal analysis by one or moreresearchers. Given such a heterogeneous set of useful �nancial ratios, the decision-makerhas to be at a loss in selecting which ratios to use for the task at hand. Conceivably,41 ratios can not all be signi�cant or equally important in a multi-ratio model. Thedecision-maker may hesitate to omit a ratio if it has been useful in one or more of theempirical studies."The empirical nature of existing procedures: Accounting statistical modeling practice relyheavily on general-purpose recipes.� Improvements in normality are sought by pruning out tails and empirically trying di�erenttransformations, not always the most appropriate ones. It is a common practice to mix up inthe same model square root and log transformations.� Heteroscedasticity is treated as a separate phenomenon and requires further manipulation,typically a weighting of cases with another variable.� Multicolinearity is also viewed as an accident in its own right so that the measures recom-mended for general cases are applied | A few Principal Components are extracted and usedinstead of the original variables.The model parameters, after this pruning, scaling and rotating of the input variables become di�cultto interpret. The entire routine tends to a broad empiricism.The Method of this Study: Financial ratios are a simple and intuitive way of capturing featuresof the �rm. Those who use accounting information consider ratios as a starting point for furtherelaboration. However, when the goal is the description of the behaviour of accounting data it seemsclear that ratios are the end of a process rather than the beginning.We argue that any attempt to build a basis for the description of accounting statistical proceduresby looking into the world of �nancial ratios is not likely to succeed. Ratios are two-variate relations.Their behaviour will be determined by the one of their components plus the interaction betweenthem. This interaction can be itself generated by internal mechanisms of the �rm or by externalones, like accounting identities.It is clear that the �nal characteristics of any ratio will be determined by complex factors. In thisstudy we begin by the opposite end. We show that the statistical behaviour of accounting data be-comes greatly clari�ed after explaining the statistical behaviour of individual items. And when doingso, also the problems quoted above | normality, transformations versus outliers, heteroscedasticity,multicolinearity | are solved. 3



Contents: Chapter 1 introduces the data. Then, it empirically assesses the statistical nature ofthe selected accounting items. Both individual groupings and overall samples are studied.Chapter 2 examines the regularities devised in chapter 1 and extract the most immediate conse-quences for the modelling of accounting relations. The existence of outliers and heteroscedasticityin accounting data is explained. The use of regressions is discussed. Then, the joint behaviour ofmore than one item is approached. The regularities found in the multi-variate behaviour of itemsare described. Finally, this chapter discusses the statistical nature of items which are a subtractionof two other items.Chapter 3 builds up the statistical framework to be used throughout this study. New models,which are extensions of �nancial ratios able to account for non-linearity and non-proportionality,are introduced as a consequence of the empirical observations gathered in previous chapters.Chapter 4 studies the in
uence of accounting identities and other external forces in the statisticalnature of ratios. The main rules governing their distribution are described. Consequences for thestatistical modelling of accounting data are extracted.Chapter 5 is about size and industrial grouping as the main sources of variability present in ourdata. A proxy for size is developed and discussed. The homogeneity of some industrial groups andthe complexity of its random e�ects are assessed. We conclude that non-linear modelling tools arerequired in some occasions when modelling accounting relations.

4



Chapter 1Empirical Evidence on theDistribution of Accounting ItemsAccounting items, as found in databases containing collections of annual reports of �rms, can beviewed as statistical variables. Each �rm is a case. For a given item, say, Fixed Assets or Sales, aparticular collection of �rms form a cross-sectional sample.In this chapter we show that the lognormal distribution cannot be rejected as a parameterizationof the probability density function governing a set of accounting items. We also explore several otherpossibilities and we show that they are not tenable. In order to assess the importance of the resultsof the performed tests we compare them with simulated ones. We also examine individually the fewcases of departures from lognormality.We use data from British �rms belonging to 14 industrial groups in four broad areas: Engineer-ing, Processing, Textiles and Food Manufacturers. Both individual groups and overall samples areexamined.Our study contemplates a period of �ve years (1983 - 1987) in order to check the importance ofregularities by tracing them during more than one period. But it is a cross-sectional study. Eachyear is studied individually.PROCESSING: 14 Building Materials 32 Metallurgy54 Paper and Packing 68 ChemicalsENGINEERING: 19 Electrical 22 Industrial Plants28 Machine Tools 35 Electronics41 Motor ComponentsTEXTILES: 59 Clothing 61 Wool62 Miscellaneous Textiles 64 LeatherFOOD: 49 Food ManufacturersTable 1: List of the industrial groups examined by this study and their SEIC number.5



TA Total Assets NW Net WorthFA Fixed Assets DEBT Long Term DebtD Debtors C CreditorsCA Current Assets CL Current LiabilitiesI Inventory TC Total Capital EmployedWC Working CapitalEX Operating Expenses less Wages S SalesEBIT Earnings Before Interest and Tax W WagesOPP Operating Pro�tFL Gross Funds From Operations N Number of EmployeesTable 2: List of accounting items examined by this study and their abbreviations.1.1 A Review of Previous ResearchSome neglect in considering accounting items as statistical variables stems from the fact that theirpractical importance is not evident. Unlike well-behaved variables like blood pressure or the rateof telephone calls, accounting �gures can vary between almost unlimited magnitudes. Reports fromcompanies like ICI or BP, containing values with many digits can be found in the same databasealong with others which hardly reach four digits.In order to deal with the problem of such di�erences in size, accountants use ratios, not the itemsthemselves, to extract useful information. Therefore the statistical properties of basic accountingitems received little attention in the literature.Ratios, of course, have been the object of a much bigger e�ort. It is worth summarizing brie
ythis research. As a secondary product some evidence can be collected on the items themselves.Empirical Research on the distributions of ratios: Horrigan [62] (1965) is an early workon this subject. He analyzed 17 ratios for 50 companies over the period 1948-57 reporting positiveskewness. Horrigan explained it as a result of e�ective lower limits of zero for these variables.Other studies followed. O'Connor [91] (1973) discovered that for all his 10 ratios in a set of 127companies during the period 1950-66, skewness was once again prevalent.Also Bird and McHugh [14] (1976) analyzed 5 ratios for 118 �rms over the period 1967-71 inAustralia �nding skewness. But they considered it as an accident and implicitly suggested thepruning or winsorizing of distributions until achieving normality.The Deakin study [27] (1976) shows that the positive skewness could not be ignored in his sampleof 11 ratios for the period 1955-73. He concluded that...\as a result of this analysis it would appear that assumptions of normality for �nancialaccounting ratios would not be tenable except in the case of TD/TA (Total Debt/TotalAssets) ratio. Even for TD/TA the assumption would not hold for the most recent dataobservations." 6



Deakin also points out that studies suggesting that ratio distributions could be approximated tonormality seem to do so for reasons of convenience:\With absence of knowledge about these distributions, there is a tendency to rely uponthe normal distribution as an approximation due to the availability of statistical tech-niques designed to analyze relationships among normal variates."The Bougen and Drury study [17] (1980) was based on U.K. �rms. It collected data on 700industrial �rms for 1975 and analyzed 7 ratios, concluding that skewness could not be ignored. AlsoBuijink [21] (1984) reported the persistency of skewness over a large period. Barnes [5] (1982) arguedthat skewness on ratios could be the result of deviations from strict proportionality between thenumerator and the denominator. This idea that ratio behaviour should be understood by examiningthe behaviour of the component accounting variables is basic to the present research.Frecka and Hopwood [45] (1983) extended the Deakin's 1976 study for a longer period and re-ported similar �ndings. They also tried to achieve normality by applying square root transformationsand pruning the remaining outliers, proposing such procedure as the standard way of dealing withthe problem of deviations from normality.Ezzamel and Mar-Molinero wrote two recent reports (1987 and 1990) on the distribution of ratiosusing U.K. data [39] [38]. Both are extensive and detailed. The authors also investigate the e�ectsof a family of transformations in the distribution of ratios.Two studies by McLeay [86] [87] (1986) are somehow out of the previous line of research. They�rstly refer to items, not to ratios. McLeay distinguishes two broad classes of items:Acounting Sums (�): Those which are sums of similar transactions, which sign remains the same.This applies both to accounting stocks such as Fixed Assets as well as to 
ows such as Sales.In cross-section, such items should be bounded at zero with a skewed distribution. Size proxieswould �t into this class.Accounting Di�erences (�): Net items which could be of either sign (or zero), such as Earningsand Working Capital.McLeay argues that the � variables ought to be lognormal since they are directly related to thesize of the �rm which can be seen as a stochastic process adhering to Gibrat's Law of ProportionalE�ect [48]. Therefore, ratios formed with � variables should also be lognormally distributed.McLeay's notation is useful and we shall adopt it. However, it somehow seems to induce aqualitative di�erence between the � and the � variables. The last ones could wrongly be interpretedas not related to the size of the �rm.Many other studies on the distribution of ratios are not referred to here. There is a wide diversityof observed distributions none of them deserving general agreement. The only feature of accountingratios which received some credit is the positive skewness.7



1.2 The Method and the Scope of this StudyIn order to test the lognormality of accounting items we use a logarithmic transformation. We thenapply to the transformed data the Shapiro-Wilk test of normality in an improved version due toRoyston [105]. This test can cope with large or small sample sizes and is generally recommended as asuperior omnibus test. It has been used by some authors for testing the normality of ratios [39] [38].Berry and Nix (1991) [11] discusses it in more detail.The Shapiro-Wilk test yields a statistic, W , ranging from zero to one. Values of W approaching1 mean increasing normality. The signi�cance, P , of W is dependent on the size of the sample. Inthis study a value of P < 0:05 leads to the rejection of the null hypothesis that the tested samplecould have been drawn from a normal population.P should be considered as the probability of obtaining such a W value, or such a sample asthe tested one, when the population is normal. It is important to notice that when many tests areperformed, the likelihood of obtaining a few cases in which P < 0:05 becomes very high.The Transformation: The logarithmic transformation applied in this study to any item calledX is in some cases not just the log of X. The lognormal distribution can have three parameters, notjust the two natural extensions of the Gaussian distribution [1]. Therefore, the test of lognormalitymust make allowance for this third parameter.In all performed tests when a simple log transformation leads to 0:001 � P < 0:05 | whenthe probability of getting such a W for a lognormal population is small but not below the usedprecision | we repeat the test introducing an estimated value for the third parameter, � so that thetransformation of X leads to a new variable T :T = log(X + �) (1)� is a constant. It accounts for the existence of overall displacements. We call � a base-line. Thisdesignation stems from its role in generative processes leading to lognormal variables.The above procedure is required if we want to model lognormality with all generality. Lognormaldistributions often are three-parametric. The � are in general small.An introduction to the lognormal distribution can be found in a book by Aitchison and Brown [1].When no � is needed for achieving normality these authors refer to the parameterization as a Two-Parametric Lognormal. For signi�cant � they refer to it as a Three-Parameters one. This terminologyis generally accepted.Estimating the Base-Line: Some procedures available for estimating � are also described byAitchison and Brown. In our case, � is estimated by trial following a suggestion of Royston [105].It is a method basically similar to the one originally used by Gibrat and about which Aitchison andBrown say that \it is much more an art than a science". Royston seems to rely on a new factor,8
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MAX MAXFigure 1: The signi�cance, (P ), of the Shapiro-Wilk's W for varying deltas. In these two cases wewould accept a three-parametric lognormal distribution with � = +90 (left) and � = �300 (right).the precision of the Shapiro-Wilk test, to overcome this criticism. In fact, the Shapiro-Wilk test ismuch more reliable than the graphical methods Gibrat used for assessing normality.Basically, this method consists of discovering by trial which � maximizes W or P (W ). It isindi�erent to use the statistic or its signi�cance. Figure 1 shows two examples. The signi�cance, P ,ofW improves when we add to all observations in the sample a constant small � before transformingthe data. By trying increasing � we �nd an optimalW or P (W ).In the case displayed on the right (Total Capital Employed, Electrical industry in 1983), � = �300is the value beyond which P (W ) no longer improves. Therefore we take this � = �300 as the correctthird parameter to introduce in the log transformation. On the left we see how a small � of +90enhances the lognormality of Working Capital (Paper & Packing, 1985).We found sharp, well contrasted optimal values for W , making it possible to estimate � in thisway. In our study the estimated � were often related to the absolute smallest value in the sample.Obviously, the values allowed for � were always smaller than the smallest case in the samplehaving opposite sign. Therefore the use of � cannot be considered as similar to the practice ofadding a value to all the cases in a sample to avoid negative cases. We never let � change the signof any value in the sample.The Variables: We examined 18 di�erent accounting items. They are listed in table 2 (page 6).There are 11 items from the Balance Sheet, 5 from the Pro�t and Loss Account, 1 from the Sourcesand Applications of Funds statement, and one which is not standard. These items are widely usedin the second part of this study. They are also frequent as components of ratios used in statisticalmodelling. Of course, the number of selected items could grow to much higher �gures.The selection of EX, (Operating Expenses less Wages) is a way of getting a picture of the9



cost structure of �rms using disclosed data. The inclusion of N (Number of Employees) concerns�ndings discussed later on (chapters 5 and 7). This variable convey important information regardingthe classi�cation of industrial groups. It is also useful for comparing accounting items with non-accounting variables exhibiting similar statistical behaviour.In our study this set of selected items can be divided in two groups.1. Those having only positive cases, like Sales or Inventory. They are broadly the items McLeaycalls � variables.2. Those items which can have both positive and negative cases in the same sample like Earningsand Working Capital. They are referred by McLeay as � variables. In this second group weperform, when possible, two tests of lognormality.(a) Using only the positive-valued cases in each sample, and(b) using only the absolute value of the negative cases. For small samples this test could notbe carried out because the number of negative cases was non-signi�cant or non-existent.In section 2.3 (page 48) we discuss the potential applicability and usefulness of these split cross-sectional samples.The abbreviations, when used, are usual in the literature (see table 2 on page 6).The Samples: All companies quoted on the London Stock Exchange are classi�ed into di�erentindustry groups according to the Stock Exchange Industrial Classi�cation (SEIC) The SEIC aimsto group together companies which results are likely to be a�ected by the same economic, politicaland trade in
uences [95]. Although the declared criteria are ambitious, the practice seems to bemore trivial, consisting of classifying �rms mainly on a end-product basis. The SEIC classi�es �rmsaccording to a perception of groupings of �rms.The tested samples were drawn from the Micro-EXSTAT database of company �nancial infor-mation provided by EXTEL Statistical Services Ltd, which covers the top 70% of UK industrialcompanies. We selected 14 manufacturing groups according to the SEIC criteria (see table 1 onpage 5). Two kinds of samples were examined.All Groups Together, in which the 14 industrial groups are gathered in one unique sample.Industry Groups, for samples of only one industrial group at a time.Each described test is performed �ve times for reports from 1983 to 1987. None of the companiespresent in the original groups were excluded from the tests.10



Item Signi�cant P (W )1983 1984 1985 1986 1987SalesOperating Expenses less WagesWages 0.015 0.001 0.01 0.02EBITOperating Pro�tGross Funds From Operations 0.03DebtorsCurrent Assets 0.03 0.02InventoryFixed AssetsTotal Assets 0.01 0.005 0.01 0.005Working CapitalCreditors 0.01 0.006Current Liabilities 0.03 0.04Net WorthLong Term DebtTotal Capital EmployedNumber of employees 0.02 0.04Table 3: Two-parametric lognormal items for all groups together. Cases of three-parametric lognor-mality are those for which P < 0:05. The number of cases in each sample ranges from 550 to 700.1.3 ResultsIn this section we display the results of testing the lognormal hypothesis for two kinds of samples.Firstly, the large ones containing all the 14 industries together. Secondly, the small ones drawn fromone industry at a time. These two groups of tests represent two possible levels of homogeneity worthexploring.In fact, one single group, if homogeneous, yields homogeneous samples. Two or three groups, eachof them homogeneous, can yield samples which are severely non-homogeneous. But 14 groups in thesame sample, all of them sharing a common attribute, are likely to apportion random e�ects ratherthan �xed ones. In that case, a second level of homogeneity could be attained. The examination ofsuch samples becomes interesting since they represent the common attribute they share.1.3.1 All Groups TogetherThe large samples mentioned above are now examined. The common attribute to consider here asa possible source of homogeneity is the industrial character of all the gathered �rms.Positive cases: In appendix A we display the number of cases in each sample and the statisticsobtained when applying the Shapiro-Wilk test along with some usual measures of normality (kurtosisand skewness) to the 13 positive-valued accounting items and to the positive values of the 4 itemshaving both positive and negative cases. We also included Long Term Debt for which only thenon-zero cases were selected. 11



Item Statistic 1983 1984 1985 1986 1987EBIT W 0.9572 0.9838 0.988 0.951 0.946sig W 0.042 0.048N. Cases 40 42 48 57 47Operating Pro�t W 0.9537 0.9851 0.9925 0.9686 0.9596sig WN. Cases 57 58 62 74 69Gross Funds From Operations W 0.9594 0.9649 0.9792 0.9066 0.9644sig W 0.005N. Cases 27 24 30 36 38Working Capital W 0.9640 0.9743 0.9647 0.9678 0.9609sig WN. Cases 50 61 67 61 62Table 4: Results of applying the Shapiro-Wilk test to the absolute values of negative cases. Allgroups together. Departures from the two-parametric assumption have P < 0:05.Table 3 on page 11 shows, by year, a short summary of the results of applying the Shapiro-Wilk test to such items. When nothing is said items yielded non signi�cant departures from two-parametric lognormality. When there is a signi�cant di�erence, the signi�cance is displayed. In allthe signi�cant departures observed, the introduction of a small � made it vanish.The results show that 11 on the 18 items are two-parametric lognormal in the whole period of1983 to 1987.Sales and Operating Expenses less Wages, Net Worth, Debtors, Fixed Assets, Inventory andTotal Capital Employed, along with the positive cases of Earnings, Operating Pro�t, Long TermDebt and Working Capital, are persistently two-parametric lognormal.The remaining 7 variables are either two-parametric or three-parametric lognormal depending onthe year. None is persistently three-parametric for the �ve years. In at least one year all variablesachieved lognormality with just a simple log transformation.Total Assets and Wages require a three-parametric transformation in four of the observed years.These samples have their smallest values far away from zero. In general the positive values ofMcLeay's � variables are more near two-parametric lognormality than the � ones. This is becausetheir smallest cases approach zero. Only Gross Funds From Operations exhibit one departure froma two-parameters distribution, in 1987.The values optimal � assumes whenever a three-parametric transformation is required often followthe smallest case in the sample. It is worth noticing that the e�ect of adding such a � completelyvanishes for larger cases. The base-line a�ects only the smallest cases in the sample.Negative cases: We also checked the negative values of items having both positive and negativecases. We selected �rst the set of negative cases and then we applied logs to their absolute values.The results are displayed in table 4 (page 12). Operating Pro�t and Working Capital are two-parametric lognormal for the whole period. Earnings and Gross Funds From Operations are, in oneor two years, three-parametric. Therefore losses are also lognormal. We shall see later on that these12



Ind. / Items S CL TA N TC CA EX W C NW D I FA T.Ind.LeatherMetallurgyMotor c.Textiles m.WoolClothing 1 1 2Building m. 1 2 3M. tools 1 1 1 1 4Chemicals 3 1 1 1 6Paper 1 1 3 2 7Electrical 1 3 2 4 2 1 2 3 18Food 4 3 3 2 2 4 2 4 1 25I. plants 4 2 2 3 2 1 1 1 2 2 2 1 2 25Electronics 3 3 3 4 2 2 5 1 2 2 27T. item 14 11 11 10 10 9 9 9 8 8 7 6 5 117Table 5: Items having only positive cases. Number of cases yielding a signi�cant departure fromtwo-parametric lognormality by industry and item.negative values have a distinct behaviour.1.3.2 Within Industrial GroupsIn this section we show that the lognormality of our set of accounting items cannot be rejectedalso when each sample is drawn from the same industrial group. Since the number of samplesinvolved is very large we shall not display here the detailed results. Instead, we present proportionsof departures from the two-parametric lognormality by industry and by item.The detailed results of applying the Shapiro-Wilk test to all samples | the eighteen observeditems for fourteen industries during �ve years | can be found in appendix A.How to interpret the displayed proportions: All the presented proportions are calculatedusing marginal totals: When we refer to a value of 12% of departures by industrial group the totalused to calculate such proportion is not the overall total of di�erent samples tested (say, 910) butthe 65 di�erent possibilities of sampling by industry. That is, since we are working in this case with�ve years and 13 variables there are 5 � 13 = 65 di�erent ways in which a particular industry canbe sampled.For example, the total used for displaying the important issue of persistency of lognormality forthe whole period of �ve years was 182 because there are 13 items and 14 industrial groups whichmakes 182 di�erent samples to be tested involving this period. The tables displayed in appendix Aallow anyone interested in to calculate any particular proportion.Positive-valued items by industrial group: For the selected 14 industrial groups, 13 positive-valued items were checked for lognormality with the Shapiro-Wilk test. This procedure was repeatedfor �ve years (1983-1987). Therefore the total of di�erent samples tested under this item was 910.13
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Ind. / Items EBIT OP.P. W.C. DEBT FL T.Ind.M. toolsTextiles m.MetallurgyLeatherElectrical 1 1Paper 1 1Building m. 1 1 2Wool 1 1 2Motor c. 1 1 2Clothing 1 2 3Chemicals 2 1 3Electronics 2 2 2 1 7I. plants 1 2 2 1 1 7Food 2 1 1 4 3 11T. item 6 6 7 9 11 39Table 6: Items having positive and negative cases. Number of cases yielding a signi�cant departurefrom two-parametric lognormality by industry and item.for which only the non-zero cases were selected. That makes a total of 350 samples to be tested:Five variables for the same fourteen industries during a period of �ve years.A total of 311 samples (88.9%) yielded no signi�cant departure from the two-parametric lognor-mal hypothesis.The results by industrial group and by variable are similar to those of the previous paragraph.Food, the second worst for positive variables, is now the worst. The industries exhibiting no depar-tures at all are Leather, Metallurgy and Miscellaneous Textiles as before, along with Machine Tools(see table 6 on page 15).Again, the �ve observed items had a more homogeneous behaviour than the industrial groups.Departures were observed in 16% to 8% of the samples, Funds Flow being the worst. Figure 3 onpage 16 shows the contrast between the behaviour of industries and items regarding the incidenceof three-parametric lognormality.Negative values of items having both positive and negative cases by industrial group:We could not test the lognormality of all industries when considering only absolute values of negativecases. The size of the resulting samples would be too small or non-existent.Table 7 on page 17 contains the list of the samples we were able to select and the values of Wfor each one of them. Only two groups were large enough to provide a few negative cases. All theexamined samples were two-parametric lognormal.Simulation of Negative Working Capital: Since the empirical data was not conclusive wesimulated a di�erence between two lognormal variates having the same features encountered in theitems themselves.We selected a sample, Food 1987, and measured the mean values and correlation coe�cient oflogCA and logCL. Then we generated a two-variate sample with 2000 cases obeying the observed15
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Year Industry N. Cases Variable W P (W )1983 Food 15 W. Capital 0.929 0.281984 Electronics 13 W. Capital 0.946 0.51Food 19 W. Capital 0.927 0.161985 Electronics 17 EBIT 0.971 0.8225 W. Capital 0.950 0.2712 F. Flow 0.983 0.97Food 14 W. Capital 0.917 0.191986 Electronics 16 W. Capital 0.957 0.5915 EBIT 0.929 0.2624 EBIT 0.918 0.05Food 16 W. Capital 0.933 0.301987 Electronics 16 W. Capital 0.923 0.1913 F. Flow 0.953 0.6115 EBIT 0.962 0.69Food 16 Op. Pro�t 0.898 0.0917 W. Capital 0.961 0.63Table 7: Negative cases. Observed samples. No departures from two-parametric lognormality.considering groups instead of items, Metallurgy had no departures at all, Building Materials hadthree items which departed once in �ve years and one item which departed twice. And so on.In appendix A we display these results in detail. Next table is a summary.Departures from two-parametric lognormality in �ve years � items � itemsDepartures are never observed 69.2% 62.9%A departure is observed once 11.0% 22.9%A departure is observed twice 10.4% 11.4%A departure is observed three times 5.5% 1.4%A departure is observed four times 3.3% 1.4%A departure is observed �ve times 0.5%In 69% of the tests performed in samples having only positive values there is no departure atall during the �ve-years period. One departure or two can be observed in 21% of the cases. Threedepartures only occur in 5% and four in 3%. Only once (Wages in Electronics) persistence ofdeparture from the two-parametric assumption is observed for the whole period of �ve years.The study of persistency for positive values of items having both positive and negative casesyielded similar results. We consider that a non-persistent departure from two-parametric lognor-mality is interesting. It shows that deviations from the two-parametric model are sporadic.1.4 Other Possible ParameterizationThe logarithmic transformation can be viewed as a way of reducing an excessive amount of skewnessin a distribution. Therefore it makes sense to ask if the reduction achieved with logs is the appropriateone in the case of accounting items.In case less reduction is required we should use a square root or other appropriate root. In casemore reduction is required we should use the Pareto distribution (log-ranks) or other of its class.17



Item Square Cubic Fourth Sixth Eighth LogRoot Root Root Root RootSALES, 1985, ElectronicsSkewness 3.59 2.43 1.86 1.32 1.07 0.412Kurtosis 15.77 7.97 4.93 2.62 1.76 0.091Shapiro-Wilk's W 0.627 0.7783 0.8472 0.9041 0.9266 0.968WAGES, 1985, ElectronicsSkewness 4 2.84 2.26 1.7 1.45 0.777Kurtosis 19.43 10.2 6.61 3.82 2.72 0.488Shapiro-Wilk's W 0.56 0.711 0.785 0.851 0.879 0.94Table 8: Comparing several root transformations with the log transformation using two samples.1.4.1 Root TransformationsWe tested �rst a scale of possible roots progressively approaching the e�ect of a log transformation.For each of them we measured the skewness, kurtosis and W .From the samples described above we checked only those yielding a poor �gure for the signi�canceof W . In all such cases the log transformation was the one which maximized W .Table 8 shows the results for two particularly badly-behaved groups. Clearly the signs of nor-mality increase with increasing roots, achieving much more acceptable values with logs.Part of this table is replicated graphically in �gure 5 (page 20) on the right. On the left of thesame �gure a de-trended normal probability plot reveals the fact that only a log transformationseems to account for the skewness present in the data.In �gure 4 (page 19) we display the graphical evolution of a frequency distribution when progres-sively larger fractional exponents were used for transforming the data. The last case is a logarithmictransformation.Characteristic behaviour of items: When assessing the distribution of ratios it is usual to�nd cases in which no transformation seems to improve the normality of the data. However, whenwe look at single accounting items the situation is very di�erent. Not only the log transformationemerges as the most appropriate. Also there is a clear progress towards normality for fractionalexponentiation of increasing degree.Accounting items show a statistical behaviour much simpler than the one found in ratios. In theparticular case of transformations, it is frequent to �nd in the literature references to an unpredictableoutcome in the distribution of ratios after applying transformations such those we use here. Weexplain this behaviour of ratios in chapter 4. At the moment it is important to notice that there isno reason to expect in items the same kind of interactions present in ratios.1.4.2 The Pareto HypothesisAfter discarding transformations less e�ective than logs in neutralizing skewness we tried one whichis more powerful. 18
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developments.More reasonable is the discussion of whether or not the Pareto process in
uences large �rms.The testing of such a hypothesis is di�cult since lognormal processes and the Pareto ones lie verynear one another in the upper part of their distributions. If we rank a perfectly lognormal deviateby size and then discard the smallest 2=3 of cases we get a set of values which are not far from aPareto process. This can also be observed in �gure 6. The di�erences between a straight line and alognormal variate are small in the portion of the sample containing the largest cases.1.5 Assessing the Importance of Multiple TestsIn this section we discuss the meaning and importance of W and corresponding P values obtainedfrom applying the Shapiro-Wilk test to a large number of di�erent samples.We simulated many samples drawn from a strictly Gaussian population. All simulated sampleshad the same number of cases as found in each performed test. Then we compared the distributionof the P obtained when applying the Shapiro-Wilk test to this set of simulated samples, with thedistribution of P from the real tests.We also examined the possible existence of correlations between such values and the number ofcases in every sample.The Logit transformation: The Gaussian distribution emerges as the result of many indepen-dent random causes. It would be interesting to compare our set of P values with the Gaussiandistribution in order to measure in what extent their spread can be considered as caused by manyindependent random events as those in
uencing any mechanism of sampling.A set of P values such as the one obtained from the repetition of a signi�cance test for manysamples cannot be directly compared with the Gaussian distribution because probabilities or anyrelative frequencies are bounded by 0 and 1. However, it is possible to transform probabilitiesso that the resulting variable is normal for Gaussian generative processes. We used the simplelogit transformation as an acceptable approximation of the relation linking relative frequencies withGaussian deviates.For a given P , [0 � P � 1], we computedLogit P = log P1� PLogit P (also known as log-odds) now ranges from �1 to +1 and is approximately normal forrandom normal events. A value of Logit P = 0 is the expected or central one. Negative logitsmean P < 0:5 while the positive ones are obtained for P > 0:5. Logit P can boldly be taken as thenumber of standard deviations for normal distributions.The logistic function P = 11 + 10�logit P22
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� The second conclusion is induced by the similarity of spreads and the normality observed inthe real distribution. Normality means random, independent causes. Now, if some hazardoussampling can introduce a spread of 0:8 in an otherwise perfectly normal collection of samples,the real spread, also 0:8, should be assigned to an hazardous mechanism of sampling and notto any particular cause.Therefore we can take the di�erence between estimated expected values as the sole factor a�ectinglognormality of accounting items. This di�erence can be expressed by saying that while the expectedprobability associated with the Shapiro-Wilk W is, for a normal population, 0:53 it becomes 0:49in the case of accounting items. A question of four to one hundred odds. This is what seems toseparate accounting items from a strict lognormal generative mechanism.Of course, we are interested in accessing the plausibility of assumptions which concern the pop-ulation, not particular samples. That's why the above simulations are important. They provide a�rm ground for interpreting the results.Relation between the size of samples and the signi�cance of W : The Shapiro-Wilk test isvery robust concerning the size of the sample. In the considered interval no correlation was observedbetween the size of the sample and the signi�cance of W .1.6 Examination of Bad CasesWe noticed in previous sections that a few tests of lognormality yielded values of P (Shapiro-Wilk'sW signi�cance) which were so small that it would not be possible to apply logits. A small P meansa departure from the lognormal assumption, that is, from the null hypothesis that the examined logsample could have been drawn from a Gaussian population.Such set of bad cases behave di�erently from the other cases. The signi�cance (P values) obtainedfrom all other tests form in logit space a clearly normal distribution. Bad cases do not �t well insuch distribution. They are more numerous than expected and they form a cluster sticking out wellbelow the lower normal values of Logit P . See �gure 7, page 23, on the left.They are also insensitive to a three-parametric transformation. No � exists able to turn themlognormal. This feature is a very particular one since in the other cases yielding signi�cant departuresa � exists able to bring W to non-signi�cant values.We examined each one of such bad cases in order to �nd out the reasons for their erratic behaviour.In appendix A we describe them. The causes for the existence of the described bad cases seem tobe twofold:Anomalous Cases. Errors, extreme outliers. Values which are orders of magnitude away from therest of the sample. Most of them are clearly erratic.24



Non-Homogeneous Groups. The existence of clusters of �rms well detached inside the sameindustrial group is perhaps a result of a temporary expansion of the sector. Or it can be aconsequence of an intrinsic non-homogeneity of an industrial group. It happens from 1984 to1987 in the Electronics and Food industries. But it only a�ects Sales, the number of employeesand Wages.Lognormality, either two or three-parametric, is linked with the homogeneity of the sample in log-arithmic space. When an industry is not homogeneous | for example, when there are two groupsof �rms instead of one | the tests cannot classify the sample as lognormal, even if the underlyingmechanism governing the behaviour of accounting items is lognormal.We conclude that there seems to be an explanation or cause for each one of the observed strongdepartures from the lognormal hypothesis. These causes should be considered as external to the gen-erative mechanism governing the cross-sectional characteristics of accounting items. Their frequency,20 cases in 1260 di�erent samples, makes them exceptional.1.7 Discussion and ConclusionsFor the observed cases lognormality emerges as a very general and stable feature of cross-sectionalsamples of accounting items. Not only the large samples formed with several groups are lognormal.Each individual group is lognormal too. Not only \sums of similar transactions which sign remainsthe same" [86] are lognormal. Items with very di�erent origins are lognormal as well. On the whole,we found only 20 non-lognormal samples in 1260. And there seems to be a good explanation forsuch departures.Three-parametric lognormality: Most of the observed samples are two-parametric. Some arethree-parametric. In lognormal distributions the third parameter accounts for displacements of theentire sample. We call these displacements base-lines.In a three-parameters distribution the smallest cases are not approaching zero as they should.They approach a given base-line instead. The two-parameters lognormality only contemplates sit-uations in which the smallest variates approach zero. In accounting numbers, as in many otherlognormal variables, base-line e�ects are expected.Small base-lines only a�ect the smallest cases in the sample. The base-lines we estimated are nearthe magnitude of the smallest cases in the sample. For a sample with smallest values of 10, 15 andso on, the base-line will be non-important. The distribution would be two-parametric. For sampleswith smallest values of 800, 900 and so on, the introduction of a � is required in the transformationfor achieving normality. This agrees with the three-parametric mechanism.Three-parametric lognormality is sporadic. It emerges in some years but not in others. And itrelates to industries rather than to items. 25



Applicability of the results: Our study clearly excludes non-industrial �rms. Also those whichare too small for being collected into the Micro-EXSTAT data-base. We believe that purely commer-cial �rms or mixed ones will not depart from the general lognormal pattern. In the case of small orvery small �rms, we think that base-line e�ects and the existence of samples with extremely similarcases (groups with very small variance) can change the results substantially.In general, our results seem to suggest that the cross-sectional behaviour of accounting items isbest analysed in relative or scale-independent space.Lognormality and the existing research: The �nding of a regularity in distributions of itemscontrasts with the existing scenario. Hitherto no strong regularity or consistency could be expectedwhen examining accounting data. This is because only ratios have been explored. Ratio outputsare the residuals of two-variate relations. They are exposed to the e�ect of external constraintslike accounting identities. And they also re
ect internal mechanisms of the �rm. This makes ratiosdi�erent from one another.There is no reason to expect such a variety when looking into items. The variability in itemsseems to be mainly determined by the di�erent sizes of the �rms gathered in the same sample. Itemsare mainly a given proportion of the size of the �rm.Lognormality and homogeneous groups: Our results also suggest that for a given industrystrict lognormality depends on the homogeneity of such industry. Most of the observed severedepartures from lognormality are due to the existence of clusters inside an industrial group. It isinteresting to study one by one the 20 \bad cases" described in appendix A. Apart from a fewsamples with errors or very strange cases, most of these samples are not one unique group of �rms.There are two or three distinct groups, at least when considering Sales, Wages or the number ofemployees.We also examined the lognormality of samples when gathering two or three industrial groups inthe same sample. The proportion of strong departures from lognormality (P < 0:001) increases verysigni�cantly. We conclude that, for small samples, lognormality is conditional on the homogeneityof the industry.This conclusion is trivial. It arises in all statistical phenomena. Whenever we hypothesizea generative mechanism for explaining a given distribution, we must isolate homogeneous sets fortesting such a hypothesis. Two factors should be considered as conditioning an observed distribution:The underlying generative mechanism, which determines the population's distribution. And theexistence of groups or other sources of non-homogeneity in the de�ned sample.Our results seem to suggest that the underlying generative mechanism determining the distri-bution of items has a trend towards lognormality, even when the particular sampling yields non-homogeneous groups. For statistical modelling purposes the real important feature to consider isthe underlying distribution. The particular grouping is an accident and can be accounted for.26



Another interesting result is the lognormality of samples obtained by gathering all groups to-gether. Since these samples contain 14 di�erent groups, we conclude that a second level of homo-geneity is reached when the number of groups is high. One single group, if homogeneous, yieldshomogeneous samples. Two or three groups, each of them homogeneous, can yield samples whichare severely non-homogeneous. But 14 groups in the same sample approach a random e�ects modelrather than a �xed e�ects one. The grouping is near continuity, yielding a new, overall, homogeneity.This overall homogeneity is the one expected when sampling �rms at random according to a newsingle attribute | the selected �rms being industries.Lognormality and accumulative phenomena: We now focus on lognormality as a quality, thatis, as a trend determined by a generative mechanism, regardless of the actual distribution observedin a particular sample.Lognormality should not be considered as a strange or unexpected quality. It can be found inmany accumulation processes, like growth. The weight and height of children with di�erent agesis lognormal. Income distribution and many other processes in Economics also belong to the sameclass [65].Any stochastic accumulation, that is, the growth proportional to the size already attained, leadsto cross-sectional samples which are lognormal or belonging to the same class of skewed distributions.If a particular item grows, for several �rms, at di�erent, Gaussian paces the �nal aspect of sucha sample is the one of a lognormal distribution. We shall explore this mechanism in chapter 3. Atthe moment let us retain this simple, known, fact. Gaussian accumulations lead to lognormal �nalrealizations.Lognormality and cross-section: The last remarks are useful. But they can lead to a misleadinginterpretation of this study and its method.A major di�culty in understanding lognormality and other regularities found in this study stemsfrom picturing the problems discussed here as concerning one unique �rm and its internal mechanismsinstead of a cross-sectional sample. For example, a typical reasoning would be: Sales is likely to belognormal since it is an accumulation. But Dividends is very unlikely to be lognormal. Dividendsare dictated by considerations which have nothing to do with accumulations.All the above reasoning is about the internal behaviour of the �rm as perceived by using ratios.There is nothing on it which can be surely related to a cross-sectional sampling of items. Insteadof the item Dividends for many �rms of very di�erent sizes, this reasoning is picturing a di�erentthing | Dividends per share. The item Dividends is itself proportional to the item Net Worth |lognormal in our samples. Firms with a large Net Worth will have a proportionally large Dividendsitem. Small �rms having a small Net Worth will have a proportionally small Dividends item | evenif they pay large dividends. Dividends, the item, is likely to re
ect | in a given proportion | thesize of the �rm. 27



The item Sales is not particularly more lognormal than any other item because of being anaccumulation. Sales is lognormal because the growth of the �rm as a whole is itself an accumulation| a trivial �nding |. Sales just re
ects, on average, a given proportion of the size of the �rm.Cross-sectional samples gather �rms of very di�erent sizes at the same moment in time (ideally).Cross-sectional studies examine the joint behaviour of many �rms. Common features are takenas statistical regularities. A cross-sectional study is not about any particular �rm. The internalbehaviour of �rms is not contemplated as such | it can emerge in the residuals though. Forexample, �rms which pay large dividends will have large residuals |.Only a joint behaviour creates regularities. And cross-sectional regularities mean somethingcommon to many di�erent objects.Lognormality and the developments presented in next chapters: The next three chaptersexplore lognormality and other related �ndings. We expect to provide a coherent view enablingthe statistical modelling of our data. Lognormality in items emerges as a trivial result. And as avery useful result too. It is trivial because it simply means that items re
ect mainly size. And it isuseful because it means that cross-sectional samples of accounting items tend to be Gaussian in ascale-independent space.The size of �rms is not bounded by any central trend. Firms are free to be as large as theymanage to, inside an economy. A cross-section of many �rms is expected to exhibit the same kindof pattern governing other well known unbounded variables like income, wealth or the size of cities.Our accounting items seem to re
ect a given proportion of size. If Sales is taken as a measureof size, then Inventory is expected to re
ect, say, 1=3 of it. And Dividends, in average, 1=20 of it.Lognormality generates constant ratios.But lognormality is a much broader condition. It expresses the statistical or expected proportion-ality of random e�ects, not just a strict proportionality like ratios do. This topic is worth exploring.It leads to models which are beyond ratios.
28



Chapter 2The Multi-VariateCharacterization of AccountingItemsWhat are the immediate conclusions to extract from the lognormal nature of the observed items?Can lognormality be generalised to a multi-variate context?In this chapter we �rst point out that the sole consideration of lognormality is enough to ac-count for the persistent emergence of outliers referred to in the literature. The also mentionedheteroscedasticity of residuals is then discussed. We show that the direct Least-Squares modellingof lognormal data is, in general, not the most adequate procedure. Other models ought to be de-veloped. Speci�cally, we study the consequences of using ordinary or weighted regressions and theusefulness of trimming lognormal tails.This chapter then turns to the multi-variate behaviour of items. First, their Gaussian parametersin log space are examined for regularities. The mean values and standard deviations for di�erentindustries display some easy to interpret characteristics. Next we observe the variance and co-variance matrices of log items by industry. All the observed items have in common a strong portionof their variability. They are well described as a unique process with some amount of particularrandomness superimposed.Finally, we discuss items obtained by subtraction of other items. We explain why positivedi�erences of two items maintain lognormality. Then we suggest some procedures to apply whensuch subtraction yields negative cases.The meaning of the log transformation: We often use the term \space" with a quali�er. Forexample, we refer to the rotated space or to the log space. Our goal is to emphasize the fact that a29



given set of variables have been jointly transformed in a well known and consistent way, thus de�ninga formal system characterized by a set of entities and the corresponding axioms relating to them.For example, the log space is the set of log transformed items.The accounting literature is cautious about transformations. They are seen as a means of mas-saging data. We should be alive to the fact that a log transformation cannot be considered just asa manipulation of values to make them more tractable. The log function has a precise meaning.By using logs we select a particular way of looking into the data. We switch to a proportional orscale-independent space. The next quotation shows a pitfall resulting precisely from consideringlogs as a simple resource to render some sample more tractable. It has been frequently quoted inaccounting papers to reinforce warnings about the dangers of using transformations.In the case of the log transformation there is also an implicit assumption being ac-cepted where such a transformation is employed. That is, the transformed variables giveless weight to equal percentage changes in a variable where the values are large thanwhen they are smaller. If, for example, the variable being transformed was �rm size theimplications would be that one does not believe that there is as much di�erence betweena $1 billion and a $2 billion size �rms as there is between a $1 million and a $2 millionsize �rms. The percentage di�erence in the log will be greater in the latter than in theformer case. [34]This comment allows us to illustrate the meaning of switching to a proportional space. First welook into the �gures.Log of one million = 6 Log of one billion = 9Log of two millions = 6:301 Log of two billions = 9:301The di�erence is 0:301 The di�erence is 0:301Logs yield similar di�erences whenever the ranges are proportional, that is, when they are similarexcept for scale. The variations of logX are the relative or proportional variations of X.By working with log variates we are precisely giving the same weight to proportionally similarchanges. We accept that a di�erence or growth from one million to two millions is exactly asimpressive as a growth or di�erence from one billion to two billions.In log space we no longer compare �rms in terms of real (absolute) size but in terms of relativesize. We make di�erences independent of scale or measure.Of course, we should avoid applying proportions to log distances. It would be as if we werebuilding proportions of proportions. This is the pitfall, a very reasonable one if we consider the logtransformation just as a bit of massaging of the data.In appendix B we brie
y discuss the possible distortions resulting frommixing-up transformationsin input variables for statistical models. For consistently transformed input data we don't see whatkind of unexpected distortions could arise by working in the proportional space.30
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Figure 8: The awkward aspect of a lognormal spread (left) and the homogeneous one of the samedata in log space (right). Electronics, 1986.Before �nishing this introduction to logs, let us recall that the decimal log basis allows us tointerpret any value in log space as the number of digits of the non-transformed data. In log space,a value of 4 means a number with four digits. A value of 6 means a �gure larger than one millionand smaller than ten millions.2.1 The Variability of Accounting DataThis section comments on two problems widely discussed in the literature: The existence of outliersand the heteroscedasticity emerging when using additive Least-Squares algorithms for modellingaccounting relations.2.1.1 Lognormality and OutliersThe presence of outliers in the residuals of the ratio model is consistent with the lognormalityof items. In a �rst approximation, if items are lognormal, ratios should be positively skewed (inchapter 4 we explain why some ratios are Gaussian or even negatively skewed). Lognormal variatesare likely to exhibit severe skewness of the kind easily taken as outliers. For increasing values of thevariate we observe a strong increase in variance and an also strong decrease in the density of cases.The variance spreads proportionally to the square of the variate. The density of cases decreases inproportion too. The coe�cient of variation (the standard deviation expressed as a proportion of theexpected value of the deviate) remains constant.As a consequence, lognormal data draw shapes in which many cases concentrate in a small region31



and very few of them spread out along a large range | as in �gure 8 on the left (page 31). It iseasy to take these few extreme values as outliers: they lie out. However, they are not real outliers.Their behaviour is homogeneous providing the adequate distribution is assumed.Outliers require an assumption about the underlying distribution: The notion of outlieris entirely dependent on a previous assumption. In order for a case to be an outlier there must bea previous acceptance of a particular distribution as the one of the population.When the literature refers to a case saying that it is an outlier, the underlying distribution is theGaussian. But since accounting items are not Gaussian, it turns out that most of the cases referredto as outliers are not outliers.The proper space for checking the existence of outliers is indeed the logarithmic or relativeone. Figure 8 (page 31) shows an example of the adequacy of the logarithmic space for observingaccounting data. On the left we can see a scatter-plot of Earnings versus Sales for the Electronicsindustry in 1986. Hardly anything can be sorted out. Apart from the biggest companies, theremaining ones (about 140) are concentrated in a small region at the bottom left of the plot.When drawing the same plot in log space each case becomes distinctly separable and the two-variate distribution emerges as homogeneous. Even more interesting, a small non-linear relationbetween the two components is now visible. This non-linear relation turns out to be importantfor the understanding of non-proportionality in ratios. It became visible because of the adequacybetween log space and accounting features.Along this study we shall see that many other pieces of evidence hitherto hidden from directobservation become visible in log space.Lognormality and a very small scatter: Notice that the above description of the characteristicsof the lognormal distribution should not be taken as a general rule. Perfectly lognormal samplescan have small skewness when its standard deviation is very small too. This is the case for someresiduals of ratios when the variances and expected values of their log components are similar.It is generally accepted that coe�cients of variation smaller than 0.25 denote distributions whichcan be approached by the Gaussian one. Such exceptional cases cannot explain why a few ratiosare near normality. The literature on the distribution of ratios uses the ratio output, not the ratioresidual, to assess their distributions. When using ratio outputs the spread will seldom be smallenough: In lognormal variates the spread grows with the mean.2.1.2 The Heteroscedasticity in Models With Additive ResidualsThere is a well known claim for regressions to be used instead of ratios. Non-proportional relationsbetween the ratio components are the basis of such a suggestion. On the whole the discussionresulting from this claim was very revealing. It drew the attention of researchers for accounting32
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Figure 9: One single in
uential point in a weighted Least-Squares regression makes the resultingslope change in a signi�cant way. The original data is lognormal (CA vs. CL, 1984, all groups).items instead of just ratios. And it introduced a strong aspiration towards more accurate models.Berry and Nix (1991) [11] review this research. However, given the lognormal nature of accountingitems, the use of regressions is inadequate.In fact, lognormality implies input vectors which are high-leverage cases. The reason is the sameas for the emergence of outliers. Notice that high-leverage cases need not to be in
uential. But theyare likely to be. There is a tendency for high-leverage cases to become in
uential.Leverage and In
uence: The notion of leverage concerns an assumed model, not an assumeddistribution. Leverage regards inputs, not outcomes. Leverage cases are those which are far awayfrom the rest of the input vectors.Models su�er distortions if one or two input vectors are in
uential. An in
uential case monopo-lizes the �t of a model. When it is excluded the parameters are signi�cantly di�erent from when itis present. This happens because in
uential cases manage to have small residuals when they shouldhave large ones, at expenses of the whole model. The quadratic nature of Least-Squares algorithmsavoids any large residual by modifying the �tted model. Figure 9 shows an example.In regressions using accounting items as input variables, a large �rm will be a leverage case,likely to become in
uential, just by being large. This is a consequence of the lognormality of items.In fact, when a lognormal distribution is taken as Gaussian, the outliers are always in its tail| the largest �rms. In the literature this problem is generally referred to as the non-acceptableheteroscedasticity of accounting data. It is correct to address the lognormal scatter as a case ofnon-homogeneous variance. But this is a too general way of putting it. There are many kinds of33
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Ordinary Least-Squares Weighted Least-Squares OLS in log spaceName Rank Cook D. Name Rank Cook D. Name Rank Cook D.G. E. 1 12.185 TELFORD 129 7.8906 NATIONAL 17 0.077STC 4 1.4857 MISYS 142 0.1665 G. E. 1 0.0734IBM UK 2 0.9855 M.M.T. 145 0.1522 POLYTECH. 126 0.0577ENG. EL. 3 0.2508 FORWARD 139 0.0796 IBM UK 2 0.053STC C. 6 0.2138 KLARK-TEK 137 0.0577 BELL & H. 59 0.0398DIGITAL 7 0.0626 HEADLAND 135 0.0531 CASIO 55 0.0391AMSTRAD 14 0.0331 AMS IND. 136 0.0487 AMS IND. 136 0.036UNISYS 27 0.0135 SOUNDTRA. 138 0.0442 ZYGAL DY. 125 0.035FERRANTI 10 0.0128 AVESCO 131 0.0395 ENG. EL. 3 0.034Table 9: The largest Cook Distances for OLS, WLS and LOG. Electronics, 1986.achieved, the next best thing to do is to use tests of heteroscedasticity enabling not just the identi�-cation of its presence but also the assessment of its degree. Berry and Nix [11] recommend one suchtest since it \crucially gives an indication not only of the presence of heteroscedasticity but also ofthe power of the transformation needed to remove it".An example: The Cook Distance. The Cook Distance [25] can be used to assess how in
uentialcases are. This statistic measures in
uence: The e�ective degree in which an input commands thewhole �t, for a particular sample.As an example of the correlation between in
uential cases and the size of the �rm, we selectedthe Electronics industry, 1986. Three di�erent regressions | OLS, WLS and LOG (a regression inlog space) were compared. Sales was the input and EBIT the outcome.Tolerable Cook Distances should not exceed 1. Values larger than the unit mean a �t monopolizedby the case in which it occurs. Figure 9 on page 33 shows an example of one simple case distortingthe whole �t in a weighted regression using accounting items. Table 9 shows the �rms which weretraced as most in
uential in each regression. The column labeled \rank" signals the ranking ofeach �rm according to size. In this column, 1 means the largest �rm, and so on. This ranking wasobtained from a size proxy developed in chapter 5.OLS has two �rms which are in
uential. WLS has one. When using OLS the most in
uential�rms tend to be the largest. In the case of WLS they tend to be the smallest. The largest CookDistance in log space is far below the maximum value emerging when using OLS or WLS. Figure 11on page 36 shows the Cook Distances of the entire sample when compared with the size of the�rm. There is a clear correlation between the Cook Distance and the extreme sizes, both in OLSregressions and in WLS. In the �rst case, the largest �rms tend to be the most in
uential. In thesecond, the smallest are candidates for becoming in
uential. There is no such a correlation whenregressing in log space.Notice that, when using WLS instead of OLS, some improvements are observed. WLS makes thespread of the resulting variates smaller. And the skewness, in lognormal variates, is very dependenton the amount of the spread. Also, a fortunate coincidence can make some accounting identity35
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Figure 11: The log of Cook Distances against log s. Values obtained when Sales was used to explainEBIT in three di�erent regressions. Electronics, 1986. The numbers used as marks denote rankingaccording to size. 36



constrain the new variables so that their quotient would not be allowed to have long tails: In thecase of industries, it is unlikely that �rms could exhibit Earnings larger than sales and weightingwould work.2.1.3 Scale-Independence and TrimmingAnother point the lognormal trend of items elucidates is why it seems so unfruitful to trim outliers.Lognormal multi-variate distributions exhibit self-similarity of features across scales. This di-rectly stems from scale-independence. Any shape which holds for billions also holds for thousands.The shape like a \<" | typical of a lognormal two-variate scatter of very correlated deviates |will never change across scales. Such a shape, along with the correspondent gradient in the densityof cases, is continuously generating in
uential cases across scales.As a consequence, there is little point in excluding large �rms from the sample for obtaininga more homogeneous set. If we exclude the largest cases from the sample new cases will emergeas outliers. A di�erent way of viewing this is noticing that a trimming would be equivalent to areduction in the scale in which we are observing the data. And, as the phenomenon commandingthe emergence of in
uential cases holds in di�erent scales, new outliers will appear again and again| until the overall variance becomes so small that normality can be taken as a good approximation.Figure 12 on page 38 illustrates this mechanism.In the above example (table 9 on page 35), if we measure the Cook Distance associated witheach case after excluding the two in
uential �rms (G.E. and STC), we get three new cases with anon-acceptable weight in the regression: SUNLEIGH PLC (with a Cook Distance of 1.6), ENGLISHELECTRIC (1.9) and BROTHER INTERNATIONAL (19.8). The new situation is worse thanbefore trimming.If we exclude also these three �rms, SYNAPSE COMPUTER SERVICES emerges with a newCook Distance of 80.5. And excluding also this �rm, MISYS PLC suddenly appears as having a newCook Distance of 0.8. Not too bad. But much higher than the highest values observed in LOG.Notice that DIGITAL, despite being amongst the largest �rms and therefore a leverage case,didn't become in
uential. This is because leverage and in
uence are di�erent concepts. An in
uentialcase must be a leverage case. But it is possible for a leverage case not to become in
uential.Conclusion: The heteroscedasticity typical of proportional phenomena is well known and doc-umented. For example, Snedecor and Cochran [119] observe: \Logarithms are used to stabilizethe standard deviation if it varies directly with the mean, that is, if the coe�cient of variation isconstant. When the e�ects are proportional rather than additive, the log transformation bringsabout both additivity of e�ects and equality of variance." The log transformation solves at oncetwo problems accountants were used to consider separately: The non-homogeneous variance and theemergence of outliers. 37
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four items. On the right, the position occupied by items belonging to three industries. They formcharacteristic clusters. All cases are from the 1983 sample.In �gure 14 (page 41) we compare the position of clusters formed in the parametric space by aset of items for six di�erent industrial groups. The most apparent feature is the relation betweenthe smallest standard deviations observed and every industrial group.The ground value for the relative spread: Groups tend to exhibit similar ground or minimumstandard deviations. If we form a set with standard deviations of several items all belonging to thesame industry, we notice that these values are seldom found below a ground value which is typicalof its group. For example, the standard deviation of items from the Food industry is never smallerthan 0:77. For Clothing this value is 0:4 and for Building Materials is 0:6 (see �gure 14 on page 41).The meaning of the log standard deviation: In log space, distances from any case to themean are no longer real distances. For example, a log displacement of 0.4, | a fairly common valuefor the log standard deviation observed in some industries | means that the displaced case hasbeen multiplied or divided by 2.5, the anti-logarithm of 0.4. Hence, we may say that a log standarddeviation of 0.4 is equivalent to a multiplicative spread of 2.5. Or that each unit of spread in logspace measures a scatter of 150%. The log standard deviation is a dimensionless statistic. It is thelog of the coe�cient of variation of the sample. The spread is assessed as a proportion of the mean.The fact that distances to the mean are relative will not eliminate the e�ect of the size of �rms.Large standard deviations denote a group for which both large and small �rms are possible. Smallstandard deviations denote a group with �rms of uniform size.2.2.2 Variance and Co-Variance: The Strong Common VariabilityWe now turn our attention to the multi-variate behaviour of items in log space. The variance andco-variance matrices of our set of items also exhibit some clear features:� Inside an industrial group variances and co-variances of di�erent items are very similar.� Strong di�erences can be found between the variance and co-variance matrices of di�erentindustries.� Even when avoiding linear combinations the variance and co-variance matrices of accountingitems are almost singular.� For samples of signi�cant size no negative co-variances can be found. Nor zero co-variances.As in the case of standard deviations, there is a clear ground value characteristic of the groupand both variance and co-variances lie above it.40
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DB WC EB FA FL NW I D C CL S W CA meanMETAL 0.40 0.81 0.80 0.59 0.78 0.77 0.81 0.83 0.79 0.78 0.65 0.81 0.90 0.75CLOTH 0.32 0.56 0.54 0.76 0.67 0.84 0.89 0.79 0.86 0.85 0.92 0.87 0.92 0.75TOOLS 0.31 0.73 0.70 0.83 0.69 0.78 0.88 0.82 0.92 0.88 0.94 0.95 0.95 0.80WOOL 0.41 0.78 0.80 0.81 0.86 0.85 0.77 0.88 0.85 0.82 0.91 0.86 0.91 0.81PLANT 0.57 0.67 0.67 0.82 0.77 0.80 0.88 0.93 0.90 0.93 0.96 0.96 0.95 0.83PAPER 0.46 0.71 0.84 0.77 0.86 0.83 0.88 0.86 0.91 0.94 0.91 0.92 0.96 0.83ELECT 0.49 0.71 0.79 0.74 0.84 0.85 0.90 0.92 0.95 0.95 0.93 0.93 0.97 0.84CHEM 0.62 0.76 0.84 0.84 0.84 0.89 0.80 0.88 0.90 0.92 0.87 0.95 0.92 0.85ELTN 0.53 0.84 0.80 0.81 0.86 0.92 0.79 0.93 0.90 0.93 0.93 0.90 0.93 0.85BUILD 0.62 0.74 0.82 0.87 0.86 0.88 0.92 0.96 0.90 0.95 0.97 0.97 0.97 0.88FOOD 0.73 0.77 0.87 0.86 0.90 0.89 0.90 0.93 0.93 0.94 0.91 0.94 0.94 0.88MOTOR 0.76 0.80 0.82 0.92 0.88 0.92 0.94 0.96 0.91 0.95 0.96 0.96 0.90 0.90MISC 0.77 0.78 0.90 0.81 0.92 0.93 0.94 0.94 0.94 0.93 0.96 0.90 0.95 0.90LEATH 0.68 0.90 0.93 0.87 0.94 0.95 0.97 0.85 0.94 0.96 0.98 0.93 0.97 0.91mean 0.55 0.75 0.79 0.81 0.83 0.86 0.88 0.89 0.90 0.91 0.91 0.92 0.94Table 11: The R2 (mean of the �ve years observed) of regressions in which s, a proxy for the sizee�ect, explains 13 items. Rows are industries and columns are items.Discussion: The outlined features are not usual. They denote a strong regularity.Whenever similarity between variance and co-variance is observed we know that there is a com-mon source of variability in
uencing several variables. And the non-existence of negative or nullco-variances, along with the ground value, make us realize that we are not really looking into severalsources of variability but into a unique one with some smaller variability superimposed. Matricessuch those of table 10 are only possible when there is a preeminent source of variability common toall the displayed items.Any component of these � matrices could explain more than 90% of the observed multivariatespread. Many items share up to 94%. of their variability with others. It seems as if accounting itemswere, in log space, just the same unique process with a bit of particular variability superimposed.Such a feature of log accounting items is expected. The log transformation does not control forsize. Logs make di�erences in size relative but the e�ect of size remains. For example, if the FixedAssets of three �rms are worth one thousand, ten thousand and one million pounds, then in logspace they will be denoted by the values 3, 4, and 6.The observed items clearly re
ect a common source of variability we identify as the e�ect of therelative size of each �rm in samples gathering many, di�erently-sized �rms. In cross-section, the �rstand most important source of variability impinging upon di�erent items is the e�ect of size.Only after accounting for the size e�ect is it possible to assess the variability unique to items.The ground value also suggests that such unique variability will show positive or zero correlationswith the unique variability of other items. The negative correlations will not be frequent.Empirical evidence on a strong common e�ect: A more systematic way of looking intothe same phenomenon consists of examining slopes instead of co-variances. Co-variances are non-standardized slopes. When divided by the variance of one of the components they yield a slope.43



In order to provide solid evidence on the existence of a strong source of variability common to theobserved items, we �rst created a variate, s, supposed to re
ect the common variability present in allthe observed items. This can be done in several ways. Ours will be explained later on (section 5.1).Using this variate as the predictor we formed regressions in log space. Each log item was explainedin terms of s (logxj = a+ b� log sj + "j). The results show two regularities:� The common e�ect explains most of the variability of items.� All the slopes scatter around and near 1.Appendix A contains the detailed results of this experiment by industry and year. Also section 5.1,and speci�cally table 19 on page 115 provides evidence on this subject for all groups together.Here, we present two condensed tables (11 and 12) in which the obtained slopes and proportion ofexplained variability are displayed by industry and by item. Each value is a mean of �ve years. Bothtables are sorted in ascending order of their marginal contents. Therefore, by reading the headingsit is possible to become aware of which items or groups approach the largest values.Large R2: First we noticed that the obtained R2 are very large and very similar. They rangefrom 94% to 74% for items like Sales, Inventory, Debtors, Creditors, Current Assets and Liabilities,Wages, Net Worth, Gross Funds From Operations or Earnings. The results are consistent for theusual period of �ve years. On the whole, after examining 920 di�erent samples, 90% of them havea R2 larger than 0.78.Current Assets is the most explained by s and Debt the least. Fixed Assets, Earnings andWorking Capital are below the usual. Long Term Debt is clearly di�erent from the other items. Itshows a proportion of explained variability ranging from 30% to 80%, much smaller than any other.However, even in the case of Debt it is not possible to accept the hypothesis of independence fromsize. The minimum R2 of 30% represents a correlation of 0.55 with size. This correlation is notnegligible. For the examined samples it is signi�cant.The conclusion is that it is possible to create a unique variate, s, able to account for most of thevariability observed in our set of log items.Industries are similar in terms of explained variability. Only Metallurgy shows consistently valuesbelow the usual. Items, on the contrary, display a scale of di�erent explained variability.It is the contrast with the other items, exhibiting in most of the cases correlations with size largerthan 0.9, which makes Debt a particular case. It would be interesting to know if this less strongcorrelation with size can be found in any of the items we didn't examine.Slopes near the unit: Also the slopes of regressions in which log items are explained by s, ane�ect common to them all, exhibit a regular behaviour. They remain close to 1.44



D WC CL NW CA S C W EB FA FL I DB meanCLOTH 0.91 0.83 1.04 0.96 0.96 0.99 1.02 1.07 0.85 1.07 0.99 1.13 0.97 0.98ELECT 0.98 0.93 1.06 0.87 1.01 1.03 1.12 1.05 0.97 0.93 0.95 1.01 0.97 0.99PLANT 0.97 0.92 1.02 0.87 0.94 1.10 1.04 1.04 1.02 0.90 0.97 1.12 1.07 1.00ELTN 0.96 1.08 0.95 1.04 1.02 0.99 1.00 1.00 0.93 1.04 0.96 1.07 0.95 1.00TOOLS 0.98 1.14 0.91 0.93 1.01 1.11 1.02 1.02 1.06 0.92 1.04 1.02 0.93 1.01LEATH 0.95 0.86 1.01 1.06 1.00 1.03 0.99 0.91 1.12 1.18 1.06 1.07 0.87 1.01WOOL 0.96 1.02 1.02 1.03 1.08 0.93 0.99 0.98 1.16 0.97 1.11 0.95 0.95 1.01PAPER 1.05 0.96 1.00 0.90 0.97 1.06 1.03 1.04 1.03 0.95 1.05 1.03 1.08 1.01METAL 0.94 0.93 0.98 0.99 0.93 0.95 1.01 1.09 0.97 1.08 1.05 1.12 1.11 1.01MOTOR 1.00 1.02 0.95 1.00 0.98 0.98 0.97 1.04 0.98 1.08 1.01 1.02 1.24 1.02FOOD 0.94 0.95 0.97 1.04 0.97 0.94 0.98 1.06 1.07 1.12 1.08 1.07 1.12 1.02MISC 0.97 0.94 0.98 0.98 1.00 0.98 0.99 1.03 1.15 1.04 1.12 1.09 1.15 1.03BUILD 0.98 1.04 0.98 0.99 0.98 1.00 1.01 1.03 1.04 1.05 1.06 1.07 1.28 1.04CHEM 0.90 1.05 0.94 1.13 0.99 0.91 0.97 1.06 1.11 1.25 1.11 0.99 1.20 1.05mean 0.96 0.98 0.99 0.99 0.99 1.00 1.01 1.03 1.03 1.04 1.04 1.05 1.06Table 12: The slopes (mean of the �ve years observed) of regressions in which s, a proxy for the sizee�ect, explains 13 items. Rows are industries and columns are items.Let us suppose that the log variability present in items is the result of two or three independente�ects. Such e�ects would be di�erently mixed up to form each item. In that case the above regres-sions would yield very di�erent slopes for di�erent items. Each slope would re
ect the particularco-variance between the predictor, s, and the mixed variability present in each item.This is not the case. All the observed items yield the same slope when explained by the samevariate. Hence the variability of our log items comes mainly from a unique source.When considering all items during the same period of �ve years and the 14 industries one byone, 95% of the obtained slopes are larger than 0.9 and smaller than 1.2 (see table 12).Sales, Inventory, Debtors, Creditors, Current Assets and Liabilities and Wages are the nearestto 1. Next come Net Worth, Gross Funds From Operations, Fixed Assets and Earnings, with slopesranging from 0.85 to 1.3. Finally, Working Capital, with 0.7 to 1.3 and Debt with slopes rangingfrom 0.6 to 1.4.Notice that the slopes being near this particular value | the unit | stems directly from applyinglog transformations. In log space any scaling becomes a translation. If we have several variableswhich are proportional to each other, after applying logs they become translations of each other.But translations can be accounted for by using a single point in the space of the observed variables| an intercept or the constant term of regressions. In other words, the main source of variabilityof log items can be modelled by a simple mean adjustment.In log space any regression between closely proportional variates yields slopes which are near theunit and intercepts which are the logarithm of the expected value of such a proportion. Unit slopesare not real slopes, as a unit scaling is not really a scaling.In order for items to be proportions of each other | in log space translations of each other |there must be a multiplicative common source of variability commanding them all.45



S W I D C CL FA S W I D C CL FA0.63 13 cases 0.32 23 cases0.41 0.33 0.24 0.280.54 0.39 0.61 0.32 0.28 0.470.53 0.38 0.51 0.49 0.28 0.26 0.32 0.300.47 0.33 0.45 0.45 0.48 0.23 0.22 0.28 0.24 0.230.48 0.35 0.48 0.46 0.45 0.47 0.25 0.23 0.28 0.26 0.23 0.260.60 0.41 0.53 0.54 0.49 0.48 0.67 0.24 0.26 0.25 0.26 0.23 0.24 0.33Figure 16: Two � matrices obtained from the same sample. On the left, cases with negative WorkingCapital. On the right, cases exhibiting negative EBIT.Negative cases: The displayed � matrices and the experiment explained above only considerpositive cases. The few negative cases present in � items were excluded from the sample on acase-wise basis. In other words, all the �rms used for building the observed matrices belong to thesame group | They are healthy.The observation of � matrices formed with logs of the absolute values of negative cases is, ofcourse, not feasible. The sample would be too small. Also, these matrices would mix up situationswhich are very di�erent from one another.Instead, we isolated groups of �rms exhibiting the same particular illness: Liquidity problems,poor pro�tability. Then we formed � matrices with each one of such groups. For the few signi�cantsamples we could �nd, the behaviour of all the items is clearly distinct from the same matrices forhealthy cases. It seems dependent on the class of �nancial problem the negative items re
ect.For example, for the same group and year, �rms with liquidity problems (Negative WorkingCapital) have a pattern of co-variance clearly di�erent from the corresponding pattern of thosehaving pro�tability problems. And the negative-EBIT matrix is di�erent from the healthy one.The matrices displayed in �gure 16 belong to the Electronics industry in 1986. On the left allcases had negative Working Capital. On the right all cases had negative EBIT. These patternsare homogeneous but di�erent. Samples with negative Working Capital generate more spread thanthose with negative EBIT. And both di�er from the pattern usual in positive cases.Notice that the number of cases in the samples used for calculating the above matrices is smallerthan the desirable. We obtained a statistic, �, which actually has got more parameters on it thanthe number of cases in the sample. Such an analysis is case-dependent or even misleading.Comparing simulated and real cases: Simulation can be carried out in order to establish,avoiding the burden of analytical developments, which is the ideal multi-variate pattern of suchmatrices when they are calculated from the logs of absolute values of negative cases. This allowsus to understand which features of the above matrices are due to a particular behaviour of �rms |liquidity or pro�tability problems for example | and which are due to the mechanism of subtractingtwo log variates.We used the same group, Electronics 1986, and starting conditions similar to those found in46



S CA FA CL0.510 S0.478 0.504 CA0.490 0.480 0.599 FA0.462 0.470 0.467 0.460 CLFigure 17: � matrix used for simulating Working Capital, 1986, Electronics.S FA CL CA WC S FA CL CA WCS 0.516 W. Cap. > 0 0.462 W. Cap. < 0FA 0.505 0.627 0.416 0.475CL 0.464 0.477 0.459 0.419 0.401 0.423CA 0.475 0.484 0.465 0.489 0.422 0.400 0.424 0.429WC 0.494 0.492 0.474 0.532 0.672 0.399 0.407 0.416 0.392 0.680Figure 18: � matrix from the simulated Working Capital. Electronics, 1986.positive deviates. Such conditions were:Item Mean Standard DeviationCurrent Assets 4.213 0.723Fixed Assets 3.757 0.779Sales 4.577 0.720Current Liabilities 4.005 0.680In �gure 17 we display the � matrix used for introducing in the simulation the co-variance of theseitems. After generating 2,000 cases with multivariate lognormality we obtained 185 with negativeWorking Capital.Both positive and negative Working Capital were lognormal. When we slice such a sample alonga principal axis, in general the positive cases exhibit positive, though small, skewness. The negativeones have negative, very small skewness and larger kurtosis. The resulting variance and co-variancematrices for both groups are displayed in �gure 18.Such matrices are not especially di�erent from the expected. It seems as if no real di�erentiationbetween positive and negative cases exists caused just by the subtraction of two lognormal distribu-tions. The strong di�erences observed in matrices obtained from real cases are most probably dueto mechanisms internal to the �rm | the lack of liquidity or a poor pro�tability.We carried out simulations of other groups. One more example is in appendix A. In general, theonly feature we could recognize as particular to simulated negative cases was its larger spread andthe described skewness and kurtosis.� matrices of negative cases are not stable: A feature of data obtained from samples ofnegative cases is that variance and co-variance matrices seem not to exhibit the slightest traces ofstability. In most of the industries matrices change to di�erent ground values from one year to theother. Even this lack of stability is not a stable feature since it is absent in one or two industrialgroups. All this could just result from the small number of cases in the observed samples.47



The only constant feature is the overall similarity of cells. Matrices vary but all their cells remainfairly similar. This means a certain amount of dependence on size.2.3 The Subtraction of Two Accounting ItemsMany important items from accounting reports, namely those representing 
ows, are obtained bysubtracting two other items. In this section we try to answer two questions related to the statisticalmodelling of 
ows. These questions are:� Why are 
ows lognormal? In general, there is no reason why the subtraction of two lognormalvariates should remain lognormal.� If an accounting item has negative cases the log transformation cannot be applied. This is thecase for McLeay's � variables like Earnings, Working Capital and Funds Flow. How can theybe used in statistical models?After explaining the lognormality of 
ows we show that the problem of negative cases is not speci�cto the log transformation. We suggest alternative solutions for statistical modelling.2.3.1 The Statistical Distribution of FlowsSamples containing positive cases only: The apparent lognormality of positive di�erencesbetween two lognormal variables is a consequence of a strong correlation between them. In a sub-traction, z = y � x, of two correlated items, cases in which y is large also have proportionally largex. And cases in which y is small are expected to have proportionally small x.The extent to which z follows x and y is dependent on the correlation between x and y. For apair, fy; xg, of exactly synonymous items, z would exhibit exact proportionality with them. If s isthe e�ect common to both x and y we can write in such an extreme caseyjsj = Ry and xjsj = Rx for any �rm j:Ry and Rx are constants. Therefore zj=sj = Ry � Rx for any j.The more general case of correlated items can be written in a similar way. In fact, if we introducein the above expression small fyj and fxj so as to re
ect the variability particular to x and y weobtain yjsj = Ry � fyj and xjsj = Rx � fxj for any j:These fj account for departures from a strict correlation with s in case j. If such departures aresmall, they should be near the unit. Considering fy = 1� �y and fx = 1� �x we can writezjsj = Ry � fyj �Rx � fxj48



CA CA - CL

Size SizeFigure 19: Schematic representation of a subtraction of two accounting items yielding a new onewith some negative cases. zjsj = Ry � (1� �yj )�Rx � (1� �xj )= Ry � Rx � (Ry � �yj �Rx � �xj )= Ry � Rx � dj:The departure from proportionality is now represented by dj = Ry � �yj �Rx� �xj . Since the fj arenear the unit the �j will be small. And for values of R usual in ratios dj will be a di�erence betweentwo small values as well.z will be near lognormality for the same reasons x and y are lognormal, whenever dj will notmodify signi�cantly the shape of s. This could occur because the variability introduced by the fj isnegligible when compared with the one of s, or because their distribution, when combined, will notdistort the shape of s. The �rst case requires s to be strong as we know it is (section 2.2.2).The same reasoning could be expressed in many ways, all based on the existence of a strong e�ectcommon to the items being subtracted. The lognormality observed in 
ows is a clear clue for theexistence of a common e�ect. Lognormality only propagates across sums or di�erences of variateswhich are strongly correlated. The di�erence of two independent or weakly correlated lognormaldeviates yields a distorted shape.Graphical subtraction of items: Graphically, any subtraction of two lognormal variables y �xstrongly correlated with s is approximately a clockwise rotation of y in a two-variate distribution ofy with size. If we build a plot in which y, a lognormal variable, is represented against s and then wesubtract to each y the corresponding x, the result will be a rotation of the original shape downwards.In fact, to large y it will correspond large x and to small y, proportionally small x. Whensubtracting them, the sliding down of large y will be large and the sliding down of the small y willbe proportionally small. The resulting movement is approximated by a rotation rather than by a49
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Figure 20: Detail (near zero) of a frequency distribution obtained by simulating the di�erencebetween two items. This distribution is a juxtaposition of two lognormal ones.translation. Figure 19 on page 49 illustrates this.Rotations are important because they will not modify the distributional characteristics of thevariables involved. If the overall sliding of cases is a rotation then the resulting distribution willremain close to lognormality. Empirically we know that this is so.Samples containing both positive and negative cases: In chapter 1 we showed that, whentaken separately, both the positive and the negative cases of the observed � items are as lognormal asany other items. We can see why by subtracting graphically two lognormal shapes, both correlatedwith size, as in �gure 19.Given WC = CA� CL we start with a scatter-plot of CA on any measure of size and then wesubtract CL from CA. The values of WC were obtained from CA by sliding them down a valuewhich is CL. But the CL are proportional to size too. Hence, a large �rm's CA is expected to belargely modi�ed and a small �rm's CA is expected to change proportionally less.Notice that the X-axis now slices the two-variate distribution. There are now two regions sepa-rated by the X-axis. But such two regions preserve the proportional nature of the data.If the slicing were made along a line not passing through zero, or in less correlated items, theresult would be a truncation. But whenever the slicing of a two-variate distribution of very correlatedlognormal items is made along an axis of the distribution itself, the resulting two scatters will projecttheir values in the Y-axis in a way that preserves lognormality.In fact, when we go along growing size we �nd at our right hand an increasing spread in thepositiveWC direction. And the corresponding for the region belowWC = 0. The projection of suchscatters in the Y-axis yields approximately lognormal distributions by the same reasons non-sliced50



scatters do. The result of a subtraction of two accounting items so that a few negative cases emergegenerates a juxtaposition of two approximately log-normal distributions. One contains the positivecases. The other one, the mirror-image of the absolute value of the negative ones.The simulations we carried out corroborate this fact. Figure 20 on page 50 displays the centralpart of the distribution of a simulated di�erence between two accounting items. It is a juxtapositionof two lognormal distributions, one with much more cases than the other. As referred, empiricaltests show that both such distributions are lognormal.2.3.2 Modelling Samples Having Negative Cases: DiscussionWhat is the interest of considering | in a cross-sectional context | the whole sample of positiveand negative cases? What do we loose by taking separately one sample with positive cases andanother one with the negative ones as we have done so far?At �rst, the existence of negative cases in a sample seems unsatisfactory for modelling purposes.By taking both sets separately we break the continuity of the sample and loose the informationdescribing the passing through the zero value. It would seem desirable to bridge this lack of continuityand be able to work with the whole set of cases as a unique variable in the sample.It is easy to recall important pieces of research in which the used ratios had values passingthrough zero. Beaver's classic study on the importance of ratios for tracing �rm's failure [7] showshow revealing a ratio of Cash Flow to Total Debt can be when sliding down from positive to negativevalues during an observed period.The consequence seems to be that the ratios like the one above should be considered as a unityand taken as a whole. Breaking them into two samples, one for positive Cash 
ows and anotherfor negative ones, would apparently damage the most important part of its information content.Accounting research has devoted some e�ort to the assessment of the distribution of such ratios(see, for example [86] and [87]).The cross-section context: In fact, we loose nothing by using split samples in cross-sections.Beaver's ratios draw a trend during several time periods. One unique object | the average ratio fora group of �rms | is observed for consecutive intervals. Cross-sections are not about one uniqueobject. They capture the behaviour of many objects ideally at the same instant in time. The concernreferred to above stems from picturing time-series and transposing it to cross-sections.Ratios and the log transformation: The lack of continuity between positive and negative casesis not a problem speci�c to the log transformation. And it is not a problem either. McLeay's �variables also break the continuity of ratios or regressions. They break it in a so large extent as thelog transformation does. Ratios | or regressions | will fail to model correctly exactly the samesamples the log transformation is not apt to model.51



Positive Y

Negative Y

XFigure 21: A schematic representation of a scatter-plot for the ratio y=x when y can have negativevalues.For the ratio y=x in which y is a variable having both positive and negative cases, when wego along decreasing values of y and pass through zero, the corresponding evolution of x change indirection. It ceases decreasing and begins to increase. It is impossible to model such a sample usingone ratio. For each x there are two possible y. That's why practitioners calculate standards byconsidering only positive values. They can't �nd a consistent standard for samples with both signs.Figure 21 illustrates this fact. It represents a cross-sectional sample. Many �rms and twoobservations: For example, the Y-axis could measure Cash Flow and the X-axis Total Debt. Each�rm would be represented by a point in this scatter. In our example there are �rms with largepositive Cash Flows and large Total Debt. But there are also �rms having negative Cash Flowsand large positive Total Debt. Now let's produce a ratio for explaining the joint behaviour of thesetwo items. The �rms with negative Cash-Flow push the expected value of such ratio towards valuesmore near zero than otherwise. Hence, we obtain an estimation for the Total Debt any particular�rm should have | given its Cash-Flow | which is larger than it should be.The expected value for the ratio could even approach zero or become negative. When approachingzero, the amount of Total Debt predicted by such ratio would rise to in�nity. After passing throughzero the ratio would predict in�nitely large negative Debt.Positive and negative cases form two groups: There is a breakage of continuity when passingthrough zero. Each sample | positive Cash Flow and the negative one | really represent di�erentgroups and should not be mixed up.Clearly, the problem is not in the use of logs or ratios. The problem is simply that two di�erentgroups cannot be modelled by the same parameter. We couldn't use one unique regression to accountfor the data in �gure 21. We could but we shouldn't. We would need two regressions. And this iswhat it is all about. 52



Of course, in the case of ratios or logs, the algebra itself precludes one single model. Proportionalco-movements cannot pass from one quadrant to the other one except by going both together throughthe origin. This stems from being proportional or taken as such. Ratios, the same as logs, entail anassumption of proportionality. Ratios, a �nite di�erence one. Logs, a di�erential one.Lev and Sunder [79] devote to this breakage of continuity a large comment. After presenting areasoning similar to ours, they conclude that \A change in Earnings which has a favourable e�ect onthe ratio before the change of sign, will have an unfavourable e�ect after it. This loss of continuityis a frequent cause of problems in interpreting ratios computed from negative numbers. (...) Thisproblem renders ratios a hazardous instrument of controlling for size in the presence of negativenumbers and the researcher would be well advised to seek alternative means of exercising suchcontrol whenever feasible." Remarks similar to this one are usual in text books on ratio analysis.Ratio analysts and practitioners, instead of considering the positive and negative cases together,recommend avoid doing so. We see no reason for considering such variables as a continuum whenbuilding statistical models.Does it make sense to consider jointly the positive and the negative cases? In a strictcross-sectional context the referred lack of continuity seems to make sense also on grounds of �nancialanalysis. Positive and negative cases represent di�erent groups of �rms. They are to be accountedfor by grouping variables, not by continuous-valued ones.We recall the patterns of joint variability displayed in section 2.2.2 for samples re
ecting liq-uidity or pro�tability problems. They are very particular. This, contrasting with the general rulesgoverning the positive ones.Negative cases re
ect �rm illness. On the contrary, the positive ones re
ect a healthy state. Instatistics, situations as those require a grouping variable. The groups formed in cross-sections by�rms having positive and negative cases can be modelled and compared provide they are consideredas two groups.2.3.3 Alternative VariablesDespite the above remarks, there are cases in which it would be interesting to use continuous-valuedinformation as the one conveyed by � items. It is the case of the building of trajectories of a �rm'sposition for several time intervals. Here we suggest some solutions.Substitution of items: The problem of statistical models requiring � items can be solved inmost of the cases by using their components instead. The information conveyed by negative-valueditems can be introduced in a relation by other items appropriate for the log transformation. Thevariability of Earnings can be brought to the model by Sales and Expenses. Working Capital canbe substituted by Current Assets and Liabilities.53
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Log EBIT

- Log |EBIT| Log SFigure 22: The e�ect of a symmetrical transformation on the EBIT to Sales relation. All groups,1984.For any accounting item z, resulting from a subtraction of two positive items y and x, the pairfy; xg will obviously contain all the information z would contain, and a bit more. In fact, there is aunique z for any given pair fy; xg. But for a given z, there exist an entire line of pairs fy; xg ableto yield such z. Therefore z could never bear information not contained in fy; xg.Scaled di�erences: Another alternative solution for the modelling of � variables is the use of ascaled di�erence. If we scale one of the components of the di�erence so that negative cases cannotoccur in the sample we obtain a new item which is also a di�erence but has only positive cases.Scaling is equivalent to a translation in log space. Samples will not change their shape byintroducing a scaling. Therefore, if we use z0 = y � x� S instead of z = y � x (S being a constant)we can work with this new variable knowing that the shape of z0 is the same as the one of z, itsstandard deviation in log space didn't change and even the outliers are all there. Only the meanvalue has emerged a bit.Symmetrical transformations: Another possible way of dealing with both signs is the use of asymmetrical transformation: x 7! log(x); for x > 0 (2)x 7! � log(x); for x < 0 (3)54



or the equivalent creation of a dummy variable, d, retaining the information regarding the sign of x:x 7! log(x)d = 1 ) for x > 0 x 7! log(x)d = �1 ) for x < 0Such transformations correspond to the fact that negative cases are also lognormal and correlatedwith size. They will be useful and valid, provide no attempt is made to �t a unique model to thetransformed data.Symmetrical transformations preserve the relative size of � items. They allow the building ofmaps for drawing trajectories. And such trajectories will be appropriate for �nancial diagnosticsexcept in the neighbourhood of zero.The addition of constants: Indeed, there is one transformation which should not be applied forit severely distorts distributions. It consists of adding a large positive constant to all cases in thesample so that the negative ones become positive. This practice has been reported in a few studies.Modelling Debt: The log transformation cannot be applied to items having cases with values ofzero. We could avoid the problem of variables having zero values, like Debt, simply by using, insteadof log 0, a very small number: log1 = 0. The use of log(x + 1) instead of logx is recommended bySnedecor and Cochran [119] for proportional samples with zero cases. This is acceptable if in thesample there are no cases with values near zero. For instance, if a scaling of one million pounds isused instead of the usual scaling of one thousand, it is very likely to have in the sample cases withvalues near zero, both positive and negative.Even so, we should avoid | whenever possible | to use Debt directly as an input variable forstatistical modelling in samples having both leveraged and non-leveraged �rms. The leveraged �rmsare lognormal but the group of non-leveraged �rms forms a cluster of cases all with the same value.This set of cases would be in
uential.When Debt is required, it is supposed to bear important continuous-valued information onlyin the case of leveraged �rms. Therefore, we divide the sample in two. One contains leveraged�rms. The other one the non-leveraged ones. Inside each sample, estimation and inferences basedon continuous-valued models can be carried out. Inferences about di�erences between these two setsare also possible.2.4 SummaryIn this chapter we extracted the most obvious consequences of the lognormal nature of the observeditems. A few drawbacks widely discussed in the literature seem to have been accounted for. We alsodescribed the multi-variate behaviour of log items and the consequences of lognormality in the caseof di�erences between items. 55



Outliers and Heteroscedasticity: The lognormal distribution is likely to generate what seemsto be an outlier. By the same reason, it will also generate non-homogeneous variance in regressions.Regressions should not be used to model relations between lognormal variables. Lognormaldistributions generate large residuals which monopolize the minimization of square errors. Theresults are then dependent on one or two in
uential cases.Weighted Least-Squares is not an appropriate recipe for dealing with the above problem. It simplytransfers the in
uence from the largest to the smallest cases in the sample. The heteroscedasticitywould not vanish in any of these cases. The log transformation is adequate, in a �rst approximation,for rendering additive residuals. But appropriate models ought to be developed that fully explorethe existence of non-proportional and non-linear relations in accounting items.Also the trimming of outliers becomes a useless exercise for two-variate lognormal data. Theshape like a \<", typical of two-variate proportional relations, will not change across scales. It willgenerate more and more outliers if successive trimming was to be attempted.The common component of the variability of items: An important point this chapter out-lines is the existence of a common source of variability in the observed log items. In log space thesevariables can be viewed as the addition of two processes. The �rst one is common to all itemsand seems to re
ect the relative size of �rms. The second one, particular to each item, re
ects itsuniqueness.A consequence is that accounting items should be explained in terms of size and deviations fromsize. Instead of viewing each item individually as an independent source of variability | eventuallycorrelated with other few items | we should �rst account for an e�ect common to them all andthen take the residual variability as the particular contribution of each item.Our results seem to erode or smooth the distinction between � and � items regarding thein
uence of size. Earnings or Gross Funds From Operations are strongly correlated with size. Ascorrelated as Fixed Assets and Net Worth.The item showing a distinct behaviour is Debt. But even in this case size is present. The negativecases of � items seem also correlated with size, as far as it was possible to observe them.Cross-sectional samples with negative cases: We also studied the problems posed to statis-tical models by items having both positive and negative cases. We pointed out that there is nocontinuity between the positive cases and the negative ones. We further suggested that negativecases should be viewed as a di�erent group since they represent situations of the �rm which arespeci�c and not related to those observed for positive cases. Nevertheless, we suggested alternativetransformations to make statistical models, when necessary, able to deal with log-transformed datain the case of samples of positive and negative values.56



Chapter 3An Extension of the Ratio ModelSo far ratios have been used as input variables for statistical modelling in Accountancy. In this chap-ter we question their use. Ratios cannot account for non-proportional and non-linear features. Onthe other hand, the lognormality observed in items suggests the use of multiplicative or proportionalmodels of which ratios are the simplest example.In what extent is the lognormal nature of the observed items compatible with non-proportionaland non-linear relations between them? The development of new models rely on the ability to answerthis question. Therefore, the �rst task we undertake in this chapter is the answering of the abovequestion as a necessary step towards the building of appropriate tools.We �rst recall a known mechanism for generating the probability distribution observed in ourdata. Then we study the extent in which �nancial ratios and multi-variate relations are consistentwith such a mechanism. Finally we introduce on it conditions leading to non-proportional andnon-linear relations.We show that there is no contradiction between proportional mechanisms and a class of non-proportional relations. Financial ratios emerge as a particular case of more general descriptors.They can be extended so as to include non-proportionality. The chapter �nishes with examples ofuse of the new ratios.3.1 IntroductionEmpirical observation suggests that cross-sectional samples of many accounting items are approxi-mately lognormal. McLeay [86] observed lognormality in large samples of accounting items whichare sums of similar transactions with the same sign like Sales, Stocks, Creditors or Current Assets.Along with the items already studied by McLeay, we found that lognormality cannot be rejectedalso for stock variables like Fixed and Total Assets or Net Worth and non-accounting items relatedto size like the number of employees. 57
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Sales

Total AssetsFigure 23: The relation between Sales and Total Assets in log space. All groups together 1984. Thedashed line is the axis y = x.Positive values of accounting items having both positive and negative cases, like Working Capital,Earnings, Gross Funds from Operations and the absolute value of the negative cases of these items,are also lognormal.We also gathered evidence on the lognormality of small, homogeneous, samples. We examined18 accounting items for a period of �ve years (1983-87) belonging to 14 industry groups in the U.K.The results are displayed and discussed in chapter 1. We concluded that lognormality seems to bea general quality associated with the statistical behaviour of the observed items.Empirical models: The observed items are lognormal. How far can we go in the building ofappropriate models for accounting relations just by considering this empirical �nding?The �rst consequence of our study is that, instead of an entire sample, we need only to considerthe estimated central trend and scatter. In ordinary space, �nancial variables are lognormallydistributed. A particular observation cannot be simply described by the mean of the distributionplus a deviation from that mean. But once we move into logarithmic space the resulting variableis normally distributed. Any observation can now be explained as the mean of the transformedvariable plus a deviation from that mean. That is, any lognormal item, x, is described in log spaceas an expected value, �x, plus a residual, ex:For the jth �rm in a sample, logxj = �x + exj58



When we de
ate one item with the median of the same item for that industry the residuals areGaussian in log space. Lev and Sunder [79] discuss appropriate estimators for the central trend ofseveral possible distributions. Amongst others, the median is also analysed.Since logx, the mean value of logx, is a good estimator of �x, exp(logx) will be a good estimatorof the median of x. Then,for the jth �rm in a sample, the quotient xjexp(logx) = exp(exj ) (4)will re
ect the number of times the case xj is larger or smaller than the standard for its industry.If xj is Sales of �rm j, such quotients would re
ect j0 s relative position and relative progress. Ingeneral these position quotients seem not to be especially useful in accountancy. They measure sizeinstead of controlling for it.Financial ratios: We could also say that, since our items are lognormal, �nancial ratios y=x canbe written in log space as a di�erence of two position quotients de�ned in 4:For the jth �rm in a sample, log(yj)� log(xj) = (�y � �x) + (ey � ex)j (5)This expression is obtained just by subtracting two log items. It is similar toyjxj = R� fjwith R = exp(�y � �x) and fj = exp(ey � ex)j. Here, we arbitrarily used natural logarithms.R will be the expected proportion in which y di�ers from x. Proportional e�ects lead to variablesrelated by percentages rather than by additive displacements. We say that FA is expected to be,say, 25% smaller than TA if RFATA = 0:75.A good estimator for R is exp(log y� logx), the median of the ratio | in log space, the di�erencebetween two mean values |.The multiplicative nature of ratio residuals: fj is a multiplicative residual deviation andaccounts for the particular case of �rm j. It shows in what proportion the relative magnitude of y,in the jth �rm, diverges from its expected relative magnitude as predicted by observing x.The use of multiplicative residuals contrast with the practice but it seems reasonable. Ratiosare multiplicative models. The residuals should be taken as multiplicative too. In other words, ifthe expected value is a proportion, deviations from it are likely to be proportions as well. As anexample, it would be possible to say: \For values of B ranging from half an inch to ten miles, A isexpected to be twice the length of B with an error of plus or minus twenty inches". But it wouldbe di�cult to imagine an error mechanism yielding such deviations. The usual would be to considererrors of, say, 3%. 59



The ratio model: Discussion Ratios are simple proportions. Lognormal items become homo-geneous in a proportional space and their di�erence is a proportion too. These facts seem to match.But, is the ratio model adequate beyond this apparent matching?The sole consideration of the lognormal nature of individual items seems to be enough to concludeabout one appropriate estimator for ratio standards and also about the multiplicative character ofdeviations from such standards. These are interesting points in their own right. But the sole consid-eration of lognormality on accounting data is not enough to validate the �nancial ratios themselvesas appropriate models. Such an empirical basis cannot prevent the ratio model from being ques-tionable. Ratios are just the simplest relations allowed by the lognormal nature of items. Are ratiosable to model all the relations important for �nancial analysis and knowledge acquisition?Accounting research seems to give a negative answer to the above question. It is usual to �nd inthe literature a tone of pessimism about the usefulness of ratios. The existence of non-proportionaland non-linear relations between items are the main causes of concern. Whittington [134] ex-plains that... in an empirical relationship between a pair of accounting variables, two of theconditions necessary for proportionality are quite likely to be violated. Firstly, theremay be a constant term in a relationship (...). Secondly, the functional form of therelationship may be non-linear.The potential convenience of more elaborated models like regressions has also been stressed byBarnes [5]. He showed that in any regression Y = A + BX the distribution of Y=X will be skewedwhenever A 6= 0. Ratio standards would be likely to misinform since no central trend would exist.The role of a generative mechanism in this study: Most of the concern about the validityof ratios is based on the possibility of non-proportional relations between items. In order to studycauses for intercept terms it is usual to describe plausible mechanisms able to generate intercepts.For example, in the accounting literature it is frequent the use of arguments based on the existenceof �xed costs.In this study we also use a generative mechanism. Ours is not an accounting mechanism. Itis not intended to describe the internal features of the �rm like liquidity or �nancial structure. Itdescribes items in terms of size and deviations from size. Items, according to our mechanism, areendowed with two qualities: They are lognormal and they have in common a strong component oftheir variability.The reason for using a generative mechanism is not the claim that such a mechanism is actuallythe real cause and explanation of the behaviour of accounting items. Our claim is that it is possibleto interpret the evidence referred to in a consistent way and develop new models bearing the sameconsistency. 60



3.2 Ratios and LognormalityIn this section we use the well known proportional e�ect as a basis for explaining ratios. The usual�nancial ratio emerges as a simple consequence of a strong, common, e�ect.The proportional e�ect has been quoted by McLeay [86] as a mechanism able to explain theexistence of lognormality in a few items. Also a recent study [128] uses it. Both studies seem tosuggest a basic or qualitative distinction between two kinds of items. The �rst kind would includeitems re
ecting size. The second one, items which cannot \be treated as size measures [86]". In thisstudy and in another one we published [129] the proportional e�ect explains size and deviations fromsize. No attempt is made to specify the particular behaviour of any item. Items having negativecases are considered as a subtraction of two positive ones and explained as such.The Constant E�ect: The Gaussian distribution is often interpreted as the result of many inde-pendent elementary perturbations. This approximation entails the strong assumption of a constante�ect. For example, the probability of getting odds, when tossing a fair coin, is a constant value of1=2 no matter the number of games or the size of the coin. And the probability of getting particularproportions of odds when tossing a coin in several sequences of games draws a Gaussian distribution.This constant probability of 1=2 governing the game referred to is what we call a constant e�ect. Itleads to normality.The Proportional E�ect: If, however, any random change dx su�ered by a variable x is pro-portional to the value of x itself, the e�ect is no longer constant. It is a proportional e�ect and aGaussian generative process will not be able to explain it.Gaussian variables spread their �nal realizations around an expected value. They are bounded:It is most unlikely to �nd cases many orders of magnitude larger or smaller than the expected. Thisis because the random changes leading to such realizations are expected to be similar | a constante�ect. Contrasting with such a mechanism, when the random changes leading to any �nal realizationare expected to be similar only when taken as proportions of the momentary value of the variable,the e�ect is proportional. The probability distribution of such variables is unbounded. It exhibitsstrong positive skewness. The observed samples contain cases which are many orders of magnitudelarger than the expected ones.An example of a proportional e�ect would be the size of organs or animals when growing tomaturity. A whale grows dx = x2 � x1 while a mouse grows dy = y2 � y1. The random changessu�ered by x and y are dx and dy. Such changes are not expected to be similar. Their expectedvalues will be proportional to the size of the animal or organ they a�ect.The Gibrat Law: The lognormal probability distribution can be viewed as a result of a generativeproportional mechanism. This fact is known as the Gibrat law [48]. Let x be the position of an61



accounting item. If dx, the random transactions a�ecting x, are expected to be proportional to xitself, the quotient dxx will be expected to be independent of x.So, if we can �nd a function z = f(x) such that dz = dxx (6)then the new variable z will obey the assumption of a constant e�ect. In the case of dz being many,independent, perturbations f(x) is the logarithmic function. Aitchison and Brown [1] contain adetailed explanation of this reasoning. Singh and Whittington [118] explore the growth of �rms asgoverned by the Gibrat law.Notice that the logarithmic function emerges as a result of the Central Limit theorem. Thenormality of the process governing dz is not required as an assumption, whenever the dz are many,independent, changes.The relative growth: Any elementary perturbation dz will produce a small change dx which isexpected to be a proportion of x. Therefore dz can be seen as an elementary relative growth and zas an expected relative growth. For example, when x increments in average from 5 to 6 thousandpounds, dx is a growth of 1 thousand and z is 20%. The same relative growth of 20% impinging upondi�erent �rms would make x increase in average from 10 to 12 millions or from 15 to 18 pounds.Gaussian �nal realizations zj = logxj are explained in the same way. Firstly, by a central trend�x which is the expected one for the average relative growth a�ecting all cases in the sample. Andsecondly, by each particular departure from �x, the exj , a�ecting only �rm j. These exj are residualaverage relative growth: When back in multiplicative space, the exj are the proportion in which theaverage relative growth of �rm j is above or below the expected.For example, the expected value for Sales in the Food industry was estimated as logx = 4:9218,(83,521 thousand pounds) in 1987. We say that G. F. LOVELL PLC and UNITED BISCUITS arepositioned at similar distances from the standard. UNITED BISCUITS sold 1,832,400 | about 22times more than the standard | and G. F. LOVELL sold 3,722 | about 22 times less. For both,the relative departure from the standard is e = 1:35 = log 22. Only the signs are di�erent.The generative mechanism responsible for the cross-sectional distribution of sales in the Foodindustry describes these cases as a sum of two components. One which is common to all the sample| an expected relative growth of 4.9218. And another which is a residual relative growth particularto each company: +1.35 for UNITED BISCUITS and -1.35 for G. F. LOVELL PLC.3.2.1 Financial RatiosNow we study the joint variation of more than one item. The notion of �nancial ratio as a descriptorstems from the assumption of an e�ect common to all items for the same �rm.62



As we saw, dz = dx=x, the elementary relative changes of x, have the structure of a relativegrowth. z is Gaussian as dz is commanded by a constant e�ect.Modelling a common e�ect: We now assume that in the case of accounting data this Gaus-sian relative growth is the sum of two components. A common and strong component, �j, whichaccounts for random changes acting over the �rm j as a whole and therefore is the same for all the1; � � � ; i; � � � ;M items belonging to the same report. And a weak residual, "ij , particular to item i.Let x and y be the position of two accounting items for �rm j. dx� and dy� are random changesin x and y caused by �, a disturbance in
uencing both. Considering the way such common sourceof variability a�ects the relative growth which is about to generate x and y we can say thatdy�y� = dx�x�This basic mechanism yields �nal realizations of x and y obeying general expressions of this kind:logy� � Cy = logx� � CxC are constants depending on the initial values of x and y. Here, the superscripts are used foridentifying corresponding items, not as exponents.Since we de�ned "x = logx� logx� and "y = log y � log y� as the variability unexplained by �,we have: log(y) � "y �Cy = log(x)� "x �CxIf the cross-sectional distribution of the common e�ect is dictated by the Gibrat law it will belognormal. In this case, when we consider the whole sample of 1; � � � ; j; � � � ; N �rms, it is easy to seethat the statistical model describing the relation between y and x for �rm j islog(yj)� log(xj) = (�y � �x) + ("y � "x)j (7)a form similar to equation 5, the one based on empirical manipulation. �y and �x are the expectedvalues of log y and logx. Therefore ratios can be viewed as speci�c models describing the commoncomponent of the variability of y and x when both x and y are supposed to be �nal realizations ofa unique proportional mechanism. The residuals are independent of the common e�ect.Notation: Equation 7 can be written in the form of a ratio:yjxj = R� fjwith R = exp(�y � �x) and fj = exp("y � "x)j.For expressing the di�erences between expected values we use the notation �y=x = �y��x or, forthe ratio standards, Ry=x and so on. We write the di�erences between residuals as "y=x = ("y � "x).63



Superscripts are intended to avoid too many subscripts and should not be taken as exponents. Theyare used only in the Cj; "j , ej and fj .A good estimator for �y=x is log y� logx, the di�erence between the mean values of y and x in logspace. It is, of course, coincident with the median of the ratio expressed in logs. If an homogeneoussample of accounting reports is to be taken as a reference for the building of standards, the value ofRy=x, the ratio standard, should be calculated asRy=x = exp ( logy � logx )or directly as a median. And if we want to build a new variable from the residuals of the �ttedmodel we can calculate each "y=x as"y=xj = (log yj � log y) � (logxj � logx)or each equivalent proportion, fy=x, as fy=xj = yjexp(log y)xjexp(logx)Both Ry=x and fy=x are ratios. fy=xj is a ratio of two position quotients (de�ned in 5 on page 59).Notice that the "y or the "x are di�erent from the ey or the ex in 5, the empirical formulation.However, ("y � "x)j = (ey � ex)j for any j.The weak, particular, e�ect: "y=x, the di�erence between residuals, can be interpreted as theweak e�ect particular to y when x is taken as a proxy for the common e�ect. Unless we know �, wecannot determine exactly the real weak e�ects associated with individual items. We know "y=x butwe don't know each "x and "y, the components of such a residual di�erence.Conversely, it is impossible to determine the value that �, the common e�ect, assumes for �rmj unless we know the components of the residual di�erence. Therefore, both the common e�ect andthe particular one are not directly measurable. Ratios reveal what is di�erent in their components,by concealing what is common in them. In chapter 5 we describe a model able to reveal what iscommon and conceal what is di�erent in its components.The lognormality of the residual ratio, fy=x, is not required for the validity of the model itself.Because x and y are lognormal, it seems reasonable to expect that fy=x would bear the samemultiplicative nature. But the validity of the ratio model is not dependent on any assumption aboutthe nature of this log di�erence. Such distinction is important for understanding the distribution ofratios. We study this point in section 4.2.Ratios as functional relations: As described here, ratios are functional relations. That is, theyare not intended to explain one item in terms of the other one. Ratios yield a contrast between two64



items both a�ected by errors. Such a contrast measures how big are the discrepancies between theratio components. Therefore, the above description is intended to assess deviations from standards,not to prediction.3.2.2 Assumptions Underlying the Ratio ModelAn usual topic in accounting literature is to call the attention for the assumption of strict propor-tionality underlying the use of ratios. Such a statement is descriptive. We could now enumerate theassumptions attached to the ratio model in a generative, rather than in a descriptive way:1. Accounting items are �nal realizations of elementary random changes. Such changes, whenexpressed as proportions of the item they a�ect, are, in average, the same. This is the Gibratlaw.2. The elementary random changes leading to �nal realizations of accounting items are, whenexpressed as proportions of the item they a�ect, a sum of two components: One which a�ectsin the same way all the items in the same report and another which is particular to each item.As we remarked before, the normality of the process governing dz is not required as an assumption.The advantage of using a generative description is that we can now develop models other thensimple ratios which are also consistent with this basis. Here, ratios emerge as models obeying tothe statistical or expected proportionality of random e�ects. Proportionality at the end of a growthprocess is just a particular consequence of a given generative mechanism. Which other models areallowed by such a mechanism?3.2.3 Ratios With More Than Two ItemsIn section 3.2.1 we noticed that the ratio model emerges when we consider the common variabilityof two relative growth processes in a generative mechanism. By considering more than two items anobvious extension of the usual ratio emerges.Let x1; � � � ; xi; � � � ; xM be the position of M items for �rm j. dxi� are random changes in xicaused by �, a common source of variability. Considering the way such common disturbance a�ectsthe relative growth which is about to generate the set of xi we can say thatdx1�x1� = dx2�x2� = � � � = dxM�xM� (8)For example, we may want to consider two groups of items instead of two simple variables. Giveny1; � � � ; yk; � � � ; yK and x1; � � � ; xl; � � � ; xL and reasoning in the same way as in previous section themechanism described by 8 leads to the relation" 1K KXk=1 log(yk) � 1L LXl=1 log(xl)#j = 1K KXk=1�k � 1L LXl=1 �l + " 1K KXk=1 "k � 1L LXl=1 "l#j65



Despite its outlook, this model is very simple and can be seen just as an expansion of equation 5.Here, instead of unique variables, expected values and residuals, we have averages of items for every j.In ratio form the model would be QKk=1 y1=KjkQLl=1 x1=Ljl = R � fjthat is, a ratio of geometric means of variables describes an e�ect common to them all in the sameway simple ratios do.As the estimators for the � are the mean value of the corresponding log item, the above expressionis easily computed just by subtracting to each log item its mean value and then averaging groups ofitems inside the same �rm.Multiplicative residuals: The above model leads to ratios like these ones:pCA�CLTA or X � YZ �W or SpN �W or A �B �CD3 or similar.Notice that such ratios would immediately result from the usual ones when considering residuals asmultiplicative. In fact, any expansionsyx = yz � zx; yx = yz � xzor similar, only require to be statistically valid the multiplicative nature of residuals. For example,ratios are interpretable as a contrast between two deviations from size.We must point out that conversely, additive residuals as those accepted in the literature andpractice are not statistically consistent with the above expansions. If residuals were additive theirspread would not retain its statistical nature after expansions such those displayed above. Wellknown expansions of this kind like the \Pyramid of Ratios" or the DuPont pro�tability trianglerequire to be valid the assumption of residuals being multiplicative.Degrees of freedom involved: All the above explanatory models use only one degree of freedom.They are simple translations in log space. One free parameter is enough to account for a uniqueoptimal value. Such an optimum is an estimator of a di�erence between two central trends. This facthas important implications for the assessment of ratio standards and the interpretation of departuresfrom such standards.The inclusion of more than one variable in each group will not account for more explainedvariability. The number of used degrees of freedom remains equal to one. We are still modellinga single parameter. However, more variables, if conveniently selected, can enhance the accuracy ofratios by a self-smoothing process able to make particularities cancel out. We explore this possibilityin section 5.1. 66



A geometric interpretation of the common e�ect: Before �nishing this section we reviewthe ratio model using a geometric, more concrete, interpretation.Ratios emerge as a consequence of dividing the log variability of items in two components andmodelling the one which is common to both. This common component can be interpreted as thee�ect of the size of the �rm.If only such common source of variability would exist, �rms belonging to homogeneous groupswould be similar except for size. The values assumed by all accounting items would be just di�erentmagni�cations of such an e�ect. In log space, distributions of accounting items would only di�er bytheir position. Their shapes would be exactly the same. They would exhibit similar variance andwhen paired, they would also exhibit co-variance similar to the variance. Any two-variate scatter-plot would simply show a 45o slope intercepting the y axis in logy � logx. This is an abstraction,of course, but it shows what a common component represents. If now we add some particularvariability to each item we obtain the statistical behaviour of items as described here.According to the developed models all accounting items should be seen just as di�erent aspectsof one unique underlying variable, the size of the �rm. The particular behaviour of each variableemerges as a residual or deviation from the common variability.3.3 Extending the Notion of Financial RatioThe ratios introduced in the last section, despite their unusual outlook, are obvious applicationsto more than two items of the same principle governing the usual ones. In this section we extendthe notion of �nancial ratio in two new directions allowed by the proportional mechanism. First weintroduce non-linear proportions consisting of applying the linear model to the log space. Second,we model non-proportionality as part of the Gibrat law.3.3.1 Non-Linear ProportionalityIf we wish to model the joint behaviour of 1; � � � ; i; � � � ;M items after controlling for the commone�ect we must be able to account for di�erences amongst them other than the simple position ormean di�erences the usual ratios account for.In order to do this we notice that the proportional mechanism is able to yield more complexrelations than those developed above. Expression 8 is just the simplest case. Accordingly, we nowdevelop similar models, but able, to some extent, to cope with the variability of individual items.The introduction of multi-variance in the generating mechanism can be done with di�erentdegrees of complexity. The simplest approach consists of using just one parameter, bi, individualizingeach proportion. This new parameter allows the description, using the same formulation and withoutloss of generality, of the two components of the variability of each accounting item. A common e�ectwould have bi = 1 for all variables. 67



Similarly to 8, there is a relative growth, �, for whichb1 � dx1�x1� = b2 � dx2�x2� = � � � bM � dxM�xM� = d� (9)In this mechanism, the bi are gain or attenuation factors expressing di�erent degrees of linearcorrelation between the generative growth rates leading to these variables. Notice that only M � 1of these bi are independent.In the simple case of b being similar across �rms the consideration of two items, y and x, wouldyield general expressions likelog yj � b� logxj = (Cy �Cx)j + ("y � "x)j � b� log bor similar. Such free-slope ratios would look like this:yjxbj = exp(w0)� fjb and w0 are now the two parameters of the model. w0 is expressible in terms of b and the initialvalues Cy and Cx.And when considering two groups of items instead of two simple items we would have1K KXk=1 bk � log(yjk) � 1L LXl=1 bl � log(xjl) = w0 +  1K KXk=1 "k � 1L LXl=1 "l!jor similar. w0 is a parameter expressible in terms of the bi and the initial values. In the form ofratio, QKk=1 ybk=KjkQLl=1 xbl=Ljl = exp(w0) � fjWe can simply say that any multi-variate descriptor of this kind has, for 1; � � � ; i; � � � ;M items, ageneral form MXi=1 wi � log(xi) = w0 (10)in which the residual is omitted. wi are parameters expressible in terms of the bi, M , and the initialvalues. In ratio form, MYi=1xwii = exp(w0).We can write 10 as a linear relation in log spaceMXi=1 wi � ui = w0 where ui = logxi.that is, in log space a simple inner product can account for linear correlations in the residualbehaviour of accounting variables. 68



A class of non-linear ratios: At the beginning of this section we remarked that the free-sloperatios about to be introduced were intended to model relations between ratio residuals. We nowdiscuss their direct use in the modelling of relations between items. What is the consequence ofusing free-slope ratios instead of the usual ones?Firstly, let us notice that free-slope ratios contain the traditional ones. We can view �nancialratios as a special case of the equation 10 in which M = 2 and fw1 = 1; w2 = �1g.Free-slope ratios have some attractive features when directly modelling items: They preserveproportionality. They are also able to model a class of non-linear relations. Simple ratios onlyconsider a linear proportionality in which the exponents a�ecting the items are the unit or a fractional| the inverse of the number of items gathered in the numerator or in the denominator. Here, weenvisage a more general proportionality, not necessarily linear, in which items have real exponents.As long as we accept linearity in log space, proportionality will be preserved and inner products willmodel accounting relations.However, free-slope ratios are no longer interpretable in terms of relative size and deviations fromit. In log space, any slopes di�erent from 1 | when relating to items, not to residuals | rely onsimpli�ed mechanisms di�cult to accept and lead to functional relations with no intuitive meaning.The evident functional relation linking all accounting items seems not to be a co-variance but asimple scaling | in log space, a displacement. Slopes diverging from 1 in log space mean a non-linearrelation. As a rule, we shouldn't accept non-linearity before being compelled to reject more simplemechanisms. We based the assumption of b = 1 on �ndings described in chapter 2: For the observeditems the log variance and co-variance are similar for homogeneous groups.There is another reason for avoiding the use of more than one free parameter in �nancial models.Accounting data is fertile in irregularities capable of distorting the meaning of a model in whichslopes are allowed to vary freely.In �gure 24 (left) on page 70 the non-linearity introduced by letting the slope of the regressionin log space be di�erent from 1, is clearly being used just to approach a few in
uential cases. Thesecases are marked with a plus sign and an arrow on the right of the same �gure. In other words, theresulting model is now sample-dependent.Using non-linear ratios: There are a few cases in which the extended ratios discussed abovecould be useful. The �rst one is when we want a proportion of size to be present in a simple ratio.For example, we could form the ratio yjxbj = R� fj :By selecting appropriate b we obtain a residual, fj, contaminated with as much size as desired.Another possible application is when we wish to introduce a second free parameter in the modelbecause our goal is the prediction of y using x as predictor, not the assessment of a contrast betweenthem. In such circumstances we don't need to be guided by the above, cautious, reasoning.69
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Figure 24: Comparing a regression in log space (B = 0:81) with the ratio model (B = 1).Functional relations describe mechanisms. Mechanisms should be plausible. Free slopes in logspace are not plausible for describing items since they imply the existence of a unique relativegrowth for the same item across many �rms. Moreover, it would be inadequate to consider non-linear mechanisms as a rule. But when the goal is to predict one item from another, there are noknown objections to the use of simple regressions in log space.The class of non-linearity introduced by free-slope ratios: Figure 24 or any similar onewill show that the distortion introduced in a two-variate model by allowing small departures fromB = 1, a�ects mainly large �rms. It will be a concavity towards smaller y, in the case of B < 1.And it will be a convexity towards larger values of y for B > 1.The practical assessment of signi�cant departures seems di�cult since cases which could beinterpreted as drawing these non-linear features also could be considered as in
uential.3.3.2 Non-Proportional RatiosThe relation dx=x = dz is a simplistic description of generative processes. The Gibrat Law allows amore realistic basis by admitting that the random changes dx a�ecting x are proportional, not to xitself, but to x+ x0.We call this x0 a base-line. Since the generative process leading to a particular realization ofx starts with a non-zero value for x = 0 the increments x receives at this point are in average70



proportional to such base-line. Therefore,instead of dz = dxx we should write dz = dxx+ x0for describing the generation of a particular item x.Such a process leads to a class of ratios which can have many di�erent characteristics accordingto the magnitude, sign and position of their base-lines. In some cases, but not in all, these base-lineratios will draw non-proportional relations between its components.Notice that x0 should not be taken as the initial value of x, that is, the value of x at the beginningof the process leading to its �nal realization. Such initial values | which in our notation are theCx | will not induce non-proportionality in the models describing cross-sectional samples. As longas the process is strictly proportional, the outcome is proportional as well. Non-proportionalityemerges only when the random changes dx are proportional to values which are not x.Next we brie
y describe some of the possible models resulting from base-lines.An overall base-line in the denominator: In the simplest case, x0 would be a constant valuea�ecting all realizations of xj for any j. That is, for a particular item all �rms in the sample wereexpected to be a�ected by the same non-zero base-line.One possible model resulting from a two-variate relation would belog(yj) � log(xj + x0) = �y=x + "y=xjwhen the base-line acts on the denominator but not in the numerator. In ratio form,yjxj + x0 = R� fjBase-lines occur when any of the ratio components is three-parametric lognormal instead of two-parametric. In the above expression and in all subsequent ones, the item a�ected by the base-line| in this case it is x | receives a transformation similar to the one used in formula 1 (page 8) forachieving three-parametric lognormality.Estimating x0: The problem of �nding good estimators for x0 can be approached in two ways:� Firstly, this problem could be considered as concerning each item independently, as we did inchapter 1. Hence, the estimator for �y=x, supposing that we know in advance �x, an estimatedx0, would be simply log y � log(x+ �x). By considering the estimation of � as independent ofthe estimation of x0 we considerably simplify the formulation of estimators for base-line ratios.� But we could as well �nd plausible reasons for considering these two parameters as not inde-pendent. It would be complicated to discover the analytical expressions for estimating x0 and� when considering their dependence. In practice, there is no problem in �nding estimators for71



these models. Any iterative Least-Squares algorithm, used in log space, will generally succeedin doing so.Both the independence and the dependence models are interesting. They can explain di�erentkinds of base-lines. But the independence model is attractive also because of its robustness. In thismodel only the small cases in the sample are a�ected by the introduction of a second parameter.For larger �rms the model behaves exactly like the corresponding simple ratio. And the estimationof expected values is less a�ected by in
uential cases or non-desirable interactions between the ratiocomponents.Non-independent residuals: Returning to the above model | base-line in the denominator |it is clear that ratios of this sort are a non-proportional relation:yj = x0 �R� fj + xj �R � fjThe above form is useful just to show that such a model is not a linear regression. The non-proportional term x0�R� fj is not independent. It will introduce displacements proportional to aresidual value. Distortions will vary from case to case.The distortions introduced by this kind of ratio will be small provide j�xj remains small. The non-proportional term will be signi�cant only for values of xj near �x, that is, whenever the generativeprocess leads to �nal realizations of items which are near their base-line. Cases far away from theirbase-lines exhibit proportionality since xj � x0 � R� fj .An overall base-line in the numerator: By considering a base-line, y0 a�ecting y, the numer-ator of the ratio, instead of x, we get non-proportional terms which can more easily be signi�cant.The expression log(yj + y0)� log(xj) = �y=x + "y=xjmeans a ratio yj + y0xj = R� fjwhich can be written as yj = xj � R� fj � y0In this case the base-line acts as an intercept in a regression. It introduces a displacement a�ectingall cases in the sample. Notice that this model is still not a regression. The di�erence, however, isnot functional. It stems from the multiplicative nature of the residuals.Notice also that, except when assuming independence between the estimation of y0 and �, thereare practical problems in modelling this relation directly with the usual algorithms.72
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The scatter-plot described here is valuable in detecting base-lines. It is just a practical applicationof the usual plots for tracing possible trends in residuals. It is convenient to apply a small amountof smoothing for improving its clarity. In the above example we used moving averages.Base-lines both in the numerator and in the denominator: When considering y0 and x0as both signi�cant, the amount of non-proportionality introduced results from their interaction. Areinforcement of non-proportionality will occur when y0 and x0 have di�erent signs. Apart fromthis, the overall e�ect will depend on R, the expected proportion.In a very particular case, y0 = x0 � R, both base-lines cancel out. The remaining non-proportionality is residual.Multi-variate base-line ratios: The general multi-variate descriptor, involving free-slopes andbase-lines a�ecting all cases and present in several items would be written asMXi=1wi � log(xi + x0i) = w0or, in ratio form, MYi=1(xi + x0i)wi = exp(w0)It is expected that multi-variate models of this sort will eventually generate strong departures fromproportionality. The x0i can easily reinforce their e�ects creating important joint displacements.Proportional base-lines: The mechanism leading to the above descriptors requires an overalldisplacement | a base-line acting upon the whole of the sample in the same way |. Overallbase-lines suppose the existence of overall costs or income.We now consider the case of base-lines which are dependent of the size of the �rm. Mechanismsinternal to the �rm are likely to generate base-lines proportional to size. The assumption of suchinternally generated base-lines being similar for the whole of the sample would be di�cult to accept.For 1; � � � ; j; � � � ;M �rms, x0j is now a particular base-line concerning the generative process ofeach xj . This base-line will act as a new variable, not as a parameter of the model.The model collapses into the no-base-line ones. In fact, if x0j is proportional to the size of the�rm it is similar to any other accounting item. For instance we could write x0j = xj � R0j � f0jand we would have a relative growth dxx� (R0j � f0j + 1) = dzfor the generating process of a particular realization of x.And since R0j and f0j are not involved in the subsequent growth of x the resulting model wouldbe a version of the free-slope ratio we explored in section 3.3.1.74



Base-lines proportional to the size of the �rm will not break proportionality. However, they willinduce di�erences in the way each item is a�ected by the common variability. In order to accountfor such di�erences, mechanisms similar to free slopes are required.The described model is interesting because it has been often used in the accounting literature asan example of the plausibility of intercept terms in two-variate relations. It was an awkward choicesince, as we see, base-lines acting just as another item are not likely to induce overall translations.We now analyze this subject in more detail.3.4 The Basis for the Existence of Non-ProportionalityBase-lines can occur due to internal or external causes. The most general one is internal: whennon-existent variables ought to exist. All growth processes starting with x = 0 must have at itsorigin a base-line acting like a seed since zero-valued items can't grow. This is the basic reason forthe existence of base-lines. It applies to all growth processes of the kind we consider here. And itcertainly applies to accounting items as well.Due to its exponential nature, the �nal realizations of proportional mechanisms are likely to attainvalues which can be many orders of magnitude larger than this seed. In such cases, x� x0 � x andthe non-proportional term vanishes. Growth processes in which the �nal realization is not far fromthe base-line would generate non-proportional terms which would not vanish.3.4.1 Internal Base-LinesThe foundation invoked in some literature for the existence of signi�cant departures from propor-tionality is coincident with the model we call the proportional base-line. Foster [44], for example,referring to the Earnings-to-Sales ratio, explains thatOne rationale for a negative constant term is the existence of �xed costs, which impliesa loss at zero sales level. One rationale for a positive constant term in the earnings-salesrelation is an income source (for example, interest income on cash investments) notrelated to sales.Lev and Sunder | apart from suggesting a di�erent sign for the base-line | argue in the same way:The relationship between gross pro�t (y) and sales (x) probably contains a positiveconstant term given the frequent existence of a signi�cant �xed costs component. Ac-cordingly, observed di�erences in gross margin ratios (over time or across �rms) willre
ect the confounding e�ects of di�erences in e�ciency, re
ected by �, di�erences inthe level of �xed costs, �, and di�erences in sales volume, x.75



This literature says that, because in each individual �rm some internal mechanisms exhibit constantterms, the corresponding statistical variables, obtained when gathering many �rms in a sample,would exhibit also a constant term.It is worth emphasizing that, as we saw above, this is not so. The base-lines described by theabove mechanisms could induce particular correlations between items instead of overall displace-ments.This seems to be another case of picturing time-series while working with cross-sections. Return-ing to the example of Fixed Costs, the meaning of a cost being �xed is that it is �xed inside a �rm.But a cost can be �xed inside a �rm and variable across �rms. As a �rst approximation, we can saythat large �rms exhibit large �xed costs, small �rms exhibit small �xed costs and in�nitesimal �rmswould exhibit in�nitesimal �xed costs. On the limit, the zero-sized �rm would have zero �xed coststhus yielding strict proportionality. Whittington [134] clearly distinguishes between time-series andcross-sections when addressing this problem:In cross-section, such an interpretation (sales-unrelated income) could not be placedon the constant term: It would now represent an estimate of the average amount ofsales-unrelated income for the average �rm, provided the further assumption is madethat \sales-unrelated income" is strictly independent of size.This statement is equivalent to ours. In cross-section Fixed Costs should be regarded as anotheritem with nothing very special about it.3.4.2 Overall Base-LinesWe noticed that mechanisms which are internal to the �rm would not yield intercept terms. Onlyoverall base-lines can do it. The question now is: Can such overall base-lines plausibly induce strongintercepts? It seems as if there is a limit for the plausibility of overall translations a�ecting entiresamples. In fact, such translations must be small because they have to impinge upon all �rms, smallor large. And being small, they will be entirely un-noticed by large ones.Clearly, if an overall cost were big enough to promote a signi�cant displacement it would be fargreater than the earnings of many �rms | leading them to immediate insolvency. And if it weresmall enough to allow any �rm to survive then it would not be noticed by most of the �rms andindeed its e�ect would be negligible.For example, a �xed cost of 3,722 thousand pounds over the whole of the Food Manufacturers inthe U.K. would represent to UNITED BISCUITS just 0.2% less earnings in 1987. This �rm wouldhave to be content with 99.8%. But such a cost would eat up the whole of sales in G. F. LOVELLPLC. All the �rms similar or smaller in size would perish (about 5% of the industry). This is notconceivable. The acceptance of overall displacements able to in
uence large �rms would imply theexistence of unreasonable or impossible mechanisms.76
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As usual, x represents the denominator of the ratio and y the numerator. For each example, �vedi�erent models are compared: Model 1 to 5. The numbering refers to �gure 29 on page 81 and totables displayed later on. Next we describe each model.Model 1: The usual ratio. It engages one degree of freedom. Its unique parameter, the medianof the ratio in log space, is estimated as a in the equationlog yj = a+ logxj + "y=xj yielding the ratio yjxj = 10a � fjThe graphical representation of this ratio has the label 1 (solid line) in �gure 29. It is a 45ostraight line in log space. In ordinary space it is also a straight line passing through the origin.Model 2: The free-slope ratio. It engages two degrees of freedom. Its two parameters are a andb, the slope. They are estimated by the equationlogyj = a+ b� logxj + "y=xj yielding the ratio yjxbj = 10a � fjThe graphical representation of this ratio has the label 2 (dotted line) in �gure 29. It is astraight line in log space. It is not linear in ordinary space. It goes through the origin.Models 3 and 4: The base-line ratios. They engage two degrees of freedom. But in the formerboth parameters (a, and �) are estimated jointly. In the last, a is taken as known. Then � isestimated based on this assumption. The slope is not allowed to vary freely. The parametersare estimated in the equationlogyj = a + log(xj + �) + "y=xj yielding the ratio yjxj + � = 10a � fjThe graphical representations of these ratios have the labels 3 and 4 (dashed lines) in �gure 29.They are non-linear in log space and straight lines in ordinary space. They don't go throughthe origin. In log space both models yield curves which are parallel to each other. Model 4converges to model 1 for medium-sized and large �rms.Model 5: The base-line plus free-slope ratio. It engages three degrees of freedom. The pa-rameters are a, b and �. It is the result of considering free slopes and � together. Theparameters are estimated in the equationlog yj = a+ b� log(xj + �) + "y=xj yielding the ratio yj(xj + �)b = 10a � fjThis ratio is not displayed in �gure 29.The above description is complemented with �gure 29. It represents graphically the typical shapeof each model. In this representation there are three plots. Above, the models in log space. The80
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two plots below this one represent each model in ordinary space. They explore the region near theorigin using two magni�cations.Methods similar to those discussed here but using simulated base-lines can be found in ap-pendix A. Some important practical details to bear in mind when attempting to estimate base-linesare only referred to there.3.5.1 Fixed Versus Current AssetsFor some industries, CA generates clear base-line e�ects when combined with other variables. Weselected Electronics, 1987, and tried several combinations of items. Finally we decided to use FA asthe numerator. Fixed Assets is a complementary item to Current Assets. No external constraintsresulting from accounting identities will distort this relation.Next table relates the tested models to the variability explained, the skewness and the kurtosisof the ratio residuals in log space (the "y=xj ).Model a b � R2 Skewness Kurtosis1 -0.46 72% 0.27 2.182 -0.21 0.94 76% 0.07 1.303 -0.49 +528 78% -0.12 1.194 -0.46 +327 76% -0.12 1.785 -0.40 0.99 +403 78% -0.12 1.19We now observe the features of each one of the obtained models. Model 1, the simple �nancialratio, accounts for 72% of the variability. By letting the slope b vary freely in log space, further 5%of the variability are explained. Both the skewness and the kurtosis of the residuals are improved.In the 3rd and the 4th models the gain in explained variability is similar to the one obtained withfree slopes. The explained variability didn't improve in the 5th model.Discussion: In this example, the variability explained is smaller than the usual in ratios. It iscommon to �nd ratios able to explain between 80% and 95% of the variability on its components.This is because, apart from Debt, FA is the item with the largest amount of unique variability.The base-line ratio with two free parameters (the 3rd) explains as much variability as the three-free-parameters model (the 5th). It is interesting to notice that the free-slope model (the 2nd) isusing it to approach the non-linear e�ect of the base-line. Once such base-line is accounted for, theslope returns to the value of 1 (the 5th model).The value of the base-line is itself very small and its e�ect will vanish except for the smallest �rmsin the sample. When using the method described in chapter 1 to estimate the base-lines in CA andFA we obtained values which agree with those displayed in the above table. CA is three-parametriclognormal: Signi�cant departures from normality vanish for �580 < � < �300. The maximumWis obtained with � = �570. FA has no signi�cant departures from the two-parametric hypothesis.82



The skewness of residuals is not very strong in this example. And it is clearly controlled bythe introduction of a base-line. The kurtosis is strong and it will not vanish with base-lines or freeslopes, as expected. In chapter 4 we discuss the distribution of ratio residuals.From the four extensions of simple ratios we present here, the most attractive one seems to be the4th. It accounts for the base-line but approaches the usual ratios for larger values of its components.Such a independently-estimated base-line ratio is also simple to implement. It will exhibit the samekind of robustness regarding the in
uence of particular cases or external constraints simple ratioshave. And it seems able to account for a signi�cant increase in explained variability. The estimatorfor � produced by this model is smaller than the predicted by the other ones.3.5.2 Earnings Versus SalesThe relation between Earnings and Sales has been frequently quoted as an example of the plau-sibility of an intercept term. We examined such a relation for all industrial groups introduced onpage 5 (chapter 1), for a �ve-years period (1983-1987). In most of the industries no traces of non-proportionality were found. In others, the apparent e�ect of an overall base-line turned out to havea very di�erent explanation.We �rst selected the Food Manufacturers group in 1987. Figure 30 shows the log scatter-plotof Earnings versus Sales for this group. It seems a case of non-linearity consistent with an overallbase-line. However, four of the �rms, the smallest when measured by Sales, have Earnings largerthan Sales and shouldn't be considered as typical industries. These cases are marked with a \o"instead of a \x" in �gure 30. Without such cluster the non-linearity seems much less impressive.This example shows how vulnerable and potentially misleading the �nancial relations become ifmore than one free parameter is used.Figure 31 on page 85 shows some other industries. The visual examination of samples in log spaceand the modelling of base-lines were particularly di�cult in this case because one of the componentsof the ratio is bounded by the other.In the Electronics industry, a small departure from proportionality could be observed in 1986and in 1987. The results of applying extended and base-line ratios to the 1986 sample are displayedin next table. We modelled the ratio S=EBIT , not the EBIT=S one.Model a b � R2 Skewness Kurtosis1 1.03 77% 0.73 0.992 1.39 0.90 78% 0.49 0.663 0.97 +273 79% 0.54 0.704 1.03 +148 78% 0.62 0.845 1.10 0.97 +207 79% 0.50 0.68The same features observed for CA are replicated here but not so strongly. The improvementin explained variability over the usual ratio is not signi�cant. When the base-line is estimatedindependently of the median, its value is smaller than the one for joint estimations.83
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emergence of non-proportional relations. Only an overall cost or income impinging upon the wholeof the sample seems able to yield non-proportional relations in cross-sectional samples. This overallbase-line couldn't be far away from the smallest case in the sample though. And, in that case, thee�ect of such a translation wouldn't be noticeable except in its neighbourhood.Distortions in proportionality resulting from overall base-lines depend on several factors. Theyare maximal for base-lines in the numerator of the ratio or when the signs of the base-lines of thenumerator and the denominator are di�erent.The validity of ratios: We conclude that it is not necessary to abandon the basic notion ofratio to model non-proportional and a class of non-linear relations. Ratios can be extended so as toinclude these features. This isn't the same as saying that the simple ratios are always acceptable.Base-line ratios seem promising for ratio analysis and statistical manipulation of accounting data.They are robust, easy to estimate and it is likely that they will be able to gather in one simple modelthe correct relation between two items for �rms of very di�erent sizes.This study also supports the idea that the use of ratios was not just an arbitrary choice amongstmany possible ones. Ratios are consistent with a trend towards lognormality. They are, however,too simple relations having this quality. Since the non-linearity modelled by free-slope ratios mainlyconcerns the largest �rms and the non-proportionality generated by overall base-lines a�ects onlythe smallest ones, it seems as if there is room left amongst the medium-sized �rms for the traditional,non-extended, ratio to be used more or less accurately.It is worth emphasizing that all the developed models require the acceptance of the multiplicativenature of deviations from standards.The proportional mechanism: Discussion. As referred in chapter 1 lognormal distributionsare not a mandatory outcome of the proportional mechanism. The Gibrat law is at the origin of awhole class of positively skewed distributions of which the lognormal is just one member. Also, theproportional mechanism is not the only one capable of producing lognormal variables. However, theother known mechanisms are not plausible for re
ecting growth processes. Aitchison and Brown [1]o�er a more detailed development of these topics.As mentioned, we are not using the Gibrat law for explaining the distribution of particularitems. We don't think Fixed Assets is more lognormal than Earnings owing to the proximity of theformer process to the assumptions of the Gibrat Law. We picture proportionality as a stochastice�ect present in all items: Not as a mechanism internal to the �rm but as a mechanism explainingdi�erences in size observable in cross-sections containing many �rms.The proportional mechanism is clearly not intended to describe the history of particular items.It strictly applies only to positive stocks in periods of exponential growth. Our choice of the Gibratlaw for explaining and exploring the empirical �ndings of previous chapters could be summarized bysaying that it is consistent with lognormality, the common e�ect and the existence of base-lines. It86



is also plausible as a mechanism underlying any growth process. Therefore it �ts in the role assignedto it, the one of ensuring the consistent development of models based on previous �ndings.The common e�ect: Discussion. The developments presented in this chapter are consequencesof empirical observations. They are in line with previous research carried out mainly by Whit-tington [134] and Lev and Sunder [79] who pointed out the limitations of ratios. By Barnes [5]who stressed the potential applicability of models in which items could be used directly. And byMcLeay [86] who described the lognormality of some items, amongst others. These authors open upa path for viewing more general models behind ratios.However, the central assumption of this study is likely to eventually cause surprise. We basedour approach on the existence of a common e�ect. According to it, all the items belonging to anaccounting report should be expressed in terms of the same e�ect, size, and deviations from it. Wehave shown that non-proportionality is compatible with this assumption. The common e�ect greatlysimpli�es the formal treatment of the general problem of modelling with lognormal data.The extension of such an e�ect to items like Working Capital, Earnings and Funds Flow is notusual | it has not been explicitly denied either |. The common e�ect itself is also a somehow newway of referring to size. Our empirical �ndings dismiss any strong statistical di�erentiation betweenitems which are accumulations and those which are not. Items are lognormal because they re
ectsize, not because their internal generative mechanisms lead to lognormality.The e�ect of size is clearly present in the observed items. Only Long Term Debt shows a lessstrong but not negligible correlation with size. In our opinion, the assumption of independence fromsize is not tenable. If Earnings were independent from size there would be no place in the economyfor �rms other than those having a particular dimension. We think that only �rms in distress canexhibit accounting features not correlated with their sizes. Firms are so distinct in their sizes thatall their accounting features have to re
ect, to a smaller or larger extent, this basic characteristic.
87



Chapter 4External Constraints and theCross-Sectional Distribution ofRatiosThe residuals of ratios, the fy=x, should be positively skewed due to their multiplicative nature. Thesame should happen for the ratio output, Ry=x�fy=x. In practice, some ratios are Gaussian or evennegatively skewed. How is this possible? And which causes in
uence the distribution of ratios?This chapter applies the �ndings of the previous ones to the problem of the distribution of ratios.Our aim is to �nd the rules governing them. We base our approach on the models introduced inchapter 3 and on the e�ect of external forces.Previous research and contents: We introduced the literature on this subject early in thisstudy (see chapter 1). The problem of the distribution of ratios has su�ered from the same drawbackother problems involving ratios su�er. It concerns a vast amount of di�erent situations. There aremany possible ratios, many possible choices for the de�nition of samples, many tests and criteria foranalyzing the results.The studies on the distribution of ratios typically try to avoid dispersion by using Deakin'sset of 11 ratios. Despite this e�ort, the results turn out to be di�cult to interpret. Apart fromthe positive skewness | which is not a general rule | no widespread behaviour was found in thecross-sectional distribution of ratios. Ratios seem able to assume any possible distribution, from anextreme positive skewness consistent with their multiplicative nature to an almost perfect normalityand even a negative skewness.Indeed, just by observing ratios, it is very di�cult to discover the rules governing their distri-bution. As stated at the introduction to this study, our method consists of reckoning that ratios88
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Figure 32: Scatter-plot in log space showing the e�ect of a strong constraint imposed on CA (Y-axis)by TA (X-axis). All groups together, 1984.are two-variate relations. Their distribution is determined by two main e�ects and one interaction.Eventually, this interaction plays an important role.In section 4.1 we examine the in
uence of external forces on the two-variate lognormality ofitems. This allows us to identify and predict which ratios will be near normality, which ones willhave negative skewness and which ones will remain broadly lognormal. Our predictions are supportedby the published research.Once solved the most puzzling situations, we are in good position to �nd real regularities in thebehaviour of residuals. We describe and discuss the ones we found in our data in section 4.2. Asa result, we suggest practical procedures for the selection and pre-processing of input variables instatistical models.The method: The goal of this study is the establishment of convenient procedures for the statis-tical modelling of accounting relations. We are mainly concerned with common characteristics, notwith the behaviour of particular ratios. Therefore, we selected the items to be examined accordingto criteria which somehow di�er from those adapted in the research concerned with the distributionof ratios. In general, combinations of items were selected so as to form as many relations as possiblewith a small number of de
ators.However, we didn't go too far in the di�erentiation from the published studies. It seems desirableto compare our results with other's. For example, we used the ratio output, Ry=x� fy=x, instead of89



Log X

Log Y

Log Y = Log XFigure 33: How log residuals of the ratio model y=x = R are a�ected by the identity xj > yj for allj. The two-variate distribution is con�ned to assume values below the line logy = logx.ratio residuals, fy=x. And some of the selected ratios are standard in the literature. We think thatthe results of this chapter are interesting also in the context of ratio analysis.4.1 The E�ect of External ConstraintsUsually ratios exhibit strong positive skewness. This is consistent with their multiplicative na-ture. However, the literature often mention ratios which are Gaussian or even negatively skewed.Typically, TD=TA is reported as being Gaussian [27] [38]. How is this possible?The reason is straightforward. Accounting identities like TA = CA + FA, make it impossiblefor some two or higher variate relations to have all the values a skewed distribution would allow.Such identities act as a constraint introduced in the normal course of a multi-variate spread. Thise�ect, accountants often mention to explain why some ratios are bounded, had never been associatedwith the strong departures from positive skewness observed in the distribution of these ratios. Inlog space it turns out that this e�ect is clearly observable and self-explanatory.Gaussian ratios and accounting research: The �nding of Gaussian ratios had a negative e�ectin the way accountants picture important problems. For example, it is possible that this observationis in the origin of the conviction about dividing the items in two categories | those which aredependent on size and those which are not. Gaussian ratios would denote the existence of additivee�ects in accounting data. In that case independence from size could be possible. Since Gaussian| and other not positively skewed | ratios are the result of external forces, one of the objectionsto the acceptance of a widespread common e�ect is removed.Quantifying the constraint: The two-variate case is the most important one for it directlya�ects �nancial ratios. In order to quantify it we shall write accounting identities in a non-equality90



form like this NW < TA; CA < TA; C < CL; and so on.We say that there is a constraint if, due to any accounting identity or other external force, thetwo-variate relation yj=xj = R� fj is bounded so that one of the next non-equalities hold.for any j, xj > yj or yj > xjThe non-equality on the left can be found in constrained ratios where the numerator is bounded bythe denominator. An example could be Debt to Total Assets. The non-equality on the right arisesin ratios in which the denominator is bounded by the numerator. This is not as frequent as the�rst case. But, of course, it is possible to create such a situation just by inverting one of the formerratios.The consequences for the distribution of ratios are di�erent in one case and in the other.When the constraint is xj > yj : Taking �rst the case on the left we must have log y� log x < 0.This constraint a�ects the distribution of "y=x, the residuals of the ratio model in log space. Since"y=xj + [ logy � logx ] = log yj � logxjwe must have, for any j, �y=xj < � [ logy � logx ]In log space this constraint imposes a frontier on the values residuals can attain. The frontier isthe line logx = log y, the anti-clockwise 45o axis. Figure 33 is a geometrical representation of atwo-variate relation in log space under this kind of constraint. The residual is no longer free in itsscatter. It is now constrained to have only small positive values.Figure 32 (page 89) shows, in log space, a real situation in which a numerator (Y-axis) boundsthe denominator (X-axis). A case of no constraint is displayed in �gure 23 (page 58). Figure 22, onpage 54 shows another example of constraint but in smaller degree.The e�ect of constraints on the distribution of fy=x, the multiplicative deviations from the ratiostandard, is that of not allowing the spread out of its otherwise skewed distribution. Instead of aclear tail towards the positive values, such ratios will exhibit a smaller or much smaller tail. Thisfact explains why some studies didn't �nd positive skewness in a few ratios. We shall see that thisconstraint can be very e�ective in creating Gaussian-like distributions.When the constraint is yj > xj: When the numerator of a ratio is bounding the denominatorwe have a constraint imposed on the values residuals can attain, described by�y=xj > � [ logy � logx ]91



for any j. Now the residuals are constrained to have only small negative values since large negativedeviations from the expected value are not allowed. This will increase even more the skewness offy=x, the multiplicative residual.Which ratios are a�ected: The above considerations are enough to predict the conditions underwhich a constraint created by accounting identities will visibly a�ect residuals of ratio models.The variance of "y=x, the residual in log space of the ratio y=x, can be expressed in terms of thevariance and co-variance of logx and log y asVAR("y=x) = VAR(logx) + VAR(logy) � 2� COV(logx; logy) (11)Since, in general, an existing constraint will not allow "y=x to spread across jlogy � logxj, thisdi�erence can be used, along with the above measures of spread, to estimate in what degree aconstraint will a�ect the symmetry of ratio log residuals. We de�ne� = log y � logxpVAR(logx) + VAR(log y) � 2�COV(logx; logy) (12)as the distance, expressed in standard deviations, separating the constraining frontier from theexpected value of the ratio. Then, for 8>>>><>>>>: j�j > 3 the constraint will be very small.3 > j�j > 2 the constraint will be small.2 > j�j > 1 the constraint will be strong.1 > j�j > 0 the constraint will be very strong.That is, given an existing constraint, the severeness will increase with two factors:� The proximity between the mean values in log space of the items under constraint. Ratioslike Current Assets to Total Assets or Net Worth to Total Assets are more likely to exhibit asevere constraint than, say, Inventory to Total Assets.� The spread of "y=x, the residuals in log space. Smaller spread means smaller constraint. Sucha spread will depend on the spread of the items and on their correlation. Notice that somecombinations of items, similar in their variability, can create residuals with a very small spread.Both factors are expressible by measuring, in standard deviation units, the distance, �, between theconstraining frontier and the expected value of the ratio.An example: The mean values and standard deviations in log space of some items of the BalanceSheet (all groups together, 1986) are displayed next.Item Mean Standard Item Mean StandardDeviation DeviationCurrent Assets 4.258 0.698 Fixed Assets 3.900 0.829Total Assets 4.454 0.706 Net Worth 4.080 0.73492
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Figure 34: Frequency distributions in log space of three ratios di�erently a�ected by constraints.From the table above, and accepting as a �rst approximation that the di�erences in variance andco-variance amongst these variables will not introduce signi�cant new information, we can predictthat, due to the existence of the identities TA = FA+CA and TA = NW +DEBT +CL the itemsmost a�ected by such constraints will be,� in �rst place Current Assets because its mean value is the nearest to TA.� in second place Net Worth,� in third place Fixed Assets, the item with a mean value away from the one of TA.In fact, the ratios CA=TA, NW=TA and FA=TA have their distributions strongly a�ected byconstraints. They form a scale illustrating di�erent degrees of severeness.� CA=TA is so strongly a�ected that its distribution, instead of being positively skewed, becomesskewed in the opposite direction. Lognormal variates are two-tailed. If the cases in the largestone are constrained so as to make it vanish, the remaining one generates negative skewness.� NW=TA is a�ected in a way that makes it almost Gaussian, despite NW and TA being aslognormal as any other items. The long tail of the distribution of residuals is constrained tobecome much shorter so that the resulting one is almost balanced by the small-values tail.� FA=TA remains positively skewed but less than the expected for multiplicative residuals. Itsdistribution is symmetrical to the one of CA=TA.Figure 34 shows the frequency distribution of the above three ratios in log space. The boundinge�ect of the denominator is clearly visible. 93



In the next table we show the skewness and kurtosis of the logs of the items involved in thisexample. The skewness and kurtosis of the items in ordinary space is so high that their computationcauses over
aw problems.Item Year 1983 1984 1985 1986 1987Log Net Worth SKEW 0.174 0.163 0.253 0.289 0.289KURT 0.468 0.402 0.255 0.263 0.353Log Fixed Assets SKEW 0.097 0.177 0.119 0.124 0.159KURT 0.421 0.110 0.114 0.113 -0.008Log Total Assets SKEW 0.301 0.351 0.404 0.343 0.425KURT 0.546 0.276 0.228 0.349 0.309Log Current Assets SKEW 0.237 0.349 0.056 0.295 0.345KURT 0.372 0.374 1.840 0.345 0.480The conclusion is that the above variables, when considered individually, are not far away fromlognormality. Appendix A contains more detailed statistics.Next we display the values of the skewness and kurtosis obtained for the ratios used in thisexample. They were not transformed.Ratio Year 1983 1984 1985 1986 1987CA=TA SKEW -0.410 -0.434 -0.352 -0.502 -0.592KURT 0.332 0.261 -0.098 0.332 0.528NW=TA SKEW -0.146 0.012 0.009 -0.015 -0.063KURT -0.233 -0.137 -0.136 -0.039 -0.036FA=TA SKEW 0.410 0.434 0.352 0.502 0.592KURT 0.332 0.261 -0.098 0.332 0.528The values obtained for the skewness agree with the constraint mechanism: CA=TA, the mosta�ected ratio, has a negative skewness. NW=TA comes next and �nally FA=TA exhibits positiveskewness. Notice how small is the skewness for the ratio NW=TA. In general, the skewness andkurtosis displayed in the above table cannot be considered as far away from normality. But apowerful test like the Shapiro-Wilk rejects normality in almost all cases displayed. The skewnessis far smaller than the expected for ratios of correlated lognormal deviates having spreads similarto those of the above items. Table 14 on page 98 and 15 on page 99 show typical values for theskewness and kurtosis of ratios selected so as to avoid constraints.Finally we display the skewness and kurtosis of ratios similar to the above ones but inverted.Ratio Year 1983 1984 1985 1986 1987TA=NW SKEW 17.712 15.462 22.287 12.891 12.453KURT 356.027 260.067 536.404 192.986 179.477TA=FA SKEW 11.211 21.927 23.788 12.704 11.214KURT 147.527 519.812 592.486 197.060 151.238TA=CA SKEW 18.714 5.044 6.286 20.685 17.955KURT 377.719 37.058 71.563 483.578 337.92194



Ratio 1983 1984 1985 1986 1987skew zeta skew zeta skew zeta skew zeta skew zetaCA/TA (1) -0.41 1.29 -0.43 1.05 -0.35 1.58 -0.50 1.34 -0.59 1.14CL/TA (x) 0.636 2.2 0.587 1.84 0.616 2.21 0.56 2.24 0.597 2.26C/CL (2) -0.09 1.54 -0.15 2.02 -0.21 1.56 -0.27 1.63 -0.27 1.72C/TA (3) 1.247 2.88 1.227 2.61 1.357 2.94 1.191 2.87 1.137 2.96DB/TA (4) 1.873 2.37 1.92 2.29 2.103 2.36 1.774 2.17 2.056 2.21FA/TA (5) 0.41 1.69 0.434 1.96 0.352 1.76 0.502 1.76 0.592 1.81I/CA (6) 0.264 1.53 0.102 1.74 0.218 1.57 0.433 1.44 0.294 1.33I/TA (7) 0.569 2.08 0.473 1.9 0.867 2.16 0.913 2.04 0.812 1.89NW/TA (8) -0.14 1.61 0.012 1.85 0.009 1.73 -0.01 1.8 -0.06 1.82Q/CA (9) -0.26 1.34 -0.10 1.17 -0.21 1.81 -0.43 1.4 -0.29 1.3Q/TA (0) 0.504 2.07 0.583 1.92 0.51 2.41 0.387 2.17 0.455 2.26TD/TA (o) 0.349 2.31 0.173 2.19 0.222 2.23 0.198 2.17 0.177 2.21EB/S (+) 2.03 3.06 1.63 3.16 2.06 3.12 1.824 3.18 1.480 3.25W/S (*) 0.42 2.14 0.42 2.01 0.412 2.08 0.395 2.13 0.371 2.13Table 13: The values of j�j (zeta) and skewness for 14 ratios likely to su�er a constraint in theirdistributions. Q = CA� I; TD = DEBT +CL.The above ratios were not transformed. Ratios which are the inverse of the ones a�ected by theconstraint yj > xj for all j will obviously be a�ected by the constraint xj > yj for all j. That is,ratios like TA=NW and so on, should exhibit positive skewness because their tail is now free fromconstraints. In fact, the constraint is working in the same direction as the lognormal skewness, notagainst it.Not only the values obtained for these statistics are lognormal-like. The mirror-image e�ectlinking the distributions of CA=TA and FA=TA also vanished. This simple example has shown howaccounting identities explain the strongest deviations from a multiplicative behaviour mentioned inthe literature.Other constraints: There are other external forces likely to condition the distribution of ratios.Instead of de�ning frontiers which are impossible to bridge, as in the case of accounting identities,these other forces impose frontiers in which only a gradient in the density of cases is observed.For example, the non-equality CA > CL de�nes one of such gradients because �rms avoid, if theycan, negative Working Capital. And, at least in industrial �rms, the non-equalities S > OPP ,S > EBIT , S > W and so on, will be almost equivalent to real accounting identities.One of the most interesting consequences of the lognormal nature of items is the possibility ofdirectly observing two-variate relations by building simple scatter-plots in log space. The constraintsdescribed above and many other features become clearly visible with these tools and can be identi�ed.4.2 Comparing Constrained and Non-Constrained RatiosThe last section was devoted to the identi�cation and description of the e�ect external constraintscan have in the distribution of ratios. We discussed a limited example, showing how an accounting95



identity can hide the multiplicative nature of ratios. In this section, apart from providing a moresystematic empirical evidence on such e�ect, we show that ratio outputs are broadly lognormal.The data: We examined 14 ratios (see list in table 13) formed with items from the Balance Sheetand 2 from the Pro�t and Loss Account. For such ratios there is an accounting identity or at leasta strong constraint which should in
uence their distribution in a variable extent.We also examined 20 other ratios (and their inverse) for which there is no direct accountingidentity constraining their distribution. These ratios are listed in tables 14, page 98 and 15, page 99.In both cases ratios were selected so as to share as many items as possible but representing anapproximate random choice amongst all possible combinations.We gathered in the same sample all the 14 industrial groups listed in table 1, page 5. Thissample was then examined for a period of �ve years (1983 - 1987). Some industrial groups were alsoexamined individually.Constrained ratios: Table 13 lists the 14 constrained ratios. It also displays the values obtainedfor their skewness during a period of �ve years. The same table shows the value j�j assumes in eachcase. In �gure 35 (page 97) we reproduce table 13 as a scatter-plot. The marks identifying eachratio can also be found in table 13, on the left. Apart from the usual abbreviations for items, Qstands for CA� I and TD for DEBT + CL.Figure 35 shows that the ratios I=CA, NW=TA, C=CL, Q=CA and TD=TA are not far awayfrom the Gaussian distribution in what concerns their skewness. Others like I=TA approach askewness of 1 and DB=TA or C=TA have their skewness well above the unit.The results also show that �, as expected, predicts the skewness of the constrained ratios, thoughit cannot be considered as the only factor in
uencing it. For the displayed cases � accounts for 65%of the observed variability of the skewness (r = 0:8). The ratio DB=TA seems to depart from thisrule. Its skewness is larger than predicted by j�j.Gaussian ratios: We identi�ed two ratios with almost Gaussian distributions: NW=TA andTD=TA. These ratios are the ones Deakin and other studies also identify as Gaussian, thus breakingthe rule of positive skewness [27] (see also [38], a recent study with U.K. data). We now understandwhy this happens and in which cases it is likely to occur.However, the most important �nding is that constrained ratios behave in a way which can bevery di�erent from the non-constrained ones. In order to see this we must explore the behaviour ofnon-constrained ratios �rst.Non-constrained ratios: The 20 ratios which | as far as we know | should not be a�ectedby constraints and therefore should be expected to be positively skewed were built with the samevariables used in the 14 preceeding ones and a few more. Tables 14 (page 98) and 15 (page 99) contain96
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Ratio 1983 1984 1985 1986 1987skew kurt skew kurt skew kurt skew kurt skew kurtEB/NW 19.9 425.0 17.5 317.0 16.6 322.0 8.4 110.0 16.4 330.0NW/EB 15.7 256.0 17.6 369.0 12.7 227.0 7.0 71.9 23.4 567.0D/I 10.4 127.0 16.6 329.0 21.6 578.0 24.4 618.0 19.9 423.0I/D 10.7 128.0 11.8 166.3 16.0 298.0 10.0 126.8 7.5 74.6W/I 15.8 268.0 9.3 116.2 7.9 79.0 13.6 204.5 14.4 219.3I/W 8.6 89.7 4.6 28.1 4.5 31.2 3.1 12.7 3.3 14.0EB/FA 9.4 117.0 11.2 169.8 10.4 154.7 9.0 107.0 8.5 98.8FA/EB 12.1 154.0 9.8 126.0 11.6 155.7 7.7 83.8 16.8 320.8S/N 12.7 189.0 12.3 174.0 7.8 75.6 8.7 89.3 11.1 159.8N/S 1.7 5.8 1.1 1.3 3.7 31.0 2.6 16.9 3.3 27.9EB/N 9.1 92.5 11.7 177.7 5.2 42.0 3.4 14.6 5.2 45.0N/EB 15.9 268.0 9.0 130.7 6.0 46.1 8.0 84.2 13.4 212.4NW/N 8.4 90.9 5.0 34.1 3.5 16.1 3.9 23.0 4.3 29.1N/NW 6.4 56.4 4.8 42.7 18.2 359.8 4.2 24.5 8.2 112.6W/TA 1.3 4.9 1.5 5.8 1.4 4.3 1.8 7.2 1.5 6.4TA/W 9.5 107.0 11.5 152.9 5.7 50.6 4.2 27.0 3.7 19.7DB/NW 14.5 228.0 10.9 140.0 8.6 90.7 7.5 78.0 5.4 37.4NW/DB 13.3 199.8 17.6 332.7 12.0 184.9 11.0 145.6 16.1 295.7DB/S 2.5 8.4 6.0 64.2 15.3 273.4 8.3 98.7 10.3 155.8S/DB 10.0 120.4 16.3 293.6 12.1 178.2 10.2 113.2Table 15: The skewness and kurtosis of ratios selected so as to avoid constraints. All groups.2nd table. Q = CA� I; TD = DEBT + CL.kurtosis can be to a large extent in
uenced by Ry=x, the expected proportion between the numeratorand the denominator of the ratio. The understanding of this mechanism accounts for a few remarksfound in the literature.In case it would be convenient to compare the spreads of several ratios, residuals, fy=x, shouldbe used instead of the ratio output, Ry=x � fy=x. Since the fy=x have a constant expected value of1, we would make the skewness and the kurtosis relate to the variance alone.When reproducing this experiment, notice that the SPSS-X package we use to compute theskewness and kurtosis in this study does it in a way that is not exactly the one found in text books.Departures from this relation: In the 200 examined samples (20 ratios and their inverse during5 years) only three yielded values of the skewness and kurtosis which wouldn't obey the aboveformulation. They were from the same ratio, CL=Q, or its inverse, during the years 1983, 1985 and1987. We further formed a few more ratios with Q = CA � I and we found three other cases ofirregular behaviour. They were the ratio EBIT=Q in 1987, and W=Q, in 1986 and 1987.Comparing constrained and non-constrained ratios: The distinct behaviour of constrainedratios also emerges when observing �gure 36 (page 98). Whilst non-constrained ratios obey theformal relation between skewness and kurtosis for lognormal variates, the constrained ones form arandom scatter of cases around the small values of these statistics.In �gure 36 the cases marked with a dot in the detailed scatter (below) represent ratios whichare known to be to some extent constrained by an accounting identity. The ones marked with a99



\x" represent the position of non-constrained ratios. A few constrained ratios are near lognormalityowing to its small constraint.The special character of constrained ratios could also be traced by inverting them. Constrainedratios change completely their characteristics when inverted and actually become broadly lognormal.The above ones remain near lognormality in both situations. They will just move along the formalline linking skewness with kurtosis. When not considering the e�ect of the spread of the ratio itself,this movement would be commanded by the new value of the expected proportion, Ry=x.4.3 Persistent Departures From LognormalityIn this section we return to the log space. Despite the �ndings of previous section suggesting abroad lognormal behaviour for ratios, hardly any of the studied ratios is exactly lognormal. Whenexamined closely in log space, a persistent departure from the Gaussian curve can be observed.4.3.1 Leptokurtosis In Log SpaceAs a rule, log residuals exhibit positive kurtosis of varying severity.A few ratios also show asymmetry. But this is not a widespread feature. Skewness in log ratioscan be explained and accounted for. A careful examination of secondary e�ects of constraints,managerial practice or base-lines, leads to plausible mechanisms able to generate asymmetry. Theuse of extended ratios yields non-asymmetric residuals.On the contrary, the persistent kurtosis observed in log space seems to be quite a general feature.It was observed in all but one of the studied ratios and their inverse. Ratios formed with non-accounting items related to size like the number of employees also exhibit such a feature. Whensampling by industry the residual kurtosis will not vanish.Kurtosis cannot be accounted for by base-line ratios. And, of course, the modelling of the spreadof log items allowed by the free slope ones will not make it vanish. It is unlikely that externalforces generate kurtosis. This feature is more likely to be related to internal mechanisms of the�rm. As a result of this kurtosis, the Shapiro-Wilk test seldom �nds a non-signi�cant departurefrom normality in the "y=x residual di�erences. This fact contrasts with the strong consistency ofresults when assessing the lognormality of items. Log items exhibit positive kurtosis as well but ina much smaller degree.Table 16 contains the usual log statistics for the non-constrained ratios used above. In log spacethere is no di�erence in the behaviour of a ratio and its inverse. Distributions are a mirror-image ofeach other. Therefore, the skewness of the ratios which are the inverse of those displayed in table 16will simply be the same value with inverted sign. The kurtosis will be the same.100



Ratio 1983 1984 1985 1986 1987skew kurt skew kurt skew kurt skew kurt skew kurtD/C -0.7 9.2 -0.8 8.6 -0.1 10.0 0.2 9.3 -0.6 6.2CA/CL -1.2 11.0 0.4 2.9 0.8 3.1 0.6 5.9 -0.5 10.5C/I 0.4 2.1 0.6 2.2 1.1 8.3 0.9 6.7 1.8 11.0Q/CL -1.9 12.0 -0.3 4.3 -0.3 3.2 -0.5 5.2 0.1 2.8W/N 0.3 12.0 -0.1 0.8 -0.4 2.8 -0.3 2.3 -0.6 4.4S/TA 0.8 4.5 0.8 7.0 1.0 5.4 1.0 5.5 1.2 4.9S/FA 1.8 5.4 2.0 8.5 1.9 6.9 1.9 5.9 1.6 4.6S/NW 1.5 4.5 1.6 5.6 1.8 7.8 1.3 4.2 1.6 6.4S/I 1.3 4.7 1.2 4.6 1.7 8.8 2.3 13.9 3.4 21.0EB/TA -2.1 11.2 -1.3 4.9 -1.2 2.9 -1.1 3.1 -1.7 7.9EB/NW -1.6 11.4 -0.1 6.1 -0.3 3.6 -0.5 2.7 -0.8 7.3I/D -0.6 6.5 -0.2 6.7 -0.3 4.8 -1.6 13.4 -2.0 15.0W/I 0.1 6.0 0.2 3.2 0.6 3.1 1.2 6.4 1.4 7.8EB/FA -0.9 6.0 -0.3 2.8 -0.5 2.8 -0.8 2.2 0.1 3.4S/N 1.7 5.4 1.8 5.8 1.2 3.3 1.5 4.3 1.3 3.6EB/N -0.3 3.9 0.0 1.6 -0.3 2.2 -0.2 1.2 -0.5 2.5NW/N 0.3 2.2 0.5 1.1 -0.4 3.1 0.0 0.9 0.0 0.9NW/TA -1.6 5.6 -1.5 5.6 -0.9 2.2 -0.6 1.5 -0.7 1.5NW/DB 0.7 1.7 0.8 2.3 0.5 0.5 0.6 0.3 0.8 0.8DB/S -0.9 0.9 -1.2 2.4 -0.7 0.7 0.9 1.3 -0.8 0.9Table 16: The skewness and kurtosis of ratios in log space for a period of �ve years.The �ndings of previous studies: One of the most puzzling �ndings of previous studies is thatno transformation seems to improve the normality of ratios. In our opinion this is a result of usingprecise criteria to assess phenomena which are only broad trends. For example, if we would useaccurate tests like the Shapiro-Wilk's for measuring the lognormality of ratios, we would get thegeneral impression that ratios are far away from lognormality. Its precision conceals broad trends.The use of all sorts of transformations to assess the distribution of ratios only complicates things.For example, if we replicate with ratios the experiment carried out in chapter 1 | which consistedof using progressively higher fractional exponents for transforming items and observing the resultsof applying the Shapiro-Wilk or other tests | it is clear that the results would be confusing. Fornon-constrained ratios, the skewness would probably diminish with increasing roots but the kurtosiswould emerge after some improvements. For most of the constrained ratios the skewness wouldchange sign, becoming negative. Ezzamel et al. [39] observed this.Items are lognormal and ratios should be broadly lognormal since they are multiplicative devi-ations from expected proportions. Only when knowing this in advance is it possible to notice thedepartures a�ecting such trend. In the literature, the realization that transformations apparentlywouldn't improve the normality of ratios [45] led to a cautious attitude towards transforming dataand to a renewed interest in the trimming of outliers, which, as we saw, didn't work either.4.3.2 Departures From Lognormality: DiscussionIn this section we show that the kurtosis observed in the log residuals of ratios is not inconsistentwith the lognormality of items. Then, we show that the strong common e�ect is the source of the101
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Figure 37: Two-dimensional view of a two-variate density surface in log space.Gaussian behaviour of log items.The di�erence of two similar Gaussian distributions: Let us recall the expression for esti-mating the residuals of the ratio model in log space:"y=xj = (log yj � log y) � (logxj � logx)Clearly, the "y=x are a di�erence of two log items, both with their central trend accounted for. Theirdistribution is the result of the subtraction of two Gaussian distributions with the same mean.Also, these two Gaussian distributions which, when subtracted, yield the ratio residuals, are verysimilar in spread. A large fraction of the variability of items comes from the strong common e�ectthey share. Ratios account for this e�ect and yield | as a residual | a contrast between two weake�ects. Such a residual variability is the source of the positive kurtosis in log space. But, in items, itis so small a proportion of the total one that it could have any distribution without greatly a�ectingtheir lognormality.We can have a graphical view of this problem by considering the two-variate log distributiondrawn by the components of the ratio. Such distribution is an oblong hill-shaped surface orientedin the 45o direction and centred in log y � logx. The density of cases determines the height of eachpoint in the surface (see �gure 37).Such a surface would be very thick in one of its main dimensions and very thin in the other one.The largest dimension accounts for most of the variability. In �gure 37, the largest dimension islabelled the \Size Axis" and the smallest one the \Ratio Axis". The variability of ratio residuals isexplained by the smallest dimension, the ratio axis. It is orthogonal to the size one, which accountsfor the variability introduced by the common e�ect.The variability along the smallest axis happens not to be Gaussian. When the considered surfaceis observed so that the largest dimension becomes parallel to the horizon, the surface shows aGaussian aspect. On the contrary, when it is observed transversally, it yields a leptokurtic shape.102



As we see, there is no contradiction in the fact that log items are Gaussian and log ratio residualsare leptokurtic.According to the above explanation we should consider the weak e�ect as the source of leptokur-tosis and the strong e�ect as the source of the Gaussian behaviour in log data. For example, thesmall amount of kurtosis observed in log items would denote the in
uence of their own variabilitysuperimposed to a much larger Gaussian spread. In chapter 5 we return to this topic.4.4 Ratio Standards and Departures From StandardsWhat is the appropriate estimator for ratio standards? How should the individual deviations fromstandards be interpreted? In this section we suggest an answer for these two questions.The calculation of ratio standards has been the object of widespread discussion in the literature.This is because each distribution apparently suggests its own standard. And \in non-normal distri-butions, location measures are far from being unanimous" [38]. Lev and Sunder [79] enumerate afew possible answers.We are in a good position for giving an answer too. Ours is that as long as items are lognormal,the distribution of ratios doesn't matter. Neither for the estimation of standards nor in assessingdeviations from standards. However, it matters | for practical reasons | for the building ofstatistical models.The lognormality on items makes the choice of estimators simple. The acceptance of a plausiblemechanism for the generation of the common e�ect makes it meaningful. But it remains a matterof opinion, of course. However, trying to assess the best distribution for each ratio individuallyand discussing the most appropriate estimator for each ratio individually, does not seem reasonableeither. Doing so is to deny any sense in accounting data as a whole. It is equivalent to treatingratios as if they were a collection of isolated random variables with nothing in common. One ratiowould be more like the rate of telephone calls, the other one more like the size of white mice's tailsand so on.Standards are not disturbed by the distribution of ratios: An intuitive way of noticingthis is given by the formula for calculating the median. log y� logx (or the same value obtained by�nding the logs of ratios and averaging) is not disturbed by any external disturbance or interactionbetween y and x. When standards or central trends in ratios are estimated by the median, theactual distribution of the ratio itself is irrelevant for the estimation.Distortions in the distribution of ratios are a result of its two-variate nature. The distribution ofindividual items is not a�ected. Only when considering two or more variate distributions will suchdistortions emerge. 103



The spread of residuals is not accounted for by the ratio model: Financial ratios areone-degree-of-freedom models: They engage only one degree of freedom from those avaliable in thesample. For example, a sample containing two observations, x and y carried out over N cases, wouldhave 2�N degrees of freedom before any assumption were made about its behaviour. When �ttingthe ratio model into this sample, just one degree of freedom, the one corresponding to knowing Ry=x,would be engaged. By using only one degree of freedom it is possible to model just a unique optimalpoint, not a spread. The spread remains in possession of perhaps hazardous, non-modelled forces.The one-degree-of-freedom model only requires, as an assumption for being correct, that theircomponents must have a central trend | and hence, an expected value. Items comply with thisrequirement in proportional space. Accordingly, we use ratios | proportional adjustments | insteadof mean adjustments.The expected value assumption implies that the distribution of ratio components ought to besymmetrical in its proper space. But not any special symmetry is required. There is nothing eitherin the assumptions underlying the ratio model or in the model itself able to assess the spread ofcases around the standard and as we pointed out, in practice the lognormality of the components isnot enough to ensure the lognormality of the residuals.Skewness in the log components of a ratio would a�ect its symmetry. The above assumptionwould be a�ected. But the existence of kurtosis in the log components wouldn't a�ect by itselfany assumption of the ratio model. Kurtosis wouldn't break its symmetry. Hence, kurtosis isnot a departure from ratio assumptions. There is nothing in ratios saying that they shouldn't beleptokurtic.In the case of external constraints, since the components of the ratio are not a�ected, the model'sassumptions are not violated. And a constrained ratio should be able to yield all the informationany other ratio can provide. But this is only possible if the information conveyed by ratios is ordinal.In short, the discussed facts lead us to two conclusions:Ratios are ordinal. Strictly speaking, ratios cannot provide a scaling. Ratios only provide ameasure of the deviation from standards by saying that one deviation is larger or smaller thanthe other.The distribution of ratios is irrelevant. The actual shape of the residuals of the ratio modelis not called upon to play any role in the ratio model itself. Constrained or distorted ratios,leptokurtic or not, yield correct estimates of standards. They also yield ranks as measures ofdeparture from a central trend. And this is, strictly speaking, what we can expect from anyratio. The condition for the validity of ratios as models lies in the symmetry of its componentstaken individually, not in the ratios themselves.Ratios and internal features of the �rm: Financial ratios are about size and deviations fromsize. They rank contrasts between deviations from size. But they cannot provide distances between104



such contrasts. The distribution of ratios could be elucidated by building explanatory models forthe joint behaviour of accounting items inside one �rm. Only after understanding the internalmechanisms governing the features of the �rm would it be possible to contrast such a theoreticalbasis with empirical observations. In other words, the explanation for the leptokurtosis or otherregularities observed in ratios is not contained in the ratio model. It is an interesting point butratios cannot answer it.4.5 The Use of Ratio Residuals in Statistical ModelsIn the last section we concluded that the distribution of ratios wouldn't matter and the calculationof a central trend, when using the median, would also be independent of this distribution.For �nancial analysis this seems interesting. However, in statistical models the use of ranks isnot considered as the best solution.Accounting statistical models should avoid the burden of rank statistics. Firstly, because statis-tical models are free to select the variables and can avoid, to some extent, the combinations of itemswhich would produce constraints and other severe departures from homogeneity. Secondly, becausethe statistical tools based on ranks are very limited in issues regarding estimation. For example,the non-parametric equivalent of the test allowing a comparison of two means is the Mann-Whitneytest. This tool will not compare two estimations. It is only intended to assess the signi�cance ofthe non-similarity of two distributions. Since estimation is important in accounting practice andstatistical modelling, non-parametric methods should be seen as altogether not satisfactory.Therefore, it seems as if the problem of obtaining homogeneous residuals in ratios and theirextensions still remains. Despite the remarks of the last section, the spread of the "y=x can be madereasonably homogeneous and the in
uential points are rare.This section suggests a few procedures to avoid the major departures from an homogeneousbehaviour in ratios. Our concern is mainly the statistical modelling of accounting relations.4.5.1 Avoiding AsymmetryThe proportionality of ratios is understood as a statistical quality related with the non-existence ofsigni�cant base-lines in cross-sectional relations between the numerator and the denominator. Herewe recall a di�erent meaning, concerning the formal relation between numerator and denominator,not any statistical quality. A quotient is said to be a proportion when the numerator is a part ofthe denominator. Relative frequencies or probabilities are proportions.All the ratios bounded by the denominator are proportions in this non-statistical sense. Suchproportions, when taken as statistical variables, will be more or less constrained, thus yielding asym-metric distributions. Therefore, it seems wise to apply to such ratios the well-known recipes generallyaccepted for dealing with similar cases. The simplest of such recipes is the odds transformation.105



The Odds transformation: Ratios like FA=TA have the numerator as part of the denominator.An odds transformation incorporates the underlying accounting identity thus yielding an unboundedvariable. For any proportion pi = xiPi xi there are odds de�ned as oi = pi1� pi :Hence, oi = xiPi xi � xiFor example, the odds of FA=TA is the ratio FA=CA. The odds of NW=TA will be NW=(DEBT +CL). Clearly, the information contained in both such ratios is exactly the same. The di�erencebetween an odds-like ratio and the corresponding probability-like one is the same existent betweenprobabilities and odds. It is just functional. FA=TA expresses something like probabilities. FA=CA,something similar to odds. But both say the same. Therefore, it seems possible to avoid some ofthe ratios a�ected by constraints by using the corresponding odds instead.This solution only applies strictly to constrained ratios from the Balance Sheet. In the Pro�tand Loss accounts, Sales is not a total. There are other possible sources of income. But it acts as ifit were. At least in industrial �rms the amount of Sales constrains all the other items of the P. & L.We noticed that odds can also be used with totals which are not strictly dictated by accountingidentities. Instead of OPP=S we can use OPP=COGS. This new odds-like ratio will not exhibitconstraint e�ects and its information content will be similar to the former one.4.5.2 The Selection of Input Variables For Statistical ModelsAs we stressed before, log items can be used instead of ratios as inputs for modelling accountingrelations. Any linear relation in log space will be equivalent to a free-slope multi-variate ratio. Andsince statistical models are to some extent free to select input variables, they can avoid the use ofitems which impose constraints in other items.Accordingly, partial or detail items are preferable to items expressing totals. Elementary piecesof information directed to a speci�c subject like Inventory, Creditors, Properties, Wages, should, asa general rule, be used instead of Fixed Assets, Total Assets, Current Assets. Obviously they willform ratios which are away from causing constraints.It is especially important to avoid mixtures of both kinds of items or the inclusion in the samemodel of items leading, by means of some accounting identity, to the emergence of constraints.Strong, clear, base-lines should be accounted for before the inclusion of items as input variablesin multi-variate tools. This is especially important when using linear algorithms.The problemof leptokurtosis: When using ratio residuals as input variables for the modelling ofaccounting relations, kurtosis is generally considered as far less damaging than skewness. Widespread�nancial models like the CAPM deal with variables which are leptokurtic too. So far, we didn't �nd106



any special di�culty in dealing with limited amounts of kurtosis. This is because it doesn't generatein
uential cases.The neutralization of the extra kurtosis by means of transformations would be di�cult anddamaging for the interpretability of models. We think that the correct procedure, in face of thisphenomenon, is to investigate its causes and build models able to account for them.4.6 SummaryIn this chapter we studied the distribution of ratios. We found a clear trend towards lognormality, asexpected. However, a few factors a�ect the �nal distribution that particular ratios assume. Firstly,accounting identities and other external forces can act as constraints, hiding their multiplicativenature. This factor induces the severe deviations from lognormality reported in the literature forratios like NW=TA and TD=TA. Apart from accounting identities, ratios are also a�ected bymanagerial practice and by other external forces.Secondly, when observing in log space residuals which are broadly lognormal, a persistent lep-tokurtosis emerges. The weak, particular, e�ect is the source of this log positive kurtosis. Thestrong, common, one can be identi�ed as the source of the Gaussian behaviour of accounting data.The selection of input variables for statistical models: Since statistical models are to someextent free to select input variables, they can avoid the use of items which impose constraints in otheritems. Partial or detail items are preferable to items expressing totals. It is especially important toavoid mixtures of both kinds of items.Ratios and robustness: Since the correctly estimated expected values are not disturbed byconstraints, ratio standards can be estimated just by �nding their mean values in log space. Moresophisticated models | like the free-slope and, to a smaller extent, the base-line ratios | wouldsu�er misleading in
uences when in the presence of constraints and other forces. They would alsobecome very dependent on the sample used for building the model.This fact is another example of the relation between robustness and simplicity. Ratio standardsare not a�ected by any anomalies in the distribution of ratios because they only use one degree offreedom. In other words, no consideration of the spread of items is required to model with ratios.Conversely, no disturbances in their spread can a�ect ratio standards.We should be alive to the fact that by using free slopes and, to a smaller extent, base-line ratioswe loose one of the most attractive features of �nancial ratios, their robustness.107



Chapter 5The Modelling of Size AndGroupingSize and grouping seem to be the main sources of variability in our data. In this chapter we studyboth. The correct solving of estimation problems require, prior to any other task, the acceptanceof assumptions regarding the characteristics of the input and output spaces. The two main goals ofthis chapter are therefore the development of appropriate variables for de�ning an input space andthe assessment of the complexity introduced into it by random e�ects groups often carry with them.First we discuss, based on empirical evidence, the most appropriate proxy for the common e�ect,the one which re
ects the size of the �rm. We conclude that it is possible to build such a variableand that the residuals obtained from it have attractive features for de�ning input spaces. Next westudy the problem of reducing the dimension of such spaces in accounting models. Appropriatemethods are developed that incorporate the corollary devised in �rst place.Finally we suggest a few concepts and techniques for the assessment of the homogeneity andcomplexity of e�ects present in the input space because of existing groupings. We �rst recommenda standardized measure of the relative degree of homogeneity of each group one by one. We showthat in our data industrial grouping cannot be ignored. Next we show that this grouping e�ect iscomplex. We conclude that linear tools should be used with suspicion and eventually discarded.5.1 Selecting an Appropriate Proxy for SizeThis section is concerned with the �nding of a general de
ator re
ecting size. Multi-variate account-ing models often require size as an input variable. Also ratios intended to re
ect departures fromexpected size could become comparable if their de
ator was the same. Such a general de
ator wouldproduce easily interpretable residuals. 108



As we saw in chapter 2, log items can be viewed as a unique commonprocess with some particularvariability superimposed. This is true for all the observed items. However, on practical grounds,not all of them are equally adequate for extracting the common e�ect.� Items like Sales or Current Assets are almost synonymous in log space. Their particularvariability is small when compared with the total variability other similar items exhibit.� Inventory, EBIT or Funds Flow have more variability of their own. And items having bothpositive and negative cases exhibit a di�erent behaviour in each of such situations. Positivecases are identical to other variates. The negative ones have a very particular behaviour, asfar as we could see. As a few negative cases are always present in samples, the homogeneityof such items, when considered across the whole sample, is bad.� Finally, Fixed Assets, Working Capital and especially Long Term Debt have large variability oftheir own. And the non-leveraged �rms form a cluster of identical cases. They would severelydamage the homogeneity of residuals when considering such items as de
ators.A proxy for the common e�ect should therefore be selected from the items mentioned in the �rstplace. However, such a proxy would always have, along with the commonvariability we are interestedin, a particular scatter superimposed | the weak e�ect corresponding to the selected item.How to isolate the common e�ect? Is it possible to build a variate re
ecting only size and havingno particular variability of its own? As we saw in section 3.2.1 the common e�ect is not directlyaccessible. However, there is a way of isolating it by building a model which performs the functioninverse of ratios. Ratios conceal the common variability and reveal the particular one. This modelwould conceal the particular variability, thus revealing the common one.5.1.1 The Case-Average ModelItems like Current Assets, Net Worth, Wages and other expenses, and Sales, can be pulled togetherto form one unique variate. If we build, for each case in a sample, geometric means (in log space,averages) of these items we can ideally self-smooth their particular components so that the commone�ect emerges. This is the basis of our method.Considering a group of items x1; � � � ; xi; � � � ; xM selected as appropriate, and a common e�ect,s, we explain their variability in log space as the result of an e�ect, � = log s, common to them all,plus a residual, "i particular to each item. In the case of �rm j,log(x1j + �1) = �j + "1jlog(x2j + �2) = �j + "2j... ...log(xMj + �M ) = �j + "Mj109



The �i are the base-lines eventually present in xi. We now average the 1; � � � ; i; � � � ;M items caseby case. For �rm j, �j = 1M MXi=1 log(xij + �i) � 1M �"1j + "2j + � � � + "Mj �Since an average of independent random deviates tends to zero with 1=M , the number of components,we would have for a large M �j � 1M MXi=1 log(xij + �i)or the equivalent, in ratio form, sj � MYi=1(xij + �i) 1MOnce obtained, s could be used as a proxy for size as the denominator of ratios. � = log s wouldalso be welcome as an input variable for statistical modelling or in the building of tools for visualinspection of residuals.The di�cult point here is the fact that the collection of averaged "i are not necessarily inde-pendent. Therefore some precautions are required before attempting to build this model, especiallywhen the number and variety of available items are limited.� The items should not be correlated. A few accounting items are correlated beyond the commone�ect. Their residuals, after being de
ated by a proxy for size, exhibit signi�cant levels ofcorrelation. Sales and Operating Expenses are strongly correlated | and in some industries itis a non-linear correlation |. Wages are correlated with the number of employees. Creditorsis correlated with Debtors. The introduction of correlated pairs would reinforce the residualvariability common to both instead of smoothing it out.� The �nal s should not generate constraints in other items. This is the most di�cult conditionto achieve. For one reason or another accounting identities seem to propagate across otherrelations and make themselves present im some unexpected situations.Practical criteria for building s: We used two criteria for �nding the set of items appropriatefor building s. The �rst one is intended to the selection of items. The second one is an overall testof the applicability of the resulting s.� After the introduction in the case-average leading to log s of each new candidate, we computethe resulting variance of the average. If it su�ers a decrease, the new item is accepted. If itincreases, we remove one by one the items already included. For each removed item, if theresulting variance decreases beyond the original value, we replace it by the new one. If thevariance never decreases we reject the new item.110



S NW W D CA CL N1983 VAR: 0.5290 0.5475 0.5473 0.5161 0.5009 0.4999 0.5515SM: 0.5290 0.5013 0.4971 0.4877 0.4843 0.4800 0.47621984 VAR: 0.5807 0.5963 0.6023 0.5349 0.5229 0.5390 0.5972SM: 0.5807 0.5429 0.5412 0.5251 0.5195 0.5171 0.51381985 VAR: 0.5263 0.5591 0.5541 0.4977 0.4829 0.4999 0.5626SM: 0.5263 0.5032 0.4993 0.4868 0.4812 0.4796 0.47791986 VAR: 0.5211 0.5356 0.5419 0.4943 0.5030 0.5009 0.5582SM: 0.5211 0.4934 0.4920 0.4806 0.4782 0.4771 0.47721987 VAR: 0.5318 0.5113 0.5401 0.5003 0.4734 0.4889 0.5646SM: 0.5318 0.4873 0.4869 0.4795 0.4733 0.4700 0.4716Table 17: Building s: The evolution of the variance of log s for an increasing number of incomingitems. VAR shows the variance of each log item. SM shows the variance of log s after introducingeach item, when all the items to the left of it are already in.C I EX TA TC FA1983 VAR: 0.5350 0.5856 0.5478 0.5051 0.5670 0.6766SM: 0.4780 0.4835 0.4842 0.4843 0.4870 0.49241984 VAR: 0.5776 0.6325 0.6174 0.5317 0.6289 0.7019SM: 0.5167 0.5232 0.5250 0.5231 0.5258 0.53031985 VAR: 0.5405 0.5689 0.5742 0.5049 0.5828 0.6996SM: 0.4811 0.4843 0.4858 0.4849 0.4882 0.49571986 VAR: 0.5384 0.6075 0.5575 0.5119 0.5606 0.6951SM: 0.4798 0.4862 0.4855 0.4879 0.4918 0.49781987 VAR: 0.5314 0.6100 0.5627 0.4835 0.5408 0.6871SM: 0.4741 0.4790 0.4798 0.4808 0.4855 0.4922Table 18: The items in this table weren't selected for building log s. SM shows what would havehappened to the overall variance of log s if they were allowed in.� After �nding a model for s with minimal spread we build two-variate scatter-plots in whichlog s is compared with each one of all the remaining log items in order to �nd out if constraintsor other asymmetry emerge.The �rst criterion would induce misleading models for s if residuals were to be expected toexhibit negative correlations along with the positive ones. In fact, the variance of the case-averagecould decrease because of existing negative correlations. However, we didn't �nd so far any tracesof negative correlations amongst the residuals of the used items.An example: In the case of all groups together, the variance of log s decreased whenever theitems S, NW , W , D, CA, CL were introduced in the model, for all the �ve samples examined |corresponding to reports from 1983 to 1987.Other items, (C, I, TC, FA) had the opposite e�ect for all the years. They made the varianceof log s increase. And a few, (EX, N ) either made it increase or decrease, depending on the years:N was generally associated with a decrease whilst EX would make it increase except in one year.Table 17 gathers these results in detail. When reading any row labeled SM from left to rightwe will get a description of the evolution of the variance of log s for an increasing number of itemsallowed in the case-average. For example, by accepting CA, the variance of this average decreased111
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Figure 38: The decrease in variance of s, a proxy for size, for several incoming items.from 0.4877 to 0.4843 in the 1983 sample. Notice that the acceptance of CA (and the variance oflog s achieved with it) supposes the previous acceptance of S, NW , W , D, that is, of those items tothe left of CA.The individual variance of each item is also displayed (rows VAR). Figure 38 on page 112 is agraphical representation of table 17. It clearly depicts the e�ect of averaging together more and moreitems. Notice that, for avoiding the overlapping of the curves, the variance displayed in �gure 38su�ered a di�erent translation for each year.Two items emerged as non-adequate for building s despite not being correlated with others.They were Inventory and Fixed Assets. The variability of s increases when we introduce any ofthem in the case-average. Fixed Assets is the item with the largest variance amongst the eligible.Its non-adequacy stems from apportioning more variability than the smooth it produces. Inventoryhas also a large variance but it is not as distinct as Fixed Assets.Creditors was expected to be non-adequate since it is correlated with Debtors. The same forEX, which is strongly correlated with Sales, and Wages, which is correlated with the number ofemployees. It is indi�erent to select one or the other from these pairs, provide both are not presentin the �nal model.5.1.2 Results and DiscussionUsing the outlined procedure we tried several combinations of items selected from the limited setwe displayed in table 2 on page 6. For each combination we observed the behaviour of the resultings when de
ating all the other items in our set. Despite the signi�cant decay in variability obtained,about 10%, none of these combinations turned out to be completely satisfactory since it producednon-exactly symmetrical residuals when de
ating items from the Pro�t and Loss Account. We112



noticed that when Total Assets de
ates such items the asymmetry seems to be smaller than whenusing s. But, of course, TA performs badly with all the items from the Balance Sheet whilst s willnot introduce any asymmetry.For the set of items we could use, the best � = log s seems to be� = 17 [logS + logNW + logW + logN + logD + logCA+ logCL] (13)In the following, any use of s or � in this study refers to this particular case-average.When building models like this one, care must be taken to avoid the accumulation of base-lines. Each item must be checked for really signi�cant base-lines (see page 8 in chapter 1) and thecorresponding � accounted for before applying logs. It is worth mentioning that models like the oneabove involving many variables which are allowed to accumulate their individual e�ects can displaya magnitude of problems unknown in simpler cases.Why not Principal Components? For building a proxy for size we suggested an average ofseveral items case by case. Such a procedure contrasts with the usual one in accounting researchwhere tasks like this one would be carried out by a Principal Components (P.C.) rotation. We shallcomment on the use of P.C. later on. At the moment, we report the following result:� When comparing the measure of size obtained by averaging with the measure of size the �rstP.C. yields for the same sample and set of items we very often obtain two variates which aresimilar except for scale.� For small, non-homogeneous samples, the results of a P.C. rotation and those of averaging canbe very di�erent. P.C. scatters the size e�ect along the largest two or three axis.Notice that averaging, summing or any linear combination of items in which the multipliers haveequal values is equivalent to a 45o multi-dimensional rotation. When the P.C. algorithm exploreshomogeneous samples it �nds in �rst place this 45o axis in log space, the one corresponding to theproxy for size obtained above. On the contrary, when samples are not homogeneous, the existenceof clusters can distort the meaning of the resulting main axis.Averages are robust regarding the problem of non-homogeneous samples and are easier to com-pute as well. But they should be used instead of the P.C. rotation mainly because they are function-ally correct. Group averages model the functional relation linking individual items with the mainsource of variability in multi-variate distributions generated by a proportional mechanism.The need for a large number of components when building s: Another problem with thisgeneral de
ator is that, if a variable is present both in the numerator and in the denominator, thatis, if we de
ate with s any item already used for building s, the result is the same as if we were113



using, instead of the entire numerator, a fractional exponent of it. For example, when de
ating itemxk with s we would have xkQMi=1 x 1Mi = [xk]M�1MQk�1i=1 x 1k�1i �QMi=k+1 x 1M�k+1i (14)When M is large, (M � 1)=M � 1. But if the number of components of s is small the exponenta�ecting the numerator will model a non-linear relation. Therefore it would be interesting to �nd alarge number of items for building s. Also because the self-smoothing would improve.We succeed in �nding seven items gathering all the desired requirements. This is all our set canyield. It would be better if we were to have a few more. For a set with more items and especially withitems re
ecting details, not totals, it would be possible to increase the number of the componentsof s. Anyway, the set displayed in equation 13 performed remarkably well in the many applicationsit was called upon during our research. In the second part of this study we often use it.The distribution of s: The resulting s is two-parametric lognormal for all groups and years. Thisis not surprising since the individual � of the candidates are calculated on the basis of maximizingthe Shapiro-Wilk's W . In general, log s has also smaller kurtosis than that observed for individualitems. In a few industries negative kurtosis can be observed.The reason for this small kurtosis is straightforward. The variability of log s is the one of themain axis of a multi-variate distribution. Since this main axis is supposed to be the source of theGaussian behaviour of log items, log s should exhibit a kurtosis even smaller than items.A two-variate version of this reasoning was introduced in chapter 4. We recall �gure 37 (page 102).In this graphical representation, the variability of log s would be the one along the \Size Axis". Thesource of positive kurtosis is the \Ratio Axis".Items are 45o projections of this multi-variate distribution. They contain some kurtosis. Ideally,log s shouldn't be correlated with the source of kurtosis.When used as a de
ator in ratios, s yields the same kind of lognormal residuals other de
atorsproduce. The observed leptokurtosis is neither larger nor smaller than the usual.s and the common e�ect: A remarkable feature of s is the small departures from the unit inthe slopes of regressions in which log s explains individual log items. For models likelogxj = a + b� log sj + "jin which xj is an accounting item, the estimated values of b are, as a rule, very near 1. In table 19 wedisplay the slopes and the proportions of explained variability in our sample for all groups together.Figure 39 on page 116 is a graphical representation of this table intended to facilitate its reading.Long Term Debt emerges as the item with less explained variability and also the largest departurefrom the simple ratio model (b = 1). However, even in this case, such departure is very small. And114



Item 1983 1984 1985 1986 1987slope R2 slope R2 slope R2 slope R2 slope R2S 1.006 0.91 1.006 0.89 0.994 0.90 0.991 0.90 1.004 0.89W 1.027 0.91 1.046 0.91 1.040 0.92 1.033 0.93 1.036 0.93NW 1.009 0.89 1.010 0.88 1.008 0.88 1.008 0.90 0.991 0.89I 1.047 0.88 1.054 0.88 1.029 0.86 1.055 0.86 1.043 0.82D 0.991 0.91 0.972 0.91 0.977 0.91 0.974 0.91 0.985 0.91C 1.008 0.90 1.015 0.92 1.022 0.92 1.016 0.91 1.017 0.91CA 0.996 0.94 0.985 0.95 0.995 0.94 0.992 0.94 0.976 0.94FA 1.075 0.81 1.061 0.82 1.099 0.82 1.103 0.83 1.100 0.82CL 0.981 0.92 0.986 0.93 0.984 0.93 0.992 0.94 0.984 0.93FL 1.047 0.84 1.052 0.85 1.033 0.87 1.046 0.85 1.035 0.86EBIT 1.036 0.78 1.032 0.81 1.024 0.82 1.022 0.83 1.008 0.83N 0.987 0.84 1.004 0.85 1.010 0.86 1.009 0.87 1.020 0.86DEBT 1.157 0.62 1.096 0.61 1.100 0.60 1.107 0.56 1.142 0.56EX 1.000 0.86 1.006 0.84 1.001 0.84 0.990 0.84 0.997 0.83WC 0.996 0.74 0.976 0.80 0.967 0.75 0.978 0.74 0.934 0.76Table 19: The slopes and explained variability (R2) obtained when log s, a proxy for size, is used toexplain several log items. All groups together.the common e�ect still explains 55% to 65% of Debt in relative space. These values mean a strongcorrelation and cannot be ignored.Working Capital comes next, with an explained variability of 75% to 80%. All the other itemscan be explained by the common e�ect in a 80% to 94%. And their slope will not be signi�cantlydi�erent from 1.As seen in chapter 2 the displayed results are an argument in favour of the overall proportionalityof accounting items in cross-section. This proportionality leads, in log space, to a unique, stronge�ect. The slope emerges as a non-important parameter. Its value is predictable and departures fromsuch a prediction are very small. They can be explained by the bias introduced in the estimation ofb when using regressions instead of functional relations.A consequence of using s: Ratios with s in the denominator no longer yield contrasts betweentwo departures from size. Ideally, they re
ect the real departure from size of the item in thenumerator. Using our notation, we could ideally access each "x or fx instead of the "y=x or fy=x.As a consequence, we could also use size-adjusted Sales, Working Capital or Debt, along with sas input variables for statistical models. Such models would be self-explanatory to an extent so farnot attained in accounting research. Their interpretation would be immediate. In the second partof this study we show examples of this use of s.5.2 Dimension Reduction for Statistical ModellingThe excessive number of input variables in accounting statistical models and the consequent needfor a reduction on the dimension of the input space stems in a large degree from the use of ratios as115
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Figure 39: The slopes (X-axis) vs. the R2 (Y-axis) when log s, a proxy for size, is used to explainlog items. Debt emerges as having a particular behaviour. All groups, �ve years.inputs. It is di�cult to know to what extent a feature of the �rm is being conveniently modelled bya given combination of ratios. Some research solves the problem by using all possible combinations.Since a few residuals (size-adjusted log items) can be used instead of ratios the problem of anexcessive number of inputs should now be seen in a di�erent light.Nevertheless, it is possible that in some cases even the dimension of the input space achieved byusing log items instead of ratios will be excessive. This section is devoted to the description of a tool,the Hadamard rotation, intended to dimension reduction and especially well suited for accountingitems in log space.In order to understand why the Hadamard rotation is interesting we must explain �rst whythe usual one, the Principal Components rotation, can eventually become inadequate for dimensionreduction with log items.5.2.1 The Use of the Principal Components Rotation: DiscussionFactor Analysis has been widely used in accounting research. The log space could be understood asan appropriate �eld for achieving dimension reduction with it. However, when doing so there aresome dangers we should be aware of. Here we highlight two of them.The �rst danger is speci�c to accounting items in log space. It consists of the possible �ndingby the Principal Components algorithm of a main axis which is not a 45o multi-variate slope. Thesecond one is common to all algorithms based on optimization principles.P.C. and the modelling of the common e�ect: P.C. algorithms standardize each variableindividually before the rotation takes place. In other words, whenever we use such programs we are116
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modelling relations between the data and observed outcomes. It is a constraint imposed fromoutside in the 
ow of information allowed to explain a relation.These two tasks are di�erent. In an identity map the input variables try to explain themselves.When modelling a relation they try to explain the relation between them and the outcomes.When a set of features are trying to explain themselves in the most economic way, the commonvariability will emerge. The particular one can eventually be considered as negligible. Clearly, sucha particular variability | negligible in an identity map context | could be important in othercontexts. In fact, the task required when performing discriminant analysis or regression is not forthe input variables to explain themselves but the outcomes.Figure 40 also depicts this. Supposing that the maximum-variance axis was correctly found, itwould lie in between AA0 and BB0 , in a way that would separate both groups. If we select such axis| and therefore we consider as negligible the second axis in order to reduce the dimension of theinput space | and then we apply some discriminant technique to try to distinguish between groupA and B, we would have thrown away the axis containing precisely the useful information for sucha task | the second one.5.2.2 The Hadamard RotationFor achieving dimension reduction in log space we suggest the use of the Hadamard rotation [107].Its remarkable quality is that it is not optimal in any sense. The Hadamard rotation could be brie
ydescribed as a multi-dimensional 45o anti-clockwise rotation. The results of applying it will notdepend on the particular statistic of the data being rotated. In other words, the Hadamard rotationexhibits the same kind of robustness ratios have.For M items to be reduced, the e�ect of applying the Hadamard rotation is twofold.� First, all the variability along the multi-variate 45o axis | de�ned in the M -dimensional spaceof the items to be reduced | is accounted for and placed in the �rst extracted factor. Thus,the �rst factor will contain, up to a constant value of 1=M , the strong, common e�ect, s, asmodelled by the M items to be reduced.� Second, the remaining variability, the weak e�ect particular to each item, is re-distributed byall the other M � 1 factors according to simple combinatorial laws. Each item will be presentin these new variables either summing or subtracting to the total.We consider the Hadamard rotation as adequate for achieving dimension reduction in the inputspace of the log accounting items because it is able to isolate the only clear feature of the data |the common e�ect | and then it re-distributes the remaining variability by the dimensions we wantto use in a way that will not privilege any particular piece of information.It is up to the next step | the modelling of the relation | to determine how many variables areto be used. This will determine the information 
ow.118



The Hadamard rotation is also easy to implement. It will not require any special algorithm.How to build Hadamard matrices: Hadamard matrices are square arrays of only plus andminus ones disposed in such a way that the rows or the columns are orthogonal to one another. Thesimplest case is the matrix of order two: H = " 1 11 �1 #If we are examining just two accounting items in log space, flogy; logxg, we would obtain, byapplying H, two new variables, h1 = logy + logx and h2 = log y � logx. Therefore, h2 is the ratioy=x in log space and h1 is the product y � x in log space. h1 can be identi�ed | up to a constantvalue of 1=2 |as the e�ect common to both items.The Hadamard rotation decomposed the total variability so that the �rst new variable containsthe variability common to the original items and the second new one the variability unexplainedby the �rst new one | which is the ratio of the original items. This was achieved by rotating theoriginal axis 45o anti-clockwise. The new X-axis is now the main dimension of the distribution. Thenew Y-axis is orthogonal to it. Again, we recall �gure 37 (page 102). In this graphical representation,the variability of h1 is the one along the \size axis". The one of h2 is the one along the \ratio axis".For more than two items, the ith row and jth column component of one possible M dimensionalH matrix can be found by applying the formulasaij = (�1)b(i;j) where b(i;j) = M�1Xl=1 il � jlThe terms il and jl are the bit states (+ or -) of the binary representation of i and j respectively.For example, in the case of M = 8 one possible H matrix would look like this:H = 2666666666666664 1 1 1 1 1 1 1 11 �1 1 �1 1 �1 1 �11 1 �1 �1 1 1 �1 �11 �1 �1 1 1 �1 �1 11 1 1 1 �1 �1 �1 �11 �1 1 �1 �1 1 �1 11 1 �1 �1 �1 �1 1 11 �1 �1 1 �1 1 1 �1 3777777777777775Notice that, when converting the new factors obtained in log space back to the anti-logarithmicspace summation become multiplications and divisions are now subtraction. Hence, the Hadamardrotation will produce a set of M � 1 new variables which are ratios. These ratios contain all theoriginal items appearing either in the numerator or in the denominator.119



For example, in the case of M = 4, the three ratios formed with items A;B;C;D would be:A �CB �D ; A�BC �D ; A�DB � C ; along with the �rst factor A �B �C �DSupposing we were to decide to consider as negligible the information conveyed by the thirdfactor | which is the ratio AB=CD | then we would get a new information content equivalentto considering 8>>>><>>>>: (A3 � C�DB ) 14 instead of A(B3 � C�DA ) 14 instead of B(C3 � A�BD ) 14 instead of C(D3 � A�BC ) 14 instead of D: This is what is meant by saying that the Hrotation re-distributes the variability of items according to simple combinatorial laws. Wheneverthe desired goal is just dimension reduction, not the isolation of particular features of the data, thissimple re-distribution is enough.Re-distribution avoids the emergence of factors containing very particular pieces of information.Algorithms based on optimization will easily �nd, should they exist, preeminent features in thedata. Therefore, the dimension reduction they achieve can have the undesired characteristic of beingfeatures-oriented. As commented above we would be probably throwing away features, instead ofconstraining the information 
ow.How to use the Hadamard rotation: In order to achieve a reduction in the dimension of theinput space, the H rotation is applied to the set of mean-adjusted log-items. Notice that onlysummation and subtraction are required to rotate the input vectors. Then, the variance of theobtained factors is measured. Those exhibiting the smallest spread are, in general, the ones to putaside.Since the variability particular to each item is re-distributed by all the M � 1 factors aftercontrolling for the common e�ect, it is clear that di�erences observed in the spread of such factorsmust be the result of correlations between the weak components di�erently combined. As anycorrelation means redundancy in the information content of variables, the factors to be thrown outare those having smaller spread.An example: Using a sample with accounts of 169 �rms belonging to four industrial groups (1984)we �rst selected eight items | NW, W, D, C, CA, CL, S, N | and applied the H rotation to theirmean-adjusted logs. We obtained eight new variables. The variance observed in each item wasNW W D C CA CL S N sum2.72 2.76 2.66 3.04 2.61 2.81 2.77 2.53 21.91The resulting factors had their variability distributed in this way:Fac 1 Fac 2 Fac 3 Fac 4 Fac 5 Fac 6 Fac 7 Fac 8 sum20.63 0.26 0.12 0.14 0.08 0.06 0.43 0.18 21.9194.13% 1.19% 0.55% 0.65% 0.35% 0.29% 1.98% 0.84%120
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NW W D C CA CL S N0-0.0051 0-0.0002 0.0111 0-0.0206 0.0044 -0.0069 0-0.0147 0.0128 0.0073 0.0094 0-0.0178 0.013 -0.0107 -0.0067 0.0097 0-0.0415 -0.0005 -0.0203 -0.005 0.0012 -0.0037 0-0.0236 -0.0083 -0.0202 -0.0274 -0.0069 -0.0058 -0.0193 0Table 20: The di�erence between the correlation matrices of eight original items and their repro-duction after reducing the dimension by two.NW W D C CA CL S N EX TA FA I0-0.03 0-0.06 -0.06 0-0.07 -0.05 -0.01 0-0.02 -0.02 0.003 0.000 0-0.03 -0.04 0.002 -0.00 0.038 0-0.02 0.003 -0.01 0.015 0.060 0.026 0-0.01 0.013 -0.05 -0.06 -0.01 -0.04 0.020 0-0.06 -0.04 -0.02 -0.00 0.036 0.012 0.013 -0.03 0-0.00 -0.03 -0.00 -0.00 0.008 0.032 0.052 -0.03 0.008 0-0.00 -0.02 -0.05 -0.03 -0.04 0.008 0.046 0.007 -0.00 -0.01 0-0.03 -0.00 -0.04 -0.03 0.009 -0.00 0.000 0.046 -0.03 0.020 -0.02 0Table 21: The di�erence between the correlation matrices of twelve original items and their repro-duction after reducing the dimension by two.more irregular since a few of the emerging ratios are non-balanced. We call non-balanced a ratiowith a di�erent number of items in the numerator and in the denominator.The ratios emerging after the Hadamard rotation are all guaranteed to be balanced only whenthe dimension of the input space is a power of two. However, for most of the remaining M it ispossible to build Hadamard matrices yielding balanced ratios. M must be even, of course.Fac 1 Fac 2 Fac 3 Fac 4 Fac 5 Fac 6 Fac 7 Fac 8 Fac 9 Fac 10 Fac 11 Fac 1231.85 0.265 0.057 0.131 3.973 0.091 0.243 0.232 3.233 0.227 0.220 0.24078.13% 0.65% 0.14% 0.32% 9.75% 0.22% 0.60% 0.57% 7.93% 0.56% 0.54% 0.59%After identifying the two factors with the smallest variance we obtained reproduced items. Thedi�erences in the correlation matrices observed between the original and the reproduced items aredisplayed in table 21.The Hadamard Symmetrical rotation: Apart from the outlined features, when the numberof items to be reduced is a power of two, the Hadamard rotation becomes symmetrical, that is, thematrix is its own inverse up to a constant value.If M = 2m, for any input vector X with M elements,Z = 1pM �X �H and X = 1pM � Z �H122



Another characteristic of this particular case is that H matrices can be obtained from others ofsmaller dimension just by using the simple formulaH2M = " HM HMHM �HM #For M > 12 the di�erence between symmetrical and non-symmetricalH becomes non-important inpractice. It is then possible to �nd a Hadamard matrix yielding balanced ratios. Anyway, the e�ectof having non-balanced ratios is no longer noticeable in high-dimensional input spaces.Conclusion: The Hadamard rotation seems to be a simple and well-�tted method for achievingdimension reduction in the input space of accounting data. It yields a proxy for size and a collectionof ratios corresponding to di�erent combinations of the original log items. In chapter 8 we use thesame basic principle in the building of graphical tools for �nancial diagnostics.5.3 The Homogeneity of Industrial GroupsThe modelling of accounting relations in the presence of groups cannot avoid two important questionsconcerning the input space.� Is a particular grouping signi�cant so that it should be taken into account? If the data is moresimilar inside groups than from group to group this is the case.� Can signi�cant groups be taken as similar in their e�ects upon the features of the data?For example, is liquidity a�ected in the same way as, say, pro�tability in the presence of anindustrial grouping?We answer the �rst question by comparing the variability inside groups with the one between them forthe most important features of the data. As a result we obtain an overall measure of the importanceof a grouping for each variable involved. The second question could be answered at several levels ofaccuracy. The simplest procedure would consist of just ranking a measure of homogeneity of eachfeature by group and then verify if these rankings were consistent across di�erent features. We usea basically similar method.In this section we develop procedures for assessing the importance of groupings and also thecomplexity they introduce in the input space regarding the features of the data. The tested groupingis the SEIC industrial classi�cation. However, any other grouping can be explored by these or similarmethods.5.3.1 Introduction and Related ResearchAccounting reports do not contain all the information necessary to uniquely characterize the impor-tant features of �rms. The very basic problem of ratio analysis is the existence of similar accounting123



patterns which are not neighbours in the space of the real features of �rms. In order to correctlymap �rm features accounting data is not enough. External information is also required.A clear example of this is the industrial classi�cation. The similarity of �rms as perceivedby the SEIC can be di�erent from the similarity of accounting reports. A non-standard piece ofinformation, the number of employees, turns out to be important when checking the homogeneity ofindustrial groups. Other non-accounting variables, eventually also important, could be the patternsof consumption of energy, area requirements for plant or stores, the age of the �rm and its location.The use of a limited amount of information like the one contained in accounting reports alone,generates extra unexplained variability in models. Here we are not concerned with the amountof variability. We are interested in its complexity. The complexity of accounting models becomeshigher when the input data re
ect facts we cannot account for.For example, the Leather or the Wool industries could introduce more than one e�ect in theinput space if the accounting numbers of each �rm were strongly in
uenced by its location. Thislocation would act as a hidden grouping: Say, the north and the south, each one with particularcharacteristics. In such case, the complexity of the SEIC grouping would be larger than expected.Limitations when answering the �rst question: In chapter 7 we shall evaluate the discrimi-natory power of accounting reports when classifying �rms according to the SEIC. Notice that sucha problem is di�erent from the one we are exploring now. Several very homogeneous groups of �rmscan also be very similar in their features as perceived by accounting reports alone. When groups arehomogeneous and also overlap, they cannot be correctly separated by accounting information.Similarity can only be measured in a comparative way. We can rank groups according to theirhomogeneity but we cannot say that an attained degree of homogeneity is acceptable while anotherisn't. We cannot say that the SEIC succeeded or failed in creating homogeneous groups. We canonly say that one group is more or less homogeneous than another one regarding particular features.The second question: Grouping and features. Given a grouping, some features of the �rmwill be sensitive to it, varying from group to group. Others will be insensitive to the grouping.The tracing of both kinds of behaviour is potentially important for ratio analysis. Ratios re
ectingsensitive features are interesting because they can be used to discriminate between groups. And ratiosre
ecting insensitive features are also interesting. They yield robust standards or benchmarks.Ratio Analysis is concerned with mean values. Statistical modelling is mainly concerned withthe sources of spread. Are the di�erent sources of spread equally sensitive to a grouping?Fixed and random e�ects: Some groupings are de�ned a-priori by an accepted institution likethe SEIC in the U.K. Others are the result of objective causes. The grouping of �rms into leveragedand non-leveraged or into failed and non-failed has a statistical nature which is di�erent from the124



SEIC grouping. The former introduces in the population a simple partition. The later introducesreal variability.Whenever we consider grouping variables that can make themselves present | in one way or theother | in the input space, the �rst point to clarify is its statistical nature. Simple partitions areknown as �xed e�ects. Groupings which introduce random e�ects are known as such.Groupings that introduce random e�ects in a population can indeed introduce more than one.The assessment of the number of independent sources of spread a grouping carries with it is eventuallyimportant. For example, if a particular grouping contains two random e�ects it is likely to inducehigher order relations between input variables.Related research: Firm grouping is itself not a very homogeneous body of research. It includessimple industry comparisons of ratios, tests on widely accepted groupings of �rms and the searchfor clusters of �rms according to similarities of ratios and other data. The former topic has beenexplored from very early in �nance literature. Foster [44] o�ers an overview. There is an establishedevidence on di�erences between some ratios for well known industry groups.The search for clusters of �rms has been carried out by Elton and Gruber [35] [36], Jensen [67],and Gupta [54] amongst others. The problem with hierarchical cluster analysis is that the usedalgorithms seem able to always �nd clusters. The interpretability of the results su�ered with this.It is di�cult and not particularly revealing.Another aspect of this research is the test of separability of groups using accounting data. Thishas been tried for the SEIC by Sudarsanam and Ta�er [124].A not well known body of research tested the homogeneity of existing groupings according toaccounting measures of �nancial risk. Equivalent risk class hypothesis tests began with Wippernin 1966 [139] and vanished after Martin et al. in 1979 [83] (see also [49] and [99]). Foster doesn'teven mention them. This research is an attempt to test a basic assumption in Finance, the one thatgroups are similar before risk.5.3.2 Measuring the Signi�cance of a GroupingThe techniques designed to divide the variability of cases in two components, inter-groups and intra-groups, have in common the basic Analysis of Variance model but di�er in the assumptions. Giventhat the 14 groups selected represent a sampling between a much larger amount of possible choicesit would seem inappropriate to use �xed-e�ects models. Hence, we explore a random-e�ects one.Our answer to the �rst question is given by a statistic, the intra-class correlation, able to yieldmeasures of similarity comparable across di�erent samples. Notice that this kind of tools are sensitiveto deviations from the Gaussian assumption. The fact that they can now be used is a consequenceof the broad lognormality of �rm features. 125



The problem: We are interested in assessing the extent to which the used grouping of industriesis e�ective in creating more similar subsets of �rms.The intra-class correlation coe�cient, �, measures the proportion of the total variability that isassociated with a grouping. It is a standardized way of comparing the spread within groups withthe one between groups when the e�ects are random. If s2b is the expected value of the mean-squaresbetween groups and s2 is the corresponding mean-squares within groups, then an estimator for �could be r = s2b � s2s2b + (k � 1)� s2k is the number of cases in each group. For M groups of unequal size ni; i = 1;M and N =Pni, kshould be approximated as k = 1M � 1 � �N � Pn2iN �It is possible to estimate con�dence intervals for r. A detailed discussion of this statistic and theway it is derived can to be found in Snedecor and Cochran [119].Real groups are expected to be more similar than the whole. The more similar groups are |regarding the sample | the more the correlation intra-classes approaches 1.When the variability inside groups is smaller than the one in the whole sample, this measureyields a positive value. For a variability inside groups similar to the one between them the intra-classcorrelation yields zero. In the case of groups containing more spread than the whole, a negativecorrelation would emerge. When the e�ects governing the spread within groups and between themare independent, negative � cannot occur. Negative � emerge only in cases where the e�ects interact.The data: During the usual period of �ve years we examined three kinds of accounting information.First, several log items and also s, our proxy for size. Second, the log residuals of the same itemswhen de
ated by s. Finally, the log residuals of a few more ratios.In tables 22, 23 and 24 on pages 127 and next, we display the estimated intra-class correlationalong with the F statistic. The number of �rms involved ranges from 555 to 702 in 14 groups.Results: Log items. The log items show a small but signi�cant increase in homogeneity owing tothe industrial grouping. The values of � are stable during the considered period and no negative orzero cases were observed. They are not very di�erent from one another as expected. In fact, since logitems mainly re
ect size they yield similar proportions of variability associated with grouping. Weconclude that the relative size of �rms, as re
ected by accounting data, is slightly more homogeneousinside industries than for the whole sample.Fixed Assets, Debtors and Sales are the most homogeneous log items inside groups (10%). In-ventory is the least homogeneous (4%). Size itself is similar to many other items (5%). On thewhole, the homogeneity ranges between the extreme values of 3% and 13%.126



Item 1983 1984 1985 1986 1987F � F � F � F � F �SIZE 5.34 9.87% 4.42 6.88% 4.48 6.70% 4.86 7.15% 4.87 7.31%S 7.21 13.53% 6.61 10.79% 6.53 10.27% 6.48 9.85% 5.93 9.11%NW 4.00 7.09% 3.94 6.00% 3.63 5.23% 4.20 6.10% 4.17 6.15%W 5.01 9.26% 3.51 5.17% 4.09 6.03% 4.52 6.59% 4.66 6.96%I 3.31 5.56% 2.85 3.87% 3.03 4.08% 3.12 4.12% 2.99 3.98%D 7.02 13.20% 6.51 10.65% 6.31 9.91% 6.47 9.85% 6.39 9.92%C 5.68 10.58% 5.17 8.26% 5.22 8.03% 5.48 8.22% 5.45 8.35%FA 6.45 12.08% 6.29 10.23% 6.52 10.26% 7.18 11.00% 6.65 10.35%CA 4.62 8.42% 4.10 6.32% 3.80 5.51% 3.86 5.44% 3.60 5.07%CL 5.42 10.03% 5.14 8.20% 4.97 7.59% 5.67 8.52% 5.06 7.65%N 4.41 8.00% 3.55 5.24% 3.93 5.76% 4.06 5.77% 4.08 5.94%EBIT 5.88 11.73% 4.46 7.41% 3.49 5.26% 3.74 5.61% 5.45 8.86%FL 5.90 11.51% 4.75 7.76% 4.35 6.76% 4.36 6.60% 4.94 7.82%DEBT 4.44 11.86% 3.04 6.10% 3.84 7.66% 3.54 6.43% 4.08 7.81%Table 22: The F statistic and the Intra-Class correlation, �, when log items were used to explainthe industrial grouping.Results: Log residuals. For size-adjusted variates the contrast between di�erent items clearlyincreases. Some of these residuals show a much larger homogeneity intra-groups than others.The consistency for the considered period of �ve years is not a�ected in most of the items butit is completely lost in a few. Gross Funds from Operations and EBIT, for example, plunge from astrong similarity inside groups to a much smaller one from 1986 on. It seems as if pro�tability wereincreasingly non-homogeneous inside industries. See table 23 on page 128.Sales and the number of employees are the most similar features inside groups. The SEICindustrial grouping seems to rely on these variates as a criterion for determining groups. Next,Debtors and Wages. Debt and Net Worth are the less homogeneous residuals. In fact, almost noin
uence of grouping can be detected in their size-adjusted measures. The �nancial structure of�rms seems not to be sensitive to industrial groups.On the whole, the homogeneity of the residuals ranges from about zero to 25%. These valuesdenote a more diversi�ed in
uence of the industrial grouping upon residuals than upon size.Results: A few ratios. In table 24 on page 128 we display the intra-class correlations for a fewmore ratios. The above size-adjusted measures are also ratios, of course. But the displayed onescapture contrasts between residuals, not the residuals themselves.The Long Term Debt to Net Worth ratio shows no traces of recognizing the SEIC grouping assuch. The liquidity ratio yields measures of similarity comparable with those of non-de
ated items.Ratios incorporating Sales, Wages, Debtors or the number of employees clearly recognize the testedgrouping. If our goal would be the identi�cation of ratios appropriate for recognizing industrialgroups then the W=N ratio would emerge as a good choice.A method for selecting appropriate ratios for given tasks could consist of using �. First, theintra-class correlations of many size-adjusted log items would be assessed. Then, the most promising127



Residual 1983 1984 1985 1986 1987F � F � F � F � F �S 11.79 21.41% 15.27 23.54% 16.83 24.64% 13.94 20.53% 11.39 17.45%NW 1.54 1.35% 1.92 1.96% 1.69 1.43% 1.71 1.42% 1.61 1.25%W 5.28 9.84% 6.18 10.12% 6.34 10.00% 6.85 10.50% 6.97 10.87%I 4.36 7.88% 4.87 7.77% 4.35 6.57% 5.36 8.10% 3.35 4.65%D 8.57 16.06% 11.05 17.85% 9.40 14.82% 7.18 10.98% 6.06 9.36%C 3.46 5.85% 3.45 5.03% 2.86 3.71% 2.77 3.42% 3.15 4.22%FA 2.23 3.00% 2.87 3.89% 3.35 4.65% 4.00 5.67% 3.69 5.20%CA 2.79 4.36% 3.87 5.85% 4.11 6.08% 4.02 5.72% 2.04 2.09%CL 2.93 4.65% 3.94 5.96% 2.67 3.34% 2.32 2.57% 1.69 1.40%N 9.75 18.24% 13.42 21.23% 12.57 19.42% 12.10 18.17% 9.46 14.76%EBIT 6.73 13.49% 5.16 8.77% 3.30 4.87% 2.98 4.11% 3.35 4.89%FL 8.13 15.91% 6.13 10.29% 4.55 7.13% 2.79 3.62% 3.65 5.40%DEBT 1.52 1.99% 0.97 -0.08% 1.85 2.41% 1.59 1.56% 1.91 2.44%Table 23: The F statistic and the Intra-Class correlation, �, when several di�erent log residuals wereused to explain the industrial grouping.Residual 1983 1984 1985 1986 1987F � F � F � F � F �S=N 10.08 18.80% 14.22 22.30% 13.44 20.57% 12.84 19.14% 11.08 17.11%(S �N)=s2 11.50 21.14% 15.75 24.24% 16.47 24.39% 13.70 20.25% 9.98 15.52%W=N 11.14 20.62% 16.67 25.42% 18.43 26.62% 20.25 27.86% 16.09 23.61%CA=CL 3.71 6.44% 4.76 7.56% 3.86 5.63% 5.04 7.51% 2.56 3.11%DEBT=NW 1.65 2.51% 0.97 -0.10% 2.07 3.08% 1.73 1.96% 1.90 2.45%S=EBIT 8.00 16.02% 6.98 12.14% 8.69 14.62% 6.67 10.97% 5.70 9.32%Table 24: The F statistic and the Intra-Class correlation, �, when a few log ratios were used toexplain the industrial grouping.combinations of items would be selected amongst the residuals with highest � and tested.Conclusions: The industrial grouping clearly gathers �rms which are to a small extent moresimilar regarding size.Also, a few features of the �rm are more homogeneous inside industries. It is the case for Sales,Wages, the number of employees or Debtors. The �nancial structure of �rms is not especially moresimilar inside groups. And the measures of pro�tability seem to yield very di�erent results fromyear to year. In the early years of our observations the pro�tability of �rms is remarkably similarinside the same industry. In the later ones (1986, 1987) it becomes irregular.There is nothing in the obtained results able to defy the common-sense of accounting knowledge.The results are expected. A very simple technique yielded consistent and interpretable results.5.3.3 Assessing the Complexity of GroupingsThe methods and results of this section are not particularly interesting for �elds other than themulti-variate modelling of relations. We are interested in broadly knowing if it is acceptable toconsider one unique random e�ect in the SEIC grouping regarding accounting data. The results ofthis experiment are important later on, when relating sensitivity of assets to market returns.128



The method: Buildingmaps from distances. As remarked before, this problem can be treatedwith di�erent levels of accuracy. Here we selected a very simple and intuitive level. It could be muchimproved so that we would end up with a real complex instrument for measuring complexity. Sinceour goal is not only the assessment of complexity itself but the support of further research, we useda reasonably simple instrument.Our method is based on the well known possibility of re-constructing maps from distances. Forexample, it is possible to re-construct a map showing the relative positions of the main cities inBritain just by knowing the distances between them.Cities would require two dimensions to be mapped. When the objects to be mapped lie in astraight line the result of this re-construction can be expressed, if desired, as a simple ranking.Objects positioned so as to form a two-dimensional map cannot be ranked.We are interested in discover if it is acceptable to rank the industrial groups according to thespread of accounting features. If it turns out that the di�erent groups can be ranked according totheir spread, then the SEIC grouping is likely to introduce just one random e�ect. On the contrary,if the spread of groups resist a simple ranking | thus requiring a two-dimensional map like in thecase of cities | it means that the spread present in accounting features because of the grouping iscomplex or higher dimensional.In fact, if the grouping is a unique e�ect it will impinge upon the features of the �rm in di�erentdegrees but not in di�erent directions | thus yielding a consistent spread for several features. Forexample, if Chemicals have a smaller spread in liquidity when compared with the one of Food, then aunique random e�ect would mean that Chemicals would also exhibit a smaller spread in pro�tabilityor any other feature. But if in the former group there is a smaller spread in liquidity when comparedwith the Food industry and a larger spread of pro�tability in the same circumstance, then therandomness present in the grouping is not one-dimensional. Higher order e�ects are expected.The method we developed for testing the complexity of grouping consists of:� First, the spread of several features of the �rm is measured for a sampling of groups. Weused the standard deviation of log data as a measure of spread. The standard deviation is aone-dimensional measure of spread. Other statistics, like the variance and co-variance matrix,are multi-variate measures of joint spread.� Then, joint distances between industrial groups are computed from the above measures. Onetypical such distance could be the Euclidean distance. Notice that the use of joint distances| one distance is measured in the space of several variables | doesn't change the one-variatecharacter of our method.� Finally ordinal scores are discovered that position each industrial group according to the abovedistances.The �nal result is a map. Each industry is a position in that map. The coordinates of each industry129



are the obtained scores. For example, the position of Leather would be determined by a vector ofscores. The �rst score positions Leather according to the �rst dimension, the second positions itaccording to the second dimension, and so on.If industries lie in a straight line dimensions other than the �rst one are negligible. This meansthat groups can be ranked according to a unique measure of spread. They are a�ected by thegrouping in di�erent degrees but not in di�erent ways. On the contrary, if a vector of two scores isrequired for conveniently positioning groups, they lie in a plane, not in a straight line. In this casegroups cannot be correctly ranked using a joint measure of spread. We conclude that the variabilityintroduced by grouping cannot be considered as one e�ect.Our method has the important quality that it clearly points out which industries are likely to becontributing to an increase in complexity. Such groups should be kept out of the sample wheneverwe want to study reasonably simple cases.The data: We used two sets of data. First, the standard deviations of all the log items used inprevious section. Second, the same for standard deviations of log residuals.The �rst set is a comparison term. Clearly, as log items re
ect mainly relative size there is noroom for cross-e�ects. The results obtained for the second set can be compared with these. Theexperiment was carried out for the usual period of �ve years.As a sampling of groups we used the 14 industries referred to in table 1 (page 5). Indeed,it is not a random sampling. But the number of groups is large when compared with the totalof industries. And the results obtained with this particular sample will condition the selection ofgroups in experiments carried out in the second part of this study.Results: Log items. It is possible to compute a statistic, the usual R2, showing in what propor-tion each dimension accounts for the goodness of the �tted map. And, of course, it is also possibleto use the �rst two dimensions for building visual representations of the obtained positions like in�gure 42 on page 131.R2 measures the proportion of variance in the ranked or mapped data which is accounted forby such ranking or mapping. The obtained proportions are very high, denoting an essentially one-dimensional map. However, even in this case, the second dimension cannot be ignored. For the �veperiods the R2 were: Year One dimension Two dimensions1983 90% 98%1984 90% 99%1985 97% 99%1986 92% 98%1987 95% 99%Figure 42 (left) shows the two-dimensional maps of industries for the �ve years. The X-axis is130
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Number Industrial group 1983 1984 1985 1986 19871 BUILDING MATERIALS -0.31 -0.16 -0.29 -0.41 -0.342 METALLURGY 0.85 0.80 0.88 0.80 0.883 PAPER AND PACKING 0.65 -0.29 -0.40 -0.20 -0.124 CHEMICALS -0.04 -0.36 -0.41 -0.51 -0.415 ELECTRICITY 0.22 -0.16 -0.45 -0.63 -0.656 INDUSTRIAL PLANTS -0.76 -0.34 0.07 0.54 -0.127 MACHINE TOOLS -0.88 -0.98 -1.21 -1.02 -1.208 ELECTRONICS 0.72 0.54 0.33 0.31 0.109 MOTOR COMPONENTS 0.84 0.67 0.48 0.15 0.4410 CLOTHING -1.81 -1.78 -2.03 -2.02 -1.9711 WOOL -1.63 -2.09 -1.36 -1.47 -1.1612 MISC. TEXTILES 1.05 1.19 1.77 1.56 1.9613 LEATHER -1.12 1.25 1.05 1.18 0.6714 FOOD MANUFACTURERS 1.53 1.25 1.18 1.36 1.44Table 25: Scores ranking the spread of log items for industrial groups.1983 1984 1985 1986 1987CLOTHING WOOL CLOTHING CLOTHING CLOTHINGWOOL CLOTHING WOOL WOOL MACHINE TOOLSLEATHER MACHINE TOOLS MACHINE TOOLS MACHINE TOOLS WOOLMACHINE TOOLS CHEMICALS ELECTRICITY ELECTRICITY ELECTRICITYINDUSTRIAL PL. INDUSTRIAL PL. CHEMICALS CHEMICALS CHEMICALSBUILDING MT. PAPER & PACK PAPER & PACK BUILDING MT. BUILDING MT.CHEMICALS ELECTRICITY BUILDING MT. PAPER & PACK INDUSTRIAL PL.ELECTRICITY BUILDING MT. INDUSTRIAL PL. MOTOR COMPON. PAPER & PACKPAPER & PACK ELECTRONICS ELECTRONICS ELECTRONICS ELECTRONICSELECTRONICS MOTOR COMPON. MOTOR COMPON. INDUSTRIAL PL. MOTOR COMPON.MOTOR COMPON. METALLURGY METALLURGY METALLURGY LEATHERMETALLURGY TEXTILES M. LEATHER LEATHER METALLURGYTEXTILES M. FOOD MANUF. FOOD MANUF. FOOD MANUF. FOOD MANUF.FOOD MANUF. LEATHER TEXTILES M. TEXTILES M. TEXTILES M.Table 26: Industries ranked by spread of log items. Below, the largest spread.the �rst dimension and the Y-axis is the second. Each number stands for one industry. The meaningof these numbers can be found in tables 25 or 27 on pages 132 or 135.There is a visible trend towards a straight line. The e�ect of size is preeminent. Industries havedi�erent spreads but they are under the same e�ect. Leather is the exception. Its log items showsigns of in
uences other than size for three of the observed years. And such in
uences are not stableduring the period. The second dimension of Leather changes sign twice.When the �rst dimension was used for ranking industries according to spread the resulting rankwas stable during the period of �ve years. The most homogeneous industries concerning size areClothing, Wool, Machine Tools. The least homogeneous are Miscellaneous Textiles, Metallurgy andFood Manufacturers. We show these ranks in table 26 (page 132). The scores obtained as the �rstdimension of the map are displayed in table 25 (page 132).Industries like Building Materials, Metallurgy, Machine Tools, Clothing and Food show a con-sistent spread for the whole period. Chemicals, Electricity, Electronics, Motor Components andWool are also regular. Paper and Packing, Industrial Plants and especially Leather are irregular.Their ranking is not consistent for the whole period. Figure 43 (above) (page 134) shows the scorerepresenting the �rst dimension of each industry for �ve years. Each year is a mark. When marksgather very close to one another the spread is consistent for the whole period.132



Results: Size-adjusted items. When building a map of industries using joint measures of spreadfor log residuals, the obtained R2 are:Years One dimension Two dimensions1983 91% 98%1984 93% 99%1985 92% 100%1986 84% 98%1987 82% 99%For one dimension these R2 are less stable than the R2 obtained for size but the numbers arenot very di�erent. It su�ers a break in 1986 and 1987, as if the spread of �rm's internal featureswere becoming increasingly complex.Two dimensions seem enough to account for the randomness introduced by the industrial group-ing. But notice that our method is not intended to count the number of dimensions present in thedata. It is intended to trace the presence of more than one.The two-dimensional maps are displayed in �gure 42 (page 131 on the right) so that they canbe compared with the corresponding spread of size. They show clear di�erences from the spreadof size. The trend towards one unique dimension is no longer visible. One industry, Metallurgy,emerges as very particular, with a much larger spread than the others. We recall from section 2.2.2that Metallurgy was also unique in the proportion of variability size would explain in each item.In face of these results we must conclude that the R2 statistic is not very reliable for decidingwhether the second dimension is signi�cant. Its value is similar to the one obtained for the spreadof items but we know by visual inspection that the aspects of the two maps are clearly distinct. Theposition of Metallurgy in the two-dimensional maps | a strong outlier | is partially responsiblefor this anomaly.The scores obtained are consistent for the �ve years. Industries occupy positions which don'tsu�er clear changes. But it is clear that the e�ects present are not linear. They a�ect di�erentfeatures in di�erent directions making a second dimension emerge.Ranking the spread of industries: The internal features of �rms, as perceived by size-adjusteditems, yield rankings which are not in the least similar to those obtained when assessing the spreadof size. Leather, Motor Components and Building Materials are now the most homogeneous groups.Metallurgy is the least. The scores seem to vary with the year. But table 28 is not a good guide toassess the consistency of results. It shows a picture which is worse than the reality. In order to havea fair idea of the evolution of the scores during the considered time period, table 27 (page 135) ismore appropriate.As in the preceding case, Figure 43 (below) (page 134) compares the scores of each industry for�ve years. Building Materials, Chemicals, Electronics, Clothing and Food exhibit the same scoreduring the whole period. This means a persistent amount of spread associated with internal features.133
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Number Industrial group 1983 1984 1985 1986 19871 BUILDING MATERIALS -0.72 -0.69 -0.85 -0.91 -1.082 METALLURGY 2.40 2.87 3.17 3.19 2.963 PAPER AND PACKING -0.04 1.19 0.18 0.05 -0.364 CHEMICALS -0.22 -0.17 0.08 0.24 0.315 ELECTRICITY -0.54 0.27 0.19 0.48 -0.516 INDUSTRIAL PLANTS -0.49 -0.59 -0.51 -0.65 0.707 MACHINE TOOLS 1.85 0.34 0.64 -0.58 -1.218 ELECTRONICS 0.10 -0.01 0.40 0.23 0.339 MOTOR COMPONENTS -1.27 -1.24 -1.00 -0.65 -0.5310 CLOTHING 0.09 -0.02 -0.48 -0.23 -0.4411 WOOL 0.33 -0.50 -0.43 -0.66 -0.4812 MISC. TEXTILES 0.12 -0.22 -1.02 -0.69 0.4413 LEATHER -1.71 -1.53 -0.84 -0.95 -1.0814 FOOD MANUFACTURERS -0.05 -0.06 0.11 0.57 0.62Table 27: Scores ranking the spread of log residuals for industrial groups.1983 1984 1985 1986 1987LEATHER LEATHER TEXTILES M. LEATHER MACHINE TOOLSMOTOR COMPON. MOTOR COMPON. MOTOR COMPON. BUILDING MT. LEATHERBUILDING MT. BUILDING MT. BUILDING MT. TEXTILES M. BUILDING MT.ELECTRICITY INDUSTRIAL PL. LEATHER WOOL MOTOR COMPON.INDUSTRIAL PL. WOOL INDUSTRIAL PL. INDUSTRIAL PL. ELECTRICITYCHEMICALS TEXTILES M. CLOTHING MOTOR COMPON. WOOLFOOD MANUF. CHEMICALS WOOL MACHINE TOOLS CLOTHINGPAPER & PACK FOOD MANUF. CHEMICALS CLOTHING PAPER & PACKCLOTHING CLOTHING FOOD MANUF. PAPER & PACK CHEMICALSELECTRONICS ELECTRONICS PAPER & PACK ELECTRONICS ELECTRONICSTEXTILES M. ELECTRICITY ELECTRICITY CHEMICALS TEXTILES M.WOOL MACHINE TOOLS ELECTRONICS ELECTRICITY FOOD MANUF.MACHINE TOOLS PAPER & PACK MACHINE TOOLS FOOD MANUF. INDUSTRIAL PL.METALLURGY METALLURGY METALLURGY METALLURGY METALLURGYTable 28: Industries ranked by spread of log residuals. Below, the largest spread.Finally we studied the importance and e�ect of the SEIC industrial grouping when used as aninput variable for modelling accounting relations. Our results show that industrial groups cannotbe ignored. Both the spread of size and the one of internal features of �rms are dependent on thegroup to which each case belongs. But in the last case the e�ect of grouping is not similar acrossindustries.The existence of higher order e�ects in the space of �rm's features demands the use of algorithmsable to model them. Higher order e�ects can form \statistical exclusive-OR" structures which areimpossible to model with linear tools and very di�cult to account for even with the conventionalnon-linear ones. In the second part of this study we show how Neural Networks are able to modelhigher order relations ensuring good generalisation.
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Part IINeural Networks and KnowledgeAcquisition in Accountancy andFinance
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Introduction To This PartThe second part of our study is dedicated to show how Neural Networks implement the frameworkdeveloped in previous chapters.Despite ratios being a simple and appealing way of assessing the features of the �rm, when thegoal is the understanding of the statistical behaviour of accounting data it seems more reasonable tostudy individual items �rst. This was our basic programmatic statement which proved itself fruitful.Items are much more regular and easy to model than ratios. The observed ones were two orthree-parametric lognormal. Such a characteristic carries with it an explanation for the existence ofoutliers and heteroscedasticity so often mentioned in the literature.Items seem to re
ect mainly size and deviations from size. Regarding size there is no reasonto establish a separation between the statistical behaviour of positive items and those having alsonegative cases. Cross-sectional samples having negative cases should be modelled as two groups.Given the lognormality of items and their sharing of a common source of variability it is possible toextend the notion of �nancial ratio so as to account for non-proportionality between its components.Non-proportionality is not inconsistent with proportional or multiplicative mechanisms. And it isexpected to a�ect mainly small �rms.The distribution of ratios becomes easy to understand by observing the way their componentsinteract. The logarithmic space allows such a direct observation. For example, some irregular be-haviour reported in the literature and so far unexplained emerges as a consequence of the numeratorof the ratio being bounded by the denominator. This a�ects the long multiplicative tail of the ratiodistribution so that it is constrained to be much shorter.Size and grouping are the two main sources of variability in accounting data. It is possible toapproach the statistical e�ect of size by building case-averages of several log items convenientlyselected. The industrial grouping of �rms introduces higher order e�ects in the variability of thedata. Not only features like liquidity or pro�tability are di�erent from group to group. They alsoseem able to react in di�erent directions in the presence of the same perturbation.As a consequence: The algorithms for modelling accounting relations will need the ability tointroduce non-linearity when necessary. This stems from the existence of base-lines | which producea concavity in the spread of cases in log space | as well as from the higher order relations ingrouped data. 137



The introduction of a non-linear modelling capacity must be achieved without damaging theability to generalise of the resulting model, that is, using the right assumptions and the number offree parameters required by the problem and not more than those. The second part of this study isthus devoted to explore the possibilities of the new algorithms known as Neural Networks since theyseem particularly apt to respond to the requirements of a powerful non-linear yet tightly controlledmodelling.Description of this part: Chapter 6 is an introduction to Neural Networks. It contains anhistorical note written so as to give the necessary perspective of the development of these tools. Itfurther explains where Neural Networks are seemingly interesting in Finance and Accountancy.In chapter 7 Neural Networks are described as a maximum likelihood implementation of theextended ratios devised in chapter 3. We show that the problem of choosing appropriate ratios forstatistical models can be avoided. Neural Networks seem able to improve our knowledge of a relationby �nding the appropriate ratios to model it. When using procedures consistent with the statisticalnature of accounting items the optimization process leading to the modelling of a relation can �ndextended ratios adequate for representing such a relation. An internal node of a Neural Networkconveniently trained will build internal representations similar to ratios. Such representations areself-explanatory thus improving our knowledge of the modelled relation far beyond the informationprovided by the model itself.Chapter 8 explores the possibilities of Self-Organized Neural Nets in improving ratio diagnosispower and speci�city. The �rst part of this chapter is a discussion of graphical tools which approachratios but are two-dimensional. In the second part, Self-Organized Maps are implemented as a meansof obtaining automatic diagnostics from these two-dimensional ratios. The devised tool can be usedas a pre-processor for extracting rules from databases containing accounting data. Such rules canthen be used by symbol-based expert systems along with other sources of information.Finally, chapter 9 attempts a taxonomy of risk based on the capabilities o�ered by Neural Net-works to model complex relations. A clear improvement is obtained in the understanding of the waythe market trades a particular class of assets.The role of Neural Networks in this study: So far, expectations about Neural Networksare related to the modelling of di�cult relations (pattern recognition) or the mimicking of brainfunctions.A considerable e�ort has been devoted throughout this study to devise appropriate learningand post-processing techniques for the Multi-Layer Perceptron so that it could be used just as anyother statistical modelling tool. An important result we came across is the ability these tools display,under particular circumstances, to form self-explanatory internal representations able to increase ourknowledge of the modelled relation. We show that some speci�c statistical problems requiring self-explanatory power can greatly bene�ciate from the existence of internal representations meaningful138



for accountants.Therefore, the reason for using Neural Networks here is not just the need of simple and versatileyet powerful tools able to deal with the complexity of the relations. It is also the fact that internalrepresentations turned out to be meaningful and an important way of acquiring knowledge frompast experience.This is fortunate because the traditional tools for knowledge acquisition seem not to �t wellin many �nancial applications. The nature of accounting and �nancial relations, where the inputvariables are continuous-valued and stochastic, makes it di�cult for the usual expert systems basedon symbolic computation to deal with. Observations such as those found in stock returns, or dataorganized in accounting reports, cannot be e�ciently used by actual expert systems as a source ofknowledge. We expect to prove that Neural Networks can provide self-explanatory results, alongwith improvements in performance.
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Chapter 6An Introduction to NeuralNetworksThis chapter intends to be an introduction to the modern statistical modelling tools known as NeuralNetworks but only to the extent of their usefulness in accounting and �nance research.There are already many articles and books available on the subject. We limit this review tothe kind of Neural Networks interesting for our study. We mainly focus on tasks which cannot beeasily performed by tools based on symbolic computation. For example, the statistical modelling ofrelation having continuous-valued inputs. Therefore, we omit any reference to binary-threshold netsand those intended to mimicking the brain.This presentation emphasizes the description of two kinds of nets we use later on in this study:The Multi-Layer Perceptron and the Kohonen's Map of Patterns. Incidentally, these are also themost used Neural Networks nowadays. And they represent the two main views or branches ofConnectionism.The contents of this chapter are neither original nor presented in an original way. We recommend,as a complement to it, the excellent book by Pao [92] on adaptive techniques. Some formalism wedisplay when describing Back-Propagation owes its clarity to being inspired by this author. Finally,since it is usual to quote the Lippmann article [80] as an introductory piece of information on NeuralNetworks we obligingly do so.6.1 Historical NotesThis section is dedicated to explaining the genesis of Neural Networks and the role they play inknowledge acquisition. Only an understanding of their origins and prospects can lead to the forma-tion of an opinion about the interest of these tools in Accountancy and Finance. A perspective of140



its future becomes easier when knowing its past.The history of Neural Networks is not a common one. Known as such from the early forties, theytrod an adventurous path with periods of intense enthusiasm and almost total eclipse. The actualdevelopment, which began in 1985, is partly the outcome of a much expected discovery.Learning theory and the learning tools known as Neural Networks are the result of two lines ofresearch which began their paths very early | about the second world war | and remained closelyassociated until the decade of the sixties.The �rst of such lines was technical. It included mathematicians and engineers trying to buildwhat is known as the Optimum Filter. They used concepts extracted from Tele-communications:Linear Systems, Stochastic Optimization and Information Theory. The second line was speculativeand its goal was the building of arti�cial machines similar to the human brain. This science wasknown, and still is, as Connectionism. In the next paragraphs we follow the development of both.The Optimum Filter and other automatic learning devices: A �lter is a tool able toseparate, in a continuous 
ow of information, the real signal from the randomness attached to it.The study of �lters is typical of the Information and Communication sciences. However, theproblem of �ltering is very general. Optimum �lters are similar to automatic controllers or pre-dictors. And the problem of building them is also similar to the problem of building a generalstatistical modelling tool, able to separate pure randomness from real features of the data withoutthe intervention of experts. For example, what engineers call a linear �lter could be described as alinear regression in a time-series context. Past observations are used to predict future events.Filters are optimal according to a criterion, in the same sense a regression minimizes the squarederror. But they often include other criteria, like stability, as well.A learning or adaptive �lter is the one which adapts its behaviour (its free parameters) tochanging inputs, according to one or more criteria. In the linear case it would be a sort of adaptiveregression able to change the slope and the intercept when the data changes.Such a learning system will accomplish behaviour modi�cations without external intervention inits operation. The number of parameters engaged in the modelling and even the amount of non-linearity introduced, are selected in such systems just by the in
uence of the input and respondingto its requirements. An automatic learning system acts like a dedicated controller whose experienceof the underlying structure of the process improves as the process unfolds. Additional informationconcerning its structure and features causes the controller to adapt himself to the process's behaviour.Such tools are valuable in many areas but especially in communications and in control. Theyhad their origin as solutions to problems posed by military automata. Nowadays they are alsoconsidered as potentially interesting for knowledge acquisition and machine learning. In fact, it isthe very nature of the process which eventually emerges and becomes transparent when described bythe set of parameters used for modelling it, along with the a-priori assumptions used. The amountof knowledge provided in this way often is more interesting than the model itself.141
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t -> wiFigure 44: Schematic representation of the simplest Wiener �lter. An inner product of adjustableparameters W with the past history of a time process X is used here to approach the actual eventxt. The solid line is the output of the �lter.Early studies on Learning: In October 1941, Bell Laboratories and the Massachusets Instituteof Technology (U.S.) engaged Norbert Wiener and other researchers in an intense e�ort to designautomatic devices which could track a plane or a ship, compute the main features of its trajectoryand predict where it would be by the time the shell or bomb had travelled to the target area. Theconceptual basis of this research became the origin of the early automatic learning systems.Norbert Wiener had at that date a large experience on building �lters. During the 30's heidealized, along with Y. W. Lee, a network of circuits able to perform convolutions of incomingsignals. For a signal x(t), t being a discrete time counter, such networks would produce an outputO(t) O(t) = MXi=1 xt�i �wi ; wi being adjustable parameters.M is known as the delay-line size. It controls the amount of memory about the past history of thetime process incorporated into the �ltering (see �gure 44).With such devices Wiener and Lee were able to perform many interesting tasks like the solving ofpartial di�erence equations. They were also able to design a linear �lter of any shape (any frequencyresponse) just by modifying the parameters wi.For the prediction of plane trajectories Wiener used an improved version of the same basicnetworks attached to a mechanism of feedback. The position of a target was computed by the net andcompared with its real position. From here a measure of error was obtained. Then the parameters142



wi were updated so as to minimize such error. This procedure was carried out interactively. The�nal result was that the trajectory of the target would be learned by the set of wi.Such a simple mechanism, which in practice didn't succeed, nevertheless became the basis ofmodern �lters and the paradigm of automatic learning for more than twenty years. Some of themodern Neural Network learning rules are also based on it.Further developments: In order to identify or to recognize the pattern for automatic learning,it is necessary to build a mathematical model of the process to be learned. Kolmogoro� [74] andWiener [136], assumed �rst that the process was linear. Then, they demonstrated that the �lteringand the prediction of stochastic series were special cases of the same learning problem. Their workcould be described as the �nding of a general recipe for the building of learning systems. Thesigni�cance of such work is stressed by Y. W. Lee:Wiener's theory of optimum linear systems is a milestone in the development ofcommunication theory. The problems of �ltering, prediction and other similar operationswere given a unity in formulation by the introduction of the idea that they all have incommon an input and a desired output. Then, the minimization of a measure of error,which is absent in classical theory, was carried out. The entire theory, from its inceptionto the �nal expressions for the system function and the minimum mean-square error isinvaluable in the understanding of many problems in a new light [77].As originally formulated,Wiener's early methods are applicable only to linear time-invariant dynamicprocesses which are to be optimized by a Least-Squares criterion. Booton [16] extended in 1952Wiener's work to the optimization of linear time-varying dynamic processes possessing either time-invariant or time-varying statistics. Kasakov [68], Shen [115], and others, treated nonlinear feedbackcontrol systems with random inputs using stochastic learning techniques.Wiener's latest work on this subject, Non-Linear Problems in Random Theory (1958) [137]opened up the path for a theoretical approach to self-organizing and adaptive systems. In hisframework the complexity of the system's repertoire of available non-linearity increases as the learn-ing process develops so as to maximize the 
ow of new information about the structure of the processthus creating an internal model of it. In a restricted sense, if some input and output functions rep-resent the behaviour of an unknown process, the Wiener system will organize itself into a model ofthis unknown mechanism, provided statistical regularities exist in the process. The basic tool forsuch organization is, of course, the ability to abstract those regularities from the stochastic series onwhich it is to operate.Limitations of analytical learning systems: Being analytical, the Wiener solution cannotavoid some lack of generality. Assumptions must be made about the statistical nature of the input.If not, it would be impossible to apportion analytically the parameters between input and output.143



Only Gaussian processes and a few more classes of random processes are correctly modelled bythis method. And the modelling of the signals is made | in the later versions | using Volterrafunctionals, that is, Taylor series with some limited amount of memory of past events [131].When a system becomes optimal only given the restriction that it must belong to a speci�edclass, the kind of information that such a system can identify and use is also restricted. A linearsystem, for instance, can produce a signi�cant improvement in mean-square error reduction, only ifthe spectral densities of the signal and the randomness attached to it are di�erent, since it cannot useany other information. Therefore, an optimum linear system, in the Wiener's sense, is no better thanan optimum attenuator. Higher order modelling requires non-linear systems because dissimilaritiesin the characteristics of stochastic series, which the linear system would ignore, can now be used toreduce mean-square errors.Although no analytic general solution exists for the general learning model some broad cases havebeen explored. In the U.K. Denis Gabor built in 1960 his Universal Non-Linear Filter, Predictorand Simulator which Optimizes Itself by a Learning Process [46]. It was an application of Wiener'slater work. In the U.S., Shen and Rosenberg [114] used the same principles.Many military and tele-communication applications of these early attempts followed. They wereanalytical-based dedicated automata to be used whenever computational speed was required. These\Wiener-Volterra Systems" are not very 
exible nor very good in generalisation for, after all, theyuse polynomials to approach the data. But being analytical they avoid problems of convergence andare easily built into very fast hardware. A good review of such systems can be found in Schetzen'sbook [108].Neural Networks seek the same goal. But they are not based on analytical optimization. Stochas-tic search techniques are used instead to discover in the parametric space a point obeying a desiredcondition. They generalise better but their learning process is much slower.Brain Mimics: It is bizarre that a practical application of Wiener's aspirations was at lengthprovided, not by any mathematical analysis, but by a few neurophysiologists trying to build modelsof some brain functions like reasoning and recognition.Arti�cial neural models emerged forty years ago as a broad mimic of the real neural structureof the brain. The paradigm of Connectionism's early work is the Hebb's Rule. Strongly in
uencedby Behaviourism and other theories accepted at that time, Donald Hebb wrote in 1948 a book, TheOrganization of Behaviour [56], proposing a plausible mechanism by which learning could take placein the brain. The Hebb's Rule simply states that whenever two neurons are excited at the same timethe connection between them strengthens. Many Neural Network learning rules had their origin inthis mechanism or in variations of it. However, the strong theoretical basis of connectionism hasbeen provided by mathematicians rather than by Psychologists.Like Wiener, Dr. Warren McCulloch was a mathematician interested in practical problems. He�rst met Wiener in 1942 and their collaboration lasted for a few years. McCulloch was mainly144



interested in the organization of the cortex of the brain. Working with him was Walter Pitts, astudent of logic and biophysics. In 1943 Pitts moved to the M.I.T. for reading with Wiener. Theyworked together on pattern recognition until 1948.Wiener's ideas on �ltering and automatic learning must have inspired the �rst paper McCullochand Pitts published. It was A logical Calculus of Ideas Immanent in Nervous Activity (1943) [84],formalizing the intrinsic structure of the neural process leaving aside its biochemistry. The calculuswas very revealing. Using only concepts like the �ring of neurons, excitatory and inhibitory con-nections, synaptic delays, all-or-none processes, it was possible to show that the speci�cally biologicaspects of the nervous system are irrelevant to the understanding of perception. But the most im-portant aspect of this work is the parallelism it establishes between the Turing Machine and thebrain. The concepts of Turing's Machine is signi�cant, not only from the purely analyticalstandpoint of mathematical logic, but even from the standpoint of the neurophysiologicalunderstanding of the human mind ([85] page 35).A consequence is that the mind can compute all and only those numbers a Turing Machine does.After this, McCulloch and Pitts turned their attention to the problem of the recognition ofpatterns. Wiener describes it as an interrogation:What is the mechanism by which we recognize a square as a square, irrespective ofits position, its size, its orientation? ([138] page 18).In 1947 they o�ered a theoretical description of the neurophysiological mechanisms for patternrecognition in the brain, in their paper How We Know Universals [94]. They suggested mechanismssimilar to those of modern neural nets for explaining the ability of the brain to recognize. Thispaper strongly in
uenced Wiener's thoughts on Learning and Control, being an important point ofview for the work he was about to undertake.The second generation of connectionists: In the 50's the dominant research in Neural Net-works was led by Frank Rosenblatt at Cornell, U.S. Based on the theoretical developments of Mc-Culloch, he built a class of networks called Perceptrons supposed to be able to learn to recognizephysical objects by looking at them.In 1959 Bernard Widrow [135] developed at Stanford, U.S., an adaptive linear �lter called Adelinebased on neuron-like elements. The Adeline and its more sophisticated successors were used for avariety of applications including the recognition of speech and characters, weather forecasting andadaptive �ltering. The Adeline was also the �rst Neural Network to be used in a practical real-worldapplication, the automatic elimination of echoes in phone lines. With Widrow the two branchesdescribed above made a mutual recognition: Engineers became interested in Neural Networks.145
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2Figure 45: The statistical version of the logical exclusive{OR problem used by Minsky and Papertto discard the early Perceptron. No linear frontier in the space of x1 and x2 can separate the twogroups A and B in spite of their clear separability.In the sixties the results of using Neural Networks were promising enough to attract generalattention. Particularly, Rosenblatt's \Perceptron" (1961, see [103]), generated real enthusiasm inthe scienti�c community for a few years.The emergence of Symbolic Computation: Such an enthusiasm lasted for a short period. In1969 Minsky and Papert published Perceptrons [89] showing that Rosenblatt's two-layer Perceptron,being linear, would not recognize patterns involving interactive or higher order e�ects like thosewhich occur in parity-detection (the logical \exclusive-OR" see �gure 45). In order to correctlyclassify patterns using non-linear boundaries, Minsky and Papert showed that Perceptrons wouldneed more than two layers of neurons and the introduction of non-linear transfer functions. At thattime no one knew how to achieve a general learning rule able to adapt the connections betweeninternal neurons.After that, interest in neuro-models languished. The attention of the research concerned withLearning was directed towards the emerging tools provided by Arti�cial Intelligence. For twentyyears Connectionism was con�ned to a few laboratories, mainly concerned with the brain itself:James Anderson, at Brown University, U.S., revived the Hebbian principle in his Linear Associator.Teivo Kohonen, in Helsinky, also envisaged a modi�ed Hebbian principle known as CompetitiveLearning, for creating self-organizing maps of patterns.During the seventies and early eighties the dominance of symbolic methods was overwhelming.Machine Learning and Knowledge Acquisition became synonymous with Symbolic Computation.The emergence of the Computer Sciences as an independent branch, the fast progress in the speedof conventional machines, the existence of generous funding, all this turned the attention of thescienti�c community concerned with these subjects towards tools based on Discrete Mathematics.Research programs based on analogue tools were discontinued and most of the earlier contributions146



for e�ective machine learning were forgotten. Machine Learning went exclusively symbolic.The result was a delay in the course of the development of these subjects. And at length, amuddling of concepts and techniques. For example, some researchers tried seriously to use discrete,hierarchical, learning methods like Quinlan's ID3 as an alternative to simple linear regressions instraightforward problems involving the prediction of continuous-valued variables [88], [98]. Theseauthors clearly put the �nding of hierarchical rules ahead of any other considerations.Today, the research tends to consider rule trees as a very attractive way of expressing acquiredknowledge. But only when the model they express is correct. In [12] we further explore this subject.Another result of these years was the narrowing of views and goals inside the small connectionistcommunity. Connectionists became strictly concerned with the mimic of brain functions as a goal,frequently denying the idea that such mimic could be used also as a source of inspiration for thebuilding of useful learning algorithms. A typical example is Stephen Grossberg. He devised anAdaptive Resonance Theory leading to self-organized memories with local characteristics. It is aplausible mechanism for the brain with small practical applicability.Even nowadays, the followers of Connectionism will discard any model for learning if it is notplausible enough as a replica of the brain. One of the most demolishing things anyone can say abouta new Neural Network is that it is not enough brain-like. As a consequence, many recent algorithmsare local, self-organized and altogether with little interest for this study.The return of Neural Networks: The M.I.T. was one of the few places were the interest inanalogue learning never vanished. In 1978 John Hop�eld initiated a collaboration with its Centrefor Biologic Information Processing. As a result, he presented in 1982 a paper to the Academy ofSciences of the U.S. about a new neural model. It was the �rst paper on connectionism accepted inthis body since the 60's.Hop�eld's model [60] introduced a conceptual basis for neural learning in terms of energy. It alsoestablished a parallelism with Ising models (Spin Glass Physics). Hop�eld's net uses fully intercon-nected neurons that seek a minimum of energy. A few years later, Geo�rey Hinton in Toronto andTerrence Sejnowski in the John Hopkins University, U.S., developed a modi�ed version of the Hop-�eld net they named The Boltzmann Machine [59], able to escape from local minima during learningand with the remarkable quality of being trainable even when having hidden layers. Hop�eld's netand the Boltzmann Machine considerably revived the interest of the scienti�c community on Neuralmodels.The breakthrough came in 1985 when David Rumelhart, a professor of psychology at Stanford,U.S., and James McClelland, psychologist at Carnegie-Mellon, along with other members of TheParallel Distributed Processing Group (known as PDP) devised a learning scheme that would allowmulti-layered Perceptrons to feed back deviations from correct response to more than one layerof neurons. Their scheme became known as The Back-Propagation Algorithm [106]. It allows thetraining of all nodes inside a Multi-Layer Perceptron (MLP), even the internal ones.147



Much interesting research followed. For example, the link between Back-Propagation and thecontinuous-valued version of the Hop�eld paradigm was established shortly afterwards by Luis B.Almeida at INESC, Lisbon [2]. Almeida generalised Back-Propagation so as to make possible thelearning in nets with any topology. The original MLP were limited by a feed-forward topology inwhich the information 
ows only in one direction | from the input to the output layer.This Recurrent back-Propagation is especially adequate for tasks requiring some amount of mem-ory of past events like systems identi�cation, the reconstruction of missing cases and the simulationof dynamic systems.As predicted by the early research, the MLP turned out to be a very powerful and versatilemodelling tool, able to solve Minsky and Papert's exclusive-OR problem and many other complicatedones. The MLP is, in practice, a general learning tool as Wiener foresaw it. This fact, interestingas it is, induced a sudden and somehow non-proportional enthusiasm and renewed the interest inmodels based on Connectionism.Indeed, one of the reasons for such a renewal of interest in Neural Networks was the realizationthat Symbolic Computation, when tackling even the simplest problems involving pattern recognition,was severely limited. The task of recognizing \a square as a square irrespective of its position" turnedout to be very hard for tools based on logic, rules, hierarchical structures or other concepts typical ofArti�cial Intelligence. Typical problems of this kind, like the recognition of voice and handwritteninformation, received a second chance of improving by using Neural Network techniques instead.Neural Networks today: Nowadays, Neural Networks are being used for �nding solutions fordi�cult problems of pattern recognition and in military applications. Sejnowski's NETtalk System[110] is often mentioned as a reference point for assessing what Neural Networks can do in these�elds. This program converts text to speech and, connected to a speech synthesiser, it pronouncestypewritten words. It learns from examples of text together with its spoken form. Over ten hoursof such training it progresses from a formless babble to intelligible English.It is clear that, again, there is no correspondence between the real possibilities o�ered by NeuralNetworks and some extravagant expectations about them. The same strong motivations which led tonon-realistic views about Arti�cial Intelligence are now working in the direction of Neural Networkresearch: The reason why the US AI community (academic as well as commercial) has taken upthe neural-net model so enthusiastically is quite straightforward. It is primarily becausethe Department of Defense has decided that neural-net computing is a high-prioritystrategic technology. As an example, the UCLA (University of California, Los Angeles)AI lab has recently started ten new projects concerned with neural networks while sevensymbolic AI projects are due to be terminated shortly. This switch did not come frominside the university. It happened as a result of strong prompting from DARPA and148
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Figure 46: A neuron or node, the basic element of Neural Networks. It implements an innerproduct,X �W , of an input vector, X, with another one of adjustable parameters W .other funding bodies ([43], page 12).Of course, the state of things in the U.S. doesn't have to extrapolate to other countries. Anyway,when assessing the possibilities o�ered by Neural Networks it seems important to have a clear ideaabout their applicability, strong and weak points and clear shortcomings.The most quoted of these shortcomings is the non-ability of Neural Nets to produce interpretableand exportable models like those based on rules and structures. We think that knowledge doesn'thave to be interpretable in all cases. The most complicated pieces of knowledge couldn't possiblybe translated into simple structures.In this study we show two examples of the use of Neural Networks in knowledge acquisition.Both are related to accounting and �nancial research. In the �rst one, the resulting model is simpleand its structure is interpretable. Such an interpretability makes it attractive. But it is interpretablebecause it is simple. In the second one, the obtained model is complex and it cannot be decoded. Butthis is not a shortcoming since the model is important by itself, not because of its interpretability.6.2 The Structure of Neural Networks\Neural Network" is the the name of several modelling heuristics, having in common a topologyinspired by the way neurons are organized in the brain and the use of non-analytical algorithms.If a sample containing input and related outcome variables represent an unknown relation, aNeural Network will model this relation by successive approximations using interactive algorithms.Such process is known as learning or training of the net.Topologically, Neural Networks are lattice structures of simple computational elements calledneurons or nodes connected in a speci�c way. The connections between neurons (known as weights)can be strengthen or weakened during the training process, by means of iterative heuristics, causing149
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� Learning rules: The particular algorithms used for training the net through a steady adaptationof its weights.According to their topology, Neural Networks often belong to one of these families:� Only feed-forward connections: The nodes are organized in layers and each neuron in one layerwill connect only with next layer's nodes. The Perceptron belongs to this group.� Intensive wiring: Each node's output is connected with all the other nodes's inputs. Anexample is the Hop�eld net.According to the transfer functions, there are two main kinds of Neural Networks: Continuous non-linearity, for analog processing; and hard-limiter threshold, for digital processing. The Multi-LayerPerceptron uses continuous non-linearity. The early Hop�eld nets used hard-limiter thresholds.Finally, according to their training rules, Neural Networks can be� Supervised | There is a learning process in its strict sense, as in the Perceptron and Hop�eldnets: Each learning case consists of a vector of inputs and a corresponding vector of desiredoutcomes.� Unsupervised or self-organized, as in the Kohonen map of patterns [72] [73]: The learningprocess does not require explicit supervision: The net organizes itself according only to theinputs.6.3 The Multi-Layer PerceptronThe Multi-Layer Perceptron, widely known as the MLP, is a supervised learning Neural Network.Topologically it is a layered feed-forward con�guration: Nodes are arranged in layers and each node'soutput is connected to next layer's inputs. No intra-layer connections exist, nor any feedback pathsfrom an output to earlier layers. Figure 48 on page 152 represents a three-layer Perceptron withonly one output node.The back-propagation of errors by means of an iterative gradient-descend algorithm allows train-ing by minimization of the mean-squares di�erences encountered between the actual and desiredoutput.In the Multi-Layer Perceptron the output of any, jth, node is not just a simple weighted sum ofinputs. After the summation sj =Pwij�xi the result is submitted to some continuous di�erentiablenon-linearity f(sj) becoming oj = f(Pwij � xi).It is common to use sigmoid-like functions as f(s). In this case the output of the jth nodewould be: oj = 11 + exp ��(sj + �j)�0 �151
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6.3.1 The Delta Rule: The Last Layer's NodesThe Delta Rule is a stochastic version of the steepest-descent iterative optimization algorithm. Ithas been used in the early Perceptrons and it applies strictly to the learning process taking place inthe last layer of the MLP. Since it cannot cope with a topology involving hidden nodes, the learningof these is accomplished using a generalised version of this technique. First we shall introduce theDelta rule by applying it to nodes in the kth layer, the last one.Starting with an arbitrary set of W values, every example in the learning set will be consideredin a random order and its output calculated. Then, the di�erence between this output and thecorresponding outcome will be used to correct every parameter in W by a small amount. The pro-cedure will be repeated for all examples in the learning set again and again, until a minimum squaredi�erence exists between outputs and outcomes. In general, di�erent results emerge depending onwhether the gradient search is made on the basis of Ep or E. A true gradient search should be basedon minimizing the expression 16. In practice, this is seldom the procedure adapted.Convergence is achieved by improving the values of W . This is done by taking incrementalchanges �wkj proportional to �@E=@wkj . That is, given a small �,�wkj = �� � @E@wkjSince the error E can be expressed in terms of the outputs ok and these outputs are a non-linearfunction f(sk) we can use the chain rule to evaluate the above partial derivative:@E@wkj = @E@sk � @sk@wkjNotice that @sk@wkj = @@wkj Xj wkj � ojWe now de�ne �k = � @E@skas the rate of change of the error with respect to sk. So, we can write�wkj = � � �k � ojThis expression contains the rule for updating the weights linked with the last layer of nodes. It isknown as the Delta Rule. � is an arbitrary increment. It is a small value selected so as to ensure asmooth, yet fast, learning.To compute �k = �@E=@sk we use again the chain rule and obtain two terms:�k = � @E@sk = � @E@ok � @ok@sk153



The �rst term expresses the rate of change of the error with respect to the output ok and the secondone expresses the rate of change of the output of any node in the last layer with respect to its input.These two terms are easily obtained. From 15,@E@ok = �(tk � ok)The second partial derivative depends solely on the transfer function we are using:@ok@sk = f 0(sk)Hence, whenever we accept a Least-Squares success criterion, the deviations tk�ok from the desiredoutcome can be viewed as the rate of change of the error with respect to the node's output. Noticethat when the criterion is a di�erent one this relation has to be re-written.For any node in the last layer we can write�k = (tk � ok)� f 0(sk) (17)hence �wkj = � � (tk � ok)� f 0(sk)� oj (18)The original Perceptron of Rosenblatt, having only one layer of nodes, would learn to optimize aninternal model of the data with steady improvements, �wkj, of the weights wkj by means of thedescribed algorithm. Adaptive �lters and some versions of the Adeline also use this learning scheme.6.3.2 The Generalised Delta RuleThe general solution of the non-linear modelling problem came with the use of internal layers ofnodes acting as intermediate maps able to apportion as much piece-wise non-linearity as needed formodelling the relation.In the modern version of the Perceptron, the MLP, several layers of nodes are matched in cascadeso that the output of a previous one is the input for the next. Theoretically, such a device is able toform any continuous smooth map if enough number of internal nodes are provided.Of course, in this new situation the problem is to discover a suitable way for optimal parameter�nding. The Delta Rule described above cannot be used in the learning of relations by more thanone layer of nodes.As mentioned, the solution for this problem has been recently provided by neuro-biologists [106].The method is a generalisation of the Delta Rule already introduced, known as Back-Propagation.When weights are not directly linked with output nodes we still write�wkj = �� � @E@wji154



and proceeding with the same formalism, based on the chain rule, we would have:�wkj = �� � @E@sj � @sj@wji= �� � @E@sj � oi= � ��� @E@oj � @oj@sj �= � ��� @E@oj�� f 0(sj)� oj= � � �j � oian expression formally similar to equation 18. However, in the case of hidden units we cannotevaluate @E=@oj directly. But we can write it in terms of known values obtained from the last layer:� @E@oj = �Xk @E@sk � @sk@oj= Xk �� @E@sk�� @@oj Xm wkm � om= Xk �� @E@sk�� wkj= Xk �k � wkjTherefore we can write in the case of hidden nodes:�j = f 0(sj)�Xk �k �wkjThat is, the rates of change of the error with each node's s can be computed from the previousnode's �. Previous in the sense that they are closer to the output. The basic mechanism of Back-Propagation consists in making it possible to evaluate all the � throughout the net just by beginningto evaluate them for the last layer and then proceeding backwards.Therefore, the Back-Propagation algorithm evaluates �rstly the �k using expression 17 and \prop-agate" these errors backwards along the net.Notice that, when the adapted f(s) are sigmoid, hyperbolic tangents or similar logistic functions,then f 0(s) assumes a very simple formalism. For example, in the case of the sigmoid,since oj = 11 + exp [� (Piwji � oi + �j)] then @oj@sj = oj � (1� oj)and the � are given by these or similarly simple expressions:�k = (tk � ok)� ok � (1� ok) and �j = oj � (1� oj)�Xk �k � wkj (19)for nodes in the output layer and for nodes in the hidden layers respectively.155
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Using an internal layer with a variable number of nodes it is possible to control the basic infor-mation 
ow used in classi�cation: Many nodes will produce great detail or even no generalisationat all; less nodes will improve generalisation.Nodes tend to individuality: However, the MLP often exhibits a remarkable behaviour whichgreatly improves the generalisation beyond that expected for a given number of free parameters.Any change in a weight's value is proportional to @o=@s. Hence, the changes are maximal forvalues of s impinging upon the central zone of the transfer function, the one having the largest slope.Figure 49 on page 156 illustrates this fact. It shows the shape of a sigmoid-like function and itsderivative. Since changes in a weight's value are proportional to the magnitude of this derivative itturns out that mid-range values introduce large changes in the weights while extreme values makethe net change little.When the s are mostly in the mid-range of their transfer functions, the node under question isnot yet trained or committed. It can turn up or down. Under these conditions the weights changerapidly. On the contrary, a committed node changes their weights little since the derivative is small.The described feature is interesting since it shows that, inside a given topology and by thein
uence of a learning set, nodes tend to acquire a stable state and remain there. Hence, it isexpected that each node on a fortunate model will capture important features of the relation. Theliterature refers several of such cases. In terms of knowledge acquisition this quality is valuable.In chapter 7 we explore the ability an MLP seems to exhibit to relate features with particularnodes. Each node seems able to learn or capture a particular characteristic of the �rm in a waysomehow similar to the procedures typical in ratio analysis.Resonance: When the minimum number of nodes in any hidden layer matches the number offeatures important for the relation to be learned, the likelihood of each one of those nodes becominga model of a di�erent feature of such relation is larger. When that happens, the MLP performsan e�ective features extraction. As a consequence, the generalisation capacity receives a furtherimprovement.Some applications take advantage of the trend towards individuality the nodes in the MLPexhibit, to �nd the important features of a set of examples. Using a topology known as the Bottle-Neck MLP, the same set of examples are presented both as input and as outcome. This techniqueis similar to Factor Analysis. But when more than one hidden layer is used, also non-linear featuresare extracted.6.3.4 Discrete Versus Continuous-Valued OutcomesThe MLP performs both non-linear multi-variate regression and non-linear discriminant analysis.In the �rst case it is called upon for approaching a continuous-valued outcome. In the second one,158



outcomes are discrete states. The correct classi�cation of classes in the statistical exclusive-ORproblem is an example of the second kind of task.The MLP as a classi�er: In classi�cation, the number of nodes and layers to be used is generallycritical. Following Lippmann [80] any one-hidden-layer MLP should be able to form arbitrarilycomplex frontiers in input space so as to obtain the best possible separation between groups.Each �rst-hidden-layer node creates a hyper-plane in the input space since its input is a linearcombination of input variables. In the next layer of nodes, several of these hyper-planes can be usedto de�ne a region enclosing a particular group of examples relating to one of the given outcomes.That is, in an MLP undertaking a classi�cation, the �rst hidden layer needs to have as many nodesas pieces to build the frontiers for separating groups. And the last layer needs to have as manynodes as di�erent groups (see �gure 52 on page 164).Of course, when inputs and outcomes are only statistically related, that is, when similar inputvectors in the learning set relate to di�erent states, the �nal error of the net, after convergence,cannot be zero. The above reasoning holds, but now we should envisage probability gradientsinstead of well-de�ned, deterministic, frontiers.For such applications the described minimum Least-Squares criterion should be replaced by amore appropriate one. For example, likelihood maximization is often used in classi�cation insteadof minimum Least-Squares. In this case, the model selected would be the one which maximizes theprobability of having obtained those samples which were actually used as the learning set. Andwhen the number of nodes in the last layer matches the number of groups to be classi�ed, it can beshown that an appropriate coding makes the MLP output directly the probability of obtaining suchan outcome given such inputs. Solla et al. [120] contains the appropriate formalism.TheMLP performingnon-linear regression: When outcomes are continuous-valued, no trans-fer function should be used in the last layer of nodes since it would limit the range outputs can attain.It is also important to bear in mind that the amount of non-linearity introduced is controlled by thetotal number of nodes having transfer functions regardless of its position. An exaggerated numberof nodes will produce a too detailed | and hence very sample-dependent | model. Figure 51 showsthe e�ect, in a very simple case (one unique input and output) of introducing nodes.In the case of continuous-valued outcomes the appropriate success criterion is the minimizationof the Least-Squares error. To control the learning process it is common practice to use the overallR2, that is, the proportion of the variability of the targets explained by the model.6.3.5 The Delay-Line MLPAn important consequence of the Wiener-Volterra analysis is that, under very general circumstances,it is possible to model the internal behaviour of any system just by using two feed-forward steps.159
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One linear step incorporating a certain amount of memory of past events, followed by a simplenon-linear map (see [108]).This result is equivalent to say that we can mimic complex mechanisms like systems of non-lineardi�erential equations or a chaotic attractor just by pulling together a linear �lter and a non-linearfunction.Lapedes and Farber [75] used this principle to show that an MLP was suitable for performingsystems identi�cation, time-series prediction and similar tasks. They simply used the input vectoras a delay-line (see �gure 44). Hence, the �rst hidden layer acts like a Wiener �lter. Subsequentlayers introduce the required amount of non-linearity.When used in this fashion, an MLP becomes a very e�ective predicting tool. Its generalisationcapacity, 
exibility and ease of use makes it substantially more attractive than the equivalent ana-lytical procedures. Especially in the prediction of time-series apparently complicated but with anunderlying dynamic mechanism, the use of these delay-line MLP often mean a decisive improvement.We used delay-line MLP to identify the underlying system governing a few random numbergenerators. The resulting topology was very simple. We also tested their use in the modelling of�rst-di�erence chaotic series observing good predicting performances.Notice that most of the tasks referred to here could be more elegantly performed using recurrentalgorithms instead of delay-lines. Recurrent nets engage a smaller number of weights than delay-linenets. Therefore they achieve a better generalisation and require smaller learning sets. Their learningis also faster.Recurrent nets can also cope with missing values in the learning set. In the presence of a missingvalue, they provide the most likely value in the context. This feature is typical of Hop�eld nets andis known, in its more general form as \Associative Recall".Recurrence, however, requires an advanced practice and is not adequate as an introduction toNeural Networks. Almeida [2] contains this formulation.6.4 Self-Organized Neural Maps of PatternsContrasting with Multi-Layer Perceptrons, the self-organized maps of patterns, developed by TeivoKohonen during the late 70's [72] [73], don't require explicit supervision for the learning to take place.Each example of the learning set contains just a vector of inputs instead of the input-outcome pairused by the MLP. Therefore, Kohonen nets don't learn any relation. They self-organize themselvesaccording to the main features of the inputs.These class of heuristics are a good example of strict Connectionist reasoning, inclined to non-supervised learning schemes and strongly inspired by the brain. They became popular as a simplemapping procedure in tasks related to the recognition of the human voice.We shall use Kohonen nets in chapter 8 for mapping two-dimensional scatters suited for �nancial161



diagnosis. The �nal result is a set of rules able to diagnose the state of �nancial features of �rmsgiven its accounting numbers.Topology: In its most basic form, the net consists of a K-dimensional lattice of nodes able tomap the density distribution of the data to which it is exposed. Hence, the task undertaken by aself-Organized Map is the one of establishing a relation between a set of a large number of points,the \patterns" and another set of a much smaller number of points, the nodes.All the nodes are supplied with the same input vector x1; x2; : : : ; xM = X. Each element containsits own set of adjustable weights: For the jth node, a weight vector wj1; wj2; : : : ; wjM will link toa corresponding input variable. Each node's output is a function of both the input vector and theweights: oj = f(X;W ). For example, two frequently used outputs would beoj = MXi=1 xi � wji; an inner product, or oj =vuut MXi=1 (xi �wji)2 an Euclidean distance.It is a requirement that these functions will yield a measure of the distance or similarity between Wand X.Non-supervised learning: The training of the self-organized map is known as non-supervisedsince the examples only contain input vectors, not outcomes. It takes place as follows: A learningset is supplied to all the nodes. When a new vector is shown to the net,1. The node with the largest output is found. It will be the one with greater similarity betweenX and W .2. A neighbourhood is de�ned around this node.3. The weights of all nodes in such neighbourhood are updated or \rewarded" in a way thatmakes them more similar to the example they identi�ed. That is, the new value of a weight,wji, linking the input i with the node j will be calculated aswt+1ji = wtji + � � (xi �wtji)in which t and t + 1 denote a sequence and � is a small increment. The nodes not in thisneighbourhood receive no rewarding.The procedure is repeated for all patterns in the learning set and then again and again. At length,speci�c nodes become \excited" by particular patterns. And the topological relationship betweenpatterns is, after learning, mirrored by the spatial relationship of the nodes excited by those patterns.Patterns are presented to a self-organized map in random order. After training, the value ofeach node's weight vector is usually plotted back into the pattern space with lines linking the nodeswhich are adjacent in the lattice as in �gure 70 on page 207. The �nal result is thus a mapping ofthe many patterns onto the few nodes. Hence, each node \covers" a neighbourhood.162



Speci�c tasks: Clearly, the learning scheme displayed above is a variation of the Hebb's Rule.Kohonen's maps owe more to Connectionism than the MLP. In the last one, the learning scheme isinspired in engineering practice rather than in the brain.Self-organized maps are adequate to perform tasks such as:� Dimension reduction: Find an f such f : IRN 7! IRM , (N > M ), having some optimal quality.� Intrinsic dimension assessment: Find the smallestM < N for which an f exists such f : IRN 7!IRM having some optimal quality.� Mapping as pre-processing for further MLP classi�cation.� Tracing dynamic features (like trajectories).A valuable feature of Kohonen's maps is that it is unlikely to obtain an ordered map when usingnodes forming a lattice of smaller dimension than the intrinsic dimensionality of the training set. Forexample, if a two-dimension lattice of nodes is used to map a really three-dimensional phenomena,the weight vectors will fold in waves, attempting to fully cover the 3-D space. In this case, noreal relation exists between inputs and the density function. Therefore, folding can be used as adiagnostic for tracing an over-reduced dimension reduction attempt. Procedures are available todiscover folding in more than 3-D maps.Once an intrinsic dimension has been recognized and a map produced, an MLP can be used toclassify each shape according to features. This procedure would be the connectionist equivalent toFactor Analysis prior to Discriminant Analysis.Finally, if input vectors are successive events, self-organized maps will draw a trajectory, shouldthe variables bear any kind of joint trend (cross-correlations not zero). Several di�erent trends canbe identi�ed by its trajectories.6.5 Neural Networks and Financial ModellingThis section compares Neural Network prospects in �nancial analysis with classical methods, showinghow some limiting assumptions of the later can be avoided.This section is not intended to describe what is contained in the second part of this study. Rather,it mostly describes what we couldn't do but we would like to, should enough time and appropriatedata were available. On the whole, the examples explored in this study illustrate important andpromising capabilities of Neural Networks in accounting and �nance research.Neural Networks are not a key to all kinds of data-analytical problems. They o�er some speci�cadvantages and they have their own drawbacks. This section mainly focus on those �elds in whichwe think their use is advantageous. 163



Figure 52: Classi�cation boundaries and number of nodes in the Multi-Layer Perceptron for twoinputs. Adapted from Lippmann, R. 1987. An introduction to computing with neural nets, IEEEASSP Magazine, vol. 4.Classi�cation: The most obvious application of the MLP is in classi�cation. Discriminant Analy-sis can establish linear or quadratic boundaries between groups. This seems enough in the majorityof current problems. A Multi-Layer Perceptron will draw boundaries of any shape (see �gure 52 onpage 164). Thus it is able to cope with complex relations involving higher order e�ects. But notonly this. An MLP models complex relations in the most parsimonious way. The number of freeparameters engaged in the modelling can be optimized as well.Bond rating and lending decision mimics have already been attempted with the MLP [31]. Arecent study on the selection of Neural Network architectures for improving generalisation uses bondrating as an example [130]. See also [57] for a review of some Neural Net applications being developedby a specialized �rm. Firm distress prediction has also been modelled by an MLP. This, despite theproblem being well suited for linear algorithms.The described applications are just direct extrapolations of classic and thoroughly explored prob-lems in accounting research. They simply substitute the linear techniques by the MLP. We thinkthat such experiments are not the most adequate way of showing the real possibilities of NeuralNetworks since there is very few of speci�cally related to Neural Networks on them. Instead, wecentre this study in what Neural Networks can do and the other tools can't.164



Assessment of dimensionality and dimension reduction: Statistical tools like Multiple Dis-criminant Analysis or Factor Analysis are unable to clearly point out the intrinsic dimensionality ofthe data. N input variables or groups lead to N factors or N � 1 scores. Despite the use of somead-hoc tests, it is after all the intuition of the researcher who decides how many of these dimensionsare to be considered as real features. Possibly, guesses of intrinsic dimensionality of processes likeeconomic pervasive factors in
uencing capital markets or basic common sources of variability inratios, based as they are on conjectures about acceptable uniqueness, are over-estimations.One of the most promising applications of self-organizing maps of patterns lies in the fact thatthe real dimensionality of the data is recognized as a basic characteristic [73]. The real dimensionof market expected returns or accounting statements could then be assessed.Also the discrimination between di�erent kinds of �rm distress | should they exist | couldbene�t from the capacity of Kohonen maps to trace dynamic features. Since the relation betweenaccounting data and the outcome is in this case very strong | the outcome can be predicted withsmall con�dence limits | it seems as if a simple self-organized map of patterns would be enough totrace it. Such a map would also be able to discriminate between trajectories leading to insolvency.Features Extraction: After the assessment of the intrinsic dimensionality, an MLP can constructnew variables containing the main sources of variability present in the data. These factors can bebuilt so as to be similar to Principal Components or, alternatively, to capture non-linear features.In the later case, the extracted factors are also representations of the data, extracted in such away that the average missing information becomes minimal. But not subjected to the condition ofbeing linear.In other words, Neural Networks can, if required, extract non-linear pieces of information from themulti-variate distribution. For example, if in some two-dimensional phenomena its scatter diagramshows a clear \S" shape, the �rst or main feature to be extracted can be the S shape itself. An MLPwill classify other S-shaped distributions as sharing that feature with the original data. This can bedecisive when trying a classi�cation of sensitivities of assets to market forces based on accountingreports and related information, or other situations where linearity doesn't apply.Forecasting and Systems Identi�cation: The MLP is suited for forecasting as well. In thiscase, the desired outcome is the same time-history as the input but placed a few periods ahead.Each input variable is related to the others so that the information fed into the MLP is a windowrepresenting a given time period. The learning takes place by showing the net many of these windowsselected at random, along with the corresponding time-history a desired number of periods ahead.As a result, the MLP learns to predict the underlying phenomenon.A description of the MLP in forecasting and Systems Identi�cation can be found in Lapedes andFarber (1987) [75]. White [133] used an MLP to try to predict the returns of common stock.Systems Identi�cation is potentially interesting for assessing the extent to which some �nancial165



time-histories are dictated by a complex chaotic behaviour rather than by simple randomness. It ispossible that the price of some commodities are a non-linear dynamic one as well. Benoit Mandelbrotnoticed one such structure in the price of cotton [82] and other authors suggested similar behaviourin indices related to equity in the NYSE [93]. If that is so, the MLP would be a most adequate toolfor capturing the underlying mechanism.Dynamic Features, Stability and Diagnostics: Neural Networks can even cope with time-varying multi-variate data patterns as a whole. Time correlations of non-stationary data can carryimportant information about underlying trends.Considering eachM -dimensional cross-section input as a vector, if there is some relation betweenan event and its predecessors, a trajectory of such a vector will be drawn in IRM . This trajectory canbe recognized by an MLP or, in some cases, by a self-organized map of patterns after appropriatereduction. See Tattersall (1988) [126] for an explanation of this technique.This seems a promising diagnostics tool for discussing the stability of APT factors, di�erentkinds of �rm distress or ratio information contents.6.6 SummaryNeural Networks are versatile modelling tools likely to become useful in speci�c problems involvingthe extraction of knowledge from samples of accounting and �nancial data. The more promisingtasks seem to be those related to:� Complex classi�cation and systems identi�cation. In this case the valuable feature of NeuralNets is their power and generalisation capacity. Chapter 9 is dedicated to the exploring of thisaspect.� Features Extraction via node's speci�city. In this case the feature viewed as interesting is theinformation apportioned by the model about the intrinsic structure of the data. Chapters 7and 8 are dedicated to the exploring of this second aspect.Neural Networks embody two main sources of inspiration. They are Connectionism and Tele-Communications Engineering. Examples have been given of the most representative nets in bothcases: The Multi-layer Perceptron and the Self-Organized Map of Patterns.
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Chapter 7Knowledge Acquisition Using theMulti-Layer PerceptronWe introduced in chapter 6 the Multi-Layer Perceptron (MLP) as a modelling tool. Many otheralgorithms available are also intended to learn a relation input-outcome from a set of examples. TheMLP is di�erent in that it approaches relations by stages, not directly.During the learning process an MLP creates new sets of variables corresponding to di�erentstages of the modelling of the desired relation. A particular stage will use the variables from theprevious one as input. Then, it will make an improvement towards the �nal modelling of the relation.Finally, it will output a new set of variables to be used as input for the next stage. The intermediatevariables generated by an MLP are often referred to as internal representations.In this chapter we show that the ability to create internal representations along with othercharacteristics of the MLP, make it able to automatically extract meaningful knowledge from rawdata directly available in accounting reports and the related outcomes thus avoiding the need forsearching appropriate ratios.The next section explains which characteristics of the MLP are valuable in accounting modellingand knowledge acquisition. Section 7.2 describes how accounting items can be used as direct inputsfor an MLP. Section 7.3 introduces a typical classi�cation problem involving the prediction of theindustrial group to which each �rm belongs, using accounting data. The MLP was able to discoverappropriate ratios for modelling such a relation. Incidentally, it also over-performed the usualstatistical tools in classi�cation power.Using the above problem as a background example, sections 7.4 explains the departures fromordinary techniques we introduced in the training of the MLP. Two contributions are outlined: Thepost-processing of MLP outputs so that they can be used as scores. The random penalization ofsmall weights for improving generalisation and obtaining meaningful internal representations.167



Appendix B complements this chapter. It is a self-contained study of the performance of theMLP when compared with traditional methods.7.1 Speci�c Characteristics of the MLPIn this section we summarize the characteristics of the MLP which seem valuable for knowledgeacquisition and statistical modelling. This is an important issue since MLPs are very expensive inCPU time and attention from the operator. MLPs are the kind of tool which no one uses unless itis really necessary.The characteristic speci�c to the MLP is the ability to model by stages, thus creating internalrepresentations. However, the other desirable features are not easily found, all of them, in the sametool. For example, some statistical algorithms perform stochastic non-linear optimization. But theyhave little control over the amount of non-linearity introduced, or over the dimension allowed tomodel a desired relation.We now summarize the advantages of using the MLP.Meaningful internal representations: It is the back-propagation of deviations from the desiredoutcome towards more than one layer of nodes which makes the Multi-Layer Perceptron potentiallyattractive in knowledge acquisition tasks. The outputs of intermediate nodes, considered as newvariables, can eventually bear interesting information about the process underlying the relation orits features. Such new variables, the internal representations, along with the net topology, can makethe modelling self-explanatory.The mechanism by which nodes learn has been presented in chapter 6. We saw that nodes tendto assume a stable state and behave like small learning units eager to capture a feature of the relationbeing modelled. This often makes them assume meaningful internal representations.Iterative optimization: A Multi-Layer Perceptron adjusts the free parameters which ought tomodel a relation in small steps. Each of these steady improvements seek an advance in the minimiza-tion of the observed deviations between the produced output and the desired outcome. Therefore,the learning of a relation progresses steadily along many small steps. This allows a broad ma-nipulation of the free parameters | known as weights | engaged in the building of the model.Such a manipulation, unavailable in analytical tools, turns out to be essential for achieving goodgeneralisation and interesting internal representations.Tight control over the modelling power: Another important characteristic of the MLP is thata tight control can be attained over the 
ow of information for modelling a given relation as well asover the amount of non-linearity introduced. 168



The minimumnumber of nodes in any layer determines the maximumdimension of the modelledrelation. For example, by using a hidden layer with three nodes, we constrain the relation to bemodelled to have three dimensions. On linear grounds this would mean that the matrix representingthe desired relation would have one of its dimensions set to three.This fact allows a direct control over the power of an MLP when performing classi�cation withnon-linear boundaries. Since classi�cation with arbitrary boundaries requires the arti�cial enlarge-ment of the dimension of the input space, by controlling it we de�ne exactly the kind of boundarieswe allow for classifying.Also the amount of non-linearity an MLP apportion to the model depends on the total numberof nodes in the hidden layers, no matter its topology. We can have two hidden layers, each one withtwo nodes, or one unique hidden layer with four nodes. The amount of non-linearity allowed wouldbe approximately similar in both cases.Together, the last two characteristics of the MLP make it remarkably 
exible in the use of itspower. Hence, the MLP is 
exible in its generalisation as well.Easy implementation of any optimization and convergence criterion: Finally, when ap-propriate, we can easily change the optimization criterion for it is independent of the optimizationprocess. For example, MinimumLeast-Squares deviation, as a success measure, is just one of the pos-sible criteria. Likelihood maximization seems more appropriate for problems involving classi�cation.In such a case, the Multi-Layer Perceptron learns to maximize the probability of having obtainedthe set of input-output pairs which were actually observed in the training set. This 
exibility addsup to the MLP's already good one.Also, the learning itself can be carried out using generalised hill-climbing algorithms like thoseexplained in chapter 6, or more elaborated stochastic optimization techniques involving, for example,simulated annealing. In general, the possibility of simply acting upon the rate of convergence andthe individual increments each parameter receives during the learning process can be most valuablefor achieving meaningful internal representations.7.2 Ratios as Internal Representations of a RelationSimple ratios have been used for extracting useful experience contained in samples where reportswere gathered together with known outcomes. The problem of learning from examples using ratioscan be formalized in this way: Let x and y be two items forming the ratio yj=xj = rj in the case of�rm j. For learning we have a sample containing 1; � � � ; j; � � � ; N examples of these two accountingobservations plus t, the vector of the related outcomes. If we assume the existence of a mapW suchthat W : r 7! t then we learn it by �nding a W which is optimal in some sense.Before doing this we would have to assume an a-priori form for W. For example, a linear W169



would lead to N equations tj = w0 + w1 � rjwhere the w0 and w1 are unknown parameters. Generally, the set of examples is much larger thanthe number of unknown parameters. The problem is overdetermined. However it is possible to\solve" the set of equations in a Least-Squares sense thus obtaining the values of w0 and w1 whichminimize the squared di�erences between ratios and outcomes. In this case, W would minimizeNXj=1(rj � tj)2a measure of the error committed when predicting t from r. In this linear case W = fw0; w1g wouldbe the simple regression's intercept and slope.The above model involves only one ratio and one outcome. It is similar to the ones used byBeaver [7] for discovering ratios interesting for the prediction of �rm failure. Such a formulationcovers both discrete and continuous outcomes and makes no strong assumptions about the distribu-tion of r. However, this algorithm is adequate only if such distribution is reasonably homogeneous.Cascading two relations inside the MLP: The functional relation between accounting items| yielding ratio outputs | is di�erent from the relation between accounting features and outcomeswe now study. The last one is the goal of statistical modelling. However, these two relations are notindependent. Outcomes, like distress or wealthy states, are dictated by internal features of the �rmwhich we believe are re
ected by appropriate ratios.In the case of accounting statistical models used so far, the former relation is embedded in thechoice of the input data | ratios. In the framework presented in this chapter we let the MLP formboth such relations. Appropriate ratios are discovered and used for approaching the outcomes aspart of a unique optimization process.Since size is generally considered as an important piece of information for modelling some rela-tions, we also make allowance for such an assumption to work out as an intermediate result.In short, when modelling a relation we allow ratios to be formed as the output of nodes in the�rst hidden layer of an MLP, along with a proxy for size. Our approach solves the problem of �ndingthe appropriate set of ratios for modelling a particular relation. Such problem clearly emerges whenreviewing the published literature.Forming ratios in the �rst hidden layer: We let the raw data be the input to an MLP. Then,we set it to model the desired relation. As a �rst stage in this process ratios are formed thatapproach the outcomes. Other stages follow. At the end, outputs are the �nal stage. If ratios arethe appropriate way of modelling such a relation, the internal representations formed by the MLPin the �rst hidden layer are extended ratios. 170
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Figure 53: A node able to form a ratio in the �rst hidden layer of a MLP.As seen in section 3.2.1 a multi-variate relation able to account for both common and particularcomponents of the variability of accounting data isr = MYi=1xwiicontaining 1; � � � ; i; � � � ;M items as input. The residuals are omitted. In logarithmic space,log r = MXi=1 wi � logxi: (20)Notice that this expression, an inner product, is the same as a Neural Network node's output.Our approach consists of letting wi be the adjustable connections or weights linking the inputsof an MLP with the nodes in the �rst hidden layer. The inputs are the logs of the accounting items,xi, considered as interesting for modelling the desired relation. Thus we create in each node of the�rst hidden layer an internal representation with the form of an extended ratio. Next layers usesuch ratios to approach the outcomes.We show in section 7.4.1 that by using an appropriate training scheme these extended ratios oftenassume a simple and interpretable form. If the overall model discovered by the MLP is optimal insome sense, it seems reasonable to expect that the discovered ratios represent an optimal choice ofcombinations of variables as well. Therefore, the problem of forming ratios given a set of accountingvariables considered as preeminent can be avoided. The best ratios to be used are not imposed bythe analyst. Instead, they are discovered by the modelling algorithm.The transfer function: Figure 53 is a representation of a node intended to form ratios. Thelogistic function f(x) = 11 + exp(�x� �) (21)which is standard in Multilayer Perceptrons as a transfer function, will bring back the extendedratios from logarithmic space and will also provide a controlled amount of non-linearity for the lowervalues of r. f(r) = 11 + exp(� log r � �) = rr + exp(��)171
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Feature Ratio Tr. Feature Ratio Tr.Operating NW Log Fixed Capital FA=TA SqrtScale S Log Intensity S= Av. FA LogLabour-Capital W=TA Sqrt Short Term D=CA NoneIntensity VA= Av. TCE Sqrt Asset Intensity D=I LogPro�tability OPP=S Sqrt Asset Turnover DD NoneEBIT=S Log S= Av. TA LogOPP= Av. TCE Sqrt S=I SqrtEBIT= Av. TCE SqrtNet Trade D=C Sqrt Financial DEBT=NW SqrtCredit Leverage DEBT=TCE NoneTable 29: Ratios used in the original study and their transformations.extracting from them the eight principal components. These new variables were then used as inputsfor a Fisher's Multiple Discriminant Analysis (MDA). A description of these ratios and the modellingprocedure can be found in [124]. Table 29 reproduces them along with the transformations applied.\DD" means the ratio Debtors Days.Appendix B is a self-contained study of the performance of the MLP compared with traditionalmethods. There, a description of our reproduction of the method usual in �nance research can befound along with the detailed MLP classi�cation results.The new approach consisted of using eight accounting variables directly, not in the form of ratios.The selected items were Fixed Assets, Inventory, Debtors, Creditors, Long Term Debt, Net Worth,Wages and Operating Expenses less Wages. All these variables were present in the original 18 ratios,along with others like Earnings, Value Added, Total Capital Employed and Total Assets which wedidn't use in the new approach.Criteria for selecting the input variables: The criteria used for selecting the new variables wasthreefold. Firstly, they should have been present in the original set in order to allow the comparingof results. No new information was to be introduced in the problem. Secondly, we avoided itemsrepresenting totals for reasons explained in chapter 4. Finally, the input dimension should be eightor less. The number of common factors extracted from ratios in the original study was eight. Eightitems or less wouldn't allow a larger 
ow of information.The choice of EX and Wages instead of Sales and Operating Pro�t stems from the same reason-ing. The discarding of Earnings stems from not being appropriate for the log transformation. Theinformation contained in EBIT could be introduced by Sales and COGS but for this particularmodel the residual EBIT didn't seem important.The selection of cases for the samples: A major methodological di�erence between our ap-proach and the usual one was the way �rms were selected. In general, one-variate normality criteriais used to prune the original sample of ratios down to an acceptable number of standard deviations.174



N. Group Code Group Name N. Cases Proportion1 14 Building Materials 31 6.2%2 32 Metallurgy 19 3.8%3 54 Paper and Pack 46 9.2%4 68 Chemicals 45 9.0%5 19 Electrical 34 6.8%6 22 Industrial Plants 17 3.4%7 28 Machine Tools 21 4.2%8 35 Electronics 79 15.7%9 41 Motor Components 23 4.6%10 59 Clothing 42 8.4%11 61 Wool 19 3.8%12 62 Miscellaneous Textiles 30 6.0%13 64 Leather 16 3.2%14 49 Food Manufacturers 80 15.9%Table 30: Industrial groups and the proportion of each one in our sample.We followed a case-wise method for discarding undesirable �rms. It was not based on distribu-tional considerations. Only cases known as distressed �rms, non-manufacturing representatives offoreign companies, merged or highly diversi�ed ones were excluded.Results concerning two sets of data are reported. The �rst (\1984") represents a cross-sectionalview. The second (\SIX YEARS") checks the regularity of �rm grouping during a larger period.Table 30 displays the proportions of cases in the 1984 set. Notice how groups are dissimilarin size, the smallest one having 16 �rms and the biggest 80. These proportions entail no priorknowledge of any classi�cation.7.4 Improving Generalisation and InterpretabilityIn this section we explain the characteristics which make our MLP di�erent from the standardalgorithm. They can be summarized as:� The use of two samples, one for learning and another one for assessing the classi�cation per-formance. This is commented in 7.4.1.� The random penalization of small weights, explained in 7.4.2.� The post-processing of outputs, outlined in 7.4.3.� Learning rates particular to each weight as described in Silva and Almeida [116].� Likelihood maximization instead of squared deviations minimization, as explained in 7.4.3.The �rst characteristic relates to improvements in the ability to generalise. It is a particular im-plementation of a known procedure, the Cross-Validation [122] [123]. The random penalization oferrors and the post-processing of outputs are speci�c contributions of this study. They allow theuse of the MLP for general-purpose statistical modelling and the interpretability of results.175



7.4.1 Generalisation: Using the Test SetIn order to obtain an estimate of the generalisation capacity of a model, the original samples weredivided randomly into two sub-samples of approximately equal size. All models were constructedtwice, �rst with one half of the sample and a check carried out with the other half, and againreversing the roles of the two half data sets. Results were considered conclusive if both models,when validated with the half-sample not used to build them, produced consistent results.All classi�cation results reported here concern the test set, not the training set. That is, theywere obtained by measuring the rate of correct classi�cation in the half-set not used for learning.The classi�cation performance on the set used for learning depends solely on the number of freeparameters and can be increased simply by introducing more nodes on the net. Therefore suchresults are uninteresting and are not presented here.The normal approach to test a model, by deleting a single observation and predicting its valuewith the model estimated on the rest of the data set, and repeating this procedure N times, isnot feasible. This is because the training of a Neural Network is time consuming. The procedureadopted will however, with a large enough data set, produce unbiased estimates [37] [122].The described procedure, combined with incomplete training, also allows improving the general-isation of the MLP. This is a common practice. Next we describe incomplete training.The role of incomplete training: Since the MLP seeks an optimum iteratively, we can stop itstraining when an optimum is obtained in the test set rather than in the training set. In doing so weprevent this powerful algorithm from over-�tting the data.It is generally believed that the Back-Propagation algorithm seeks the modelling of progressivelysmaller or less important features of the relation during the learning process. Firstly, broad featuresare accounted for: The mean, a linear trend. Then, more detailed ones are modelled. Hence, thee�ective degrees of freedom the MLP engages can be viewed as increasing during learning [132].Assuming that the topology of the net contains plenty of free parameters, the MLP will be ableto model, not only the desired features but also the undesirable random uniqueness of a particularsample. We prevent it from doing this by stopping the process before �nishing. The appropriatemoment for stopping is when the results, as measured by the test set, are optimal.Figure 56 on page 177 shows the evolution of classi�cation results in the test set during thelearning process for the 1984 data. After 300 presentations the classi�cation reaches an optimum.If the learning continues, the classi�cation breaks down. Such a breaking down is a clear sign that,from the optimal point on, the MLP is no longer modelling any features of the population. Instead,it is modelling the variability particular to the learning set.For a good topology, the fact that the learning stops before a minimum is reached in the learningset clearly enhances the generalisation. The di�erence between the generalisation performancesachieved with analytic tools and the iterative ones stems from this ability to stop. In our example, if176
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Figure 56: Typical evolution of the classi�cation results during the learning process. 1984 (test set).we allow the training to proceed, the generalisation obtained with the MLP is similar or even worsethan the one obtained with analytic tools.The role of an appropriate topology: We found the generalisation capacity very dependenton the topology of the net. The number of nodes in a hidden layer seems to determine, not only thedimension of the relation, but also the ability of the MLP to generalise. Persistently, we obtainedgood generalisations whenever a hidden layer would have six nodes. Both the 1984 and the SIXYEARS data set exhibit such a feature. Figure 57 on page 178 shows some classi�cation resultsfor di�erent numbers of nodes in the �rst hidden layer for the SIX YEARS data. Similar patterns,though not so contrasted, were observed for the 1984 set.7.4.2 Random Penalization of Small WeightsAnother major goal of this study was to evaluate the power of Neural Networks in knowledgeacquisition. Multi-Layer Perceptrons are often considered as not ideal in applications where self-explanatory power is required. However, in the case of accounting variables it seems possible tointerpret the way the relation has been modelled by looking into the weights connecting inputvariables with the �rst hidden layer's nodes. These weights are the free slopes of ratios.In order to enhance interpretability we introduced during training a random penalization ofweights with small absolute values. A weight is inhibitory when its absolute value is smaller thanthe unit. If the input variables were very di�erently scaled, inhibition values in the input weightscould just mean that the MLP was trying to scale down a particular variable. Since the log itemsused as input to the MLP are mean-adjusted and have very similar spread the only reason for any177
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� Before the end of training, all the weights connecting inputs to the �rst layer and exhibitingvery small values are set to zero and �xed.Such procedure is applied only after the discovery of the topology yielding the best results.Just by dedicating one node of the �rst hidden layer to the modelling of the strong e�ect wenotice an improvement in speed of convergence and in the �nal generalisation. Adding the ran-dom penalization of inhibitory weights, both speed and generalisation receive a further, signi�cant,improvement. When the topology is not the best, this procedure can worsen the generalisation.Complementary remarks: The method described here was the one used for this particularexperiment. In di�erent cases we found that the performance would not su�er if all the weightsbelow an inhibitory threshold were penalized at the beginning of each new presentation. Thisthreshold typically would begin in 0.1 with the training and then it would be updated to largervalues later on. Instead of �xing the weights just before the end of the training we also introducedtheir �xing during training whenever they would become small enough.This simple procedures enhances performance and generalisation considerably. The fact that bythe end of the training the real number of free parameters is much reduced is also rewarding.Notice that we never tried this method with the usual, simple, Back-Propagation algorithm.Each one of the weights in our MLP has its own increment, adjusted as described in Silva andAlmeida [116]. It may well be that our algorithm's performance is contingent on such a procedure.Other popular methods for pruning the MLP are the \Skeletonization" [90] and \Optimal BrainDamage" [76]. The �rst one is intended to reduce the number of nodes, not weights. The secondone is too general for this task.Results: When the training �nishes the number of variables to consider in each node is very smalland characteristic. Looking at the non-zero weights it is possible to understand, in accounting terms,what the free-slope ratios formed in each node are doing.Table 31 shows the extended ratios formed in a net with 8 inputs, 6 nodes in one hidden layer and14 output nodes, trained with 1984 data. The emerging organization reproduces the way an expertin ratio analysis chooses variables. It is usual to build several ratios around one or two variablesjudged as important to capture a relation. As an example, e�ciency is modelled around capitalturnover, stock turnover and so on. Pro�tability is built around pro�t margin, return on equity, etc.Experts put together several points of view around a few signi�cant variables by using them tocontrast others. Extended ratios seem to be trying the same sort of procedure. The item EX hasbeen used in all hidden nodes to contrast others. It seems as if it were important for this problem.The ratios the MLP discovers are not always simple. Ratios like (C � FA)=(W � EX) are notthe most familiar ones to accountants. However, in general the combinations of items which emergeas interesting are clearly visible when examining the organization of the hidden nodes.179



Variable Node Number 2 3 4 5 6Long Term Debt -6Net Worth 8Wages 1 -6Inventory 8Debtors 2 -2Creditors 3Fixed Assets -9 -4 6 -4Operating Expenses less Wages -10 4 8 -2 3Table 31: Approximate values of weights connecting input variables with nodes in the �rst hiddenlayer after training with random penalization.Testing the Performance of the Devised Ratios: Our interpretation of the ratios formed inthe hidden nodes according to table 31 is as follows: 8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>: In the 2th node: NW � IFA�EXIn the 3th node: EXFAIn the 4th node: EXDBIn the 5th node: FA�CW � EXIn the 6th node: EXpFA�D : We testedthe performance of such ratios when used as inputs for linear classi�ers in the described problem.The �ve ratios plus the size e�ect actually classify the 14 industrial groups with the same accuracyas the original 18 variables.The gain in performance by using the MLP is, of course, much more visible. Apart from its non-linear modelling capacity | which in this particular problem didn't seem to be very important |such a gain is due to its superior generalisation. Analytic tools cannot control the relative importanceof parameters during training nor stop the optimization process before its end, to avoid over-�tting.7.4.3 Post - Processing of OutputsDiscrimination, when overlapping distributions are present, implies a probabilistic interpretation ofoutputs. In accounting research, Bayesian considerations are in general independent of the pro-portions observed in the sample. Neural Network application to other sciences can be misleading.There, proportions observed in the sample are generally taken as acceptable prior probabilities.Following suggestions like those of Baum and Wilczek [6] several authors advocate a directinterpretation of outputs as probabilities [61] [120] and show how the usual squared error criterioncan be corrected to achieve likelihood maximization. In such case, the weights are corrected in thegradient direction of the log-likelihood rather than on the gradient of the squared error.180
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MLP outputs as multi-variate distances: For a training set with N cases, consider ojm, theoutput produced in node m;m = 1;M by case j; j = 1; N . Compute K square deviations, dkjm,between the m node's output and each one of the 1; � � � ; k; � � � ;K possible outcomes: dkjm = (tkm�ojm)2. The mean sum of squares in node m for the whole sample will be: �2km =Pjk dkjm=(N � 1)and the standardized distances between a node's output and all possible outcomes can now be addedover all nodes: Dkj = MXm=1 dkjm�2kmThe minimum of these distances would identify the outcome predicted by the MLP if no Bayesiancorrections were needed | that is, if the assumption of equal prior probabilities is acceptable.This distance has been compared with a more elaborated measure, the Mahalanobis distance, andit was found that the latter would not achieve a more accurate performance. In order to introduceBayesian considerations, Dkj ought to be computed as a Chi-Square distance to outcomes. Thesigni�cance of this distance is the desired conditional probability.7.5 Discussion and ConclusionsSo far, expectations about Neural Networks are related to the modelling of di�cult relations (patternrecognition) or the mimicking of brain functions. There has been little emphasis in their potentialexplanatory power. Here we argue that some statistical problems requiring self-explanatory powercan take advantage from the existence of meaningful internal representations.Numerical, continuous-valued observations such as those found in stock returns, or data organizedin accounting reports, cannot be e�ciently used by actual expert systems as a source of knowledge.Algorithms intended to automatic extraction of rules from examples, such as the ID3 [96] cannotperform e�ciently with non-symbolic, non-hierarchical data. We explore this problem elsewhere [12].Neural Networks can now be seen as an alternative self-explanatory tool. In our example, hiddenunits were able to form more appropriate ratios than those commonly used. In other cases theexamination of such ratios could shed light in many important issues.Self-explanatory models: The developments of this study are closer to Beaver's original worksthan its successors. Beaver tried to discover the most appropriate ratios to model a relation. Thegoal was not just an e�cient modelling. It was mainly the discovering of simple tools for doingthe job. After him, statistical modelling focuses on e�ciency. The practice of using multi-variatetechniques and a large amount of ratios as inputs | along with the trimming, ad-hoc transformingand rotating of inputs | made impossible any interpretation of results. Modelling became a blindautomatism.In order to return to interpretable models it is important to understand the statistical behaviourof items. And also to use tools able to implement such behaviour in a transparent way.182



1984 Six Y.INPUT MDA MLP MDA MLP18 ratios 29% 30%8 variables 38% 45%Table 32: The best classi�cation results when using the MLP compared with the best ones whenusing MDA (Multiple Discriminant Analysis) for the two data sets.The selected example: This speci�c application was chosen because it was likely to generate arelatively complex network with multiple output neurons. Complexity was seen as desirable to allowa richer investigation into the process of building and running networks. Choosing a classi�cationproblem with a better developed theoretical underpinning might have been more sensible. As it is,the also somehow complex ratios produced by the model are di�cult to interpret. However, therevised training process's ability to generate simple structures promises much in other accountingapplications.Improvements in performance: The emphasis on interpretation should not hide the other�ndings of our study. The MLP proved able to outperform the classi�cation performance of atraditional discriminant analysis approach. Neither method came close to adequately classifying thetesting sets, but there was a substantial improvement when the MLP was used.Table 32 shows the best generalisation results achieved with the traditional methodology (ratios)and also with Neural Networks. As can be seen Neural Networks achieved a better performance,with half the number of input variables and within a much simpler framework. Namely, the need forforming appropriate ratios was avoided as well as the blind pruning, and the extraction of a somehowarbitrary number of factors. Several accounting variables used to form the 18 original ratios werenot present in our 8 variable set.It is perhaps worth pointing out that redoing the discriminant analysis using representations ofthe ratios produced by the MLP captured some but not all of the MLP-based improvements. Theremaining may well be related to the ability of the MLP to cope with non-linear boundaries andhave a tight control over the number of free parameters.Topology: The principle of parsimony should also be born in mind. If there are too many hiddennodes the MLP will fail to identify key features and will model the particular randomness in thedata set as well. Generalisation will then be lost.However, Back-Propagation shows a useful ability to take advantage of the topology of the netto improve generalisation. Even with a large number of free parameters, if the number of nodes ina hidden layer is in resonance with some internal feature of the data, high generalisation can arise.183



Chapter 8Improving Diagnostic Speci�cityWith Neural NetworksIn this chapter we show how Neural Networks can be used for automatic diagnosis based on account-ing numbers. Our framework is intended to extract rules from large databases containing accountingdata. It can be seen as a pre-processor, able to bridge the gap between continuous-valued, stochastic,data like the one found in accounting reports and symbol-based expert systems.The rules resulting from using this technique can be fed into more general systems along withother sources of knowledge. For example, several of the developed tools could cover each one aparticular feature of the �rm | liquidity, capital turnover and so on | outputting rules that wouldbe jointly processed by an expert system.Two-dimensional ratios: Our tool allows both cross-sectional positions of individual �rms andtrajectories during a time period to be traced. It is close to ratios yielding similar diagnostics:Whether a particular �rm is above the standards, near the expected or below the standards. Butthis, referred to two aspects of an accounting feature, not just one at a time. For example, whilstratios can assess liquidity either as a contrast between the amount of current assets and the one ofcurrent liabilities or, alternatively, as a contrast between the amount of working capital and the sizeof the �rm, our tool can show both aspects of liquidity together.The quality of the diagnosis and its interest rely on the selected variables as happens with ratios.It is the experience of the analyst which dictates which items are to be used and how to interpretthe resulting maps. Since these tools are close to ratios, all the expertize of ratio analysis can bedirectly implemented on them.Given this, the expected improvements in diagnosis power and speci�city are not based on anynew algorithm. Rather, they rely on the common experience of practitioners and in the models184



devised in chapters 3 and 5. In fact, it is common practice to assess a particular feature using morethan one ratio. Two or three ratios related to the same characteristic are generally called uponand compared. Our two-dimensional ratios combine two aspects of any feature as described in thementioned chapters.Also, it is an extended belief that the inclusion of information regarding size can be decisive fora correct diagnostic in some problems. For example, the prediction of �rm failure is enhanced justby noticing that small �rms are more likely to fail than the large ones. Ratios are size-adjustedvariables. They cannot convey this piece of information. Graphical ratios can be set to introducesize so that the resulting tool will be sensitive to both the size-adjusted features and the position ofthe �rm regarding size.Contents: In the next section we develop and discuss two-dimensional representations of account-ing data. Then, we implement the second step, the mapping process. Finally we show some exam-ples. The central reasoning determining the developments presented in this chapter is explained insection 8.1.2.8.1 Creating Two-Variate ToolsRatios only use a small amount of the information needed for building them. For example, acollection of ratios concerning di�erent time periods can show the existence of a trend. But thecollection of items used to build them would show a trajectory in a two-dimensional space. Thiscould be far more revealing since it would allow the distinction between several directions for thesame trend.In this section we are concerned with the manipulation of two and three-variate relations in logspace. We seek the building of tools able to be a natural extension of ratios to a second dimension.The possibility of using two-dimensional representations of accounting data is a direct conse-quence of the homogeneity of accounting information when examined in log space. The tools devel-oped in this section would not be feasible in a space other than the logarithmic. As discussed inchapter 2 the result would not be usable.In this section we brie
y discuss the interest for accounting research and the adequacy for �nancialdiagnosis of four kinds of two-dimensional representations increasingly elaborated:� The simple scatter-plot of two log items and the mean-adjusted scatter-plot, adequate fordiscovering and identifying forces which are external to the �rm but not for �nancial diagnosis.� The residual scatter-plot, intended to jointly examine the residuals of two items when de
atedby a third one. It will detect features which are internal to the �rm such as correlationsbetween residuals. 185



� The rotated scatter-plot, containing the same information as the simple X-Y plot but beingable to display it in a way adequate for �nancial diagnosis. This tool is the correct choice whensize is an important piece of information.� The rotated residual scatter-plot, which stems from the previous two. It is able to show theresiduals of a ratio in log space against deviations of its components from the values expectedfor the size of the �rm. This tool is a generalisation of the ratio concept for two dimensions.Assumptions and notation: We accept that it is possible to build a general de
ator, s, re
ectingthe component of the variability common to all items. We further assume that this s can be usedwith any accounting item in a ratio model without causing asymmetric residuals. This issue hasbeen discussed in section 5.1.In the case of residuals from the ratio y=x we used the notation "y=x (or the corresponding fy=xfor the ordinary space) and so on. We use simply "x, the corresponding fx and so on for expressingthe residuals obtained from x after being explained by s, a suitable proxy for the common e�ect.We refer to departures from it as just residuals. Departures from a particular ratio standard arereferred to explicitly as contrasts.In using this notation we emphasize the fact that the residuals of any item, x, when de
atedby s, are a proxy for the weak e�ect or particular contribution of x to the overall cross-sectionalvariability. Inside �rms the statistical behaviour of one item is di�erent from the one of othersbecause the internal mechanisms commanding them are di�erent. It seems potentially interesting toisolate the particular variability of items related to important features like liquidity or pro�tability,and then examine it. When the denominator of a ratio is any item, not a proxy for size, its residualsre
ect a contrast between two particular e�ects, not a unique particular e�ect. That's why we callthem \contrasts".8.1.1 Non-Rotated PlotsIn order to implement a simple visual inspection of a two-variate relation, a scatter-plot is enough.When considering the ratio y=x, logx would be the abscissa and log y the ordinate. It is practicalto have the line y = x drawn in the scatter-plot.Figure 23 on page 58 contains one of these plots. Simple scatter-plots in log space reveal theexistence of external forces when they a�ect the symmetry or the linearity of the relation. Forexample, in the case of constraints introduced by accounting identities, all cases gather in one sideof the line y = x. If the constraint is strong (the axis y = x is very near the main dimension ofthe distribution), the density of cases near the axis y = x becomes really anomalous. Figure 32 onpage 89 is an example.This tool also shows that the described class of constraints is not the only external force distortingthe distribution of ratios. Constraints imposed by managerial practice | for example, intended to186



avoid liquidity problems | are also visible. An example is the ratio CA=CL: The line y = x marksthe frontier between positive and negative Working Capital. Such a line also determines a gradientin the density of cases.Non-linear relations between logx and log y, revealing non-negligible base-lines, also becomeapparent with simple scatter-plots of this kind. Ratios like EBIT=S (as those displayed on page 85)or CA=FA exhibit, for a few industrial groups, traces of non-linearity consistent with this hypothesis.Information content: The amount of information conveyed by one of such tools contains andampli�es the information conveyed by ratios. The horizontal (or vertical) distances from any caseto the line log y � log y = logx� logx, which is the axis with largest variability, measures the ratioresidual. As usual, logx stands for the log median (the mean of logx). For example, the scatter-plotformed with logCA in the abscissa and logCL in the ordinate, yields, for any point fCAj; CLjgrepresenting the position of �rm j, a measure of "CA=CLj = (logCAj � logCA)� (logCLj � logCL)which is the ratio residual in log space. However, the way this measure would have to be carried outgraphically cannot be considered as practical. Later on, we shall improve it by using rotated axis.The mean-adjustment: A �rst step towards more practical tools is the mean-adjustment of thedata. Financial diagnosis is based on the magnitude of deviations from standards. The value of thestandard itself is important only in that it allows the calculation of such deviations. Therefore, themean-adjustment throws away a non-important piece of information. With this, the clarity of therepresentations improves and the comparing of samples becomes feasible.Controlling for joint trends: For example, mean-adjusted data is useful when it is convenientto gather in the same scatter-plot data belonging to several years. In this case we would mean-adjustseparately each year. Trends like the evolution of the economy would be accounted for in this way.In general, position measures (introduced on page 59) are often preferable to log items. Residualsor contrasts are preferable to ratio outputs. Their expected value is the same | zero in log spaceand one in the ordinary one | instead of varying from one sample to the other.The residual plot: If we use, instead of mean-adjusted items, the residuals obtained after con-trolling for s, the common e�ect, we get a scatter-plot of "y with "x. The reliability of this tooldepends on the quality of the proxy for size. Of course, any item could be used for de
ating x andy instead of s. In that case we would have a plot relating two contrasts.The residual plot is adequate for detecting correlations between residuals. Since the strong,common, e�ect has been accounted for, any residual relation becomes visible. Simple plots of logitems are not accurate in detecting residual relations since the common e�ect, having a much largervariability, completely masks them. Figure 59 compares a mean-adjusted plot (left) with a residualone for the same data (right). Notice that in the tool displayed on the right the 135o axis (the line187
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CA < CL regionFigure 59: On the left, a mean-adjusted scatter-plot of Current Assets (Y-axis) versus CurrentLiabilities (X-axis). On the right, the corresponding residual plot. Electronics, 1986. The negativesign means CA < CL.y = �x) can be used for measuring the contrast (ratio residual) "y=x. Notice also that residual plotsand rotated residual plots are not able to display relative size. Like ratios, they control for size.Figure 64 on page 195 displays another residual plot showing a clear case of correlation betweentwo items after controlling for size. The items used in these plots (Wages and the number ofemployees) are also interesting because of their ability to separate industrial groups.Residual plots are considered here as a step towards more elaborate tools, the rotated ones.8.1.2 Analyzing the Information Contained in Ratio ComponentsOne feature common to the plots presented so far is that any measure intended to mimic ratios oughtto be done using the 45o or 135o axis instead of the natural ones. We avoid this inconvenience witha simple rotation. In doing so, we make less intuitive the detection of asymmetry and non-linearitybut we facilitate the �nancial diagnosis.This 45o rotation of axis produces two orthogonal views of the main dimensions of the distributionof the ratio components in log space. Therefore, the whole of the information conveyed by the ratiocomponents is now present in these new variables in a complementary way.We shall see that such a pair of new variables can answer two kinds of questions that speci�c pairsof ratios seem meant to answer as well. From here we conclude that those pairs of �nancial ratiosconvey complementary pieces of information. They are two aspects of the same two-dimensionalmeasurement. 188
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PFigure 60: A graphical representation of the rotation leading to �nancial interpretability.The di�erence between controlling for size and assessing �nancial features: It is oftenmentioned in the literature that ratios are used because of the need for controlling for size. Ina cross-sectional context there are two meanings for this controlling for size, both interesting in�nancial analysis. Ratios seem to be called upon in order to answer two di�erent kinds of questions,not just one.Firstly, size can be viewed as a variable, s, re
ecting the common variability as a statistical e�ect.And secondly, size can also mean the magnitude of one item when compared with the magnitude ofanother one. Therefore, two di�erent questions can be asked when referring to size.� What is the position of a particular item when contrasted with s, the size of the �rm? This isthe problem of assessing deviations from standards for size. Financial ratios are set to answerthis question when the de
ator is selected so as to re
ect size. Sales, Net Worth or TotalAssets have often been the choices for such a size proxy. In our framework the answer to theabove question is given by the fx or, in log space, the "x.� To what extent a given feature of the �rm, like liquidity, is far away from the expected as afeature, that is, regardless of the magnitude of its components when compared with the size ofthe �rm? This is the problem of measuring departures from standards describing features bythemselves. In such cases the de
ator is selected so as to produce a contrast when comparedwith the de
ated item. Such a contrast is in our notation the ratio residual fy=x or "y=x.Some ratios seem more intended to answer the �rst question whilst others are intended to answeringthe second. For example, in the two liquidity measures Working Capital to Total Assets and CurrentAssets to Current Liabilities we notice that the �rst one seems to assess liquidity by referring it tothe size of the �rm, whilst the second one assesses liquidity by itself | the feature emerging whencontrasting short term assets with liabilities | regardless of the size of the �rm. Also the Debt Ratio(DEBT/TA) yields a contrast with a typical measure of size. It tries to answer the �rst question.But the Debt to Equity Ratio (DEBT/NW) answers the second one: It seeks a contrast of debt withequity, not with the size of the �rm. 189



The two dimensions of the size-adjusted information: It is worth emphasizing that this listof two questions is a consequence of the assumptions and models developed in chapters 3 and 5.Given that it is possible to assess size, what kind of size-adjusted information the components ofratios can yield?They �rstly yield two residuals, "y and "x. Then, a 45o rotation combines these residuals so as toproduce two new variables which are also orthogonal | thus capturing two complementary aspectsof the information contained in the original residuals.Such two aspects are the "y � "x and the "y + "x. The �rst one contains the same informationaccountants are used to �nd in ratios, but mean-adjusted. It is a contrast between two items. Whenthe y and x are conveniently selected, such contrasts are supposed to capture desired features.The second one contains the information originally conveyed by x and y but not captured bythe ratio. Since the pair fx; yg conveys two-dimensional information and ratios or contrasts are justone variable, when we use ratios instead of their components we put aside information. Not onlythe one about size. We put aside also size-adjusted information, potentially interesting on �nancialgrounds. Such piece of information is the "y + "x.It is easy to see that the two questions referred to above are answered by these two complementaryvariables. Therefore, such two questions should be regarded as complementary as well. And theyrepresent the whole of the questions a pair of items can answer after being size-adjusted.Is the second aspect important? Discussion. In his response to Barnes, Horrigan claims thatthe main task ratios undertake is the assessment of speci�ed relationships. \They adjust for thedata size e�ect only incidentally. (...) Size de
ation is certainly an interesting property of �nancialratios, but it is hardly their major purpose." [64]. Horrigan considers that only the "y � "x areinteresting. In his opinion, contrasts are the only piece of information worth considering. This isequivalent to say that the information conveyed by the "y + "x is not worth taking into account.On statistical grounds it is very di�cult to sustain such a position since the two aspects carrycomplementary information. On �nancial grounds, this author would need to explain why thedeviations from the expected for �rms of a given size are necessarily not interesting for diagnosis.We think that this restrictive view requires some explanation since it is not evident.In next section we discuss the speci�c cases in which pairs of ratio components yield eventuallyless interesting information.8.1.3 Two Rotated PlotsThe two rotated plots we present next are practical applications of the above considerations. The�rst one, the rotated plot, preserves information regarding the size of the �rm. There is a growingconscience about the importance of size | not just deviations from expected size | in some speci�cproblems. The second one controls for size. It yields deviations from expected size, not size itself.190
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feature would be:Position is A: Both the feature and its magnitude given the size of the �rm are near the standards.Position is B: The feature is near the standards but its magnitude is larger than the expected forthe size of the �rm.Position is C: Although the magnitude of the feature is near the expected for the size of the �rm,the feature itself is below the standards.Position is D: The feature itself is near the standards. However, its magnitude for the size ofthe �rm is smaller than the expected. For example, the liquidity of a �rm is all right if weconsider it as the contrast between short-term assets and liabilities. But both Current Assetsand Liabilities are smaller than the usual for �rms with the same size.Position is in between C and D: Both the feature and its magnitude given the size of the �rmis below the expected. This is a frequently observed situation with no correspondence in theother quadrant. It means an over-sized �rm regarding that feature.Position is E: The magnitude of the feature is the expected one for �rms of such size. But thefeature itself is above the standards.A di�erent way of reading positions in the rotated residual plot refers to the quadrant, not to theCartesian axis. Since it leads to diagnostics based on log items, not on contrasts, it is not as near theaccounting practice as the interpretation based on axis | the one presented above. But we thinkthat the diagnostics based on the quadrant the �rm lies in are also simple and revealing.For the ratio y=x and s, a proxy for size, we would have:The �rm lies in the �rst quadrant: Both x and y, the ratio components, are above their ex-pected values for �rms with that size.The �rm lies in the second quadrant: The denominator of the ratio, x, is below the expectedand the numerator, y, is above for �rms of similar size.The �rm lies in the third quadrant: Both components are below the expected for a �rm of thatsize. The �rm is therefore oversized in what concerns those two items.The �rm lies in the fourth quadrant: The numerator, y, is above the expected for �rms withthat size. The denominator, x, is over-sized.In the next section we give extensive examples of the use of the rotated residual plot for diagnosis.194
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Applicability of the rotated plots: Discussion. Rotated residual plots will not be e�ectivewhen the two main variables are related by an accounting identity. Probability-like ratios | FA=TAand similar (see chapter 4) | contain all the information the relation between its components canyield. This is because the numerator is part of the denominator. These ratios are real propor-tions between one part and a total. Not much improvement results from exploring the informationconveyed by the two components instead of using the ratio.Also, this plot will not show all its power when the items selected along with log s are proxiesfor size or taken as such.Finally, correlated residuals make the decomposition of information described in section 8.1.2less attractive. Correlation means redundancy. Figure 64 (below) shows the aspect of correlatedresiduals in the rotated residual plot. Clearly, one of the items describes the other one.On the contrary, ratios formed with items which are not bounded by one another and contain,each one, a really original piece of information, will fully take advantage of the rotated residual plot.In such cases, the positions and trajectories drawn in the rotated plots can be more revealingthan the examination of the two ratios underlying it. Firstly, because two dimensions allow anincreasing in speci�city of diagnostics. Trajectories, recognized as such, are more accurate and easyto interpret than the two trends underlying them. Secondly, because in some cases the informationconveyed by rotated plots is, not only more accurate and easy to interpret, but also unique. Thishappens whenever the scatter of cases draw, in two-dimensions, a shape impossible to reduce to asimple analytic form described by two observations.For example, if the scatter of cases is less dense in one quadrant than in the others or if there isa comet-like shape (a two-variate tail) the two-dimensional information cannot be reduced to a pairof observations functionally linked.8.2 The Mapping of Features Using Neural NetworksIn this section we use the rotated plot or the residual one to trace trajectories of �rms during a periodof �ve years. We further explain how this plot allows a scanning procedure for the automation of�nancial diagnosis.8.2.1 Modelling the Density FunctionThe spread of a set of stochastic variables de�nes a density function in the space they span. Intwo dimensions, the density function would be the number of cases per square unit. Two-variateGaussian phenomena would exhibit a hill-shaped surface as its density function.Statistical modelling techniques can be described as attempts to account for as many variabilityas possible using as few descriptors as possible. For the usual applications the goal is estimation.196



This implies the �nding of the best values for the parameters of some analytic formulation selecteda-priori. Such a formulation is supposed to govern a process we want to describe.However, in other cases we wish to model the density function itself. That is, we want to builda model | a representation as simple as possible | of the way cases spread but retaining theinformation regarding where they lie. These models are known as maps.Kohonen's Self-Organized Maps are intended to undertake such a task. They output a collectionof positions which reproduce the original density of cases but using a smaller number of pointsinstead. Each one of the original cases relates to one of the new positions. The result is similar tothe division of cases into classes, but for more than one dimension.After organizing cases in classes we obtain a model: A collection of values and the correspondingfrequencies. This model accounts for the density function observed in our data. The fact that it isnot the usual kind of model | analytic and oriented for estimation | doesn't diminish its basicquality of model. It is a simpler representation of the data.Kohonen's or similar maps are also models. In some cases they become the only possible modelsince maps are the only way of accounting for spreads which are not simple enough for beingapproached by analytic tools. Therefore, the reasons for using maps can be twofold:� The information regarding the position of each case is relevant.� The spread of the data draws a shape which is not geometrically simple.Both reasons lead to the use of these tools as a way of modelling the rotated plots devised above. Aswe stressed in the last section, each zone of a rotated residual plot is assigned a �nancial diagnostic.It is the fact that a case lies in a particular zone that is important here. Also, rotated residualplots and other similar tools often exhibit irregular shapes. For example, in rotated residual plotsre
ecting pro�tability or 
ow of funds, it is frequent to observe a comet-like shape, with a highdensity around the origin and the surroundings almost empty except for the third quadrant. Sucha shape would be di�cult to account for with analytic approaches.We shall use an abbreviation, RRP, to designate the rotated residual plot. We selected a par-ticular industry, the Food Manufacturers and the pro�tability ratio to illustrate the use of mapsin RRPs and the possibilities they o�er in the tracing of dynamic features. On the next pages wedescribe, step by step, the procedure leading to automatic diagnosis.8.2.2 Building the Rotated Residual PlotFor each year of the period 1983-1987 separately, we select two di�erent samples. One contains thecases with positive EBIT . The other one, those having negative EBIT . Then, a symmetric logtransform is applied (formula 2 on page 54). The items to be used, NW and EBIT , are mean-adjusted year by year. Any joint trend related to an annual e�ect is thus accounted for. Also theproxy for size to be used, log s, is mean-adjusted separately by year.197
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.Figure 65: Two rotated residual plots for assessing the liquidity of �rms in the Food Manufacturersindustry, 1983 to 1987. On the left, cases with negative EBIT .Next we �nd the Y-axis and the X-axis of the RRP, in the same way for the positive and negativeEBIT samples. For log residuals de�ned as"EBIT = logEBIT � logEBIT � (log s� log s)and "NW = logNW � logNW � (log s � log s)we obtain the two axis y = "EBIT + "NW and x = "EBIT � "NWThe �nal aspect of the two RRP is displayed in �gure 65 (page 198).As discussed in section 2.3, these scatters represent two di�erent things and should be modelledseparately. On the other hand, when studying dynamic features, it is convenient to introduce someform of continuity between one model and the other one thus allowing the tracing of �rms whichEBIT emerges from negative to positive values and conversely.Drawing the continuity between pro�ts and losses: This task is facilitated by the fact that,in the RRP of positive values, the third quadrant seems to be logically linked with the �rst quadrantof the RRP for the negative ones.In �gure 63 (page 193), the third quadrant is the region delimited by \C" and \D". It containsthe �rms below the expected both in pro�tability and in the magnitude of this feature regardingthe size of the �rm. Similarly, in the samples showing negative EBIT, the �rst quadrant | theregion between \E" and \B" in the same �gure | contains �rms with less severe losses and whichpro�tability is larger than the expected for negative-EBIT �rms of that size.198
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Negative EBIT

Positive EBITDev. Exp. SIZE

Dev. Exp. PROFITFigure 66: The joint RRP formed with the positive cases and the negative ones shifted so that theyoccupy a region of the third quadrant far away from the rest of the data.Let us suppose that a �rm gradually falls into negative earnings. It will draw a trajectory towardsthe second or the third quadrant and then into the �rst or fourth quadrant of the negative plot. Butthe path through the third quadrant seems the most logical for leading to losses since it means a�rm too large for what it is worth and also for the generated pro�ts. The path through the secondquadrant would mean a �rm too large for the generated pro�ts as well, but with a balanced capitalregarding its size.Conversely, when a �rm gradually emerges from a situation of poor pro�tability to a more healthystate its path will go along the �rst or the fourth quadrant of the negative plot until it reaches thethird or the second one in the positive plot. But the path through the �rst quadrant is the logicalone for getting out of a situation of loosing money since it means an improvement in both Earningsand Net Worth regarding size.The fact that �rms often fall into negative earnings from quadrant other than the third onedoesn't invalidate our reasoning. The logical path linking these two situations seems to be thedescribed one. It links the worst situation of positive earnings with the best one of negative ones.We also observed that the position of �rms having at least one year with losses during the usualperiod tends to be in the third quadrant. Given this, it seems as if the continuity between pro�tsand losses should be drawn between the third quadrant of the positive sample and the �rst one ofthe negative sample.Accordingly, we place the negative plot in the third quadrant of the positive one, far away fromthe rest of the data. This is done by shifting all the cases in the former by a negative amount andthen mixing both plots. The result is the joint RRP displayed in �gure 66. Notice how the spreadof the negative cases is much larger than the spread of the positive ones.199



It is now possible to set the mapping algorithm to learn the joint density of cases as it appearsin �gure 66. But before doing so it is convenient to gain insight in the way the RRP conveys knownaccounting information regarding the evolution of a �rm's pro�tability.8.2.3 Using the Rotated Residual PlotIn this section we compare the information conveyed by a set of ratios with the one of the RRP. Thegoal is to provide a means to get acquainted with this new tool by putting it side by side with theusual source of information for analysts, the ratios.We selected nine �rms from the Food Manufacturing industry. For each one of them we displaythe ratios Sales to Net Worth, Funds Flow to Total Debt, EBIT to Net Worth, the Current Ratioand also log s, our proxy for size. The evolution of these ratios during the considered period of �veyears is displayed as a time-history.For each of these nine �rms we also present the trajectories drawn in the RRP described above.The whole of the information is contained in �gures 67 (page 201), �gures 68 (page 203) and �gures 69(page 205). This graphical description is complemented with table 33 on page 206.How to read the displayed material: The �gures mentioned above compare ordinary ratioswith RRPs. For each one of the considered �rms they display, on the left, a time-history of someusual ratios. On the right, the RRP as described above. Each mark on the RRP represents theposition of the �rm for one year. For example, \4" shows the position of the �rm in 1984. In orderto interpret the RRPs, �rstly notice that the nearest a �rm is from the centre, the less it divergesfrom the standards for the industry. Secondly, the scales assessing departures from standards arevisible at the edges of the plots. Since we are working in log space, these scales are relative.In this particular case, the X-axis of the RRP measures the relative deviations of liquidity fromthe expected. The Y-axis measures how much the magnitudes of Earnings and Net Worth takenjointly diverge from the expected for the size of the �rm.It is also possible to interpret the RRPs in terms of the quadrant a case lies. The �rst one meansboth earnings and capital larger than the expected. The second one means capital larger than theexpected but earnings smaller. And so on.We shall now comment on each one of the presented cases.Firms occupying a steady position in the RRP: The �rst two �rms on the top of �gure 67are an example of a steady position in the RRP.When reading the information conveyed by ratios about the evolution of UNITED BISCUITS, alarge �rm, we notice that during this period their sales su�ered a small decrease and their pro�tabilitywas steady. The reading of the RRP says that both the position of this �rm in what concernspro�tability and the proportion of this feature regarding the size of the �rm are the expected ones200
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for the industry. Also, they didn't change during the whole period. Both the pro�tability as acontrast and the magnitude of earnings or Net Worth when compared with the expected for �rmswith the same size stay near the standard for the industry for the whole period.ASSOCIATED FISHERIES is another example of a steady position. Its pro�tability is half of apoint below the expected but it agrees with the expected given the size of the �rm. The informationprovided by ratios says that sales increased until 1986 and then broke down to the values of 1983.Pro�tability was steadily increasing during the whole period while the size of the �rm seems todecrease | or, more likely, it is not in step with the growth of the industry.Clear trends in the RRP: MAUNDER (LLOYD) in �gure 67 and NESTLE (UK) on top of�gure 68 show a clear trend towards a better performance during the �ve years considered. The�rst one is a small �rm. It recovers from a dangerous position of pro�tability one point belowthe expected and over-sized regarding pro�ts to a comfortable new one agreeing with the standardfor the industry. The second �rm is larger than the expected for the industry. It improved itspro�tability from a standard state to almost one point above such standard. This was achievedwithout disturbing the magnitude of this feature when compared with the size of the �rm. Suchproportion was kept within the standard for the industry.More complicated trends: CAMPBELL FROZEN FOODS (�gure 68, page 203) is an exampleof a more complicated evolution. The Sales to Net Worth ratio broke a bit after 1985 and the�nal picture, in 1987, is the one of a not very pro�table �rm. The RRP shows an increase in theimportance of pro�tability inside the �rm, followed by a severe break of one point in the pro�tabilityas a feature.The whole of the trajectory lies in the upper two quadrant which means an excess of Net Worthwhen compared with the standard for the industry. The second quadrant explicitly means that suchan excessive capital is not actually producing the expected pro�ts.OVERSEAS FARMERS is a typical case of increasingly poor pro�tability. Since the volume ofsales didn't break down in the last two years of the period, we must conclude that other factors area�ecting the performance of this �rm. The RRP shows, in these two years, a sliding of almost onepoint in pro�tability and of almost two points in the importance of this feature inside the �rm. This�rm is too large for what it is worth and also for the generated pro�ts.Cases of negative EBIT: Figure 69 (page 205) focus on three �rms having negative EBIT in atleast one year of the considered period. Above, a medium-sized �rm, BOWYERS, shows a severebreak in earnings in 1985 followed by an immediate recovery. FOODANE, the next �rm to bedisplayed, jumps between positive and negative earnings during the period. Finally, G. P. LOVELL,a small �rm, shows an excursion into pro�tability in 1985 and 1986.202
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When compared with the standards for the industry the above �rms are all over-sized for whatthey are worth and for the pro�ts they generate. As remarked, the third quadrant in the RRP seemsto be a dangerous zone when both ratio components are related to positive aspects of the �rm.Discussion and conclusions: We expect to have shown that this simple tool, the RRP, is ableto convey interesting information regarding the feature being analyzed. It shows itself as a di�erent,yet familiar, way of reading accounts.It is di�erent from simple ratios in that it conveys more than one piece of information at a time.But it is based on the same principles: The contrasts between two magnitudes are able to capturefeatures and the value expected for the industry sets the standard of normality.In this particular application we focus on liquidity. The two axis were useful in characterizingthe behaviour of �rms and, in some cases, in drawing meaningful trajectories. Such trajectories areunique to the RRP. They reveal a certain behaviour valuable for �nancial analysis and less explicitwhen using ratios solely.One very particular characteristic of the RRP is that it emphasizes the di�erence between positiveand negative earnings. When we study the cases displayed in �gure 69 by means of the usual ratioswe notice that a jump into negative EBIT can appear just as a small or even very small break inthe value of the ratio. But when using the RRP for examining the same �rms this break is outlined.This is caused by the lack of continuity between the two plots forming the RRP.Such a feature of the RRP is, in our opinion, desirable. It is good to stress the di�erence betweentwo so di�erent states as those of having pro�ts or losses, even when the pro�ts were small and thelosses were small too.8.2.4 Automating Financial DiagnosisWe now return to the mapping process. By exposing the spread of cases displayed in �gure 66 to anappropriate mapping algorithm we obtain a smaller number of points in IR2 re
ecting its density.When the used algorithm is a self-organized mapping, each coordinate of this reduced set of pointsis the value a given weight has learned. And whenever a case lies in the neighbourhood of suchpoints, the node or neuron to which these weights are linked will �re or get \excited".Figure 70 on page 207 shows the positions, after the learning process has �nished, of the reducedset of points or neurons superimposed to the scatter used to train them. These positions are onlyapproximations of the real ones. Straight lines link nodes that are neighbours.The number of neurons and its form was determined prior to the learning. We decided that the�nal map would be a rectangle with three rows of nine neurons each. Hence, it would be prone foradopting an oblong shape like the one it was to be set to learn. We refer to any position within thistopography by saying that the index i; i = 1; 9 is a counter of the rectangle's row number and theindex j; j = 1; 3 is a counter of its column number. Any neuron will be determined by a pair fi; jg.204
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Company 1983 1984 1985 1986 1987Mean-adjusted log size8 ASSOCIATED FISHERIES PLC 0.230 0.184 0.179 0.201 0.21921 BOWYERS (WILTSHIRE) LTD 0.170 0.124 0.048 -0.03 0.02526 CAMPBELL FROZEN FOODS LTD -0.24 -0.24 -0.25 -0.15 -0.1638 FOODANE LTD -0.87 -1.02 -0.92 -1.13 -1.4351 LOVELL (G.F.) PLC -1.09 -1.11 -1.18 -1.15 -1.1655 MAUNDER (LLOYD) LTD -0.26 -0.23 -0.27 -0.31 -0.2760 NESTLE HOLDINGS (U.K.) PLC 0.975 1.005 0.998 0.991 0.98862 OVERSEAS FARMERS'CO-OP FE -0.88 -1.01 -1.05 -0.94 -0.8786 UNITED BISCUITS (HOLDINGS) 1.397 1.447 1.439 1.447 1.448Funds Flow to Total Debt8 ASSOCIATED FISHERIES PLC 0.221 0.265 0.226 0.228 0.26121 BOWYERS (WILTSHIRE) LTD 0.318 0.357 -0.02 0.224 0.40726 CAMPBELL FROZEN FOODS LTD 0.478 0.524 0.866 0.599 0.41938 FOODANE LTD 0.047 -0.08 0.037 -0.38 -2.4551 LOVELL (G.F.) PLC 0.043 0.122 0.159 0.387 -0.0155 MAUNDER (LLOYD) LTD 0.179 0.207 0.161 0.157 0.20660 NESTLE HOLDINGS (U.K.) PLC 0.223 0.301 0.338 0.442 0.47762 OVERSEAS FARMERS'CO-OP FE 0.204 0.213 0.158 0.057 0.03386 UNITED BISCUITS (HOLDINGS) 0.323 0.274 0.329 0.332 0.420EBIT to Net Worth8 ASSOCIATED FISHERIES PLC 0.117 0.104 0.150 0.166 0.18221 BOWYERS (WILTSHIRE) LTD 0.089 0.128 -0.20 0.271 0.36826 CAMPBELL FROZEN FOODS LTD 0.218 0.232 0.227 0.100 0.06438 FOODANE LTD 0.208 -4.11 0.019 -0.43 -2.2251 LOVELL (G.F.) PLC -0.01 -0.03 0.020 0.138 -0.1255 MAUNDER (LLOYD) LTD 0.026 0.073 0.053 0.091 0.22760 NESTLE HOLDINGS (U.K.) PLC 0.152 0.310 0.366 0.538 1.33662 OVERSEAS FARMERS'CO-OP FE 0.192 0.299 0.203 0.097 0.05786 UNITED BISCUITS (HOLDINGS) 0.394 0.372 0.307 0.325 0.338Sales to Net Worth8 ASSOCIATED FISHERIES PLC 2.85 2.95 3.17 3.30 2.8621 BOWYERS (WILTSHIRE) LTD 7.70 7.55 10.04 15.54 14.0426 CAMPBELL FROZEN FOODS LTD 3.37 3.01 2.67 1.51 1.5138 FOODANE LTD 87.30 502.00 21.34 34.08 79.6551 LOVELL (G.F.) PLC 3.26 4.67 3.19 3.30 3.8155 MAUNDER (LLOYD) LTD 10.27 12.70 13.81 17.54 16.2260 NESTLE HOLDINGS (U.K.) PLC 5.60 4.56 5.21 6.02 9.5562 OVERSEAS FARMERS'CO-OP FE 9.22 13.70 11.04 15.96 31.9086 UNITED BISCUITS (HOLDINGS) 5.26 5.51 4.36 4.02 3.74Current Assets to Current Liabilities8 ASSOCIATED FISHERIES PLC 1.50 1.88 1.51 1.45 1.7321 BOWYERS (WILTSHIRE) LTD 1.54 1.72 1.25 0.2026 CAMPBELL FROZEN FOODS LTD 1.75 1.98 3.08 4.60 3.0538 FOODANE LTD 1.08 0.90 1.9151 LOVELL (G.F.) PLC 1.81 2.14 1.96 2.04 1.7955 MAUNDER (LLOYD) LTD 1.17 1.15 0.85 1.03 1.0460 NESTLE HOLDINGS (U.K.) PLC 1.12 1.25 1.32 1.20 0.9362 OVERSEAS FARMERS'CO-OP FE 2.21 1.96 1.74 1.28 1.0986 UNITED BISCUITS (HOLDINGS) 1.19 1.12 1.41 1.45 1.30Table 33: Some ratios and a proxy for size during the period 1983-1987 for the nine �rms examined.206
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Dev. Exp. PROFITFigure 70: The position of each one of the 9� 3 neurons after learning, superimposed to the shapethey have learned. Neurons which are neighbours in the discrete space have been linked by solidlines.As a result of the learning process we obtain a model. This model consists of:� A set of 9 � 3 nodes, each one with two weights, fwxij; wyijg; i = 1; 9; j = 1; 3 �xed in somelearned values. The weight wx links to the X-coordinate of the input vector. The weight wylinks to the Y-coordinate.� A neuron which measures the distance between the weight vector and the input vector and�res if this distance is the smallest amongst all the neurons. In our example the distance usedwas the Euclidean one: d =p(wx � x)2 + (wy � y)2Other distance frequently adapted is the inner product X �W . It provides a measure withsome interesting qualities. Tattersall [126] explores this subject.The output of this model is the pair fi; jg identifying the neuron which �red. For each input vectorfx; yg the corresponding output is this pair fi; jg. Hence, the described learning process can beviewed as a map of a continuous-valued space onto a discrete one. In the literature this kind ofmapping is known as a quantization.Trajectories in the reduced space: Now, if we input the model with a sequence of vectorsrepresenting the same �rm during a period of �ve years it will output the corresponding sequence of�red neurons. This output sequence de�nes a trajectory in the reduced or discrete space. Figure 71on page 208 shows several of these trajectories. 207
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Figure 71: Three reproductions of the set of neurons supporting a few trajectories of �rms in thediscrete space they de�ne.Regions and rules: Since each neuron, after training, acquires a mapping quality, its �ring hasa precise meaning on �nancial analytic grounds. This is because each region of the mapped RRPalso has a precise meaning.Therefore, it makes sense to build a set of rules or a diagnostics table relating the i and j of a�red neuron to liquidity and the magnitude of its components inside the �rm. In our example, forinstance, we could set a few rules likeif i > 2 thenif j = 1 then too much size for what the �rm is worth.if j = 2 then size is correct for the worth of the �rm.if j = 3 then too much capital for actual size.and so on. A similar set of rules, or a diagnostics table, could be more or less detailed depending onthe number of neurons used. If, in our example, we were to use a larger number of neurons in the jdimension (for example, 5 instead of 3) we would get more speci�c diagnostics. But it is not clearwhether such an increase would be desirable.Robustness of the obtained model: Since the RRP uses mean-adjusted values and the basisof each diagnostic is the extent to which each case departs from this central trend, it follows thatthe displayed table of correspondence is expected to be, to some extent, independent from changesintroduced in the data. After building a model for a given industry it is not likely to be necessaryto adjust it frequently. 208



It would be necessary to undergo the building of a new map only when the spread su�ers itself anoticeable distortion. Strong external in
uences could introduce real modi�cations in the whole of astatistical distribution of an industry for some speci�c features. For example, a period of expansionor collapse would substantially modify patterns of pro�tability.A drawback of this algorithm is that sometimes it is di�cult to make the map span the wholeof the scatter. Cases may occur that will not �re any neuron at all. But this happens mainlywhen, during training, the neighbourhood of neurons is de�ned in a simplistic way. Any attempt toreproduce Kohonen's algorithm should use more elaborated de�nitions of neighbourhood than thosegiven as examples in introductory texts.Kohonen's algorithms also seem to have di�culties when the spread to be mapped has regionswith very di�erent densities. In our case the algorithm was unable to cover the whole region ofnegative EBIT. Therefore, the diagnostics we obtain for this zone are very general | contrastingwith the detail obtained for the positive ones.8.2.5 Discussion and Prospects For Future ApplicationsBesides Kohonen's Self-Organized Maps, other algorithms exist able to perform the same task. Anyof the tools known as \quantizers" | for instance, the nearest-neighbour one | could be usedinstead to obtain the reduced set.We selected this particular model because it illustrates a practical use of the Hebb's Rule. Com-petitive Learning and in general the Connectionist approaches to known problems have some inter-esting features though. They are parallel in structure, which makes them ideal for implementationon future machines. And they are also robust regarding assumptions about the data.The RRP as a pre-processor for expert systems: The rules resulting from using this tech-nique can be fed into a more general system along with other sources of knowledge. Automaticdiagnostics could be extracted from large databases containing accounting data. Several RRP withthe corresponding maps could cover more than one feature of the �rm outputting rules that wouldbe jointly processed by this system along with related information.In such an environment, the RRP plus quantizer would act as a pre-processor allowing bridgingthe gap between continuous-valued, stochastic data and symbol-based systems.Other promising plots: Predicting the future failure of �rms. Pro�tability is perhaps notthe most adequate feature for testing the real possibilities of the devised tools. Unfortunately wewere not able to test them in �rm distress prediction. We think that simple rotated plots along withour maps are ideal for tracing strong, low-dimensional, relations such as those linking accountinginformation and the distress of �rms. 209



Early attempts to diagnose �rm distress using accounting information date from 1966 whenBeaver [7] [8] identi�ed the ratio that would predict failure more accurately. Altman [3] and otherscentred their e�orts in the problem of performance. Indeed, they improved performance using mul-tivariate techniques. Altman's last published results (the Zeta model, 1978 [4]) showed a remarkableability to forecast failure.From 1970 on, the number of published works on this very subject has been enormous. However,the original challenge suggested by Beaver | the identi�cation of simple, useful, tools able to performa task reasonably well | deserved much less attention.A review of this research can be found in Foster [44] (chapter 15). Ta�er [125] is the mostrepresentative study of this kind in the U.K.It seems clear that little improvements in performance can now be expected when predicting �rmfailure. However, if the reasons leading to distress are more than one, and if these di�erences canbe captured in a �rm's accounts, it would be interesting to test the use of our rotated plots alongwith the dynamic tracing capabilities of Kohonen's maps to identify trajectories leading to disaster.Perhaps it would emerge that there are more than one paths leading to insolvency. In that case, abetter understanding of the distress process and the mechanisms internal to the �rm could emerge,balancing a common weakness of these studies.8.3 SummaryIn this chapter we used Kohonen's Maps to automate �nancial diagnosis. Firstly, we explored thegraphical possibilities o�ered by the homogeneity of two-variate relations in log space. We outlinedthe two kinds of complementary questions ratios are called upon to answer and we described graphicaltools able to give joint answers to those questions. Secondly, Kohonen's Maps were used to performa quantization allowing the assigning of a diagnostic to each region in such graphical tools. Theset of rules automatically generated in this fashion can be seen as the result of a pre-processing forsymbol-based expert systems.Rotated plots can be used as direct tools for diagnosis in the same way �nancial ratios are. Butthey yield a richer information, namely by incorporating relative size | or, alternatively, a contrastwith size | and allowing the study of trajectories.
210



Chapter 9A Taxonomy of Risk in Large U.K.Industrial FirmsCan Neural Networks capture the relation between the expectations of investors and the character-istics of traded assets? In this chapter we investigate this possibility using a particular kind of asset,the large and frequently traded industrial �rms in the U.K. We rely on considerations similar tothose of Ross's APT [104] to breakdown the market returns into four main orthogonal forces. Thenwe build models to explain the sensitivities of our set of industrial �rms to each of these forces interms of accounting information.Our experiment comprises four steps. Firstly, sensitivities are extracted from the time-history of121 returns. Secondly, the statistical behaviour of these sensitivities is described. The third step isthe modelling of the relation between the sensitivities and accounting information using the MLP.Finally, we study the behaviour of the obtained models.This research found a clear relation between some speci�c features of accounting reports, anda �rm's appraisal by the market. A Multi-Layer Perceptron was able to approach the sensitivitiesof �rm's returns to market forces using data re
ecting stable features of a collection of �rms: Size,industrial group, work force and payment patterns. It turns out that a very signi�cant portion ofthe cross-sectional variability of these sensitivities can be explained by accounting numbers. It alsoemerged that the map relating stable features of �rms to sensitivities is a complex one.A promising characteristic of the studied relation is that, to some extent, particular forces impingeupon speci�c features. For example, the fourth orthogonal factor extracted from returns is the onlyone relating to Inventory. The third factor relates mainly to Wages and the second one to NetWorth. The �rst and second factors's sensitivities depend strongly on the size of the �rm but inopposite directions. The third factor doesn't recognize size. All the factors's sensitivities recognizeindustrial grouping but the fourth one to a smaller extent. In some cases, a given force clearly reacts211



LSE 1974 - 1988. Monthly returns

75 76 77 78 79 80 81 82 83 84 85 86 87 88Figure 72: Time-history of six monthly returns on assets traded in the LSE. Co-variance is clearlyvisible.in opposite directions for the same feature in two industries.The method developed here opens the possibility of building a taxonomy of risk. This would beinteresting for investment appraisal. Also, the knowledge about the way each market force impingesupon speci�c features of the �rm is potentially valuable in understanding and identifying the realnature of such forces.9.1 Introduction: Financial Risk and Asset's FeaturesThis study relates the co-variance structure of returns on assets to the accounting features of suchassets. Co-variance is a basic characteristic of returns (see �gure 72 on page 212). This sectionexplains the basis leading to expect such a relation.9.1.1 Capital Markets and the Trading of AssetsDecisions by �rms and investors are typically made under conditions of uncertainty. Unique eventswhich frequency distribution can not be objectively speci�ed are known as uncertain events. In thecase of a known frequency distribution it is usual to talk about risk rather than uncertainty [139].Uncertainty, as well as riskiness, can vary between a maximumand a total absence (certainty). Anadequate measure for uncertainty could be the expected missing information about future mutuallyexclusive events. However, it doesn't take into account the values under risk.A more useful proxy for risk is the variability future outcomes exhibit. But measures of vari-ability with practical use are parametric-dependent. They require precise assumptions about thedistribution of the data. Unfortunately, the spread observed in returns is usually leptokurtic, thusallowing the parameterization of central trends but not the one of the spread.212



Finally, risk can also be seen as the sensitivity of an asset's expected return to unanticipatedchanges in some external factors. This proxy is free from assumptions about the spread of returns.Instead, it implies the assumption that there is some general stable model linking risk to the expectedreturn on an asset. In a capital market this seems to be the case.Capital markets, when available, trade-o� risk and return. Actual prices of an asset are deter-mined by the investors's expectations about its future returns.The expected return of every asset must be proportional to the investor's perception of risk. Riskand expected return will be linearly related | otherwise arbitrage opportunities would emerge.If the expected return on assets traded in capital markets are in
uenced by more than oneeconomic force the distribution of expected returns will display more than one dimension. Absenceof arbitrage opportunities will imply, in this case, that the expected return on each asset must be alinear combination of its sensitivities to such external forces.Relating risk to return on assets: Finance theory requires that discounting of future expectedcash 
ows ought to be made with discount rates similar to those observed in assets bearing the samerisk. If there is a general and tested model relating risk, whatever it is, to expected return, and ifthe way assets are similar before risk is also well known, this can be done. Otherwise, discountingbecomes a rather empirical exercise and probably will lead to wrong decisions.When an asset is traded in capital markets the former requirement is ful�lled with the model out-lined above, based on arbitrage, or using other models. But the relation that the market establishesbetween sensitivities to unanticipated changes in forces impinging upon it and the di�erent possiblecharacteristics of every asset is not well understood yet despite the large amount of research devotedto this issue. Even restricting ourselves to speci�c groups of assets like productive commitments(industries, trade or services), there is no available guidance to relate expected returns to the mainfeatures of such assets.The information investors use in the appraisal of assets mainly includes the one contained inperiodic reports and accounts, as well as in other related sources. For each traded asset there isan information content available to the market. It is natural to suppose that this content is notone-dimensional. Therefore, it could perhaps be decomposed into more simple and more generalfeatures like size and industrial group, each one of them perceived and traded by investors in aconsistent way.If that is so, the di�erent forces impinging upon the market would produce particular contrastswhen compared with each one of the features mentioned above. These contrasts would be complex,though. For example, in
ation could make leveraged �rms belonging to a particular industry lessattractive to investors while others, belonging to a di�erent industry, would appear as more attractivebecause of precisely the same reason. As a result, when modelling investor's expectations using longterm debt and in
ation as input variables, a second-order e�ect would emerge.213



Diversi�able and non-diversi�able risk: Assets are traded by what they are worth in themarket's eyes. But the holders of traded assets are not risking their wealth in a way that directlyrelates to the risk of each asset they hold. Just by holding many assets investors avoid a greatdeal of the variability of their wealth created by 
uctuations in the price of their risky assets. Theonly variability they can't avoid is the background movement of the whole market, the one which isimpossible to cancel out.This background movement is a unique time-history. But it can be viewed as the result of afew orthogonal forces, each one of them capturing the largest dimensions of the joint variability ofreturns on all the traded assets.Notice that we are not considering here any decomposition of the auto-correlation eventuallypresent in the time-history of this background movement. Instead, we consider such a movement asthe result of a few forces in
uencing all assets. Such forces are obtained from many time-histories ofreturns on assets by decomposition of their joint variability into its main orthogonal co-movements.9.1.2 The APT: Diversifying the Points of ViewAfter Ross's seminal paper in 1976 [104], arbitrage models became present in �nance research butscarcely in �nance practice. The �rst signs of practical use of the APT only nowadays seem toappear [97]. The reason for this delay may well be the intuitive simplicity and the immediate interestof the Betas, the sensitivities to non-diversi�able risk when compared with APT's sensitivities.In our opinion the original APT, despite being presented as an alternative to the existing modelsfor the appraisal of risk by investors, is not really an alternative. It makes interesting progress inmatters investors seem not to be interested in.The point of view of investors: For example, the APT o�ers four or �ve independent forcesinstead of one. But investors are only concerned with non-diversi�able risk. By de�nition, it isimpossible to have more than one non-diversi�able force. Two non-diversi�able forces could beadded and they would yield a unique one. Forces which cannot be added because they scatter in alldirections are diversi�able.The APT gives the impression of having more to say about co-variance with the market portfoliojust by decomposing it into four or �ve components. But it hasn't. Following an example given byCopeland and Weston [26], if we are the pilots of a plane in danger, the APT would give us thelatitude, the longitude and the altitude whilst the CAPM only gives the distance to the air�eld.But our case is a particular one. We are running out of fuel. We can see the air�eld in the distance.Only, we don't know if we should try to hold the plane or else to search for a place suitable for anemergency landing. In this case, it seems as if the distance to the air�eld is the piece of informationcapital for getting out of trouble. And by knowing the longitude, the latitude and the altitude weare not much better o�. We would have to go through an awful lot of algebra for reaching the214



same conclusion. In other words, it is clear that if a thoroughly calculated Beta really expresses theco-variance with the market portfolio, then investors don't need anything else. The APT cannotsay more about non-diversi�able risk than the CAPM does. The co-variance with the market is theonly portion of an asset's spread investors will pay to avoid. It is also the only piece of informationinvestors are likely to pay to know.Also, the APT can present diversi�able risk as non-diversi�able. When the market forces areextracted via a Principal Components rotation of returns, nothing prevents a small portion of diver-si�able variability to creep in a factor taken as an overall force. The smallest amongst the acceptedfactors can be the result of the existence of large clusters of �rms sharing similar sensitivities, notof any overall force.When a factor succeeded in capturing an overall market force it's clear that such a factor rep-resents non-diversi�able risk. But if it represents a large cluster of �rms sharing similar featuresregarding the way they are traded, the risk they introduce in the model is diversi�able. If the methodof regressions is used instead, we can't be sure to be using real overall forces. Perhaps one of theforces used has an overall e�ect in our sample but not to the whole market.The CAPM is more robust regarding this problem since indices are built on purpose to avoiddiversi�able risk. The idea of diversi�cation of risk is in the core of the way CAPM betas areestimated. In the APT we can just expect it.The point of view of individual assets: However, there are cases in which the APT couldbecome useful for �nancial practice. Whenever a more precise understanding of the way assetsare traded is required the APT is the choice. This is the case for the appraisal of productivecommitments. It is also the case of studies concerned with the market itself.When searching for a general asset's taxonomy of risk, arbitrage models seem very promising.They are a breakdown of an information content into features. They should allow a better discrimi-nation, each of the orthogonal forces showing particular a�nity towards some aspects of assets. TheAPT o�ers the possibility of looking onto an asset's expected returns from several points of view.The investor's point of view is the one of an asset's holder. When the emphasis is not in theholder but in the asset itself, the APT becomes the adequate instrument for assessing the variabilityof returns.9.1.3 The Trading of Stable and Fluctuating Features of AssetsA basic concept in our research is the hypothesis that the market trades di�erently the stable orintrinsic features of assets and the more 
uctuating ones.A rapidly growing body of research documents components which can be forecasted in asset'sreturns (see for example Fama [40], [41] or Keim [70]). Predictability is not necessarily inconsistentwith market e�ciency. Stock prices need not follow a random walk to be e�cient. Given this, it215



is reasonable to divide investor's movements in two categories: Their expectations created by thepredicted component of prices, and their reaction to unanticipated changes with regard to suchprices. In other words, since the return on assets is a sum of two components | the expectedor anticipated returns plus the unanticipated ones | all the perceived trends would in
uence theexpected returns, not the unanticipated ones.Arbitrage considerations lead to models in which sensitivities to unanticipated economic forcesplay a role. The APT explains the second component of returns.It is also known that economic trends seem capable of in
uence accounting numbers to someextent and for particular reports. Linear models relating 
uctuations in accounting �gures to eco-nomic trends have been tried by Brown and Ball [20], Gonedes [50], Magee [81], Lev [78] and others.Such models seem to show that the expected component of prices | the trends | would relate tosome changes in accounting �gures. However, there are numbers which can't adapt themselves toeconomic trends because they re
ect features which are stable or intrinsic. Obviously, only thosenumbers which can 
uctuate with the economy will actually do so.Stability and sensitivity: It is reasonable to suppose that, if 
uctuations in a few features ofthe �rm can be dictated by the expected component of economic forces, the �rm's stable attributeswould create in investors the sensitivity to unanticipated forces. This is because only stable featurescan have sensitivity. The 
uctuating ones are not sensitive: They move along with the forces.Stable features seem more promising in explanatory power than the 
uctuating ones: The lastones, incorporating the co-movement with broad economic trends, would be in some extent antic-ipated by investors. In other words, the most stable features of �rms would explain why investorssee assets di�erently, regardless of economic trends. For example, the industrial group and size of�rms would explain their sensitivity to unexpected returns for they cannot adapt their size or changesector to face in
ation or other trends. Conversely, less stable | less intrinsic, more contingent |features like the �nancial structure or the dividend policy, would relate to trends in economic forcesand to expectations observed in prices.If that is so, this study should search for relations between the most stable features of assetsand their sensitivities to the market forces. We consider industry group, location, size, operatingleverage, labour and capital intensity, payment pattern (hence, the short-term debt) as candidatesfor explaining market sensitivity. Dividend policy, some component of capital structure, are lessintrinsic.9.2 Existing ResearchOur research relates mainly to the APT. Other somehow similar topics could be the \AccountingBeta" or other econometric models relating Beta to �rm features.216



The APT today: After facing some queries about its testability [111] [33] [112] and partially be-cause of it, the APT incorporated equilibrium considerations as well as market portfolio equivalences[52] [32] [24]. The generally accepted factors have being labelled in the following way: In
ation, In-dustrial Production, Risk Premium in the market and Interest Rate's term structure growth.The tests of APT validity (see, for example [23], [101] and [117]) are generally considered asnon-conclusive. The main issues are the intercept term of the model, the independence of residualrisk, the lack of signi�cance of the model in seasonal periods [53], and estimation problems [113].The number of factors, their interpretation and stability have also been explored, leading to notvery consistent conclusions. See [28] for a study based on the LSE and [113] for remarks on thein
uence of the estimation technique on the number of factors.Three irregularities have been the subject of much interest:� The small �rm's e�ect. There is considerable evidence that the mean returns of small �rmsexceed those of large �rms [30].� The January e�ect. Mean returns in January exceed the mean returns in other months forsmall �rm categories [69]. The model seems to loose signi�cance in other months [53].� The weekend e�ect [71].An excellent yet simpli�ed discussion of arbitrage pricing models and their evolution can be foundin Jarrow [66].Accounting measures of Beta: Much research has been published on the relation betweenspeci�c characteristics of the �rm like operating leverage, gearing, or size, with Beta, the covarianceof an asset's expected return with the market portfolio. Gahlon [47], Hamada [55], Hill [58] are someexamples.An accounting proxy for Beta has been discussed in 1970 by Beaver, Kettler and Scholes [9], andlater by Thompson [127], and Beaver and Manegold [10]. After this, Bildersee [13], Blume [15], Bow-man [18], [19] and others, did the same, achieving small but signi�cant relations between accountingand market measures of risk.Traditional accounting measures of risk are attempts to highlight the uncertainty associatedwith earnings of the �rm. They are surrogates for the total variability of returns. Accounting Betasre
ect both the systematic component of risk and the residual one. Thus, the quality of accountingbetas as measures of real market expectations depend on the existence of a strong positive correlationbetween this systematic risk and the residual component | the one the market doesn't contemplate.See [9].Models of asset valuation: Another related body of research is the one concerned with thevaluation of assets. Foster's chapters 9 and 12 [44] review two branches of such research. Chapter217



9 is concerned with capital markets and information e�ciency. For example, the \FundamentalAnalysis" assumes that each asset has an intrinsic value that can be determined on the basis ofearnings, dividends, capital structure and growth potential.Chapter 12 reviews the use of �nancial statement information in the trading of equity. Equityvaluation models focus on one or several features like predicted earnings, dividends, cash-
ows orthe value of the assets owned by a company. They have been used for the valuation of non-traded�rms, and for supporting investment decisions.Most of the methods referred to above are based on time-series prediction. They could bedescribed as projections based on the past. It is expected that they will explain the market reactionto each asset's performance. Rosenberg and Guy [102] are an example. Their research relates Betasto fundamentals. For each particular �rm, they attempt to increase the quality of this measure ofrisk by incorporating corrections based on industry group, growth, the spread of earnings over time,the �nancial structure, size and others.Di�erences from our study: We would like to underline the fact that such models are not thekind of relation we are interested in here. We are not using individual histories of �rms to extractvariables and then correlate them with betas. We estimate the relation between the co-variance ofmany assets with market forces and cross-sections containing accounting features of the same assets.Individual histories re
ect individual performance. Based on them it is possible to anticipate futureperformance. Hence, these models can hide sensitivity to unanticipated forces.9.3 The DataThe �rms selected for this experiment belong to the usual set of industries we refer to in manyoccasions during this study.Prior to the �nal selection of the set of �rms to be used we examined three kinds of returns. Dailyreturns for a period of �ve years (1985-1990). Weekly returns for the same period. Monthly returnsfor a period of 15 years from January 1974 to December 1988 and listed in the FTA All Shares Index.For these three sets, returns were checked for the frequency of non-traded cases. The daily returnsyielded only 60 in a total of about 500 �rms with a reasonably small number of non-traded days.The weekly set yielded 71 such �rms. We considered as reasonably small a number of non-tradedperiods of 10% or less.It was decided that it would be desirable to avoid the use of infrequently traded assets. Theknown means for circumventing this problem [29] [109] would introduce in our experiment an extramanipulation of information. Therefore, the daily returns and the weekly ones were discarded asnot suited for the experiment.In the case of monthly returns there is a natural limit for the number of assets to be used.218



Fifteen years contain 180 time periods. It is impossible to extract real new information from morecompanies than time periods: There would be more variables than equations.From the set of monthly returns we obtained 121 industrial �rms having both the quality ofbelonging to our set of industrial �rms and being frequently traded. A third characteristic is thatall of them are listed in the FTA All Shares Index. The institution providing the monthly returnsis the London Business School. Returns are calculated asrt = loge�pt + dtpt�1 �in which p stands for traded price in month t, pt�1 is the last traded price in month t � 1 and dtis the dividend declared adjusted to a month-end basis. All adjustments are based on the principlethat the value of a share is unaltered by a change in capital structure.We decided to use these 121 collections of monthly returns for the extraction of sensitivities.From such 121 �rms, 77 belonging to 7 industries were used for building the model. It is possible toaccess the accounting reports of these 77 �rms for a period of four years, from 1983 to 1986. Eachexample in our learning set is built with the accounts of one �rm for one of these years and havingas outcome one sensitivity. Therefore, there are 77� 4 = 308 examples.The 77 selected �rms and their industrial group are listed at the end of this chapter, in table 36and the one on next page. The total number of examples is 308. By industry it is:Industry N. Cases PercentBuilding Mats. 44 14.3%Paper & Pack 40 13.0%Chemicals 68 22.1%Electrical 24 7.8%Electronics 36 11.7%Textiles 40 13.0%Food 56 18.2%The selection of the 77 �nal �rms was made on an industry basis. Only seven industries wereselected. The reason for putting aside the other industries is twofold. Some of them, like Metallurgyand Leather, were likely to introduce a very particular behaviour in the overall variability. Also,some industries were discarded due to the small number of �rms represented. On the whole, sinceone of our goals was the assessment of the e�ect of industrial grouping, it didn't seem appropriateto gather in the same sample a large number of industries.9.4 The Market ForcesOur experiment comprises four steps. First, the extraction of sensitivities from the time-history of121 returns. Second, the study of the statistical behaviour of these sensitivities. Third, the modelling219



of the relation between them and accounting information, using the MLP. Finally the study of thebehaviour of the obtained models. In this section we describe the two initial steps.Notice that the used marginal returns belong to a very particular kind of asset: Large andfrequently traded industrial �rms in the U.K.9.4.1 Extracting SensitivityGiven the returns of 121 companies during the referred period, a Factor Analysis was performed ontheir time-history taken as stochastic variables. The aim was to rotate the variance and co-variancematrix so that a few minimum co-variance axis would emerge.Four speci�c sensitivities of each asset to corresponding external forces were calculated as theloadings of the four main factors present in returns. We obtained, for the jth asset's return, rj,rj � r0j = b1j � f1 + b2j � f2 + � � �+ b4j � f4 + "jin which r0j is the expected return on asset j and the bkj; k = 1; 4 are estimations of the in
uence orsensitivity of asset's j return to the discovered forces fk; k = 1; 4. Large bk mean a large in
uence,small bk mean a small one. When a bk is negative, the in
uence and the force go in the oppositedirections. Any anticipated return will be incorporated into the r0.Clearly, what we obtain in this case is a breakdown of the cross-correlation between time-historiesinto its main components. In order to maintain a minimal level of comparability with other studieswe used Maximum-Likelihood, not Least-Squares, as the criterion for the extraction of factors. Thisissue is not important, as far as our data is concerned.The resulting factors are supposed to be a linear composition of a few main economic forcesimpinging upon the market. In our case the �ve larger factors explained half the total variability.Their Eigenvalues are displayed next.factor Eigenvalue Percent Acc. Percent1 40.6 39.5% 39.5%2 3.1 3.0% 42.5%3 2.5 2.4% 44.9%4 2.1 2.0% 46.9%5 1.9 1.9% 48.8%Apart from the �rst factor all the others decay smoothly towards smaller explained variability.Table 36 on page 238 and the one on the page next to that one display the commonality of each �rmand the loadings corresponding to the four largest factors. The commonality ranges from 0.15 to0.75. It is approximately Gaussian with a mean of 0.5 and a standard deviation of 0.11. Therefore,for most of the �rms, half the variability of their returns can be explained by these four factors.The factor loadings are the main object of this experiment. They are supposed to represent sensi-tivities of assets to unanticipated changes in market forces. In next section we examine them brie
y.220
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Figure 73: Mean values of the four sensitivities by industry. The displayed values show positions ofindustrial groups (X-axis) regarding deviations from the overall mean of each sensitivity (Y-axis).9.4.2 Preliminary Study of SensitivityIn order to gain insight in the broad rules governing the relation between sensitivities and featuresof the �rm, preliminary studies were carried out. The results are important since they allow us tohighlight the di�erences between the MLP and linear tools.We �rst observed the statistical behaviour of each sensitivity individually. Then we studiedtheir mean values by industry. Next, the co-movements of accounting items with each sensitivityregardless of the industrial group were also assessed. Finally we built a linear model explainingsensitivities in terms of both industrial groups and items.Statistical behaviour of each sensitivity: The four variables containing the sensitivities arebroadly homogeneous. No real in
uential points were found. In the next table we display their basicstatistics. Factor Skewness Kurtosis Mean Standard Deviation1 -0.882 -0.122 0.41176 0.189002 -0.478 0.195 0.26898 0.124153 0.404 0.605 0.26286 0.148254 1.881 1.034 0.18363 0.12611There are no strong di�erences between the sensitivities in what concerns these values. Thefourth sensitivity is less homogeneous than the others.These variables are not correlated. Despite the factors being orthogonal, the sensitivities theygenerate could be correlated. But only the fourth sensitivity seems to show traces of negativecorrelation with the �rst and second ones. 221



Sensitivity by industrial group: Next table summarizes the in
uence of industrial groupingin these four variables. It shows the mean values and standard deviations of each sensitivity byindustry. The displayed values are the deviations from the overall mean for each industry. Thismakes the interpretation easier. Figure 73 on page 221 is the graphical representation of this table.Industry Factor 1 Factor 1 Factor 1 Factor 1mean st. dev. mean st. dev. mean st. dev. mean st. dev.BUIL -0.030 0.164 -0.069 0.105 0.011 0.102 0.037 0.114PAPR 0.153 0.151 -0.100 0.117 0.061 0.125 0.011 0.143CHEM -0.015 0.141 0.002 0.118 0.005 0.112 -0.025 0.100ELEC 0.055 0.184 0.017 0.113 0.042 0.164 0.063 0.101ELTN 0.070 0.124 0.111 0.083 -0.246 0.151 -0.008 0.178TEXT 0.084 0.160 -0.071 0.080 0.001 0.103 -0.024 0.114FOOD -0.196 0.171 0.095 0.066 0.081 0.071 -0.011 0.119The e�ect of industrial grouping is signi�cant for all the four variables. However, it is very strongin the �rst three and it is weak in the fourth. The observed intra-class correlations (introduced inchapter 5) were: Factor 1 Factor 2 Factor 3 Factor 435.4% 39.9% 43.1% 3.4%The three main factors are correlated with industrial grouping to an extent none of the accountingitems observed in previous chapters seem to attain. The fourth factor is also correlated | its F issigni�cantly di�erent from 1 | but to a much smaller extent.We use the convention of calling \positive" to in
uences which are above the expected for thatsample. We call \negative" otherwise. In this fashion, the features of this e�ect are:Force 1 strongly in
uences the prices on the Paper industry. It is also very in
uential for the Foodindustry, but in the opposite direction.Force 2 yields a positive sensitivity in Food Manufacturers or Electronics. It has a negative orneutral e�ect on the other industries.Force 3 has a strong, negative, in
uence on the Electronics industry. It is positive for Food Man-ufacturers and Paper industries.Force 4 generates a positive sensitivity in industries like Building Materials and Electricity. Itgenerates a negative one on the other industries.This simple observation of means by industries is likely to help in elucidating the meaning and originof each one of the four forces. Notice that the above description is speci�c to this sample since itrelates to an expected value. 222



1983 1984 1985 1986Sign of slope + - + - + - + -Fac. 1 Size Invent. Size Invent. Size Invent. Size Invent.G. Fund SalesR2 52% 53% 50% 49%Fac. 2 EBIT G. Fund G. Fund G. FundSales Sales Sales SalesR2 15% 11% 19% 13%Fac. 3 C. A. C. A. W.Cap. Net W. W.Cap.G. Fund G. FundR2 26% 16% 29% 17%Fac. 4 Size Size Size SizeDebtors Debtors Debtors DebtorsR2 18% 10% 13% 10%Comm. Size Size Size Size Credit.G. Fund G. Fund G. FundR2 46% 44% 44% 40%Table 34: Results of the preliminary regressions. For each period and factor, this table displays theitems that turned out to be relevant and the proportion of explained variability. The sign (+) meansa positive correlation with the sensitivity under question. The sign (�), a negative one.Regressing items with sensitivities for individual periods: We selected four years of ac-counting reports | 1983 to 1986 | matching the �rms which sensitivities we had extracted. Foreach one of these periods we examined the linear models obtained when explaining such sensitivitiesin terms of accounting information.We �rst used size-adjusted residuals, "x = (logx� logx)�(log s� log s), along with our proxy forsize, log s� log s, as the input variables. The outcomes, the sensitivities, su�ered no transformation.Table 34 on page 223 displays the results. For each period, the items that turned out to besigni�cant in explaining sensitivities are displayed along with the proportion of explained variability.Also possible correlations with the commonality were investigated.The only sensitivities clearly explained by accounting numbers are the ones related to the �rstfactor. Investors seem to reward Size and penalize Inventory. This, when no distinction betweenindustrial groups is introduced. The remaining factor's sensitivities are very little explained by thefeatures of the �rm, at least in this linear way. The second factor must represent something negativeto the economy since its sensitivities are negatively correlated with Earnings and Sales. The thirdfactor shows some a�nity with short term features of the �rm, but a small one. And the fourthfactor is negatively correlated with Size and Debtors.The results are generally consistent during the observed period, the third factor being the ex-ception: Its R2 is dependent on the period.The commonality is an expression of the variability explained by the four factors. It is clearlyexplained by Size and Earnings. This means that the largest �rms and the most pro�table ones arealso the ones traded in a more regular, predictable, way. The market trades large and pro�table�rms in a way that is more similar than the way it trades other assets. An interesting study relatedto this issue is Roll's \R2" (1988) [100]. It is an empirical assessment of the variability explained in223
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Topology: In chapter 7 the problem was one of classi�cation. In this case it is one of regression.The only di�erence in what concerns the MLP is the use of linear transfer functions in the last layerof nodes and Least-Squares as the success criterion.The used topology and input variables were similar in the four cases. Two models were built foreach of them. First, one with 17 input variables corresponding to 10 residuals and 7 groups. Thetopology was 4 nodes in the �rst hidden layer, 1 node in the second hidden layer and one outputnode with a linear transfer function. Second, another one with 8 input variables corresponding toSize plus 7 groups. Similarly, the topology was 4 nodes in the �rst hidden layer, 1 node in the secondhidden layer and one output node with a linear transfer function.Description of the input variables: Table 35 shows these 17 input variables. Ten of themcorrespond to items and seven are dummy variables taking the value 1 when a case belongs to aparticular industry and 0 otherwise.One major di�erence with respect to the experiment carried out in chapter 7 was the nature ofthe input variables used. Instead of raw data in log space we used the residuals or the size-adjusteditems, "x, along with Size itself. The procedure for obtaining this proxy for size is described inchapter 5. We recall that in chapter 7 the size component was not introduced explicitly as an inputvariable. Size was formed in one of the �rst hidden layer's nodes. Here we introduce size explicitlyas one of the inputs and all the other items are size-adjusted.The reason for not using log items is related to the goals of this experiment and the nature ofthe problem. In chapter 7 our goal was to test the ability of the MLP to form meaningful structuresinterpretable in terms of ratios. The relation itself was not di�cult to model since it was nearlinearity. Therefore it made sense to use afterwards the obtained ratios as predictors instead ofthe MLP. In this case we face a complex model, highly non-linear. What would we do with theratios the MLP would form in the nodes of the �rst hidden layer? We couldn't use them instead ofthe model. The weight of the model in this problem is heavy.Therefore we decided to use the size-adjusted items. They o�er a ready interpretability of results.They are also mean-adjusted so that the exploring of the model is straightforward.Description of the training sets: Data from four time-periods (1983 to 1986) were gathered inthe sets to be used in the learning and test of the generalisation performance. For each �rm | andoutcome | there were four input vectors. The total number of cases was enlarged in this way to areasonable value.The randomization process leading to the division into two samples | the test and the learningset | was carried out by blocks on an industry basis. As a result, �rms were divided randomly intwo groups but since the randomization was made inside the same industry the two sets didn't yieldlarge di�erences in their proportion of cases for each industry.225



Input variable Number of parameters engaged TotalFactor 1 Factor 2 Factor 3 Factor 4Chemical dummy 3 1 1 1 6Electronics dummy 2 3 1 6Size 2 2 2 6Textiles dummy 2 2 2 6Wages 3 1 2 6Current Assets 3 1 1 5Debtors 2 1 2 5Electrical dummy 1 1 2 1 5Net Worth 3 1 1 5Paper and Packing dummy 3 1 1 5Building Materials dummy 3 1 4Sales 1 2 3Fixed Assets 1 1 2Food Manufacturers dummy 1 1 2Gross Funds From Ops. 1 1 2Debt 1 1Inventory 1 1Table 35: The number of free parameters (�rst hidden layer) engaged in the modelling, by inputand by factor. The table is ranked by total degrees of freedom.The learning itself was performed at random too. Each example, comprising the inputs for a givenperiod and the outcome, was randomly selected before being present to the MLP. This procedureavoids the modelling of any auto-correlation present in the data due to the mixing of four year'saccounts.As usual, the checking of the performance of the model was made in the test set, not in thelearning set. Since in this case the outcomes were continuous-valued the adequate measure to assessthe quality of the �t was the proportion of explained variability, R2, corrected for the degrees offreedom engaged.9.5.1 Allowing Complexity to be Accounted ForThe adapted topology is somewhat austere. Since the number of cases to be used as learning andtesting sets was smaller than desirable, the number of free parameters should be kept as small aspossible as well.The random penalization of weights linking input variables with the �rst hidden layer of nodesfurther reduced them in a very signi�cant way. During training we allowed this penalization tocontinue even beyond the point at which the performance of the �tted model degrades. In otherwords, we allowed a few weights which values were near the inhibition frontier but who were notinhibitory themselves to be eliminated. This explains why, in the �nal models, some industrialgroups overlap so perfectly.Table 35 on page 226 shows, for each one of the four models, the number of free parametersremaining after the training �nished. Since the number of nodes in the �rst hidden layer was 4, themaximum number of free parameters per input variable would be four. This never happened. The226



training started with 68 free parameters and �nished with 27 remaining ones (the �rst model), 20(the second), 9 (the third), and 12 (the fourth).The next table displays the R2 observed in all models. In the MLP, values are similar except forthe third model in which the variability each parameter explains is higher. This model is the moste�cient one. R2 Factor 1 Factor 2 Factor 3 Factor 4MLP, all input variables 71% 48% 69% 36%MLP, only Size plus industry 59% 36% 60% 22%REG, all input variables 60% 42% 52% 21%REG, only Size plus industry 52% 31% 42% 12%As noticed before, industrial grouping is an important source of explained variability.The number of parameters engaged is a rough measure of the complexity of the relation. Whenlooking into the behaviour of continuous-valued inputs we notice that Size and Wages engage sixparameters. Debt and Inventory merely engage one. In general, the dummy variables engage moreparameters than the continuous-valued ones. Chemicals and Electronics require six parameterswhilst Food only requires one.Discussion: The overall proportion of explained variability in the test set is the most remarkablecharacteristic emerging from this experiment. Especially in the case of factors other than the �rst.When comparing these numbers with those of linear regressions it is clear that the MLP madea signi�cant improvement in capturing the relation. The conclusion is that the relation linkingaccounting information with sensitivities is non-linear. This problem contains higher order e�ects,created by the di�erent behaviour of the relation to be modelled when in the presence of industrialgroups. In next section we shall highlight some of these interactions.The variability explained just by the size of the �rm and the grouping puts the above resultsin perspective. Size and industrial group are the two factors which clearly explain the market'ssensitivities. The �rst regression we performed didn't have the information regarding groups. Thisexplains its poor performance. Inventory emerged, in such a situation, as the most suitable proxyfor the grouping e�ect.Factor three's sensitivities are not a�ected by size and both factor two and four ones are negativelycorrelated with it. But all the four sensitivities are akin on grouping information.9.5.2 Exploring the ModelsThis section describes how the exploring of the resulting models was carried out. We used an \otherthings being equal" approach. It consists of varying one of the inputs at the time and maintainingall the others �xed in their mean values. The observed outputs can then be compared.The chosen approach is the only one available in this case. The model the MLP yields is fartoo complicated for direct interpretation. The used procedure allows an e�ective look into what227
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Figure 75: The �rst factor's sensitivities (Y-axis) against size-adjusted Sales (X-axis) as predictedby the \other things being equal" technique.the model really does. However, the description that follows should be accepted with caution. Insome cases the \other things being equal" techniques yield misleading results just because the otherthings cannot remain equal in the real world. No extrapolation beyond the neighbourhood of themean values of the inputs should be taken seriously.In all that follows it is also important to remember that our experiment was carried out with farfewer cases than the adequate. The results are interesting, not so much because of what they showbut more because of what the method promises.How to read and interpret the displayed results: The �gures related to this section are atthe end of the chapter, between pages 232 and 237. Figure 75 shows how these results are presented.The X-axis measures Sales and the Y-axis the �rst factor's sensitivity. Notice that, since we areusing size-adjusted items, zero sales means the value of sales which is expected for the size of the�rm. Values larger than zero mean sales above the expected for �rms of that size and conversely.This �gure says that Sales and the �rst factor's sensitivity are positively correlated. But Elec-tronics is the industry with the largest sensitivity while Building Materials is the one with thesmallest. However, since in factor analysis the sign of the factors is arbitrary, the displayed �guresyield a coherent view but not one directly comparable with studies based on correlations with Beta.For example, the trends we observe in the case of the �rst factor are the inverse of the ones Beaver,Ketler and Scholes [9] obtained for similar variables.The linear behaviour of factor's sensitivities: We �rst comment on the simplest relations |the ones which are linear regarding industrial grouping. Next, we comment on those cases in whichthe model shows industries reacting in di�erent directions to the same force.228



Figure 76 on page 232 shows the relation modelled by the MLP when explaining the �rst factor'ssensitivity in terms of Size, Gross Funds, and Long Term Debt. These are easy to explain relations.Each line is an industrial group. Sales, as seen, shows a similar pattern.The �rst factor rewards positive features of the �rm and penalizes Debt. None of the displayedcurves deserved from the MLP the engagement of many free parameters.Figure 77 on page 233 shows the most linear relations with the sensitivities to the second factor.They reward Wages, Debtors and penalize Earnings. But it is clear that some industries are moresensitive than others. Electronics and Paper are slightly penalized. Notice that, since we are workingwith size-adjusted variables, the meaning of Wages or Sales being large is that they are large for theexpected given the size of the �rm.The third factor's sensitivities reward Net Worth and penalize Fixed Assets for some industries.And they reward Wages if near the expected, penalizing both higher and smaller ones (�gure 78 onpage 234). Both the Net Worth and the Fixed Assets of the Electronics industry seem not to bea�ected by this force. On the contrary, its Wages are penalized while this is not the case for theother industries.Finally, the fourth factor's sensitivities penalize Size and Debtors and reward Inventory (�gure 79on page 235). But Inventory and Debtors of the Electricity industry seem not to be disturbed. Themost a�ected industries are Electronics and Food.So far, we described the linear models, that is, those in which the sensitivities of industrial groupsreact in the same direction for the same force.Higher order e�ects: If we examine the number of parameters engaged by the MLP we noticethat, except for Size, none of the relations commented above deserved the use of many degreesof freedom. Size needed more degrees of freedom because it is a very strong non-linear thoughmonotonic relation.We now study a few cases in which the MLP put a great deal of e�ort. The �rst one is displayedin �gure 77 on page 233. It is clear that the �rst factor's sensitivities reward Debtors for industrieslike Textiles or Paper and penalize it for industries like Food Manufacturers. It also seems as if theywould reward Wages in the case of industries like Textiles, Electricity and Food whilst penalizing itin the Electronics industry. Chemicals and Building Materials seem not to be a�ected.The interaction of Current Assets with the �rst force is particularly awkward. It seems as if thereis a penalization of the values expected for a given size in industries like Chemicals and BuildingMaterials along with a rewarding of the same situation in Electronics and Food.Factor 2 also displays this non-linear kind of behaviour. Figure 81 on page 237 shows thecomplicated pattern of its relation with Net Worth and Size. Again, industries seem to be a�ectedin di�erent directions by the same market force. It rewards Net Worth if it is reasonable for the sizeof the �rm in industries like Textiles and Paper. But it penalizes the same situation if the industryis Food. In the Electronics industry this force simply rewards capital.229



A standard size is rewarded by this factor if the industry is Textiles. It is penalized if it is Food.Small �rms are, in general, rewarded by this factor. But there is one exception, Textiles. On thecontrary, in the case of Electronic �rms, the smaller the better | with regard to the second factor.The remaining two factors didn't show complex relations of this sort.9.6 Conclusions: Towards a Taxonomy of RiskThe sensitivities of assets to unanticipated market forces seem to be closely related to featuresidenti�able and measurable in assets. Size and industrial grouping are the characteristics of assetswhich mostly explain sensitivities. But other stable ones explain sensitivities as well. This is thecase for deviations from the expected for size in Wages, Net Worth and Sales, along with the short-term structure. However, the relation between sensitivities and features is complex. The industrialgrouping interacts with features like Net Worth, Current Assets or size. The same market forcereacts in opposite directions to the same feature in di�erent industries.The sample: The use of the MLP and its ability to model higher order relations, along with ourframework, seem able to achieve a signi�cant improvement in our knowledge of the way the marketrecognizes and rewards features of assets. However, the results were obtained from less cases thandesirable and further experiments involving more �rms should be carried out before practical useswere to be attempted.The fact that our sample of �rms is a dated one | it belongs to a period of stability andexpansion | seems fortunate to us. It is clear that the relation we explored would be more di�cultto model with data from di�cult periods.The �rms used are also from a very particular set. They are large and frequently traded. Theywere drawn from well known and homogeneous industries. Therefore, the results should be alwaysreferred to such set. The contingency of the selected sample is a desired advantage. This problemcouldn't be equated with all generality. It is a problem to be solved one piece at a time.How to explain the high R2 obtained: There are many studies of this kind in the accountingand �nance literature. Though they found signi�cant correlations between accounting and marketvariables, they also convey the general impression that the explained variability is not very high.Why did our results �nd high R2? The main reasons seem to be:� We de�ned an input space based on the framework described in the �rst part of this study. Itmay well be that such inputs are suited for statistical modelling to an extent so far unattainedby other studies.� We used homogeneous samples obtained from a stable period of growth. The homogeneityof the sample is granted by a background study (chapter 5). Too particular industries were230



removed from the experiment.� The �rms allowed in the sample are large and frequently traded. It is known that the co-variance of such assets with market forces is larger than the expected.� We modelled joint trends in cross-section, not indices extracted from individual histories. Thuswe avoided using pieces of information the market regards as predictable.� We used non-linear tools for modelling relations which are complex. The improvements overthe linear ones were in some cases more than 10% of extra variability explained.� We modelled four di�erent points of view, not just one. This allows a better scanning of thevariability to be explained.It seems now clear that there is room in �nance research for the use of MLPs. They can apportionvery signi�cant improvements in the amount of explained variability in some crucial problems. Thisis because they are able to model higher order relations without damaging generalisation.Stability and unanticipated movements: We would like to underline the fact that most ofthe existing studies on this subject use earnings and dividends and their standard deviations topredict Betas. But these features are case-dependent and to some extent expected. They relyupon the quality of management and on his policy. They have little in common with the unantici-pated components of overall forces | the co-variances with the market movement. Betas are aboutunanticipated overall forces, not about management policy or success. It is natural to �nd smallcorrelations between these two variables.We think that the way investors react to really unanticipated changes is very dependent on a fewstable characteristics of assets. An accounting proxy for Beta should be searched mainly amongstthose features which actually are sensitive to unanticipated movements, the intrinsic ones.A taxonomy of risk: Our results show that it is possible to build, for each group of assets, a realtaxonomy of risk in terms of their characteristics. Expected returns can then be calculated on thebasis of such characteristics allowing a less blind discounting of future case-
ows.For example, if a productive commitment is to be undertaken, the models produced by the MLPcould be fed with its budgeted numbers. As a result they would yield four sensitivities. Then theAPT would predict its return based on these sensitivities.The identi�cation of market forces: This experiment also shows that it is possible to achievea better understanding of the forces impinging upon the market by examining the features of �rmsand industries a�ected by each force. A further exploring of this particular subject is not in themain line of this study. 231
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ind Name Commonality Size Factor 1 Factor 2 Factor 3 Factor 4BUILD BPB INDUSTRIES PLC 63.6% 1.18 0.604 0.305 0.381 0.138EVERED PLC 24.1% 0.38 0.209 0.127 0.043 0.045EXPAMET INTERNATIONAL 44.7% 0.14 0.329 0.474 0.130 0.188HEPWORTH PLC 65.7% 1.04 0.493 0.433 0.361 0.156HEYWOOD WILLIAMS GROUP 40.3% 0.38 0.201 0.416 0.136 -0.030JOHNSTON GROUP PLC 45.4% 0.21 0.331 0.215 0.315 0.375MARLEY PLC 58.5% 1.15 0.599 0.295 0.283 0.138NEWMAN TONKS GROUP PLC 52.6% 0.40 0.321 0.358 0.264 0.309PILKINGTON PLC 65.3% 1.68 0.627 0.384 0.273 0.181STEETLEY PLC 58.8% 1.03 0.492 0.455 0.267 0.069TARMAC PLC 67.5% 1.51 0.656 0.259 0.322 0.041PAPER ASSOCIATED PAPER INDUS. 43.0% 0.12 0.269 0.209 0.256 0.062BLAGDEN INDUSTRIES PLC 47.9% 0.31 0.113 0.528 0.346 0.022BUNZL PLC 49.0% 1.09 0.463 0.310 0.281 0.204FERGUSON INDUSTRIAL 45.3% 0.54 0.249 0.406 0.358 0.287LOW & BONAR PLC 49.6% 0.77 0.279 0.578 0.015 0.234MACFARLANE GROUP 25.8% 0.06 0.012 0.327 0.015 0.260METAL CLOSURES GROUP 48.0% 0.42 0.437 0.246 0.271 0.064ROCKWARE GROUP PLC 43.9% 0.56 0.442 0.332 0.269 0.020SMITH(DAVID S.) 36.2% -0.78 0.084 0.287 0.084 0.484WADDINGTON(JOHN)PLC 32.4% 0.28 0.240 0.469 0.127 0.088CHEM ALLIED COLLOIDS GROUP 50.5% 0.34 0.490 0.112 0.361 0.089BOC GROUP PLC 67.7% 1.81 0.677 0.268 0.246 0.203BRENT CHEMICALS INTERN. 51.8% 0.16 0.323 0.375 0.459 0.179BTP PLC 39.7% -0.13 0.332 0.415 0.265 0.186CANNING(W.)PLC 46.6% 0.09 0.228 0.487 0.257 0.301COALITE GROUP PLC 55.8% 0.96 0.474 0.051 0.273 0.329COATES BROTHERS PLC 53.4% 0.72 0.235 0.231 0.363 -0.036CRODA INTERNATIONAL PLC 56.2% 0.95 0.471 0.246 0.129 0.295ELLIS & EVERARD PLC 52.3% 0.03 0.228 0.273 0.233 0.391EVODE GROUP PLC 45.3% 0.22 0.421 0.128 0.249 0.310FOSECO PLC 57.6% 1.14 0.600 0.370 0.135 0.150HICKSON INTERNATIONAL 68.6% 0.56 0.485 0.436 0.362 0.186IMPERIAL CHEMICAL INDUS. 64.7% 2.42 0.642 0.304 0.258 0.121LAPORTE PLC 62.0% 0.92 0.535 0.249 0.251 0.169LEIGH INTERESTS PLC 38.8% -0.14 0.268 0.246 0.247 0.277RENTOKIL GROUP PLC 46.1% 0.73 0.496 0.158 0.342 0.181YULE CATTO & CO PLC 37.5% 0.44 0.346 0.191 -0.054 0.216Table 36: The list of �rms used in this study by industry. First table. The commonality, the sizeand the four factor loadings obtained is also displayed.
238



ind Name Commonality Size Factor 1 Factor 2 Factor 3 Factor 4ELEC BICC PLC 64.2% 1.73 0.603 0.274 0.361 0.075CHLORIDE GROUP PLC 46.8% 1.07 0.520 0.353 0.164 -0.023DOWDING & MILLS PLC 47.9% -0.14 0.382 0.272 0.021 0.192SCHOLES GROUP PLC 44.2% -0.04 0.131 0.110 0.132 0.039VOLEX GROUP PLC 44.6% 0.27 0.385 0.395 0.149 0.262WHOLESALE FITTINGS PLC 40.1% -0.05 0.121 0.106 0.500 0.182ELTN A.B.ELECTRONIC PRODUCTS 46.9% 0.45 0.150 0.176 0.572 0.297BOWTHORPE HOLDINGS PLC 51.2% 0.58 0.372 0.223 0.499 0.138CRAY ELECTRONICS HOLD. 47.9% 0.00 0.164 0.030 0.169 0.641CRYSTALATE HOLDINGS PLC 24.8% 0.37 0.240 0.082 0.382 0.190DIPLOMA PLC 64.6% 0.38 0.370 0.217 0.637 0.109ELECTROCOMPONENTS PLC 61.2% 0.52 0.436 0.182 0.608 0.027FARNELL ELECTRONICS PLC 73.6% 0.28 0.462 0.205 0.666 0.048PLESSEY CO PLC(THE) 51.2% 1.66 0.516 0.036 0.445 0.146UNITECH PLC 59.5% 0.64 0.368 0.268 0.599 0.133TEXT BAIRD(WILLIAM)PLC 56.5% 0.88 0.413 0.282 0.453 0.179DEWHIRST(I.J.)HOLDINGS 34.7% -0.05 0.085 0.226 0.193 0.464ALLIED TEXTILE COMPAN. 57.8% 0.23 0.456 0.272 0.265 0.195DAWSON INTERNATIONAL 49.0% 0.81 0.199 0.427 0.417 0.281ILLINGWORTH,MORRIS PLC 31.3% 0.40 0.294 0.332 0.111 0.177COATS VIYELLA PLC 48.2% 1.32 0.324 0.458 0.268 0.191LAMONT HOLDINGS PLC 16.2% 0.12 0.067 0.293 0.180 0.100READICUT INTERNATIONAL 41.6% 0.47 0.403 0.458 0.174 0.036SCAPA GROUP PLC 52.9% 0.65 0.485 0.287 0.276 0.303TOOTAL GROUP PLC 57.9% 1.09 0.557 0.362 0.288 0.155FOOD ASSOCIATED BRIT. FOODS 62.1% 1.75 0.639 0.188 0.301 0.189BERISFORD INTERNATIONAL 50.9% 1.67 0.626 0.135 0.271 0.047BOOKER PLC 47.8% 1.24 0.561 0.243 0.166 0.130CADBURY SCHWEPPES PLC 64.4% 1.71 0.699 0.197 0.177 0.271DALGETY PLC 61.6% 1.61 0.670 0.207 0.183 0.142FITCH LOVELL PLC 57.5% 0.88 0.681 0.060 0.084 0.141HAZLEWOOD FOODS PLC 41.1% 0.01 0.083 0.070 0.105 0.552MATTHEWS(BERNARD)PLC 49.0% 0.39 0.405 0.251 0.103 0.276NORTHERN FOODS PLC 71.9% 1.36 0.791 0.080 0.103 0.213RANKS HOVIS MCDOUGALL 56.3% 1.48 0.633 0.239 0.148 0.194TATE & LYLE PLC 53.0% 1.39 0.610 0.192 0.186 0.197UNIGATE PLC 62.6% 1.54 0.741 0.156 0.160 0.059UNILEVER PLC 64.1% 2.20 0.681 0.259 0.276 0.143UNITED BISCUITS 65.7% 1.57 0.686 0.155 0.278 0.173Table 37: The list of �rms used in this study by industry. Second table. The commonality, the sizeand the four factor loadings obtained is also displayed.
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Chapter 10ConclusionsThis study attempted a development of concepts and tools for the extraction of knowledge frompast experience contained in accounting and �nancial data. Its �rst part described the statisticalcharacteristics of accounting data. Neural Networks were then used to solve three characteristicproblems.Main achievements: Our programmatic statement for the assessment of the statistical charac-teristics of accounting data was to study items �rst and then ratios. Items prove to be much moreregular than ratios. The observed ones | extracted from the reports of industrial �rms during theperiod 1983-1987 | were two or three-parametric lognormal. McLeay [86] observed lognormality inlarge samples of items which are sums of similar transactions with the same sign. We extended thisempirical �nding: Lognormality cannot be rejected also for stocks like Fixed and Total Assets orNet Worth and non-accounting items related to size like the number of employees. Positive values ofaccounting items having both positive and negative cases as well as the absolute value of the negativeones are lognormal too. We also gathered detailed evidence on the lognormality of homogeneoussamples formed with one industry at a time.Lognormality allowed us to explain the existence of outliers and the heteroscedasticity of ac-counting data often referred to in the literature. We have shown that regressions should not be usedto model relations between lognormal variables and that weighting is not an adequate recipe sinceit simply transfers the in
uence from the largest to the smallest cases in the sample. Finally, wepointed out that the trimming of outliers is useless for two-variate lognormal data.Another important empirical �nding of this study is the existence of a common source of vari-ability in the observed log items. In log space these variables are the addition of two processes.The �rst one is common to all items and seems to re
ect the relative size of �rms. The second one,particular to each item, re
ects its uniqueness. Hence, items should be explained in terms of sizeand deviations from size. Instead of viewing each item individually | eventually correlated with240



other few ones | we should �rst account for an e�ect common to them all and then take the residualvariability as the contribution of that item.We also studied the problems posed to cross-sectional models by items having both positiveand negative cases. There is no continuity between the positive cases and the negative ones. Weremarked that negative cases should be viewed as a di�erent group.Based on these �ndings we extended ratios so as to cope with non-proportionality and non-linearity. We based our approach on the existence of a common e�ect and on the three-parametriclognormality observed in a few items. Three extensions of the ratio concept were developed: Firstly,ratios can have more than two components. The sole requirement for the statistical validity of suchratios is the use of multiplicative residuals. Next, ratios can also be viewed in log space as a re-gression. Such free-slope ratios preserve proportionality. Finally, the three-parametric lognormalitypresent in a few samples leads to base-line ratios. Base-line ratios account for the non-proportionalityoften mentioned in the literature. They seem promising for ratio analysis and statistical manipula-tion. They are robust, easy to estimate and it is likely that they will be able to gather in one uniquerelation �nancial features of �rms with very di�erent sizes.Finally, we remarked that the reasons often invoked in the literature for expecting signi�cantintercept terms in cross-sectional samples don't lead to non-proportional relations. Only an overallcost or income impinging upon the whole of the sample is able to yield non-proportionality. Thisoverall base-line couldn't be very far away from the smallest case in the sample. And the e�ect ofsuch a translation would not be noticeable except for small �rms.We also studied the distribution of ratios. We found a clear trend towards positive skewness, asexpected. However, a few factors a�ect the distribution particular ratios assume. Firstly, accountingidentities and other external forces act as constraints, hiding its skewed distribution. This explainswhy ratios like NW=TA and TD=TA are so often reported in the literature as being near normality.Secondly, when observing the multiplicative residuals in log space, leptokurtosis becomes visible. Weidenti�ed the particular variability of each item as the source of leptokurtosis in accounting data.The source of their Gaussian behaviour is the strong e�ect common to all items. Next we arguedthat ratios are ordinal and ratio standards are not a�ected by any anomalies in their distributionbecause they only use one degree of freedom. No consideration of the spread of items is required tomodel with ratios. Conversely, no disturbances in their spread can a�ect ratio standards.Before �nishing this part we studied the problem of building an estimator of the common e�ect.Such a general de
ator can enhance the interpretability of results in statistical models. We haveshown that simple case-averages of selected items approach the common e�ect. We also discussedthe reduction of the dimension of the input space in statistical models. We suggested the use of theHadamard rotation, able to isolate the common e�ect and re-distribute the remaining variability bya number of factors. Finally, we studied the importance and e�ect of the SEIC industrial groupingusing intra-class correlations. Both the spread of size and the one of �nancial features of �rms are241



dependent on the group to which each case belongs. We identi�ed higher order e�ects in the spaceof �rm's features, demanding the use of algorithms able to model them.In the second part of this study we have shown that Neural Networks are self-explanatory toolswhen extracting knowledge from accounting data. Based on a known problem, the discriminationbetween industries using accounting numbers, we enhanced a Multi-Layer Perceptron so as to form inits hidden units ratios appropriate to model that relation. The MLP also proved able to outperformthe classi�cation of a traditional discriminant analysis approach. This performance was achievedwith half the number of inputs and within a much simpler framework. Namely, the search forappropriate ratios, the pruning of outliers and the extraction of a somehow arbitrary number offactors were avoided.Next, Kohonen's Maps were used to automate �nancial diagnosis. Firstly, we explored thegraphical possibilities o�ered by the homogeneity of two-variate relations in log space. We outlinedthe two kinds of complementary questions ratios are called upon to answer and we described graphicaltools able to give joint answers to those questions. Secondly, Kohonen's Maps performed quantizationof these maps, allowing the assigning of a diagnostic to each region in such graphical tools. Thedevised plots can be used as direct tools for diagnosis in the same way �nancial ratios are. Butthey yield a richer information, incorporating relative size | or, alternatively, deviations from theexpected for a given size | and allowing the study of trajectories. The examination of trajectoriesinstead of simple trends is potentially revealing for �nancial analysts. Size is important in speci�cproblems like the prediction of �rm failure. The set of rules automatically generated in this fashioncan be seen as the result of a pre-processing for symbol-based expert systems.The last experiment of this study was meant to test the ability of Neural Networks to modelcomplex maps like the relation between the expectations of investors and the characteristics of tradedassets. Using a particular kind of asset, the large and frequently traded industrial �rms in the U.K.we extracted sensitivities from the time-history of 121 returns. Then, we modelled the relationbetween these sensitivities and accounting information using Neural Networks. Finally, we studiedthe behaviour of the obtained models. We found a clear relation between features of accountingreports like size, industrial group, work force, payment pattern and a �rm's appraisal by the market.It turns out that a very signi�cant portion of the cross-sectional variability of these sensitivitiescan be explained by accounting numbers. The developed method opens the possibility of buildinga taxonomy of risk. Also, the knowledge about the way each market force impinges upon speci�cfeatures of the �rm is potentially valuable in the identi�cation of the nature of such forces.Limitations and other negative aspects: The second part of this study would require furtherresearch. Namely, it would be interesting to replicate the building of ratios by MLPs using otherproblems. Apart from this, we didn't succeed in incorporating base-lines into the Back-Propagationalgorithm and in further improving the interpretability of the ratios discovered by the MLP. Alsothe study of two-dimensional tools and the automatic extraction of rules would have bene�tted from242



a diversi�cation of the features explored.Directions for future research: This study opens up a large �eld of rich possibilities for futureresearch. In the �rst place, it is important to �nd out to what extent the promising regularitiesobserved in accounting items | lognormality and the strong, common, e�ect | can be extrapolatedto di�erent samples: Small or non-industrial �rms, items other than the observed ones.Base-lines should be searched and related to other characteristics of the �rm. Their internalmechanism, if any, should be sorted out. This should be done using samples containing �rmscovering very di�erent sizes. The e�ectiveness of base-line ratios for setting standards could thenbe established. The leptokurtosis observed in ratios would be, in our opinion, the next subjectof investigation.It seems also promising to try and build a proxy for the common e�ect with case-averagescontaining many items. A reliable estimation of the common e�ect would allow the exploring ofresiduals, that is, the particular contribution of each item to the overall variability.The logarithmic nature of accounting data allows a systematic study of ratios: The way theybehave inside industries, the stability of their expected values, the search for the most promisingones for speci�c tasks, the way their information can be complemented by other ratios, the onesmore a�ected by base-lines and in what industries, their range of application to �rms of di�erentsizes and so on. In the same line, the behaviour of industrial groups should be studied one by one.Neural Networks deserve further research. Aspects related to ours are the direct modelling ofbase-lines by the Back-Propagation algorithm, the study of learning procedures aimed at enhancingthe interpretability of the ratios formed in the hidden layers, the testing of more e�ective learningtechniques and distance measures in Kohonen maps. The possibility of drawing a taxonomy of riskas shown in the last chapter of this study should, of course, be explored. Larger learning sets wouldallow the building of more detailed and reliable models.
243



Part IIIAppendices

244



Appendix AThe Statistical Description ofAccounting ItemsThis appendix contains detailed results or developments related to the �rst part of our study. Theywere relegated to an appendix because they would break the sequence of the presentation shouldthey remain in the main text.Some of the sections presented here are self-contained and eventually important for the under-standing of the main body of research. Therefore, this appendix should not be regarded as a simplestorage place for large tables.However, large tables do exist as well. And owing to the need for printing a huge amount ofsuch tables the organization of this appendix doesn't follow the sequential order of the main text.Subjects requiring the displaying of many tables alternate with others not demanding it. Even so,some sets of tables had to be placed at the end.A.1 Persistency of Deviations from Two-Parametric Lognor-malityWe measured the number of times a signi�cant departure from a two-parametric lognormal distri-bution was observed during the whole period of �ve years for a given sample. Such a measure cangive us an idea of the persistency of two-parametric lognormality.Tables 38 on page 246, and the one on next page show, by items and by industrial group, thenumber of times a signi�cant departure from a two-parametric lognormal distribution was observedduring the �ve-years period.As an example, Sales had 3 groups which exhibited departures once in �ve years, another grouphad three departures in the same period and �nally there were two industrial groups which were245



Item: ONCE TWICE THREE FOUR FIVETIMES TIMES TIMESSales 3 1 2Net Worth 2 3Wages 2 1 1Inventory 3 1Debtors 1 3Creditors 2 1 1Current Assets 3 3Fixed Assets 1 2Total Assets 1 3Current Liabilities 1 3Number of employees 1 1 1 1Expenses 2 1 1Tot. Capital Empl. 3 1EBIT 2 2Operating Pro�t 2 2Long Term Debt 3 1 1Funds Flow Fr. Ops. 6 1 1Working Capital 3 2Table 38: Persistency of departures from the two-parameters model. By item.non-signi�cantly two-parametric in four of the �ve years considered. And the industrial group Woolhad two variables which departed from the two-parametric hypothesis once in �ve years. WorkingCapital | in three industrial groups | departed once in �ve years. Two other groups departedtwice. And when considering groups instead of items, metallurgy had no departures at all, BuildingMaterials had three items which departed once in �ve years and one item which departed twice.And so on.As we can see departures are sporadic. They hardly occur in more than one or two years. OnlyWages (Electronics) is persistently three-parametric lognormal.Apart from the 20 cases known as \bad cases", all the departures from the two-parametric modelare three-parametric lognormal: There is always a small � for which the Shapiro-Wilk W becomesnon-signi�cantly di�erent from 1.A.2 Simulation of Working CapitalThe distribution of x, a desired p-variate normal deviate, can be represented as a linear transforma-tion of p independent normal variates g = (g1; � � � ; gp)0 as x = Ag + �.A is any p� p matrix for which A A0 = �. This matrix is not unique. If, for instance� = " 1 �� 1 #a 2� 2 correlation matrix, then a particularly simple A yielding A A0 = � is" 1 0� p1� �2 #246



Industrial Groups ONCE TWICE THREE FOUR FIVETIMES TIMES TIMESBuilding Materials 3 1MetallurgyPaper and Packing 3 1 1Chemicals 4 1 1Electricity 3 3 2 1Industrial Plants 7 9 1 1Machine Tools 4Electronics 2 7 3 1 1Motor Components 2Clothing 3 1Wool 2Textiles Mix.LeatherFood Manufacturers 3 4 3 4Table 39: Persistency of departures from the two-parameters model. By industry.In general, a possible choice for A is provided by the Cholesky factorization, that is, the lowertriangular matrix A for which A A0 = �. In multi-variate simulations we used such procedure.In the case of a two-variate distribution of x and y it yields a simple expression. For a desired �and using g1; g2 independent random deviates,( x = E(x) +g1y = E(y) +g1 � �+ g2 �p1� �2E(x); E(y) are the expected values of the variates we want to simulate. This simple manipulationcan be carried out easily.In the �rst mentioned simulation we used these starting values� = 0:98043logCA = 4:343logCL = 4:192inspired in the parameters observed in the Electronics industry (1987). We simulated 2000 valuesand observed the lognormality of the resulting WC = CA � CL in two separate cases, positivedeviates and absolute values of negative deviates. The results are displayed in next table.Statistic CA for WC < 0 CL for WC < 0 Positive WC Negative WCSKEW -0.217 -0.242 -0.055 -0.471KURT 0.592 0.753 0.301 1.106W 0.9837 0.9839 0.98 0.9838sig W non-sig. non-sig. non-sig. non-sig.N. Cases 463 463 1537 463Therefore simulated results agree with empirical observations that absolute values of negativeaccounting items are lognormally distributed.The following is an example of multi-variate simulation.247



We based the starting values in the building materials group (1983) and we selected the fourvariables displayed next.Item Mean St. deviation Item Mean St. deviationSales 4.6253 0.605 Current Assets 4.2339 0.583Fixed Assets 4.0532 0.599 Current Liabilities 4.0273 0.607The � used in this case was the variance and co-variance matrix: 266664 S CA FA CL0:3660:344 0:3390:341 0:324 0:3590:353 0:339 0:327 0:369 377775After generating 2,000 cases with multivariate lognormality we obtained 211 of them with negativeWorking Capital. The mean values and standard deviations for such item, as well as the skewnessand kurtosis were Mean St.d. N. cases Skewness Kurtosisfor WC > 0 3.754 0.67 1789 -0.162 -0.023for WC < 0 3.272 0.85 211 -0.442 0.551As seen, both positive and negative cases were lognormal. The resulting co-variances areS FA CL CA WC S FA CL CA WC0.367 for WC > 0 0.384 for WC < 0 S0.346 0.369 1789 cases 0.348 0.355 211 cases FA0.348 0.327 0.354 0.371 0.335 0.376 CL0.344 0.327 0.335 0.338 0.370 0.335 0.370 0.369 CA0.336 0.325 0.300 0.341 0.450 0.396 0.350 0.419 0.386 0.722 WCThe results of simulation agree with the few observed real cases. Negative cases also exhibit thecommon e�ect but they spread more than the positive cases.A.3 Description of the Extreme Departures From Lognor-malityWe pointed out in chapter 1 that a few tests of lognormality yielded values of P (Shapiro-Wilk'sWsigni�cance) which were so small that it would not be possible to apply logits.We also noticed that such a set of bad cases behave di�erently from the other ones. The signi�-cance (P values) obtained from all other tests form in logit space a normal distribution. Bad casesdo not �t well in such a distribution. They are more numerous than the expected and they form acluster sticking out well below the lower normal values of Logit P .They are also insensitive to a three-parametric transformation. No � exists able to turn themlognormal. This feature is a very particular one since in all the other cases yielding signi�cantdepartures a � exists able to bring W to non-signi�cant values.248



We examined each one of such bad cases in order to �nd out the reasons for their erratic behaviour.Here we present the results.1983: In 1983 there were no bad cases.1984: There are bad cases in two industries.CLOTHING: Sales and Expenses. The �rm STORMGARD PLC sold 54 (units are thou-sands of pounds) and had also very small expenses. The sample has only 46 cases andthe next smallest value of sales is 2402. STORMGARD turns out to be a strong outlierin a very small sample. We further notice that this �rm has sales which are larger thanearnings.ELECTRONICS: Wages and Number of Employees. There are three clear clusters. Acluster of eight large �rms is clearly detached from the rest of the distribution. It isinteresting to notice that neither the skewness nor the kurtosis exhibit values far fromthe acceptable.1985: There are bad cases in three industries.PAPER AND PACKING: Current Assets and Expenses. In 57 cases there is one �rm,EAST LANCASHIRE PAPER GRO, with CA = 1. The next smallest value in thesample is 1265. The same as Expenses. EAST LANCASHIRE is also one of the 5 �rmsexhibiting EBIT larger than Sales during one or two years of the period.FOOD: Current Assets. There are three clear clusters. Again, Skewness and Kurtosis areunable to trace the irregular shape of this distribution.CLOTHING: Operating Pro�t. The �rm UNIGROUP PLC appears in the database withOPP = 1, and such a pro�t turns out to be a strong outlier in a small group. The nextsmallest case is OPP = 52. The sample has 44 cases.1986: There are bad cases in three industries.ELECTRONICS: Wages, Number of Employees and Current Liabilities. Again three clus-ters, large �rms well separated from the distribution. Skewness and kurtosis are normal.INDUSTRIAL PLANTS: Inventory. BIMEC PLC has I = 1. Next smallest value, 278.In a sample of 22 cases this is enough to in
uence normality tests.FOOD: Long term Debt. Very clear three-modal distribution.1987: There are bad cases in three industries.FOOD: Sales, Expenses and Earnings. Again, three very clear clusters but in this case thecluster of small �rms is detached from the others. Then, there is also a peaking central249



cluster. Skewness and kurtosis again fail to trace the lack of normality. In this groupthere are four �rms with EBIT larger than Sales.ELECTRONICS: Wages, Number of Employees and Total Capital Employed. There arethree clusters as in two previous years. But the group of eight very large �rms is now lessdetached from the others than it was in previous years.CLOTHING: Funds Flow From Operations. The �rm GOODMAN GROUP PLC displaysa FL = 9 which is a clear outlier. The next smallest cases have FL = 339. The samplehas 45 cases.In short: The causes for the existence of the described bad cases seem to be twofold:Anomalous Cases. Errors, extreme outliers, very particular situations.Non-Homogeneous Groups. The existence of clusters of �rms well detached inside the sameindustrial group is perhaps a result of a temporary expansion of the sector. Or it can be aconsequence of an intrinsic non-homogeneity of an industrial group. It happens from 1984 to1987 in the Electronics and Food industries, a�ecting Sales, Number of Employees and Wagesmainly.We conclude that there seems to be an explanation or cause for each one of the observed strongdepartures from the lognormal hypothesis. These causes should be considered as external to thegenerative mechanism governing the cross-sectional characteristics of accounting items since theirfrequency, 20 cases in 1260 di�erent samples examined, makes them exceptional.A.4 Results of Lognormality TestsA.4.1 All Groups TogetherIn this section we display and comment the detailed results obtained when measuring the kurtosis,the skewness and the Shapiro-Wilk's W of each of the 13 positive-valued accounting items and thepositive values of the 4 items having both positive and negative cases, during a period of �ve years.We also include Long Term Debt for which only the non-zero cases were selected.Such results are contained in three tables: Table 40 on page 251, for the items Sales, Net Worth,Wages, Inventory, Debtors and Creditors. In the one on page next to this one, for Fixed Assets,Total Assets, Current Assets, Current Liabilities, the number of employees and Expenses. Finally,in the next one for Total Capital Employed, Earnings, Operating Pro�t, Long Term Debt, GrossFunds FromOperations and Working Capital. The items selected for testing represent very di�erentsituations and manipulations of data. 250



Item Year 1983 1984 1985 1986 1987N. Cases 555 649 677 702 688Sales SKEW 0.058 -0.035 0.126 0.107 -0.08KURT 0.765 0.842 0.604 0.39 0.854W 0.982 0.983 0.984 0.983 0.982sig Wbest WNet SKEW 0.174 0.163 0.253 0.289 0.289Worth KURT 0.468 0.402 0.255 0.263 0.353W 0.987 0.985 0.984 0.983 0.983sig Wbest WWages SKEW 0.322 0.246 0.384 0.35 0.239KURT 0.177 0.252 0.067 0.091 0.266W 0.978 0.984 0.975 0.977 0.98sig W 0.015 0.001 0.01 0.02best W 0.988 0.988 0.989 0.981Inventory SKEW -0.089 -0.117 0.019 -0.202 -0.302KURT 0.69 0.577 0.572 1.217 1.331W 0.985 0.986 0.989 0.986 0.985sig Wbest WDebtors SKEW 0.052 -0.003 0.066 0.126 -0.036KURT 0.309 0.411 0.386 0.318 0.76W 0.984 0.987 0.986 0.987 0.991sig Wbest WCreditors SKEW 0.285 0.176 0.236 0.242 0.196KURT 0.307 0.331 0.356 0.289 0.369W 0.978 0.983 0.981 0.979 0.982sig W 0.014 0.06 0.006best W 0.985 0.985Table 40: Lognormality of all groups together. First table.Samples were drawn directly from the Micro-EXSTAT data-base. No pre-conditions were estab-lished, apart from the one of �rms being in the U.K. None of the cases was considered as an outlier.Therefore, samples are quite representative.The number of cases in each sample is displayed in the tables referred to along with the otherstatistics.The results show that 11 of the 18 items | Sales, Net Worth, Debtors, Fixed Assets, Expenses,Inventory and Total Capital Employed, along with the positive values of Earnings, Operating Pro�t,Long Term Debt and Working Capital | are two-parametric lognormal in the whole period of 1983to 1987.The remaining 7 variables are either two-parametric or three-parametric lognormal dependingon the year. None is persistently three-parametric during the �ve years. In at least one year allvariables achieved lognormality with just a simple log transformation.The most three-parametric cases are Total Assets and Wages with four years in �ve requiring athree-parametric transformation. In general, the positive values of McLeay's � variables are morenear two-parametric lognormality than the � ones. Only Gross Funds From Operations exhibit onedeparture from a two-parameters distribution, in 1987.Only when P < 0:05 is very near this value we display its value (sig W ). In such cases we alsoshow the value of W obtained by introducing an optimal � in the log transformation (best W ).The algorithm for assessing skewness and kurtosis are those adapted by the SPSS-X package.251



(cont.) 1983 1984 1985 1986 1987Fixed SKEW 0.097 0.177 0.119 0.124 0.159Assets KURT 0.421 0.11 0.114 0.113 -0.008W 0.988 0.983 0.984 0.987 0.984sig Wbest WTotal SKEW 0.301 0.351 0.404 0.343 0.425Assets KURT 0.546 0.276 0.228 0.349 0.309W 0.983 0.979 0.978 0.979 0.978sig W 0.01 0.005 0.01 0.005best W 0.985 0.987 0.983 0.984Current SKEW 0.237 0.349 0.056 0.295 0.345Assets KURT 0.372 0.374 1.84 0.345 0.48W 0.982 0.984 0.985 0.98 0.979sig W 0.03 0.02best W 0.985 0.985Current SKEW 0.26 0.155 0.21 0.273 0.262Liabilities KURT 0.366 0.446 0.462 0.36 0.417W 0.979 0.983 0.984 0.981 0.982sig W 0.026 0.04best W 0.986 0.988Number SKEW 0.171 0.191 0.283 0.221 0.159of KURT 0.282 0.181 0.187 0.251 0.346Employees W 0.981 0.982 0.98 0.981 0.981sig W 0.02 0.04 0.05best W 0.985 0.985 0.983Expenses SKEW 0.093 -0.108 -0.043 0.012 -0.124KURT 0.327 0.738 0.742 0.29 0.641W 0.981 0.986 0.988 0.985 0.984sig Wbest WTable 41: Lognormality of all groups together. Second table.One interesting feature of the distribution of the observed items is the positive nature of itskurtosis. With very few exceptions the values obtained for the kurtosis are positive. We saw insection 4.1 (page 90) that the distribution of the ratio residuals is characterized by the same featurebut magni�ed.A.4.2 By Industrial GroupTables 44 and the next �ve tables contain the detailed results of the tests of lognormality of theobserved eighteen items by industrial group and by year. They can be found on pages 259 and thenext �ve pages towards the end of this appendix.Each table displays, for a particular item, the number of cases, the Shapiro-Wilk's W , and theassociated probability P . This P should be interpreted as the likelihood of obtaining aW as small asthat observed, when, in the population from which the sample was drawn, W would have the valueof 1. Since a W of 1 means lognormality, any small P will denote a departure from the lognormalhypothesis. It is usual to reject the null hypothesis of no departure from lognormality for P < 0:05.In this case we know that there are less than �ve chances in one hundred that some hazardouscircumstances of sampling would lead to a value of W as small as the observed one despite oursample being drawn from a lognormal population.When P is displayed as having a value of 0 it means that P is smaller than the precision of thealgorithm. Values of 0.00 mean a P < 0:005. The values of P = 0 are denoted in our study as the252



(cont.) 1983 1984 1985 1986 1987Total SKEW 0.28 0.156 0.322 0.338 0.34Capital KURT 0.35 0.449 0.126 0.18 0.282Employed W 0.9828 0.9854 0.9819 0.9823 0.9815sig Wbest WEBIT SKEW -0.061 0.094 0.165 0.232 0.305KURT 0.678 0.244 0.409 0.402 0.451W 0.9846 0.9887 0.9841 0.9854 0.9823sig WN. Cases 514 606 629 645 641Operating SKEW -0.097 -0.053 -0.13 0.128 0.176Pro�t KURT 0.68 0.36 0.81 0.215 0.469W 0.9898 0.9918 0.9854 0.9843 0.9848sig WN. Cases 497 589 615 627 619Long Term SKEW -0.106 -0.049 0.029 -0.01 -0.059Debt KURT 0.095 -0.023 -0.101 -0.15 -0.016W 0.9868 0.9842 0.9839 0.9857 0.985sig WN. Cases 358 439 479 518 510Gross Funds SKEW 0.084 0.049 0.228 0.176 0.1From KURT 0.492 0.448 0.286 0.4 0.938Operations W 0.9867 0.9872 0.9842 0.9833 0.98sig W 0.026N. Cases 527 625 647 666 650Working SKEW -0.093 0.215 0.103 0.061 0.288Capital KURT 0.487 -0.062 0.532 0.269 0.311W 0.9926 0.9839 0.9881 0.9850 0.9807sig W 0.052N. Cases 505 587 610 641 626Table 42: Lognormality of all groups together. Third table.bad cases. Each of these samples have been observed and discussed elsewhere.The minimum sample size is 6. The maximum is 145. Most of the samples have sizes between20 and 60.A.5 The Estimation And The Signi�cance of a Base-LineWe suggest two methods for estimating base-lines. Firstly, base-lines can be estimated for eachitem individually using the method described by Royston [105] and explained at the beginning ofchapter 1: The estimated � is the one which maximizes any statistic linked with a test of normality.Secondly, base-lines can be estimated in ratios by building models in log space and then using aniterative Least-Squares algorithm for �nding both the expected value of the ratio and the base-linein the denominator.The �rst method is the only one available for multi-variate modelling. Its drawback is the over-estimation introduced by the Shapiro-Wilk test. The second one should be tried when working withsimple ratios since it is easier to carry out and more robust to problems of over-precision. But ithas a few problems of its own.To illustrate both methods we are going to use �ve pairs of samples obtained from simulateddata as explained in section 3.4.3. Figures 27 on page 78 and �gures 28 on page 79 are a graphicalrepresentation of such a set when di�erent base-lines are simulated.253
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Figure 82: Estimation of � using the method based on tests of lognormality. This �gure shows theevolution of P (W ) for several � in the Electronics industry.A.5.1 The Method Based On Tests of NormalityThis method consists of detecting the � which makes the sample closer to normality. When usingthe Shapiro-Wilk test the statistic to optimize is W . For estimating � we �nd the maximum Wobtained when performing normality tests of log(x+ �). The use of W yields sharp, easy to obtain� (see �gure 82).As an example, we used the simulated �ve sets of lognormal data mentioned above, each onewith a known base-line. Then, we estimated the � usingW . Next table compares the simulated withthe estimated base-lines. Notice that there are two samples in each set, the one named \Numerator"and the one named \Denominator". This is because we are going to use these sets later on as thenumerator and the denominator of ratios.Sample number Simulated base-lines W estimated �Numerator Denominator Numerator Denominator1: No base-lines 0 0 140 1202: + in Numerator 300 0 -160 1203: + in Denominator 0 300 140 -1804: - in Numerator -50 0 200 1205: - in Denominator 0 -30 140 140Firstly, we notice that the samples with no simulated base-lines optimized W for values of � of140 and 120. They were lognormal even with no � at all but an optimumW corresponds to thesevalues, not the zero ones. Notice also that a � of 140, as detected by the Shapiro-Wilk test, meansthat we have to add 140 to all the cases in the sample in order optimize W . Therefore, if we wereto simulate such a base-line using a perfect lognormal sample, we should subtract | not add | 140from it. The conclusion is that in order to estimate the real base-line we invert the sign of the �254



obtained from optimizingW .Secondly, we observe that when a simulated base-line of +300 was introduced, the � detected bythe Shapiro-Wilk test was -160. The meaning of this is straightforward. Since the original samplehad already a supposed base-line of -140, by adding to it the simulated +300 we obtain a samplewith a base-line of +160. The estimated � is then expected to be -160.The � obtained for all the other samples are explained in the same way.Over-estimation of �: The � estimated by the Royston method are in general too large. To avoidover-estimations it seems a good practice to follow these rules:1. Any item achieving two-parametric lognormality should be considered as not having a signif-icant base-line as well. In �gure 82 (right) the probability of the sample being drawn from atwo-parametric population is about 20%. Therefore we conclude that there is no signi�cantbase-line despite the fact that the introduction of one would make the signi�cance of W attainalmost 100%.2. Only those items not achieving a two-parametric lognormality should be candidates for havingsigni�cant base-lines. In that case, instead of �nding the maximum W , we just �nd thesmallest � able to render the sample two-parametric. In the same �gure (left) a base-line ofabout 300 is required to bring the transformed sample to a state of non-signi�cant departurefrom normality. We accept this value of � � �300 despite being possible to attain a muchmore signi�cant W with larger absolute values of �.These rules ensure a better estimation of base-lines. They are justi�ed by our experience and by thetheory of signi�cance of estimators.A.5.2 The Method Based On Iterative Least-Squares EstimationWe now use the previous samples to form base-line ratios. Then we estimate jointly the expectedvalue of such ratios and the base-line impinging upon the denominator. The appropriate tool is aniterative Least-Squares algorithm. If N stands for the numerator and D stands for the denominator,our problem consists of �nding the � and �� such that, inlogNj = ��N=D + log(Dj + �D) + "N=Dj or in logDj = ��D=N + log(Nj + �N ) + "D=Njthe sum of squared "j is minimized. 255



For the above samples we obtained the following estimated models:1: No base-lines: logN = 0:131 + log(D + 9)2: +300 in Numerator: logD = �0:12 + log(N � 373)3: +300 in Denominator: logN = 0:131 + log(D + 291)4: -30 in Denominator: logN = 0:131 + log(D + 39)5: -50 in Numerator: logD = �0:13 + log(N + 51)These estimated parameters seem to comply with the simulated base-lines, thus ignoring the over-estimated base-lines detected by the Shapiro-Wilk test in the non-displaced samples.Two drawbacks speci�c to this method are:� The algorithm is not guaranteed to converge, or to converge in an acceptable way. For example,the algorithm frequently generates � which, when added to the observations in the sample, yieldnegative values. Hence, a few or even a lot of cases are thrown away from the sample duringthe iterative computation. The resulting parameters are useless.� In the previous example we knew in advance where each base-line was. But in the real caseswe don't know how to build the model so that the base-line appears in the denominator. Theresulting models | when we try to estimate base-lines by putting them in the denominatorwhen they should be in the numerator | yield ratios which are formally correct but of not soeasy interpretation. Since a base-line, when accounted for in the wrong member, has a valuewhich can be very far away from the real one, these ratios suggest the existence of exaggeratedor smoothed base-lines.We think that both methods should be used for building correct base-line ratios. They complementeach other. First, the Shapiro-Wilk test or any similar one can determine where the strong base-linesare and their approximated magnitude. Then, a Least-Squares modelling in log space will hopefullyyield the estimated parameters for ratio analysis. When the problem is the estimation of base-linesfor multi-variate models, the former technique is the only one available.A.5.3 The Signi�cance of a Base-LineThe examination of two-variate scatter-plots of accounting variables in logarithmic space can de-tect departures from strict proportionality when they turn out to be signi�cant. In fact, the logtransformation | and also the ratio one | produces a trade-o� between non-proportionality andnon-linearity so that even small departures from proportionality result in clear departures fromlinearity.Given this, any of the usual methods for tracing non-independence of residuals could be usedin log space to detect non-negligible �. The plots developed in chapter 3, page 73 are a simpleapplication of these principles. 256



However, some advantages would arise from applying methods able to explore the particularnature of the distortion. Next we suggest two procedures.For a given two-variate sample fy; xg, we could consider any constant term a as signi�cantregarding the introduction of non-proportionality in a relation y = a+x if it would produce signi�cantnon-linearity in log or ratio space. The signi�cance of such a non-linearity could be assessed bycomparing the variability explained by a linear model with the one the introduction of a quadraticterm would account for.Such a method is formally correct but it is open to misleading in
uences. A few cases coulddictate the �nal result.Another possible way could be the following procedure:� Create two new variables each containing the ranking of the ratio by ascending order of thenumerator and denominator. For each of these ranks,� identify the samples containing the �rst N percentiles (typically, the �rst 5 percentiles) andthe central ones (the 3th quintile).� Compare the log mean-values of the ratio in the centre with the sample containing the �rstpercentiles. A simple t-test can be used for this.Signi�cant mean di�erences in any of the cases indicate a perceptible base-line. This procedure ise�ective because, as we saw, base-lines only a�ect the smallest cases in the sample. Notice that theratios should be handled in log space.This method is more robust than the �rst one but it is more empirical too. For example, theambiguity in the size of the samples to be compared introduces arbitrariness.As an example, we assessed the non-proportionality in the relation between Earnings and Salesfor the Electronics industry in 1987. The mean of the log ratio in the �rst decile was -0.73. The meanfor the central quintile was -1.10. The di�erence between these means is signi�cant (P < 0:001).After computing the modellogEBITj = �2:02 + 1:12� log(Sj + 5510) + "jwe observed the mean values of the residuals, "j in the same places as before. Both mean valuesyielded the same value of approximately zero.In general, the simple examination of scatter-plots of any two accounting items in log space isenough to detect base-lines. They draw very homogeneous, highly correlated, linear scatters, alwayswith a slope of 45o corresponding to the common, strong e�ect. A typical example is displayed in�gure 23 on page 58. In most of this relations traces of non-linearity cannot be observed. Howeverin a few cases a real convexity a�ecting small values is clearly visible. This convexity is consistentwith �gure 26 (left) on page 77. 257



Minimum 1983 1984 1985 1986 1987Building Materials 0.29 0.40 0.36 0.35 0.34Metallurgy 0.25 0.20 0.36 0.34 0.29Paper and Packing 0.40 0.34 0.32 0.34 0.35Chemicals 0.32 0.30 0.29 0.27 0.29Electrical 0.39 0.35 0.30 0.28 0.28Industrial Plants 0.21 0.23 0.28 0.37 0.33Machine Tools 0.16 0.23 0.18 0.19 0.16Electronics 0.41 0.46 0.43 0.43 0.39Motor Components 0.49 0.49 0.46 0.44 0.42Clothing 0.16 0.15 0.14 0.13 0.14Miscellaneous Textiles 0.11 0.20 0.21 0.21 0.21Wool 0.40 0.50 0.61 0.58 0.56Leather 0.30 0.49 0.49 0.44 0.40Food Manufacturers 0.56 0.58 0.52 0.56 0.56Table 43: Minimum variance and co-variance obtained from � matrices by industry and year.A.6 The Common E�ectIn this section we replicate the experiment carried out by Fieldsend et al. [42] but always usingthe same independent log variable, the proxy for size, s, developed in section 5.1. For 14 industrialgroups during a period of �ve years (1983-1986) we observe the slopes, b, and the proportion ofexplained variability, R2, of regressions in which log s explains individual log items. For models likelogxj = a + b� log sj + "jin which xj is an accounting item, the estimated values of b should scatter around 1. In tables 50and next, on pages 265 and the next one towards the end of this appendix we display the resultingslopes. Tables 52 and next, on pages 267 and the next one towards the end of this chapter displaythe obtained R2. Long Term Debt is the item with largest departures from the simple ratio model(b = 1). Metallurgy is the industry with the same quality.On the whole, the displayed results are an argument in favour of a unique, strong e�ect repre-senting the relative growth of accounting items. The slope emerges as a non-important parameter.Its value is predictable and departures from such a prediction are very small. They can be ex-plained by the bias resulting from using regressions instead of algorithms able to deal with thiserrors-in-both-variables model.A.7 Variance and Co-variance MatricesIn this section we display a few more variance and co-variance matrices of accounting items in logspace illustrating their particular features. Very typical shapes are displayed in �gures 83 and nexton pages 269 and the next one towards the end of this appendix.It is also interesting to observe the minimum variance or co-variance in � matrices belonging tothe 14 industrial groups during the �ve-year period. Table 43 shows these values.258



1983 1984 1985 1986 1987V ind N W P N W P N W P N W P N W PS BUIL 29 0.94 0.18 34 0.96 0.43 36 0.97 0.66 39 0.96 0.43 38 0.97 0.56METL 29 0.98 0.95 32 0.98 0.97 33 0.97 0.77 34 0.96 0.50 33 0.97 0.64PAPR 50 0.95 0.06 56 0.95 0.08 57 0.94 0.02 60 0.96 0.12 58 0.96 0.17CHEM 53 0.95 0.09 55 0.95 0.12 56 0.96 0.20 55 0.96 0.19 55 0.96 0.30ELEC 37 0.95 0.16 44 0.93 0.02 48 0.96 0.22 49 0.97 0.40 46 0.96 0.28I.PL 19 0.91 0.10 20 0.84 0.00 22 0.83 0.00 23 0.89 0.02 23 0.90 0.02TOOL 22 0.91 0.05 24 0.95 0.29 24 0.97 0.68 26 0.97 0.84 25 0.95 0.29ELTN 98 0.97 0.33 130 0.96 0.03 138 0.96 0.04 145 0.96 0.02 143 0.97 0.07MOTR 25 0.92 0.08 30 0.95 0.26 31 0.96 0.36 30 0.96 0.42 29 0.96 0.46CLOT 39 0.98 0.92 46 0.89 0 48 0.98 0.94 52 0.97 0.70 50 0.99 0.98WOOL 15 0.93 0.36 21 0.97 0.82 20 0.96 0.62 20 0.97 0.84 20 0.96 0.55TX.M 32 0.95 0.31 36 0.97 0.75 36 0.96 0.37 37 0.97 0.66 38 0.97 0.67LEAT 13 0.95 0.65 16 0.95 0.52 16 0.95 0.50 16 0.94 0.42 16 0.96 0.79FOOD 94 0.96 0.03 105 0.96 0.03 112 0.95 0.00 116 0.96 0.05 114 0.93 0NW BUIL 29 0.93 0.08 34 0.94 0.11 35 0.93 0.04 38 0.96 0.29 38 0.94 0.07METL 29 0.96 0.49 32 0.97 0.65 32 0.98 0.87 33 0.97 0.78 31 0.97 0.77PAPR 48 0.98 0.90 55 0.98 0.96 56 0.98 0.84 60 0.98 0.80 58 0.97 0.51CHEM 52 0.97 0.70 54 0.98 0.74 55 0.98 0.79 54 0.98 0.91 54 0.97 0.61ELEC 37 0.93 0.03 44 0.94 0.05 48 0.94 0.04 49 0.95 0.09 46 0.94 0.05I.PL 19 0.91 0.10 20 0.90 0.05 22 0.89 0.02 23 0.91 0.04 23 0.93 0.13TOOL 22 0.95 0.36 24 0.96 0.47 24 0.96 0.6 26 0.97 0.71 25 0.96 0.60ELTN 97 0.98 0.58 130 0.98 0.5 134 0.96 0.04 142 0.98 0.45 138 0.96 0.00MOTR 25 0.96 0.61 30 0.97 0.81 31 0.97 0.64 30 0.97 0.77 29 0.96 0.42CLOT 39 0.97 0.75 46 0.97 0.49 48 0.98 0.88 52 0.98 0.94 50 0.98 0.95WOOL 15 0.94 0.37 21 0.97 0.76 20 0.97 0.75 20 0.95 0.53 20 0.96 0.64TX.M 32 0.94 0.14 36 0.97 0.61 36 0.97 0.73 36 0.97 0.79 37 0.97 0.64LEAT 13 0.87 0.05 16 0.90 0.08 16 0.93 0.29 16 0.94 0.38 16 0.95 0.52FOOD 94 0.98 0.81 104 0.97 0.24 109 0.98 0.65 111 0.96 0.04 113 0.97 0.24W BUIL 29 0.97 0.72 34 0.97 0.64 36 0.97 0.64 39 0.97 0.53 38 0.97 0.57METL 29 0.97 0.65 32 0.95 0.26 33 0.95 0.23 34 0.96 0.49 33 0.95 0.25PAPR 50 0.97 0.58 55 0.97 0.38 56 0.97 0.42 59 0.96 0.23 57 0.96 0.31CHEM 52 0.95 0.09 54 0.96 0.16 55 0.96 0.20 54 0.96 0.33 54 0.97 0.40ELEC 37 0.94 0.10 44 0.94 0.05 48 0.94 0.04 49 0.95 0.06 46 0.94 0.05I.PL 19 0.94 0.32 20 0.89 0.04 22 0.93 0.12 23 0.93 0.12 23 0.95 0.45TOOL 22 0.93 0.15 24 0.93 0.14 24 0.93 0.10 26 0.94 0.16 25 0.94 0.18ELTN 97 0.95 0.02 130 0.96 0.00 138 0.93 0 144 0.94 0 143 0.94 0MOTR 25 0.95 0.33 30 0.95 0.28 31 0.95 0.33 30 0.95 0.34 29 0.96 0.43CLOT 39 0.97 0.75 45 0.99 0.99 48 0.97 0.66 52 0.97 0.45 50 0.98 0.73WOOL 15 0.94 0.47 21 0.98 0.93 20 0.97 0.89 20 0.98 0.96 20 0.97 0.88TX.M 31 0.94 0.16 35 0.96 0.29 35 0.95 0.15 36 0.94 0.09 37 0.95 0.18LEAT 13 0.95 0.68 16 0.91 0.15 16 0.92 0.22 16 0.93 0.26 16 0.93 0.26FOOD 92 0.97 0.40 105 0.96 0.02 111 0.96 0.02 116 0.96 0.05 114 0.96 0.08Table 44: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is thenumber of cases. First table. 259



1983 1984 1985 1986 1987V ind N W P N W P N W P N W P N W PI BUIL 29 0.96 0.45 34 0.96 0.40 36 0.96 0.28 39 0.95 0.21 38 0.94 0.11METL 29 0.95 0.36 32 0.98 0.86 33 0.97 0.7 34 0.94 0.13 32 0.93 0.05PAPR 50 0.97 0.71 54 0.97 0.54 55 0.97 0.65 59 0.96 0.28 55 0.96 0.26CHEM 53 0.95 0.13 55 0.94 0.04 56 0.95 0.08 55 0.97 0.44 55 0.95 0.10ELEC 37 0.93 0.04 44 0.97 0.61 48 0.94 0.02 49 0.94 0.05 45 0.94 0.04I.PL 19 0.93 0.22 19 0.94 0.29 21 0.92 0.08 22 0.78 0 23 0.95 0.46TOOL 22 0.89 0.02 24 0.94 0.24 24 0.97 0.66 26 0.97 0.77 25 0.96 0.57ELTN 94 0.97 0.18 127 0.97 0.32 132 0.98 0.86 139 0.98 0.66 136 0.97 0.33MOTR 25 0.94 0.16 30 0.95 0.34 30 0.97 0.70 30 0.97 0.82 29 0.96 0.51CLOT 39 0.97 0.68 45 0.97 0.59 48 0.97 0.63 52 0.97 0.69 50 0.98 0.90WOOL 15 0.96 0.77 21 0.98 0.96 20 0.97 0.86 20 0.98 0.92 20 0.96 0.72TX.M 32 0.96 0.37 36 0.98 0.88 36 0.97 0.80 37 0.97 0.61 38 0.96 0.38LEAT 13 0.95 0.64 16 0.93 0.3 16 0.92 0.21 16 0.94 0.36 16 0.94 0.42FOOD 93 0.98 0.65 105 0.98 0.53 112 0.97 0.37 114 0.98 0.51 111 0.98 0.79D BUIL 29 0.96 0.52 34 0.98 0.82 36 0.98 0.81 39 0.98 0.93 38 0.98 0.90METL 29 0.96 0.47 32 0.95 0.21 33 0.97 0.67 34 0.97 0.55 33 0.97 0.65PAPR 50 0.95 0.07 55 0.94 0.03 56 0.94 0.02 59 0.95 0.07 56 0.95 0.06CHEM 53 0.96 0.19 55 0.96 0.14 56 0.95 0.10 55 0.96 0.14 55 0.96 0.18ELEC 37 0.95 0.14 44 0.97 0.58 48 0.96 0.20 49 0.97 0.45 46 0.95 0.11I.PL 19 0.97 0.78 20 0.89 0.02 22 0.88 0.01 23 0.94 0.2 23 0.92 0.07TOOL 22 0.94 0.30 24 0.89 0.01 24 0.95 0.38 26 0.96 0.43 25 0.97 0.68ELTN 98 0.98 0.70 130 0.97 0.31 138 0.96 0.06 145 0.96 0.04 143 0.96 0.03MOTR 25 0.95 0.37 30 0.95 0.21 31 0.94 0.17 30 0.97 0.59 29 0.96 0.52CLOT 39 0.97 0.71 46 0.97 0.57 48 0.97 0.56 52 0.97 0.41 50 0.98 0.97WOOL 15 0.93 0.30 21 0.97 0.79 20 0.97 0.89 20 0.98 0.96 20 0.94 0.36TX.M 32 0.96 0.52 36 0.98 0.91 36 0.97 0.68 37 0.97 0.59 38 0.97 0.79LEAT 13 0.90 0.14 16 0.92 0.18 16 0.92 0.23 16 0.92 0.21 16 0.91 0.12FOOD 93 0.97 0.46 104 0.98 0.62 112 0.97 0.43 116 0.97 0.44 113 0.97 0.12C BUIL 29 0.95 0.22 34 0.97 0.7 36 0.97 0.61 39 0.99 0.99 38 0.96 0.3METL 29 0.98 0.86 32 0.98 0.83 33 0.98 0.83 34 0.96 0.37 33 0.97 0.76PAPR 50 0.96 0.32 55 0.96 0.32 56 0.96 0.2 59 0.95 0.07 55 0.97 0.37CHEM 53 0.96 0.16 55 0.94 0.02 56 0.95 0.09 55 0.96 0.14 55 0.96 0.24ELEC 37 0.95 0.13 44 0.97 0.60 48 0.94 0.05 49 0.96 0.31 46 0.96 0.27I.PL 19 0.95 0.40 20 0.90 0.04 22 0.90 0.03 23 0.95 0.36 23 0.98 0.90TOOL 22 0.95 0.41 24 0.94 0.21 24 0.96 0.56 26 0.95 0.34 25 0.95 0.36ELTN 98 0.98 0.94 130 0.97 0.30 138 0.97 0.27 145 0.96 0.02 143 0.97 0.13MOTR 25 0.95 0.29 30 0.96 0.45 31 0.96 0.50 30 0.96 0.55 29 0.96 0.47CLOT 39 0.97 0.66 46 0.96 0.34 48 0.98 0.92 52 0.97 0.63 50 0.98 0.91WOOL 15 0.90 0.12 21 0.96 0.54 20 0.97 0.76 20 0.97 0.90 20 0.96 0.63TX.M 32 0.96 0.42 36 0.97 0.69 36 0.98 0.83 37 0.98 0.80 38 0.97 0.76LEAT 13 0.94 0.53 16 0.92 0.19 16 0.92 0.19 16 0.92 0.18 16 0.94 0.44FOOD 93 0.95 0.01 105 0.96 0.03 112 0.96 0.02 116 0.96 0.06 113 0.96 0.02Table 45: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is thenumber of cases. Second table.
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1983 1984 1985 1986 1987V ind N W P N W P N W P N W P N W PCA BUIL 29 0.95 0.36 34 0.97 0.62 36 0.96 0.41 38 0.96 0.33 38 0.95 0.13METL 29 0.97 0.67 32 0.97 0.75 33 0.97 0.68 34 0.96 0.46 33 0.96 0.52PAPR 50 0.96 0.30 54 0.95 0.11 57 0.83 0 60 0.97 0.35 58 0.96 0.29CHEM 52 0.96 0.18 55 0.95 0.05 56 0.95 0.07 54 0.97 0.36 55 0.95 0.07ELEC 37 0.94 0.07 44 0.94 0.05 48 0.93 0.01 49 0.94 0.05 46 0.94 0.02I.PL 19 0.91 0.09 20 0.90 0.05 22 0.89 0.02 23 0.92 0.06 23 0.96 0.53TOOL 21 0.90 0.03 24 0.93 0.13 24 0.96 0.47 26 0.98 0.88 25 0.97 0.80ELTN 97 0.98 0.82 127 0.98 0.71 133 0.96 0.05 142 0.96 0.00 141 0.96 0.01MOTR 25 0.94 0.19 30 0.96 0.39 31 0.97 0.58 30 0.97 0.67 29 0.97 0.69CLOT 39 0.98 0.83 46 0.97 0.68 48 0.98 0.77 52 0.98 0.71 50 0.98 0.73WOOL 15 0.95 0.65 21 0.98 0.93 20 0.98 0.93 20 0.97 0.82 20 0.96 0.71TX.M 32 0.93 0.08 36 0.96 0.40 36 0.97 0.68 37 0.97 0.73 37 0.97 0.51LEAT 13 0.94 0.49 16 0.94 0.47 16 0.94 0.34 16 0.94 0.41 16 0.94 0.37FOOD 93 0.96 0.11 105 0.97 0.13 112 0.94 0 115 0.97 0.20 112 0.96 0.02FA BUIL 29 0.92 0.04 34 0.95 0.28 36 0.95 0.15 39 0.93 0.04 38 0.94 0.11METL 29 0.96 0.50 32 0.97 0.74 33 0.96 0.37 34 0.97 0.53 32 0.96 0.42PAPR 50 0.97 0.37 56 0.97 0.61 57 0.98 0.95 60 0.98 0.94 57 0.98 0.80CHEM 53 0.95 0.09 55 0.95 0.09 56 0.95 0.08 55 0.94 0.03 55 0.95 0.09ELEC 37 0.95 0.17 44 0.95 0.15 48 0.95 0.16 49 0.96 0.19 46 0.94 0.05I.PL 19 0.93 0.24 20 0.90 0.06 22 0.90 0.03 22 0.90 0.04 23 0.93 0.17TOOL 22 0.95 0.43 24 0.95 0.38 24 0.95 0.40 26 0.94 0.18 25 0.95 0.36ELTN 98 0.98 0.84 130 0.98 0.54 138 0.98 0.78 145 0.97 0.35 143 0.97 0.08MOTR 25 0.95 0.32 30 0.98 0.89 30 0.97 0.73 30 0.98 0.86 29 0.97 0.78CLOT 39 0.97 0.74 46 0.96 0.31 48 0.97 0.45 52 0.96 0.27 50 0.97 0.41WOOL 15 0.95 0.61 21 0.97 0.90 20 0.98 0.99 20 0.99 0.99 20 0.98 0.93TX.M 32 0.96 0.53 36 0.96 0.34 36 0.95 0.26 36 0.96 0.36 37 0.96 0.32LEAT 13 0.90 0.13 16 0.93 0.28 16 0.96 0.67 16 0.95 0.51 16 0.96 0.72FOOD 94 0.98 0.69 105 0.97 0.32 112 0.97 0.24 116 0.97 0.45 114 0.97 0.23TA BUIL 29 0.94 0.12 34 0.96 0.39 36 0.95 0.24 39 0.94 0.07 38 0.94 0.06METL 29 0.97 0.76 32 0.98 0.88 33 0.97 0.74 34 0.97 0.71 33 0.97 0.55PAPR 50 0.96 0.36 56 0.96 0.15 57 0.96 0.24 60 0.96 0.10 58 0.97 0.46CHEM 53 0.96 0.16 55 0.95 0.09 56 0.95 0.10 55 0.96 0.21 55 0.96 0.19ELEC 37 0.93 0.04 44 0.94 0.06 48 0.93 0.02 49 0.95 0.09 46 0.94 0.04I.PL 19 0.91 0.10 20 0.91 0.08 22 0.90 0.03 23 0.90 0.03 23 0.96 0.59TOOL 22 0.93 0.15 24 0.94 0.25 24 0.97 0.78 26 0.96 0.45 25 0.96 0.59ELTN 98 0.99 0.99 130 0.97 0.26 137 0.96 0.02 144 0.96 0.00 142 0.95 0.00MOTR 25 0.94 0.21 30 0.97 0.61 31 0.97 0.74 30 0.96 0.44 29 0.95 0.33CLOT 39 0.97 0.74 46 0.98 0.93 48 0.96 0.31 52 0.98 0.81 50 0.98 0.83WOOL 15 0.94 0.4 21 0.98 0.93 20 0.98 0.96 20 0.98 0.92 20 0.97 0.77TX.M 32 0.93 0.08 36 0.96 0.47 36 0.97 0.51 37 0.96 0.46 37 0.96 0.42LEAT 13 0.91 0.19 16 0.92 0.17 16 0.93 0.29 16 0.94 0.36 16 0.96 0.75FOOD 94 0.96 0.05 105 0.96 0.03 112 0.94 0.00 116 0.96 0.10 113 0.96 0.03Table 46: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is thenumber of cases. Third table. 261



1983 1984 1985 1986 1987V ind N W P N W P N W P N W P N W PCL BUIL 29 0.95 0.29 34 0.97 0.66 36 0.97 0.77 39 0.97 0.61 38 0.97 0.56METL 29 0.97 0.83 32 0.98 0.97 33 0.97 0.81 34 0.96 0.51 33 0.97 0.61PAPR 50 0.96 0.20 56 0.96 0.13 57 0.96 0.11 60 0.96 0.29 57 0.96 0.31CHEM 53 0.94 0.04 55 0.92 0.00 56 0.93 0.00 55 0.95 0.05 55 0.95 0.05ELEC 37 0.93 0.05 44 0.97 0.66 48 0.95 0.13 49 0.97 0.40 46 0.94 0.07I.PL 19 0.96 0.57 20 0.86 0.01 22 0.86 0.00 23 0.93 0.17 23 0.97 0.71TOOL 22 0.94 0.22 24 0.95 0.38 24 0.97 0.84 26 0.95 0.39 25 0.96 0.64ELTN 98 0.97 0.35 130 0.97 0.21 138 0.96 0.02 145 0.95 0 143 0.95 0.00MOTR 25 0.95 0.42 30 0.95 0.30 31 0.97 0.62 30 0.95 0.27 29 0.96 0.48CLOT 39 0.98 0.88 46 0.97 0.72 48 0.97 0.57 52 0.97 0.61 50 0.98 0.96WOOL 15 0.90 0.09 21 0.96 0.70 20 0.98 0.97 20 0.97 0.83 20 0.96 0.66TX.M 32 0.97 0.56 36 0.97 0.8 36 0.97 0.79 37 0.98 0.93 38 0.98 0.92LEAT 13 0.95 0.67 16 0.94 0.43 16 0.92 0.23 16 0.94 0.41 16 0.96 0.64FOOD 94 0.95 0.01 105 0.96 0.02 112 0.95 0.01 116 0.96 0.06 113 0.96 0.05N BUIL 28 0.97 0.64 34 0.96 0.5 36 0.97 0.61 39 0.97 0.50 38 0.96 0.44METL 29 0.97 0.73 32 0.95 0.19 33 0.94 0.13 34 0.95 0.20 33 0.94 0.15PAPR 50 0.96 0.35 55 0.98 0.82 56 0.97 0.62 59 0.97 0.52 57 0.97 0.59CHEM 52 0.97 0.70 54 0.97 0.36 55 0.97 0.46 54 0.97 0.61 53 0.97 0.53ELEC 36 0.94 0.11 43 0.96 0.20 47 0.95 0.10 49 0.94 0.03 46 0.94 0.02I.PL 19 0.92 0.14 20 0.87 0.01 22 0.90 0.03 23 0.91 0.04 23 0.94 0.18TOOL 22 0.91 0.07 24 0.94 0.19 24 0.92 0.06 26 0.91 0.03 25 0.92 0.05ELTN 97 0.96 0.10 130 0.95 0.00 138 0.94 0 145 0.94 0 143 0.94 0MOTR 25 0.95 0.42 30 0.95 0.31 30 0.96 0.53 30 0.96 0.52 29 0.96 0.55CLOT 39 0.98 0.88 45 0.99 0.99 48 0.98 0.77 52 0.98 0.78 50 0.98 0.86WOOL 15 0.95 0.57 21 0.98 0.99 20 0.99 0.99 20 0.99 0.99 20 0.98 0.99TX.M 32 0.95 0.19 36 0.97 0.73 36 0.96 0.45 37 0.96 0.31 38 0.97 0.56LEAT 13 0.92 0.29 16 0.91 0.12 16 0.91 0.16 16 0.92 0.17 16 0.92 0.21FOOD 92 0.97 0.50 105 0.97 0.26 111 0.97 0.29 116 0.98 0.53 113 0.98 0.50EX BUIL 29 0.93 0.08 34 0.96 0.36 36 0.97 0.58 39 0.97 0.60 38 0.97 0.77METL 29 0.98 0.98 32 0.98 0.97 33 0.95 0.23 34 0.96 0.47 33 0.97 0.80PAPR 49 0.96 0.18 56 0.94 0.01 57 0.90 0 60 0.95 0.06 58 0.94 0.02CHEM 53 0.96 0.20 55 0.96 0.21 56 0.96 0.14 55 0.96 0.25 55 0.97 0.44ELEC 37 0.95 0.23 44 0.97 0.65 47 0.96 0.27 49 0.96 0.35 46 0.96 0.29I.PL 19 0.92 0.13 20 0.87 0.01 22 0.91 0.05 23 0.92 0.10 23 0.93 0.12TOOL 22 0.93 0.14 24 0.95 0.32 24 0.97 0.74 26 0.98 0.92 25 0.95 0.33ELTN 98 0.98 0.84 130 0.98 0.75 138 0.98 0.80 145 0.98 0.67 143 0.98 0.87MOTR 25 0.92 0.07 30 0.95 0.28 31 0.95 0.22 30 0.96 0.43 29 0.95 0.25CLOT 39 0.98 0.86 46 0.84 0 48 0.97 0.69 52 0.97 0.69 50 0.98 0.97WOOL 15 0.96 0.70 21 0.98 0.95 20 0.98 0.92 20 0.97 0.88 20 0.97 0.78TX.M 32 0.97 0.80 36 0.98 0.87 36 0.96 0.49 37 0.98 0.92 38 0.98 0.84LEAT 13 0.95 0.63 16 0.96 0.73 16 0.95 0.54 16 0.93 0.31 16 0.95 0.61FOOD 94 0.96 0.06 105 0.96 0.02 112 0.95 0.00 116 0.96 0.04 114 0.94 0Table 47: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is thenumber of cases. Fourth table. 262



1983 1984 1985 1986 1987V ind N W P N W P N W P N W P N W PTC BUIL 29 0.94 0.15 34 0.94 0.12 35 0.93 0.06 38 0.95 0.13 38 0.94 0.08METL 29 0.96 0.47 32 0.96 0.34 33 0.98 0.88 34 0.98 0.86 32 0.98 0.92PAPR 49 0.98 0.91 55 0.98 0.74 57 0.97 0.63 60 0.97 0.52 58 0.97 0.61CHEM 53 0.97 0.57 55 0.97 0.46 56 0.97 0.38 55 0.97 0.62 55 0.97 0.35ELEC 37 0.93 0.02 44 0.94 0.04 48 0.94 0.04 49 0.95 0.06 46 0.94 0.04I.PL 19 0.90 0.07 20 0.90 0.06 22 0.88 0.01 23 0.90 0.03 23 0.92 0.10TOOL 22 0.93 0.19 24 0.95 0.28 24 0.95 0.40 26 0.97 0.72 25 0.95 0.41ELTN 97 0.98 0.72 130 0.98 0.62 135 0.96 0.01 143 0.97 0.10 138 0.95 0MOTR 25 0.95 0.30 30 0.97 0.81 31 0.97 0.75 30 0.96 0.51 29 0.95 0.24CLOT 39 0.98 0.93 46 0.97 0.42 48 0.98 0.88 52 0.98 0.94 50 0.98 0.77WOOL 15 0.95 0.63 21 0.96 0.66 20 0.96 0.69 20 0.95 0.53 20 0.95 0.50TX.M 32 0.93 0.09 36 0.97 0.58 36 0.97 0.61 36 0.97 0.59 37 0.97 0.57LEAT 13 0.88 0.09 16 0.90 0.11 16 0.93 0.26 16 0.94 0.41 16 0.95 0.60FOOD 94 0.98 0.56 105 0.97 0.48 111 0.96 0.04 112 0.96 0.02 113 0.96 0.05EB BUIL 29 0.96 0.43 33 0.88 0.00 36 0.97 0.59 38 0.97 0.49 38 0.94 0.07METL 25 0.96 0.56 29 0.97 0.82 27 0.95 0.28 31 0.98 0.84 29 0.95 0.30PAPR 45 0.98 0.84 53 0.99 0.99 57 0.97 0.50 59 0.97 0.46 57 0.97 0.56CHEM 51 0.96 0.18 54 0.97 0.47 54 0.98 0.80 53 0.97 0.69 52 0.95 0.11ELEC 37 0.98 0.84 41 0.98 0.91 47 0.96 0.26 46 0.98 0.92 43 0.96 0.33I.PL 17 0.85 0.01 18 0.90 0.05 21 0.92 0.12 19 0.94 0.27 19 0.92 0.13TOOL 17 0.91 0.14 23 0.98 0.95 22 0.97 0.72 24 0.97 0.71 25 0.96 0.59ELTN 91 0.98 0.76 122 0.97 0.28 121 0.96 0.05 121 0.95 0.00 128 0.95 0.00MOTR 22 0.95 0.38 28 0.98 0.87 27 0.97 0.67 27 0.96 0.55 27 0.97 0.80CLOT 36 0.96 0.41 39 0.97 0.69 44 0.97 0.50 50 0.98 0.90 45 0.98 0.93WOOL 15 0.95 0.57 21 0.96 0.69 20 0.96 0.60 20 0.97 0.88 20 0.98 0.97TX.M 29 0.93 0.07 33 0.96 0.45 32 0.95 0.26 34 0.95 0.26 36 0.97 0.79LEAT 13 0.91 0.20 15 0.95 0.60 15 0.96 0.73 16 0.95 0.62 16 0.95 0.62FOOD 87 0.96 0.10 97 0.96 0.02 106 0.97 0.16 107 0.97 0.12 106 0.93 0OP BUIL 29 0.96 0.53 33 0.96 0.54 34 0.97 0.68 36 0.97 0.75 37 0.94 0.06METL 24 0.95 0.38 28 0.96 0.50 26 0.97 0.73 31 0.98 0.89 28 0.97 0.67PAPR 44 0.98 0.86 51 0.95 0.14 55 0.96 0.21 58 0.97 0.55 57 0.97 0.43CHEM 49 0.97 0.58 54 0.97 0.59 53 0.97 0.65 51 0.97 0.63 52 0.97 0.37ELEC 33 0.97 0.79 40 0.98 0.80 45 0.97 0.49 43 0.97 0.58 41 0.96 0.39I.PL 17 0.86 0.02 18 0.88 0.03 19 0.92 0.14 18 0.91 0.11 16 0.94 0.46TOOL 16 0.95 0.60 21 0.97 0.85 20 0.97 0.86 23 0.97 0.70 24 0.98 0.90ELTN 87 0.98 0.81 118 0.97 0.47 121 0.96 0.09 120 0.96 0.04 126 0.96 0.01MOTR 22 0.95 0.36 26 0.97 0.65 27 0.96 0.61 25 0.97 0.75 26 0.96 0.47CLOT 35 0.95 0.14 38 0.97 0.51 44 0.86 0 50 0.97 0.70 43 0.98 0.8WOOL 14 0.96 0.72 21 0.96 0.65 20 0.97 0.87 20 0.98 0.95 20 0.96 0.56TX.M 27 0.95 0.25 31 0.96 0.50 32 0.96 0.55 32 0.96 0.46 35 0.98 0.93LEAT 13 0.91 0.18 15 0.95 0.57 15 0.95 0.64 16 0.97 0.86 16 0.96 0.78FOOD 87 0.98 0.64 95 0.96 0.05 104 0.97 0.26 104 0.97 0.27 98 0.95 0.00Table 48: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is thenumber of cases. Fifth table. 263



1983 1984 1985 1986 1987V ind N W P N W P N W P N W P N W PDB BUIL 22 0.97 0.78 28 0.97 0.75 29 0.97 0.83 34 0.94 0.13 34 0.95 0.23METL 19 0.96 0.66 21 0.97 0.77 20 0.97 0.82 21 0.93 0.15 19 0.97 0.80PAPR 37 0.97 0.75 43 0.96 0.29 42 0.98 0.80 46 0.97 0.56 47 0.95 0.17CHEM 36 0.94 0.11 39 0.96 0.42 42 0.96 0.26 43 0.93 0.01 43 0.93 0.02ELEC 19 0.93 0.25 27 0.95 0.23 29 0.95 0.35 33 0.97 0.57 33 0.97 0.63I.PL 12 0.97 0.87 14 0.85 0.02 16 0.90 0.11 17 0.93 0.31 18 0.95 0.52TOOL 15 0.88 0.05 19 0.96 0.60 20 0.96 0.60 21 0.96 0.57 21 0.91 0.06ELTN 55 0.97 0.42 78 0.97 0.22 94 0.98 0.82 101 0.97 0.22 100 0.98 0.55MOTR 21 0.89 0.02 26 0.95 0.29 25 0.95 0.35 28 0.94 0.21 27 0.96 0.43CLOT 25 0.94 0.22 29 0.93 0.07 33 0.94 0.13 37 0.95 0.25 35 0.98 0.86WOOL 7 0.78 0.03 10 0.95 0.72 11 0.95 0.72 12 0.97 0.87 12 0.97 0.93TX.M 20 0.96 0.56 23 0.97 0.77 23 0.95 0.40 26 0.96 0.52 26 0.95 0.24LEAT 6 0.93 0.58 8 0.97 0.91 9 0.90 0.28 9 0.95 0.77 11 0.94 0.57FOOD 64 0.95 0.04 74 0.95 0.03 86 0.95 0.01 90 0.93 0 84 0.97 0.26FL BUIL 29 0.96 0.43 34 0.91 0.01 36 0.96 0.27 39 0.95 0.23 38 0.95 0.13METL 28 0.96 0.59 31 0.97 0.80 31 0.98 0.93 31 0.98 0.94 29 0.96 0.37PAPR 48 0.97 0.70 56 0.98 0.92 57 0.97 0.36 60 0.97 0.45 57 0.97 0.44CHEM 51 0.95 0.09 55 0.96 0.21 54 0.96 0.16 53 0.96 0.19 54 0.94 0.03ELEC 37 0.96 0.37 42 0.98 0.78 48 0.95 0.10 48 0.93 0.02 45 0.95 0.11I.PL 17 0.86 0.02 18 0.90 0.06 21 0.91 0.06 19 0.93 0.23 20 0.98 0.98TOOL 19 0.95 0.52 24 0.96 0.65 24 0.99 0.99 25 0.94 0.25 24 0.96 0.50ELTN 91 0.97 0.23 123 0.97 0.12 126 0.96 0.07 130 0.97 0.22 130 0.95 0.00MOTR 22 0.96 0.60 30 0.97 0.82 29 0.97 0.64 28 0.96 0.40 28 0.92 0.04CLOT 36 0.97 0.78 40 0.93 0.04 44 0.99 0.98 50 0.97 0.68 45 0.89 0WOOL 15 0.94 0.44 21 0.96 0.65 20 0.95 0.53 20 0.96 0.74 20 0.98 0.94TX.M 29 0.94 0.12 34 0.96 0.38 33 0.95 0.27 34 0.95 0.17 36 0.97 0.63LEAT 13 0.92 0.25 16 0.97 0.93 15 0.95 0.54 16 0.96 0.73 16 0.96 0.70FOOD 92 0.97 0.52 101 0.96 0.03 109 0.96 0.03 113 0.97 0.25 108 0.95 0.00WC BUIL 28 0.95 0.24 30 0.98 0.89 32 0.96 0.36 37 0.97 0.62 35 0.97 0.75METL 27 0.96 0.54 30 0.94 0.17 32 0.97 0.60 33 0.96 0.34 31 0.95 0.19PAPR 43 0.93 0.01 48 0.97 0.51 50 0.96 0.16 54 0.97 0.51 54 0.97 0.41CHEM 47 0.98 0.90 50 0.98 0.83 53 0.98 0.75 49 0.95 0.10 50 0.97 0.40ELEC 36 0.97 0.55 42 0.97 0.57 47 0.98 0.85 46 0.98 0.97 42 0.95 0.12I.PL 19 0.89 0.03 19 0.90 0.07 21 0.89 0.02 23 0.94 0.23 21 0.93 0.20TOOL 21 0.95 0.49 24 0.95 0.28 24 0.94 0.27 26 0.97 0.68 24 0.96 0.61ELTN 89 0.98 0.56 117 0.96 0.09 113 0.96 0.02 129 0.97 0.35 127 0.95 0.00MOTR 25 0.95 0.39 29 0.96 0.49 30 0.96 0.49 27 0.95 0.32 28 0.97 0.62CLOT 37 0.96 0.27 45 0.96 0.21 44 0.98 0.86 51 0.97 0.62 49 0.98 0.84WOOL 13 0.95 0.64 19 0.95 0.40 18 0.94 0.35 18 0.91 0.11 18 0.89 0.04TX.M 29 0.92 0.05 34 0.95 0.26 33 0.95 0.25 34 0.94 0.08 35 0.95 0.17LEAT 12 0.96 0.73 15 0.95 0.60 15 0.95 0.58 14 0.97 0.84 15 0.89 0.06FOOD 79 0.97 0.54 85 0.96 0.12 98 0.98 0.84 100 0.98 0.68 97 0.95 0.00Table 49: The Shapiro-Wilk test of lognormality. Items by industrial group and by year. N is thenumber of cases. Sixth table. 264



item ind 1983 1984 1985 1986 1987 item ind 1983 1984 1985 1986 1987C 1 1.00 1.00 1.01 1.00 1.02 FA 1 0.97 1.05 1.05 1.05 1.112 1.03 0.97 1.03 1.01 1.00 2 0.97 0.96 1.18 1.20 1.073 0.96 1.06 1.04 1.03 1.04 3 0.94 0.94 0.87 0.99 0.994 0.97 0.96 0.99 0.98 0.96 4 1.28 1.25 1.24 1.25 1.215 1.11 1.12 1.11 1.12 1.14 5 0.98 0.89 0.93 0.93 0.896 1.08 1.06 1.04 1.06 0.99 6 0.95 0.81 0.87 0.98 0.897 0.87 1.10 1.05 1.03 1.06 7 0.70 0.83 0.93 0.98 1.168 1.00 0.98 1.01 0.98 1.02 8 1.03 1.00 1.07 1.04 1.099 1.00 0.93 0.97 0.96 1.00 9 1.12 1.02 1.10 1.08 1.0810 1.01 1.07 1.03 1.02 0.98 10 1.03 1.13 1.06 1.11 1.0411 1.03 0.98 0.94 1.03 0.97 11 0.89 0.93 1.00 1.04 0.9712 1.02 0.99 0.99 0.99 0.98 12 1.03 1.04 1.04 1.04 1.0413 1.05 1.01 0.96 0.96 0.97 13 1.07 1.19 1.20 1.19 1.2214 0.97 0.98 0.99 1.00 0.98 14 1.12 1.11 1.16 1.10 1.09D 1 1.00 0.98 0.97 0.97 0.97 FL 1 0.97 1.13 1.07 1.06 1.082 1.02 0.92 0.92 0.91 0.94 2 1.13 1.02 0.92 1.07 1.093 1.08 1.01 1.04 1.04 1.06 3 1.13 1.07 1.02 1.02 0.984 0.90 0.90 0.90 0.89 0.91 4 1.11 1.14 1.12 1.08 1.125 0.97 0.93 0.98 1.00 1.01 5 0.97 1.00 0.94 0.93 0.896 0.94 1.01 0.97 0.95 1.01 6 1.05 1.04 0.95 1.01 0.787 1.07 1.11 1.00 0.90 0.85 7 0.90 0.98 1.08 1.27 0.998 0.95 0.93 0.97 0.96 0.98 8 0.91 0.96 0.93 0.99 0.989 0.96 1.00 1.09 0.98 1.00 9 0.95 1.03 1.00 0.95 1.1310 1.03 0.94 0.87 0.83 0.86 10 0.98 1.06 0.97 0.89 1.0611 0.95 0.95 0.93 0.96 1.01 11 1.16 1.14 1.15 1.06 1.0412 0.96 0.97 0.96 0.95 0.99 12 1.14 1.19 1.07 1.10 1.1013 0.99 0.97 0.93 0.91 0.94 13 1.00 1.11 1.10 1.09 1.0314 0.94 0.94 0.93 0.96 0.94 14 1.12 1.06 1.12 1.08 1.03I 1 1.13 1.06 1.04 1.08 1.05 NW 1 0.94 0.98 0.98 1.03 1.022 1.19 1.18 1.07 0.99 1.18 2 1.01 1.01 1.03 0.96 0.943 1.03 1.02 1.00 1.05 1.05 3 0.92 0.89 0.80 0.97 0.904 1.00 1.02 1.00 0.99 0.96 4 1.18 1.16 1.14 1.12 1.075 0.99 1.03 1.00 1.02 1.02 5 0.89 0.84 0.88 0.87 0.856 1.07 1.13 1.11 1.15 1.12 6 0.95 0.78 0.87 0.87 0.887 1.02 0.98 1.00 1.02 1.06 7 0.93 0.80 0.94 1.01 0.988 1.07 1.10 1.05 1.06 1.07 8 1.03 1.05 1.04 1.05 1.049 1.07 0.99 1.00 1.01 1.03 9 1.06 0.99 1.03 0.98 0.9610 1.16 1.15 1.08 1.13 1.13 10 1.01 0.94 0.96 0.98 0.9011 0.92 0.96 0.98 0.95 0.93 11 1.05 1.02 1.06 1.03 1.0012 1.08 1.06 1.07 1.16 1.10 12 0.98 0.98 0.99 0.99 0.9813 1.09 1.08 1.06 1.08 1.07 13 0.95 1.06 1.08 1.10 1.1114 1.09 1.08 1.07 1.07 1.04 14 1.06 1.08 1.07 1.01 0.99Table 50: Slopes of the regression in which size explains twelve accounting items by industry andby year. First table.
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item ind 1983 1984 1985 1986 1987 item ind 1983 1984 1985 1986 1987S 1 1.01 0.99 1.01 0.98 1.00 WC 1 1.14 0.95 0.91 1.16 1.062 0.91 0.97 0.93 1.01 0.93 2 1.02 0.95 0.97 0.92 0.813 1.10 1.07 1.05 1.04 1.05 3 0.90 0.95 0.94 1.04 0.994 0.91 0.92 0.94 0.89 0.88 4 1.07 1.09 1.07 1.06 0.965 0.98 1.11 1.01 1.02 1.04 5 0.91 0.90 1.02 0.91 0.926 1.03 1.13 1.14 1.11 1.09 6 1.19 0.79 0.93 0.82 0.857 1.17 1.14 1.13 1.07 1.05 7 1.22 0.98 1.14 1.27 1.098 0.97 0.97 1.00 1.01 1.01 8 1.13 1.09 1.04 1.08 1.079 1.01 1.02 0.95 0.96 0.98 9 1.17 1.09 0.99 0.92 0.9210 0.97 1.11 0.97 0.93 0.96 10 0.86 0.82 0.83 0.91 0.7511 0.92 0.94 0.93 0.91 0.94 11 1.12 1.01 1.02 0.99 0.9412 0.99 0.97 0.96 0.98 1.00 12 1.01 0.97 0.94 0.90 0.8913 1.01 0.99 1.03 1.05 1.05 13 0.76 0.87 0.95 0.80 0.9414 0.96 0.92 0.92 0.92 0.99 14 0.97 0.95 0.95 0.99 0.87W 1 1.01 1.04 1.05 1.02 1.02 DEBT 1 1.25 1.23 1.35 1.15 1.422 1.04 1.09 1.10 1.11 1.12 2 1.02 0.86 1.06 1.28 1.323 1.03 1.05 1.04 1.03 1.04 3 1.26 0.95 0.90 1.14 1.184 1.03 1.06 1.07 1.10 1.06 4 1.29 1.26 1.19 1.19 1.095 1.02 1.14 1.06 1.03 1.01 5 1.00 0.93 1.05 0.96 0.916 1.03 1.06 1.00 1.04 1.05 6 0.96 1.27 1.35 1.04 0.727 0.98 1.00 1.01 1.07 1.06 7 0.42 0.94 0.90 1.00 1.418 1.02 1.04 1.00 0.99 0.97 8 0.88 0.91 0.94 0.99 1.039 1.01 1.08 1.03 1.04 1.06 9 1.41 1.27 1.09 1.25 1.1810 0.98 1.05 1.09 1.10 1.12 10 0.99 0.92 1.07 1.07 0.8211 0.92 0.99 0.99 1.00 0.98 11 0.63 0.59 1.17 1.04 1.3412 1.03 1.03 1.06 1.04 1.01 12 1.13 1.17 1.11 1.20 1.1113 0.87 0.92 0.93 0.92 0.92 13 0.66 0.83 1.21 0.79 0.8714 1.05 1.05 1.07 1.04 1.07 14 1.17 1.14 1.13 1.05 1.11CA 1 0.98 0.97 0.97 1.01 0.99 EBIT 1 0.94 1.09 1.03 1.06 1.082 0.99 0.96 0.93 0.88 0.89 2 1.04 0.98 0.83 1.02 0.993 0.93 0.97 0.96 1.00 1.00 3 1.17 0.99 1.03 0.96 0.984 0.99 0.98 0.98 0.98 1.01 4 1.10 1.17 1.14 1.09 1.055 1.01 0.96 1.02 1.02 1.02 5 1.04 1.00 0.95 0.95 0.936 1.04 0.89 0.95 0.92 0.91 6 1.14 1.10 0.94 1.04 0.887 1.03 0.97 1.01 1.01 1.02 7 1.00 1.09 1.06 1.22 0.948 1.03 1.02 1.00 1.02 1.03 8 0.88 0.93 0.92 0.94 0.969 1.00 0.95 0.97 1.02 0.96 9 0.97 0.98 0.99 0.93 1.0010 1.00 0.95 0.97 0.98 0.92 10 0.82 0.91 0.92 0.79 0.8011 1.20 1.06 1.06 1.03 1.02 11 1.26 1.19 1.20 1.07 1.0612 1.01 0.99 1.00 0.99 0.98 12 1.27 1.20 1.08 1.13 1.1013 1.02 1.00 0.99 1.00 0.98 13 1.03 1.05 1.17 1.22 1.1114 0.97 0.99 0.96 1.00 0.94 14 1.08 1.05 1.14 1.07 0.98Table 51: Slopes of the regression in which size explains twelve accounting items by industry andby year. Second Table.
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item ind 1983 1984 1985 1986 1987 item ind 1983 1984 1985 1986 1987C 1 0.89 0.9 0.91 0.92 0.91 FA 1 0.9 0.89 0.85 0.86 0.882 0.8 0.86 0.81 0.74 0.77 2 0.62 0.5 0.6 0.63 0.63 0.89 0.89 0.92 0.93 0.94 3 0.76 0.76 0.72 0.83 0.834 0.91 0.92 0.9 0.9 0.88 4 0.89 0.86 0.86 0.81 0.85 0.95 0.96 0.96 0.95 0.94 5 0.81 0.72 0.74 0.74 0.716 0.86 0.91 0.93 0.95 0.87 6 0.82 0.81 0.83 0.87 0.87 0.92 0.96 0.92 0.9 0.91 7 0.82 0.83 0.85 0.88 0.818 0.9 0.9 0.9 0.9 0.91 8 0.75 0.83 0.85 0.84 0.819 0.94 0.86 0.93 0.92 0.92 9 0.94 0.92 0.96 0.93 0.9110 0.88 0.9 0.88 0.84 0.8 10 0.76 0.82 0.75 0.73 0.7611 0.8 0.87 0.86 0.85 0.89 11 0.67 0.82 0.83 0.87 0.8712 0.91 0.93 0.96 0.95 0.94 12 0.78 0.81 0.83 0.85 0.8313 0.92 0.94 0.96 0.95 0.95 13 0.82 0.88 0.9 0.87 0.8814 0.93 0.94 0.93 0.94 0.94 14 0.84 0.9 0.89 0.87 0.84D 1 0.96 0.97 0.96 0.97 0.97 FL 1 0.86 0.79 0.9 0.87 0.92 0.85 0.89 0.84 0.79 0.78 2 0.73 0.81 0.81 0.83 0.753 0.9 0.84 0.83 0.87 0.87 3 0.85 0.82 0.9 0.83 0.914 0.9 0.89 0.91 0.85 0.87 4 0.91 0.89 0.9 0.88 0.675 0.93 0.92 0.91 0.92 0.92 5 0.88 0.88 0.86 0.82 0.86 0.92 0.95 0.95 0.95 0.89 6 0.81 0.82 0.82 0.84 0.67 0.86 0.88 0.87 0.83 0.71 7 0.52 0.75 0.71 0.58 0.918 0.91 0.92 0.95 0.95 0.95 8 0.87 0.89 0.84 0.82 0.919 0.98 0.97 0.93 0.97 0.96 9 0.95 0.84 0.87 0.91 0.8510 0.85 0.84 0.78 0.72 0.78 10 0.76 0.6 0.78 0.6 0.6311 0.85 0.89 0.91 0.91 0.9 11 0.78 0.88 0.89 0.87 0.8912 0.93 0.95 0.95 0.95 0.94 12 0.92 0.87 0.95 0.94 0.9413 0.8 0.86 0.89 0.88 0.87 13 0.96 0.9 0.96 0.96 0.9614 0.95 0.93 0.94 0.94 0.94 14 0.89 0.92 0.89 0.91 0.91I 1 0.93 0.94 0.92 0.92 0.92 NW 1 0.85 0.9 0.89 0.9 0.92 0.84 0.87 0.79 0.87 0.69 2 0.7 0.82 0.8 0.8 0.773 0.95 0.95 0.94 0.79 0.8 3 0.89 0.81 0.79 0.8 0.894 0.82 0.8 0.79 0.83 0.78 4 0.88 0.9 0.9 0.89 0.885 0.93 0.91 0.89 0.91 0.91 5 0.9 0.85 0.85 0.84 0.836 0.83 0.85 0.91 0.91 0.9 6 0.75 0.77 0.84 0.86 0.797 0.87 0.88 0.87 0.9 0.92 7 0.84 0.75 0.71 0.82 0.828 0.82 0.81 0.78 0.82 0.73 8 0.94 0.91 0.93 0.93 0.929 0.98 0.92 0.94 0.94 0.92 9 0.94 0.95 0.91 0.92 0.910 0.91 0.9 0.88 0.87 0.89 10 0.81 0.84 0.84 0.85 0.8711 0.75 0.84 0.78 0.8 0.73 11 0.77 0.85 0.89 0.89 0.8912 0.94 0.96 0.95 0.93 0.93 12 0.91 0.93 0.94 0.94 0.9413 0.95 0.98 0.98 0.98 0.97 13 0.93 0.96 0.97 0.97 0.9614 0.91 0.93 0.92 0.88 0.87 14 0.89 0.88 0.88 0.92 0.88Table 52: Proportion of explained variability when a proxy for size explains twelve accounting itemsby industry and by year. First Table.
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item ind 1983 1984 1985 1986 1987 item ind 1983 1984 1985 1986 1987S 1 0.97 0.98 0.98 0.98 0.98 WC 1 0.64 0.81 0.75 0.78 0.752 0.64 0.66 0.65 0.68 0.64 2 0.87 0.87 0.77 0.75 0.823 0.95 0.88 0.94 0.9 0.91 3 0.52 0.75 0.74 0.77 0.814 0.9 0.88 0.88 0.86 0.86 4 0.87 0.83 0.81 0.61 0.715 0.96 0.9 0.94 0.93 0.94 5 0.61 0.81 0.74 0.62 0.826 0.97 0.98 0.96 0.97 0.94 6 0.68 0.69 0.7 0.56 0.767 0.94 0.97 0.96 0.95 0.92 7 0.72 0.7 0.64 0.84 0.788 0.94 0.94 0.93 0.93 0.93 8 0.85 0.87 0.88 0.8 0.849 0.99 0.95 0.97 0.96 0.95 9 0.75 0.86 0.86 0.78 0.7910 0.96 0.9 0.96 0.91 0.92 10 0.72 0.49 0.62 0.56 0.4111 0.86 0.93 0.93 0.92 0.94 11 0.68 0.84 0.83 0.83 0.7312 0.95 0.96 0.97 0.97 0.97 12 0.88 0.79 0.58 0.87 0.8113 0.99 0.99 0.98 0.98 0.98 13 0.91 0.96 0.92 0.92 0.8214 0.91 0.93 0.92 0.92 0.89 14 0.8 0.8 0.74 0.78 0.74W 1 0.98 0.98 0.98 0.98 0.97 DEBT 1 0.55 0.68 0.69 0.55 0.652 0.77 0.78 0.83 0.85 0.86 2 0.38 0.31 0.38 0.43 0.53 0.94 0.93 0.92 0.92 0.93 3 0.51 0.27 0.4 0.5 0.634 0.95 0.95 0.95 0.96 0.95 4 0.73 0.73 0.63 0.52 0.535 0.95 0.92 0.88 0.95 0.94 5 0.73 0.49 0.46 0.41 0.366 0.96 0.98 0.96 0.97 0.94 6 0.23 0.86 0.86 0.6 0.337 0.93 0.97 0.96 0.96 0.94 7 0.04 0.34 0.24 0.37 0.588 0.88 0.9 0.91 0.92 0.91 8 0.54 0.62 0.55 0.49 0.499 0.98 0.95 0.97 0.95 0.97 9 0.72 0.92 0.83 0.68 0.6610 0.88 0.88 0.87 0.88 0.88 10 0.34 0.26 0.39 0.32 0.2911 0.77 0.87 0.89 0.91 0.9 11 0.12 0.31 0.54 0.52 0.5912 0.88 0.9 0.92 0.93 0.92 12 0.71 0.74 0.83 0.84 0.7613 0.93 0.95 0.94 0.93 0.91 13 0.65 0.85 0.72 0.66 0.5414 0.93 0.94 0.95 0.95 0.95 14 0.82 0.77 0.73 0.68 0.66CA 1 0.98 0.99 0.95 0.98 0.99 EBIT 1 0.82 0.78 0.82 0.82 0.882 0.88 0.91 0.9 0.91 0.93 2 0.75 0.83 0.78 0.83 0.843 0.95 0.97 0.96 0.96 0.97 3 0.89 0.77 0.83 0.86 0.884 0.97 0.93 0.94 0.91 0.87 4 0.86 0.89 0.83 0.85 0.815 0.98 0.96 0.97 0.97 0.97 5 0.75 0.82 0.82 0.7 0.886 0.97 0.95 0.97 0.96 0.92 6 0.66 0.76 0.73 0.75 0.487 0.95 0.96 0.96 0.96 0.95 7 0.4 0.75 0.8 0.77 0.848 0.9 0.95 0.95 0.96 0.94 8 0.82 0.8 0.77 0.84 0.829 0.99 0.94 0.97 0.84 0.81 9 0.89 0.79 0.92 0.75 0.7710 0.94 0.93 0.92 0.92 0.92 10 0.35 0.6 0.72 0.58 0.4511 0.87 0.93 0.92 0.93 0.91 11 0.68 0.83 0.86 0.83 0.8412 0.95 0.96 0.97 0.97 0.94 12 0.84 0.89 0.95 0.91 0.9213 0.97 0.98 0.98 0.97 0.96 13 0.97 0.96 0.92 0.9 0.9314 0.95 0.96 0.96 0.92 0.96 14 0.87 0.89 0.86 0.89 0.85Table 53: Proportion of explained variability when a proxy for size explains twelve accounting itemsby industry and by year. Second Table.
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S NW W I D C CA FA TA CL TC0.366 1983, Building Materials S0.325 0.357 NW0.350 0.331 0.360 W0.388 0.359 0.398 0.472 I0.350 0.304 0.345 0.383 0.358 D0.358 0.296 0.340 0.380 0.358 0.387 C0.344 0.314 0.342 0.386 0.338 0.335 0.339 CA0.341 0.337 0.335 0.369 0.324 0.327 0.324 0.359 FA0.344 0.323 0.339 0.379 0.334 0.333 0.334 0.338 0.336 TA0.353 0.303 0.341 0.383 0.356 0.370 0.339 0.327 0.336 0.369 CL0.345 0.350 0.348 0.382 0.327 0.317 0.336 0.356 0.343 0.321 0.369 TC0.186 1983, Clothing S0.182 0.236 NW0.176 0.172 0.205 W0.214 0.221 0.199 0.277 I0.188 0.194 0.168 0.238 0.236 D0.189 0.181 0.178 0.226 0.206 0.220 C0.184 0.199 0.170 0.225 0.202 0.195 0.200 CA0.182 0.196 0.197 0.214 0.193 0.188 0.184 0.262 FA0.180 0.193 0.174 0.216 0.195 0.189 0.191 0.202 0.190 TA0.191 0.175 0.186 0.233 0.213 0.215 0.198 0.209 0.199 0.235 CL0.181 0.227 0.171 0.220 0.194 0.182 0.199 0.197 0.193 0.176 0.226 TC0.620 S0.578 0.745 1983, Food NW0.588 0.682 0.724 W0.656 0.675 0.660 0.777 I0.575 0.585 0.578 0.636 0.570 D0.587 0.589 0.595 0.651 0.571 0.608 C0.576 0.620 0.591 0.660 0.569 0.584 0.597 CA0.612 0.764 0.769 0.699 0.612 0.629 0.634 0.904 FA0.579 0.647 0.626 0.662 0.570 0.587 0.596 0.692 0.615 TA0.579 0.586 0.588 0.652 0.563 0.591 0.579 0.633 0.586 0.589 CL0.592 0.736 0.697 0.688 0.594 0.602 0.628 0.785 0.660 0.601 0.745 TCFigure 83: Typical � matrices. Items having only positive cases.
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S W I D C CA FA DEBT WC FL EBIT NS 0.38W 0.39 0.42 1985, Building MaterialsI 0.40 0.42 0.46D 0.33 0.35 0.35 0.31C 0.35 0.36 0.37 0.32 0.35CA 0.35 0.37 0.38 0.32 0.33 0.34FA 0.43 0.46 0.48 0.39 0.40 0.42 0.60DEBT 0.52 0.56 0.58 0.46 0.50 0.50 0.68 1.01WC 0.35 0.36 0.40 0.31 0.31 0.36 0.44 0.52 0.48FL 0.38 0.39 0.42 0.34 0.35 0.37 0.49 0.56 0.40 0.42EBIT 0.36 0.37 0.41 0.33 0.34 0.36 0.48 0.53 0.42 0.42 0.44N 0.37 0.40 0.40 0.33 0.34 0.35 0.45 0.54 0.34 0.38 0.36 0.39S 0.63W 0.63 0.68 1985, ElectronicsI 0.66 0.66 0.77D 0.58 0.61 0.62 0.57C 0.62 0.64 0.66 0.59 0.64CA 0.61 0.63 0.66 0.59 0.62 0.63FA 0.64 0.67 0.67 0.61 0.64 0.64 0.72DEBT 0.54 0.59 0.63 0.55 0.59 0.58 0.63 0.93WC 0.65 0.68 0.71 0.63 0.66 0.68 0.68 0.62 0.78FL 0.60 0.62 0.63 0.58 0.61 0.61 0.63 0.53 0.65 0.63EBIT 0.61 0.62 0.66 0.58 0.62 0.61 0.62 0.50 0.66 0.65 0.71N 0.61 0.65 0.65 0.58 0.62 0.61 0.63 0.57 0.65 0.59 0.60 0.64S 0.18W 0.20 0.27 1985, ClothingI 0.19 0.23 0.22D 0.16 0.16 0.17 0.18C 0.18 0.20 0.18 0.16 0.19CA 0.18 0.19 0.20 0.17 0.18 0.19FA 0.19 0.24 0.21 0.16 0.20 0.19 0.26DEBT 0.22 0.24 0.24 0.23 0.23 0.24 0.23 0.53WC 0.16 0.17 0.19 0.18 0.16 0.19 0.17 0.27 0.25FL 0.21 0.23 0.22 0.19 0.21 0.21 0.23 0.30 0.21 0.28EBIT 0.21 0.21 0.21 0.20 0.21 0.21 0.21 0.29 0.21 0.27 0.28N 0.20 0.28 0.22 0.14 0.19 0.18 0.24 0.22 0.16 0.21 0.20 0.29S 0.55W 0.55 0.62 1985, FoodI 0.56 0.58 0.63D 0.51 0.51 0.54 0.50C 0.56 0.57 0.60 0.54 0.61CA 0.54 0.55 0.59 0.52 0.57 0.56FA 0.58 0.65 0.63 0.55 0.60 0.60 0.72DEBT 0.58 0.60 0.61 0.56 0.60 0.58 0.65 0.87WC 0.55 0.57 0.61 0.54 0.57 0.59 0.62 0.59 0.78FL 0.58 0.63 0.64 0.56 0.62 0.61 0.68 0.64 0.67 0.71EBIT 0.62 0.66 0.70 0.62 0.67 0.67 0.72 0.69 0.74 0.78 0.88N 0.52 0.61 0.56 0.48 0.56 0.53 0.63 0.57 0.54 0.60 0.63 0.61Figure 84: Typical � matrices. Only cases with positive items were accepted.270



Appendix BClassi�cation Results Using theMulti-Layer PerceptronIn this appendix we gather information concerning the experiment described in section 7.3 about theMulti-Layer Perceptron (MLP) as a modelling tool for accounting relations. But here we examinethe MLP as a classi�er, intended to be used instead of Multiple Discriminant Analysis (MDA).Therefore, we focus on the classi�cation performance rather than on the acquisition of knowledge.Each section of this appendix contains the description of a particular test. Firstly, the techniqueusual in accounting research, involving 18 ratios as input variables, is described. The results of usingMDA are compared with those of using MLP. Next we apply the framework developed in the �rstpart of this study instead of the usual one, both with MDA and MLP modelling. It uses eight logitems as inputs. Finally, we show the classi�cation obtained with the new ratios devised by the MLPwhen used as inputs for MDA.This appendix is intended to show the importance of implementing our framework in a particular,well known, problem. Also, the circumstances leading the MLP to outperform the linear tools canbe devised.B.1 Results: The Usual TechniqueIn this section we describe the procedures and results obtained when applying to the classi�cationproblem the techniques which are usual in accounting research, that is,� Input variables are ratios selected so as to re
ect desired features.� Ratios su�er ad-hoc transformations. The goal is to achieve improvements in their normality.� Factor Analysis is used to extract a few variables from the set of transformed ratios.271



Ratio Skewness Kurtosis Ratio Skewness Kurtosislog NW 0.42 0.01 log S 0.38 0.09DD 0.59 1.60 FA/TA 0.33 -0.15S/FA 4.5 28.5 W/TA 1.09 2.17VA/TCE 2.5 13.8 OPP/S 0.17 6.05EBIT/S 0.53 5.95 OPP/TCE 1.85 34.8EBIT/TCE 1.25 24.5 S/TA 2.01 6.85S/I 2.94 12.1 D/CA 1.45 9.70D/I 2.41 11.2 D/C 1.78 5.74DEBT/NW 3.31 18.1 DEBT/TCE 3.31 18.1Table 54: Skewness and kurtosis of ratios used in the replica of the traditional study. The displayedvalues were obtained after applying transformations. DD is the Days Debtors ratio.� Multiple Discriminant Analysis uses such factors as input variables. In this case, the industrialgrouping according to the SEIC is the outcome.Our study reproduces a reputed one, carried out in 1984 by Sudarsanam and Ta�er [124] andquoted by Foster. The ratios used and their transformations are displayed elsewhere (see page 174).Normality of transformed ratios: We obtained a broad set of values for the skewness andkurtosis of the ratios used in the replication of the study referred to. Such values are displayed intable 54.DEBT has a large number of zero cases corresponding to non-leveraged �rms. It will not yieldhomogeneous distributions with any transformation. The factor extracted from DEBT ratios exhibita very strong two-modality.Extraction of factors from ratios: After obtaining the transformed ratios we extract the eightlargest components of their variability. Next we display the di�erences between our study and theoriginal one concerning the a�nity of input variables with the resulting factors.1. Operating Scale: We obtained the same groups.2. Fixed Capital Intensity, the same groups.3. Labour Capital Intensity, the same groups.4. Pro�tability, the same groups.5. Asset Turnover: This factor was formed with variability from S/TA and S/I mainly.6. Short Term Asset Intensity, DD, D/C, D/CA and D/I.7. Net Trade Credit, DD, D/C, D/CA and D/I.8. Leverage, the same groups. 272



Therefore, our study found di�erences in the interpretation of the factors related to Short Term. Inour data the three factors representing short-term features have their variables mixed up.The co-variance matrix was almost singular. The main correlations were observed between� logS and logNW (0.995),� pOPP=S and log(EBIT=S) (0.971),� pOPP=TCE and pEBIT=TCE (0.980),� pFA=TA and log(S=TA) (0.970),� pS=TA and log(S=I) (0.922) and �nally between� pDEBT=NW and DEBT=TCE (0.970).The eigenvalue sequence doesn't exhibit the smallest trace of a break in the rate of decay. It decayssmoothly in an exponential way. The factors are, more or less, replicating the original variables.Hence, there is no clear distinction between the selected factors and the rejected ones. There isno real commonality or real uniqueness and each factor contains a good portion of the informationothers contain. Since the purpose is the reduction in the number of dimensions, not the discoveringof features, this is just as well.An eigenvalue sequence can have values like these:20%; 19%; 15%; 15%; 13%; 9%; 8%; 6%Typically, eight factors will account for more than 90% of the variability.Transformations: We must remark that the e�ect of using di�erent transformations inside thesame set of input variables introduces a non-negligible amount of non-linearity in input space. Iftwo linearly related variables are exposed to di�erent transformations, say, one square root and theother logs, the resulting relation between them is no longer linear. Afterwards, when factor analysisis used to extract new variables from these non-linear ones, the clear result will be that most of thevariability associated with the extreme values | the ones which are most curled by the non-linearity| is 
attened away. Factor analysis extract linear patterns.Hence, the �nal result of this interaction between arti�cial non-linearity and linear factor analysisis that the extreme values of the distribution will be pushed towards the centre of the distribution.Multiple Discriminant Analysis: A diversion from the original study consisted of dividing theset of examples randomly in two approximately equal sized samples. The MDA model was builtwith one of the samples but its performance was checked with the other one. In general, the size ofeach group in one set and in the other are not very similar. This fact introduces a distortion in the273



N. SEIC Code Group Name N. Cases Correct N. Cases Correct1 14 Building Materials 8 3 23 12 32 Metallurgy 11 1 8 23 54 Paper and Pack 25 5 21 14 68 Chemicals 22 4 23 75 19 Electrical 16 3 18 46 22 Industrial Plants 8 2 9 17 28 Machine Tools 11 2 10 18 35 Electronics 49 11 35 149 41 Motor Components 17 4 6 510 59 Clothing 19 10 23 911 61 Wool 7 1 12 112 62 Miscellaneous Textiles 11 1 19 113 64 Leather 8 1 8 314 49 Food Manufacturers 43 25 37 23Table 55: Classi�cation results with MDA and 8 factors.classi�cation results since the likelihood of each group in the test set is di�erent from the likelihoodin the training set. However, by imposing equal prior probabilities across groups this distortion isminimized.We are mainly interested in comparing the performance of MDA with that of the Multi-LayerPerceptron. Provide the samples are the same and the prior assumptions coincide, this comparisoncan be carried out.Table 55 shows the classi�cation results. N. Cases displays the number of cases in a group aftersplit in two random samples. Correct shows the number of correct classi�cations when that groupwas used to model and the other group was used to test.The displayed results and all the other results reported were obtained under the supposition ofequal prior likelihood of any �rm to belong to this group or the other. There is no special reasonwhy a prior knowledge about relative size of groups should be included in this study.For small groups the classi�cation is very poor. It increases dramatically with the size of thegroup. An overall 29% of success in both cases is attained almost because of very good classi�cationof groups like Food and Electronics.B.2 MLP With 8 Factors as Input VariablesThe same eight factors which were used as input variables for MDA were also tested as input foran MLP. After several experiments we found that the best results would be achieved with an MLPwith one hidden layer and six nodes on it. Table 56 contains the number of correct classi�cations inthe test set, by group.These results concern an MLP with six nodes in a unique hidden layer and 14 output nodes (oneper group). Outputs were post-processed as described in section 7.4.3, on page 180 but no randompenalization of weights were applied. The criterion used for convergence was the maximization ofthe likelihood input-outcomes. 274



N. SEIC Code Group Name N. Cases Correct N. Cases Correct1 14 Building Materials 8 3 23 02 32 Metallurgy 11 0 8 13 54 Paper and Packing 25 6 21 14 68 Chemicals 22 4 23 75 19 Electrical 16 4 18 66 22 Industrial Plants 8 2 9 07 28 Machine Tools 11 1 10 08 35 Electronics 44 12 35 169 41 Motor Components 17 3 6 510 59 Clothing 19 12 23 1011 61 Wool 7 0 12 012 62 Miscellaneous Textiles 11 2 19 113 64 Leather 8 0 8 314 49 Food Manufacturers 43 28 37 24Table 56: Classi�cation results with MLP and 8 factors.The training was interrupted when the likelihood, measured in the training set, reached a max-imum. This procedure is therefore di�erent from the one referred to in section 7.4.1, page 176. Itallows a direct comparison with the results of the MDA modelling.Under the displayed conditions, the MLP shows a performance which is similar to the one ofMDA (about 30% of correct classi�cations), a linear, analytic tool. We believe that the improve-ments in performance achieved in later experiments stem from the interruption of training beforeits completion and also from the more robust pre-processing of the input data.B.3 MLP andMDAWith Eight Log Items as Input VariablesWe now describe our procedure for modelling the relation between accounting information andindustry grouping.We recall that the new approach consisted of using eight accounting variables directly, not inthe form of ratios. A simple two-parameter log transformation and a mean-adjustment was all themanipulation su�ered by the items before being used as input variables for classi�cation. The logsused were the decimal ones. Notice that there is a more subtle di�erence between the MLP and theMDA procedures in what concerns the pre-processing of data. The MDA standardizes the inputvariables one by one. The MLP uses all the information contained in the di�erences of spread.The selected items were Fixed Assets, Inventory, Debtors, Creditors, Long Term Debt, NetWorth, Wages and Sales less Operating Expenses. All these variables were present in the original18 ratios, along with others like Earnings, Value Added, Total Capital Employed and Total Assetswhich we didn't use in the new approach.All the log items were mean-adjusted before being presented as input. The overall mean, notthe industry-speci�c one, was used for this. Therefore, the input variables are not just log items butwhat we call relative positions (see equation 4 on page 59). No correction for � was introduced.When using the analytical tool for modelling with these eight positions we obtained about 33-34%275



N. SEIC Code Group Name N. Cases Correct N. Cases Correct1 14 Building Materials 8 2 23 12 32 Metallurgy 11 2 8 23 54 Paper and Packing 25 5 21 64 68 Chemicals 22 4 23 75 19 Electrical 16 5 18 46 22 Industrial Plants 8 1 9 27 28 Machine Tools 11 2 10 28 35 Electronics 44 21 35 149 41 Motor Components 17 4 6 510 59 Clothing 19 10 23 911 61 Wool 7 1 12 412 62 Miscellaneous Textiles 11 2 19 413 64 Leather 8 1 8 114 49 Food Manufacturers 43 26 37 23Table 57: Classi�cation results with MDA and 8 log items.N. SEIC Code Group Name N. Cases Correct N. Cases Correct1 14 Building Materials 8 4 23 102 32 Metallurgy 11 1 8 13 54 Paper and Packing 25 5 21 24 68 Chemicals 22 4 23 95 19 Electrical 16 5 18 66 22 Industrial Plants 8 2 9 07 28 Machine Tools 11 5 10 18 35 Electronics 44 17 35 199 41 Motor Components 17 5 6 510 59 Clothing 19 10 23 1111 61 Wool 7 2 12 012 62 Miscellaneous Textiles 11 2 19 213 64 Leather 8 1 8 314 49 Food Manufacturers 43 32 37 25Table 58: The best classi�cation results with MLP and 8 log items.of correct classi�cations in the test set. The detailed results are gathered in table 57. It seems clearthat, just by avoiding all the entangling pre-processing of data traditional in accounting researchand using the log space instead, some improvements in performance can be observed.Table 58 shows the best classi�cation results the MLP is able to achieve. The improvement,from 33%-34% to 37%-38%, is due to the interruption of training in the optimum for the test setrather than in the optimum for the training set. It is also a consequence of the better generalisationintroduced by forcing a reduction in the number of free parameters in the net.B.4 Using the Devised Set of Ratios With MDAWe now show the results obtained when using a devised set of ratios for modelling with analytictools. These ratios are a free interpretation of the best topology the MLP builds after learning the276



N. SEIC Code Group Name N. Cases Correct N. Cases Correct1 14 Building Materials 8 2 23 62 32 Metallurgy 11 2 8 23 54 Paper and Packing 25 4 21 54 68 Chemicals 22 4 23 45 19 Electrical 16 5 18 26 22 Industrial Plants 8 1 9 07 28 Machine Tools 11 0 10 28 35 Electronics 44 14 35 149 41 Motor Components 17 3 6 110 59 Clothing 19 10 23 711 61 Wool 7 0 12 312 62 Miscellaneous Textiles 11 1 19 313 64 Leather 8 1 8 114 49 Food Manufacturers 43 25 37 19Table 59: Classi�cation results with MDA and the �ve discovered ratios plus a proxy for size.relation. We recall that the ratios used were �ve,8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>: In the 2st node: NW � IFA� EXIn the 3st node: EXFAIn the 4st node: EXDBIn the 5st node: FA� CW �EXIn the 6st node: EXpFA�Dalong with a proxy for the strong, common e�ect.Table 59 shows the best generalisation achieved. It is around 29%.Though the results are not impressive by themselves, we must remember that they approachthose obtained with 18 ratios. Anyway, the important point here is to notice that the MLP was ableto point out the items which are important in the modelling of the relation.B.5 ConclusionsGeneralisation results show that under similar conditions little di�erence exists between the MDAand the MLP results for the particular problem we studied. Clearly, the relation to be modelled mustbe near linearity. This is a fortunate circumstance. It allows the strict comparing of these tools in aproblem for which the linear, analytical, procedure has not been put in a position of disadvantage.An interesting achievement is the ability displayed by the MLP to deal with simple, linear,relations with no losses in generalisation. Algorithms like polynomial �tting would perform badly ifrequired to model a straight line. The MLP did it easily. Hence, the Multi-layer Perceptron emerges277



as a general-purpose tool, to which we can trust the task of modelling a broad class of relations,ranging from the simple, linear, ones to the most complex ones.When using 18 ratios and the procedures typical in accounting research | including the extrac-tion of eight factors | both the MDA and MLP generalisation results range from 29% to 30%. Theuse of eight log items instead of the eighteen transformed and rotated ratios introduces an expectedimprovement in the generalisation achieved. Both the MLP and the MDA now range from 33% to34% of correct classi�cations in the test set. This clearly shows the disadvantages of such techniquesbased on standard recipes.By stopping the learning process in the optimal classi�cation for the test set rather than forthe learning one a considerable improvement is added to the experiment with eight items. Thegeneralisation is up to 37% - 38%. Naturally, analytic tools like the MDA cannot replicate thisexperiment. The classi�cation results are summarized in next table.INPUT MDA MLP18 ratios 29% 30%8 variables 34% 38%Finally, the �ve ratios inspired by the ones formed inside the MLP plus the estimated size, areable to achieve 28% - 29% of correct classi�cation in the test set, which is similar to the performanceof the original 18 ratios.All the results su�er from the same problem, the virtual disappearance of the small groups |the overwhelming dominance of the large ones. The proportion of correct classi�cation is related tothe proportion of cases in the learning set in the sense that large groups are correctly recognizedwhilst the small ones are ignored.
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Appendix CTools And Algorithms Used InThis StudyThis appendix enumerates the main tools and algorithms used during this study to perform datamanipulation.Statistical computation was performed with the SPSS-X package. The values of skewness andkurtosis, whenever displayed, refer to the corresponding algorithm of this package. Notice that thenormal kurtosis is zero. Intra-Class correlations (chapter 5) were computed from the mean-squaresobtained with SPSS-X. ALSCAL routines were used to build two-dimensional maps from standarddeviations (chapter 5).The algorithms for simulation of Neural Networks were built in FORTRAN 77. All the main ma-nipulation of data and calculations were also programed in FORTRAN 77. No external subroutineswere used. The code was written by the author.The simulation of accounting variables and the testing of normality (chapter 1) was made also inthe same environment. In this case we used the NAG Mark 11 library of subroutines. For example,the generation of random normal deviates used the NAG subroutine G05DDF and the Shapiro-Wilktests were performed with the algorithm G01DDF.
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