
A Distributed Monte Carlo Based Linear Algebra Solver
Applied to the Analysis of Large Complex Networks?

Filipe Magalhãesa, José Monteiroa,∗, Juan A. Acebrónb,a, José R. Herreroc

aINESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal.
bDept. Information Science and Technology, ISCTE-University Institute of Lisbon,

Portugal.
cDept. d′Arquitectura de Computadors, Universitat Politècnica de Catalunya, Spain.

Abstract

Methods based on Monte Carlo for solving linear systems have some in-
teresting properties which make them, in many instances, preferable to classic
methods. Namely, these statistical methods allow the computation of individual
entries of the output, hence being able to handle problems where the size of the
resulting matrix would be too large. In this paper, we propose a distributed
linear algebra solver based on Monte Carlo. The proposed method is based on
an algorithm that uses random walks over the system’s matrix to calculate pow-
ers of this matrix, which can then be used to compute a given matrix function.
Distributing the matrix over several nodes enables the handling of even larger
problem instances, however it entails a communication penalty as walks may
need to jump between computational nodes. We have studied different buffering
strategies and provide a solution that minimizes this overhead and maximizes
performance. We used our method to compute metrics of complex networks,
such as node centrality and resolvent Estrada index. We present results that
demonstrate the excellent scalability of our distributed implementation on very
large networks, effectively providing a solution to previously unreachable prob-
lem instances.

Keywords: Matrix inverse, Monte Carlo, Distributed computation, Network
metrics

?The work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-
730897), with the support of the EC Research Innovation Action under the H2020 Programme;
in particular, the authors gratefully acknowledge the support of the Computer Architecture
Department at Universitat Politècnica de Catalunya (UPC) and the computer resources and
technical support provided by Barcelona Supercomputing Center (BSC). This work was also
supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2020, by the Spanish Ministry of Science and Technology through
PID2019-107255GB project and by the Generalitat de Catalunya (contract 2017-SGR-1414).
∗Corresponding author.
Email addresses: filipepgmagalhaes@tecnico.ulisboa.pt (Filipe Magalhães),

jcm@inesc-id.pt (José Monteiro), juan.acebron@iscte-iul.pt (Juan A. Acebrón),
josepr@ac.upc.edu (José R. Herrero)

Preprint submitted to Elsevier September 3, 2021

1. Introduction

The high-performance systems now available are essentially multiprocessor
machines interconnected by high-speed networks. Very large applications can
be accommodated by conveniently distributing the data over a large set of ma-
chines. In order to fully exploit the computational power these machines pro-
vide, the synchronization points and amount of data interchange between the
different machines need to be carefully considered and minimized. This issue is
particularly relevant for numerical methods that operate on large vectors and
matrices, as is the case of the problems addressed in this paper. Probably the
most studied class of methods in the theory, and used in practice, are those
based on the Krylov subspace method. The idea behind the method consists
in projecting the given (typically large) matrix onto a Krylov subspace (e.g.,
see [1, 2]). However, such classical methods tend to scale very poorly due to
intrinsic data-dependencies [3, 4], and in practice lead to a very low efficiency
of utilization of processor power.

The approach proposed in this paper enables the computation of functions
over extremely large matrices supported on the following two main features: the
implementation splits the matrices across different machines hence combining
their memory capacity; and the method allows calculating individual elements of
the resulting matrix, avoiding the computation of the entire matrix. While the
input matrix is typically sparse, the resulting matrix will, in general, be dense.
For this reason, the usage of classic methods becomes unfeasible since they
compute this entire matrix, which will not be possible to represent in memory
for large problems. Using our method, we can compute separately subsets of the
resulting matrix, or even simply compute the particular positions of the matrix
that we are interested in.

The method is based on deriving different matrix functions from sums of
powers of the matrix, and was originally proposed in [5]. A matrix to the power
k is computed using random walks of length k over the matrix. These type of
Monte Carlo (MC) methods have the important feature that they are trivially
parallelizable, achieving a high degree of efficiency in a parallel system, since
each walk is independent of one another. However, the splitting of the matrix
across machines, central to the scalability of the method, implies that the walks
may have to be continued on another machine. We present a highly optimized
implementation that minimizes the impact of handing over one walk to another
computational node and demonstrate the scalability of our application up to
768 cores.

Essentially the main goal of these MC methods is to generate a discrete
Markov chain whose underlying random paths evolve through the different in-
dices of the matrix. The method can be understood formally as a procedure
consisting of an MC sampling of the Neumann series of the inverse of the ma-
trix. The convergence of the method was rigorously established in [6]. More
recently, the method was improved by adding an acceleration scheme based on
a Richardson iteration (see for instance [7], and [8] just to cite a few references).
In [9] a parallel code was implemented for solving linear algebra problems. How-

2

ever, the examples considered were small, avoiding the necessity to distribute
the matrix, but limiting its applicability.

One example of an area for which this method can be a significant contribu-
tion is in the analysis of complex networks. In recent years, the study of networks
has received a renewed interest from the scientific community. It blends with
a wide range of areas, with networks emerging for example from social interac-
tions, biological phenomena, the world wide web, financial networks, and the
power grid. Network analysis has played an important role in modeling disease
spreading, predicting how epidemics progress [10], analyzing the resilience of
networks, such as the power grid, to failures both random [11] and maliciously
targeted [12]. It is also fundamental in the analysis of social networks, examin-
ing the dynamics of personal opinions, collaboration, and habits [13]. A network
can be represented by its, typically sparse, adjacency matrix and most metrics
used in these analyses can be determined by operations on this matrix.

One prominent metric in the study of networks is node centrality. Centrality
can be interpreted as how close to the rest of the nodes in the network one
node is, how influential it is, or how important it is in establishing connections
between any other pair of nodes. To meet these different perspectives, several
formal definitions of node centrality have been proposed before [14]. Centrality
as a measure of influence over nodes is important, for example, in the study of
social networks or in the classification of pages by search engines over the world
wide web, indicating the relative importance of individuals in the network over
their peers. Eigenvector Centrality, Katz centrality, and Google’s PageRank are
concrete instantiations of this type of node centrality [14].

We have developed a highly scalable method to compute the solution of linear
systems on distributed-memory systems that is able to handle extremely large
problem instances. To demonstrate the relevance of our method, we present
results on the computation of node centrality metrics and resolvent Estrada
index [15] of complex networks. There are a number of models to generate
artificial networks that emulate real networks, useful to test algorithms over
networks with well-defined properties. We use small-world matrices generated
with a variation of the Watts-Strogatz method [16]; and Kronecker matrices [17]
generated using a Graph500 [18] generator.

In this paper, we first make a review of background material. We start in
Section 2 with an overview of basic concepts both on linear algebra and some
relevant methods, and on networks and the metrics we consider for our analysis.
Then Section 3 describes the original algorithm that we base our approach on
and presents a discussion about some of the adaptations that we performed for
our proposed solution.

The second part of the paper presents the actual contribution and the results
we obtained. Section 4 describes the Distributed Monte Carlo (DMC) novel par-
allel implementation that we developed which performs the operations on ma-
trices fully distributed across the different computational nodes, discussing the
tuning effort that significantly reduced the communication overheads leading to
the observed scalability of the solution. Experimental evaluations are presented
in Section 5 and Section 6 gives some conclusions and discusses future work.

3

2. Background

In this section, we give a brief overview of the basic background material on
linear systems of equations, matrices and networks that is relevant to the work
described in the following sections.

2.1. Systems of Linear Algebraic Equations
The problem of solving a System of Linear Algebraic Equations (SLAE) can

be written in matrix form, using a vector x with the variables, a matrix A with
the coefficients and a vector b with the independent terms [19].

Ax = b ⇔ x = A−1b (1)

Hence the system of linear equations can be solved by simply computing A−1b
as long as we are dealing with a square and invertible matrix. In practice, more
efficient approaches are used, and there are several classes of these methods.

Direct methods, such as the Gauss-Jordan elimination [20] or the multi-
frontal solver [21], provide an exact solution (within the limits of the hardware).
However, dense matrix operations are involved, incurring in large memory and
computation costs.

Iterative methods are applied repetitively, resulting in incrementally more
accurate solutions, based on an initial guess [19]. Some of the simplest iter-
ative methods are Richardson’s, Jacobi and Gauss-Seidel methods. The most
successful algorithms are based on the use of Krylov subspaces, which perform
matrix-vector operations in each iteration. There is a large number of algorithms
under this category, from which the most commonly used are the (bi)conjugate
gradient method [22], GMRES [23] and BICGstab [24].

Monte Carlo methods rely on repeated random sampling to obtain solutions
to a wide range of problems [25]. An arbitrary level of accuracy of the solution
can be set, appropriate for the problem at hand, through the number of random
samples computed. Markov Chain Monte Carlo (MCMC) methods are based
on a Markov Chain with a desired distribution as a stationary distribution [26].
They rely on random walks through a matrix.

Monte Carlo methods for SLAE are essentially split between direct and
iterative methods. Direct methods rely solely on the stochastic component,
and the error of their solutions depends on it. Iterative MC algorithms use
more traditional iterative algorithms alongside MC components, generating both
stochastic error and systematic error [7].

2.2. Matrix Representation
Typically, most large, complex matrices of interest are sparse, i.e., most of

the entries are zero. This is the case of real-world networks where nodes are most
times connected to a very small fraction of all the other nodes, meaning that
the corresponding adjacency matrix has few non-zero entries per row. There are
many data structures that allow an efficient representation of sparse matrices
in memory. The Compressed Sparse Row (CSR) is probably the most popular
sparse storage scheme [19]. It uses three vectors to store exclusively the non-zero
entries of the matrix.

4

2.3. Network Metrics

Formally, a network is a graph G =< V,E >, composed of a set of nodes V ,
and a set of edges E, being each edge an ordered pair of nodes [14]. Graphs can
be represented in the form of a square matrix, called the adjacency matrix, by
associating each node with an index, so that each entry in the matrix represents
the edge between the node corresponding to its row and the node corresponding
to its column [14]. This convention allows us to represent, if necessary, the
direction and weight of edges.

To characterize a network and its nodes, there is a vast collection of metrics
that can be used [14]. Katz centrality [27] follows the notion of centrality as a
measure of the influence of a node on other nodes in the network. Katz’s notion
of centrality, later refined in [28], assigns a measure of the importance of a node
based on the importance level not only of its adjacent nodes in the network but
also on their successive neighbors, albeit attenuated by a factor αd being d is
the distance to the node. Given the adjacency matrix A of the network, Katz
centrality can be determined by

K(α) = (I − αA)−11 (2)

with α the attenuation scalar parameter [29] and 1 a vector with all ones. K(α)
is a vector representing the centrality value of each node. Parameter α, named
the attenuation factor, should be smaller than 1/λ, with λ being the largest
eigenvalue of A [27]. Through the tuning of α, this centrality metric can be used
to distill different information. Notably, it is shown in [29] that, as α tends to 0,
Katz centrality approaches the value of the degree centrality; and as α tends to
1/λ, Katz centrality approaches the value of eigenvector centrality. Moreover,
vector 1 can be modified to have different values, allowing different weights in
the contribution of each node to the centrality. Note that the costly computation
of eigenvalues can be avoided by leveraging Gershgorin’s Theorem [30]. Thus,
one can estimate α from information about the node in the network with the
highest degree, something which can be computed at a much lower cost.

There are other types of metrics for networks. The exponential of the ad-
jacency matrix can be used to obtain other useful network measures related to
the centrality, communicability, or betweenness of nodes in a network. However,
computing the exponential is computationally costly. An alternative was intro-
duced in [15]. For any matrix A ∈ RN×N , the function g(s) = (A− sI)−1 over
s ∈ C is called the matrix resolvent. The resolvent is related to the exponential
through the Laplace transform and can be used to compute similar metrics. The
resolvent measure can be regarded as lying between the degree and exponential
measures.

An important tool used to get a global characterization of a network is the
Estrada index. Originally it referred to the trace of the matrix exponential,
used to compute the sum over all nodes of the subgraph centrality based on the
exponential, and has since become known as the Estrada index [31]. However,
it is also used in a wider sense to refer to the sum of some metrics computed
for all the subgraphs computed as the trace of a matrix. For instance, the

5

resolvent-based Estrada index, i.e. the trace of the resolvent, can be seen as a
global measure of clustering.

There exist other network metrics which can be computed on matrix func-
tions. For example, the diagonal of the matrix exponential represents the expo-
nential subgraph centrality [32]; and the trace of the third power of the adjacency
matrix yields the number of triangles in a network, which is a useful metric in
the analysis of networks, but difficult to calculate for large graphs [33].

This work will focus on the Katz centrality and the resolvent Estrada index
(which we will refer to as the trace of the inverse of the matrix), but the method
would require only minor adaptations to focus on other of the many existing
metrics.

2.4. Evolving Networks

It is possible to calculate the inverse of a matrix knowing the inverse of an-
other using the Sherman-Morrison formula [34] or its generalization, the Wood-
bury formula [35]. Let us consider a matrix A, of size N by N , and a second
matrix B that results from small modifications to A. As long as we can de-
scribe the difference between the two matrices as UV T , where U and V are
matrices of size N by K, and both the original matrix A and the new matrix
B = A + UV T are invertible, the inverse of the new matrix B is given by the
following expression:

B−1 = A−1 −A−1U(Ik + V TA−1U)−1V TA−1 (3)

This formula allows the computation of metrics based on the inverse of the
matrix for an evolving network, based on a previously obtained inverse.

3. Description of the Method

We describe the method of [5] and present some adaptations made for our
implementation. Let us consider the matrices B = {bij}, A = {aij} ∈ RN×N
and let A = I − B, where I is the identity matrix. Then

B−1 = (I −A)−1 =

∞∑
k=0

Ak (4)

as long as, considering λr(A) as the r-th eigenvalue of A, the following holds:

max
r
|λr(A)| < 1. (5)

In order to approximate B−1, the method under study approximates the
sum of the first n powers of A using random walks, similarly to Markov Chain
Monte Carlo. The method calculates B̂ as

B̂ =

n∑
k=0

Ak. (6)

6

B̂ is a good approximation as long as n is large enough, since the summation
converges to B−1 as n tends to infinity. In [5, 8] it has been shown that each
power k of the matrix A in Eq. (6) can be represented probabilistically as the
estimator of a suitable multiplicative random variable η. Such a multiplicative
random variable is defined as η =

∏k
l=1 vXl

. Here v ∈ RN is a vector with
components vj =

∑
j aij , and X0, X1, . . . is a discrete-time Markov chain. This

Markov chain is defined on the state space S = {1, 2, · · · , N} and the one-step
transition probability matrix P = {pij}Ni,j=1 is given by pij = aij/

∑
j aij , pro-

vided aij > 0. Then, the power k of the matrix A can be computed probabilisti-
cally as (Ak)ij = E[η δj Xk

] with X0 = i. Note, however, that to implement the
method in practice, we need to choose a finite sample of given size p, replacing
in such a way the expected value by the arithmetic mean. Accordingly, this
entails a statistical error that will be discussed in Sec.5.

The method allows computing each row of each power of matrix A indepen-
dently, as described in Algorithm 1. Naturally, we can compute only the subset
of required rows for the problem at hand.

Algorithm 1 Monte Carlo Matrix Inversion [5]

Input: B: matrix to invert; n: length of series calculated; p: number of plays.

Output: B̂: approximation of B−1

1: function InvertMatrix(B, n, p)
2: dim← size of B . Dimension of the matrix
3: I ← IdentityMatrix(dim)
4: A← I −B
5: for i← 0 to dim− 1 do . Compute each row independently
6: B̂i∗ ← [0, . . . , 0]
7: for k ← 2 to n do . Compute the different powers of A
8: B̂i∗ ← B̂i∗ + CalculateRow(A, i, k, p) . Algorithm 2

return B̂

In order to calculate row i of Ak, the method computes a vector B̂i∗ with
the same length as the row, initially with 0 in all entries. A neat picture of this
probabilistic representation can be described as follows. First, let us choose a
finite number of p trials for the Markov chain simulations, which hereafter we
call “plays”. Those “plays”start from this row i, and during k steps evolve by
random paths through the different indices of the matrix, which corresponds to
a different state of the Markov chain. At each step one entry (Aij) of the current
row i is chosen, and jumps to the row with index j, as described in Algorithm 2.
For the column selection, the next row is chosen randomly with probabilities
for each entry in the row weighted proportionally to their value (obtained via
RandomWeightedChoice()).

A play starts with a value of 1 and, at each step, is multiplied by the sum
of the entries in the current row (

∑
j Aij obtained via GetRowWeight())1.

1In the implementation, for efficiency, this can be retrieved from a precomputed vector.

7

Algorithm 2 Monte Carlo Row Power Computation [5]

Input: A: input Matrix; i: row index; k: length of play used to approximate the kth

power of A; p: number of plays.

Output: r: approximation of row i of kth power of A

1: function CalculateRow(A, i, k, p)
2: dim← size of A . Dimension of the matrix
3: r[0 : dim− 1]← [0, . . . , 0]
4: for m← 1 to p do . Use p plays in the approximation
5: value← 1
6: currentRow← i
7: for l← 0 to k − 1 do . Length of play
8: value← value×GetRowWeight(A, currentRow)
9: selectedColumn← RandomWeightedChoice(A, currentRow)

10: currentRow← selectedColumn
11: r[currentRow]← r[currentRow] + value

12: for j ← 0 to dim− 1 do
13: r[j]← r[j]/p

return r

When a play reaches the end of its k steps, its value is added to the vec-
tor r at the index corresponding to the row where the play finished. In the
end, the values in r must be normalized by the number of plays, yielding an
approximation of the requested row i of Ak.

In order to calculate Ak+1, plays of length k + 1 are used. These, by def-
inition, contain plays of length k. Therefore, instead of computing p different
plays for each power k, we can reduce significantly the total number of steps
simply by saving the results obtained in each step l of the play and use them
for computing the power l+1, i.e., use pn steps instead of the pn(n+1)/2 steps
computed by the algorithms presented above. This change comes at the cost
of making the approximation of each power dependent on the approximation
of the lower powers. This could lead to larger errors, but experiments showed
only a small increase in the error, and a very beneficial reduction in execution
time. In Section 4, we use this optimization when processing plays in parallel
in Algorithm 5.

When the goal is to calculate the product of a vector by the inverse of the
matrix (B−1v), which is the case both in solving systems of linear equations
and when calculating the Katz centrality of a network, the algorithm can be
modified to store only vectors rather than the full matrix. In the calculation
of the centrality, since the vector to be multiplied contains 1 in every entry, we
only need to sum all entries of the resulting matrix row when calculating one
row of the inverse, therefore saving memory space.

Additionally, the trace of the resulting matrix can be easily computed, by
summing only the entries in the diagonal. This method can also be used to
approach the problem of recalculating the inverse after changes to the original
matrix, using the Woodbury formula, as described in Section 2.4. To apply this

8

formula to the calculation of the Katz centrality, where the inverse is multiplied
by a vector, we need to store the result of the inverse multiplied by several
vectors, namely each of the columns of the matrix that describes the changes to
the matrix. These can be computed in a single execution. In order to multiply
the inverse of the matrix by an arbitrary vector, we just need to multiply the
result stored at each step (line 11 in Algorithm 2) by the vector entry corre-
sponding to the current row. In order to compute several vectors at the same
time, we need to store results for each of the vectors, multiplying each by the
appropriate vector’s entry. This corresponds to executing line 11 for each of the
vectors, storing the result in separate output vectors.

The underlying method bases itself on the calculation of individual rows of
powers of a matrix. This provides flexibility to calculate other matrix functions,
such as the exponential

eA =

∞∑
k=0

1

k!
Ak

by simply changing the weights of each matrix power. Hence, we could easily
modify the method for the computation of other network metrics and different
definitions of centrality [29].

4. Parallel Implementation

This section presents our fundamental contribution towards the deployment
of a highly scalable parallel method for the computation of matrix functions. A
number of matrix functions can be computed through the calculation of indi-
vidual rows of the sums of the powers of a matrix. We demonstrate the impact
of our work using the calculation of the inverse of a matrix times a vector as
an example of the application of the method. Since the method uses a Monte
Carlo approach, where the calculation of each row is totally independent of
the others, it is therefore trivially parallelizable by computing them in different
processing units. In principle, this requires that all machines have access to
the entire matrix. However, when a matrix is too large for the memory of a
single machine, we need to distribute the matrix across machines, where each
machine keeps a part of the matrix in its memory. Also, partial results need
to be eventually added with a reduction operation in order to obtain the global
result. Algorithm 3 shows the skeleton of the distribution of data and work to
the processes.

This distribution implies that plays that start in one machine may eventu-
ally have to be transferred over to another, introducing a potentially significant
communication overhead. This process is illustrated in Figure 1. Our implemen-
tation uses a row-wise matrix distribution and an owner-computes rule. Each
machine starts computing the plays associated with the rows it holds in memory.
When a play reaches a row assigned to another machine, the machine which was
computing the play sends a message with the information of the outgoing play
to be continued in the destination machine (line 8 in Algorithm 5 and line 6
in Algorithm 4). Therefore, a play is represented by a data structure which

9

Algorithm 3 Pseudo-code of a Parallel Distributed Monte Carlo B−1v

Input: B: matrix to invert; v: vector to multiply; p: number of plays; n: length of
series calculated; [α: scalar parameter used when computing Katz centrality
(1 otherwise)].

Output: x̂: approximation of B−1v

1: function Distrib MC InvMat x Vec(B, v, n, p [, α])
2: NP← Number of processes
3: Pid← Process Id
4: dim← size of B . Dimension of the matrix
5: (rini, nrows)← defineSubdomain(dim, NP, Pid)
6: As ← getSubmatrix(B, dim, rini, nrows, α) . As ← I − αB (in subdomain)
7: xlocal←MC SubmRowsPower x Vec(As, v, dim, nrows, rini, n, p) . Alg 4
8: x← apply a reduce operation over xlocal . Accumulate partial results
9: return x . Final result

(a) (b)

Figure 1: Illustration of the need for communicating plays between machines when the rows
of the matrix are distributed, (a) representing the basic algorithm when the entire matrix is
available locally, and (b) representing the situation where a play needs to migrate to another
machine because the destination row is only available on that machine.

contains: the starting row being simulated; the current row, which is updated
though the simulation; a value, which is initialized to 1 and then updated by
multiplying the current row weight; and the number of steps left, where the
initial number of steps is initialized to the total number of powers of the matrix
that one wants to compute.

For simplicity, Algorithms 3 through 5 roughly describe the skeleton of an
unoptimized distributed memory parallelization with a single thread per process.
However, the sequel of this section presents some of the improvements that have
been implemented. Our implementation uses MPI to distribute work and data
across machines, and OpenMP to exploit multiple cores that share memory
within each machine.

Memory management is of paramount importance. In particular, dynamic
memory allocation is a source of overhead, and, as such, is totally avoided,
aside from the initial allocations. The efficient use of the memory hierarchy is
important to maintain performance. The nature of the random walks, leading

10

Algorithm 4 Distributed MC computation of nth power of rows in As times v

Input: As: submatrix to use to calculate its initial n powers; v: vector to multiply;
dim: problem dimension; nrows: number of rows in the subdomain; rini: initial
row in the subdomain; n: length of series calculated; p: number of plays.

Output: x̂: partial result contributing to the approximation of B−1v

1: function MC SubmRowsPower x Vec(As, v, dim, nrows, rini, n, p)
2: x[0 : dim− 1]← [0, . . . , 0]
3: while pendingWork() do . ∃ unprocessed plays (see Section 4.3)
4: play ← NULL
5: if incomingMessage() then . ∃ incoming play
6: play ← receivePlay() . Receive play from other process
7: else if ungeneratedPlays() then . p plays × nrows in total
8: play ← generatePlay() . Generate one play at a time

9: if play is defined then
10: x← processPlay(As, play, x, v, nrows, rini) . Algorithm 5

11: for i← 0 to dim− 1 do
12: x[i]← x[i]/p

13: return x . Local contribution computed in this process

to random accesses on the matrix and a lack of temporal locality in accesses,
makes it difficult to take advantage of the cache memories. Nonetheless, spatial
locality can be leveraged by the cache by keeping all the relevant information
about each row of the matrix adjacent in memory.

4.1. Row Distribution

By default, the rows of the input matrix are equally distributed among
all machines. However, some matrices may be unbalanced in the sense that
some rows may have significantly more non-zero entries than others, leading to
an uneven level of computation cost across machines. This is the case when
the network presents hubs, where many random walks will pass. To allow a

Algorithm 5 Process a play for row i = startRow while falls in this subdomain

Input: As, v, nrows and rini as in Algorithm 4; pl: current play; x: partial result
calculated until now.

Output: x̂: partial result contributing to the approximation of B−1
i∗ v

1: function processPlay(As, pl, x, v, nrows, rini)
2: while pl.stepsLeft > 0 and ownRow(pl.currentRow, rini, nrows) do
3: pl.stepsLeft← pl.stepsLeft− 1
4: pl.value← pl.value×GetRowWeight(As, pl.currentRow)
5: pl.currentRow← RandomWeightedChoice(As, pl.currentRow)
6: x[pl.startRow]← x[pl.startRow] + pl.value× v[pl.currentRow]

7: if pl.stepsLeft > 0 then . Unfinished play leaves this subdomain
8: sendToRowOwner(pl)

9: return x

11

better load distribution, a custom row distribution is accepted by the program.
This custom distribution was used in experiments over matrices with hubs,
such as networks generated using the scalable Graph500 Kronecker generator,
where the number of connections, instead of the number of nodes, was equally
divided overall processes. This is a simplistic approach to estimate the expected
workload of each process but proved successful in keeping a good workload
balancing. In addition, if some rows have a large number of non-zero entries,
such rows can be replicated in all the domains in order to reduce jumps from
domain to domain.

4.2. Communication

To hide as much as possible the communication overhead, the sending and
receiving of messages is performed using the asynchronous versions of MPI calls,
so that computation and communication can be overlapped. In our approach,
while a node is processing the walks currently within its set of rows, in the
background it may be receiving new walks to process. The performance ad-
vantage of both sending and receiving messages asynchronously was verified
experimentally.

Furthermore, and to reduce the number of messages sent, which could be
overwhelming otherwise, outgoing plays are aggregated in a dedicated buffer
for each destination, and sent in a single message when the buffer is full. The
size of this buffer is a parameter of the implementation, determining the size
of the message, and therefore, how often communication occurs. This param-
eter impacts heavily the performance of the method, the larger the buffer the
lower the communication overhead since we have a lower number of messages,
however the later the receiving process starts working on the plays coming from
another process. Moreover, the characteristics of the interconnect network play
an important role in determining the optimal size of the buffer. Hence, a good
practical way to arrive at the optimal size of the buffer for a given machine is to
perform a few experiments beforehand with different sizes. For the machine we
used in this work (MareNostrum 4), we experimentally determined that a buffer
that accommodates 1024 plays gives the best results. All results in Section 5
were obtained using this value.

On the receiving end, we manage a set of buffers for incoming messages,
filled using asynchronous receive calls. The size of these buffers has less impact
on performance, as long as they are big enough not to fill up and delay the
computation. Although MPI has the option to internally manage a buffer when
sending messages, using the “Bsend” call, we found its behavior and performance
worse than our own implementation.

4.3. Terminating the Computation

In order to determine when the computation has finished we use a token-ring
algorithm. At the start of the execution, a token with the value 0 is assigned
to the first process. When a process becomes idle (i.e., all local plays have
been generated and no incoming plays), if it is holding the token it adds the

12

number of finished plays the process has registered locally to the value of the
token, and sends it over to the next process. When the token reaches the first
process again, we need to check if the token’s value is equal to the total amount
of plays. In that case, the computation is finished, and all processes get a
termination message. Otherwise, this means that there were plays that could
not be completed in the current subdomain and had to be sent to another node,
restarting their computation in a process where the token had already gone by.
In this case, the value of the token is reset to 0, and this procedure is repeated.

This strategy only uses the idle time of the processes to check for the end
of the computation, placing no special burden on any of the processes, and is
flexible to different strategies of where plays should be considered as terminated.

4.4. Threads

It is desirable to use threads at each computational node, in order to take
full advantage of shared-memory computation in multi-core machines. Using
threads instead of several processes on the same machine permits storing a
larger chunk of the matrix in the same process, and have several processors
sharing it, reducing the amount of communication needed.

4.4.1. Thread Organization

When using several threads in the same process, we have the choice to make
them homogeneous, i.e., all performing the same tasks and communication, or
to specialize some threads in communication and others in processing.

An implementation with one thread dedicated to receiving messages and
placing them on input buffers for each of the other threads was compared with
a homogeneous implementation where each thread issues the MPI calls necessary
to fill its input buffers. The heterogeneous version proved to be faster. Using
Barcelona Supercomputing Center (BSC)’s performance visualization and anal-
ysis tool Paraver [36], it was observed that the cache misses caused by MPI calls
were concentrated in the communication thread, reducing them in the others.

We explored the usage of more communication threads, each serving a sub-
set of the working threads. However, such an approach did not provide any
improvement. The analysis using Paraver showed that calls to MPI were tak-
ing longer in each thread, making the performance similar to the version with
only one communication thread, hinting that synchronization happening inside
the MPI library may be the source of contention. The chosen implementation,
therefore, features one communication thread per process, responsible for issu-
ing MPI calls to fill the input buffer of each thread, and each of the working
threads consuming from their own private buffer.

4.4.2. Workload Distribution among Threads

Each process must generate plays for the rows it owns. In the multi-threaded
version, each thread generates an equal subset of the plays, when it has no
incoming messages to process. Incoming messages are distributed in a round-
robin fashion among the worker threads.

13

The input buffer of each thread is treated as a circular buffer. Each worker
thread acts as a consumer, advancing an index through the existing messages,
while the communication thread acts as a producer, advancing another index as
it fills the buffer. Thanks to this configuration it is not necessary to synchronize
using atomic access to these variables.

4.4.3. Sending Messages

In order to keep threads as independent as possible, each of them has its
own set of output buffers, where plays going to other processes are aggregated
into messages to be sent by each thread separately. Synchronization outside the
MPI calls is completely avoided here. When threads go idle, with no more plays
to process, the plays waiting to be sent are aggregated in buffers shared by all
threads. This synchronized aggregation of plays only happens when threads are
idle, minimizing the impact on performance while ensuring a reduced number
of messages and with as many plays as possible.

4.4.4. Storing the Results

As each play finishes, its value is added to a vector of results. This vector
can be divided or replicated. In particular, each process can have partial results
for all rows or just for the rows owned by the process. Also, each thread can
have its own private partial result vector, or threads in the same process can
share the memory space used to store results.

If only the owned rows are stored in each process, at the end of a random
walk it is necessary to send the result to the process where it started, resulting
in an extra communication step for most plays. It is desirable to avoid this extra
step by keeping a full-sized vector of results in every process. However, as the
matrix size increases, keeping the full vector in memory in every process is an
unacceptable strain on the available memory. As such, our final implementation
has each process store only the results for the rows it owns, therefore, differing
from the replicated results vector used in the skeleton presented in Algorithm 3.

Moreover, in a multithreaded implementation, we need to consider whether
to replicate or not such results vector within each process. With one vector
where all threads within a process write, every write must be synchronized.
Since each of these updates accesses a single memory position, the “omp atomic”
directive can be used instead of more elaborated, and slow, synchronization
mechanisms. Nonetheless, unless memory space is very limited, it is preferable
to have independent memory space for each thread and avoid synchronization
altogether, save for a reduce operation at the end of the computation. This
option allows for greater performance and was the choice made for the final
implementation.

14

5. Numerical Errors and Parallel Performance of the Algorithm

The designed algorithm2 was evaluated both in terms of accuracy and par-
allel performance in the analysis of complex networks, namely when computing
two different network metrics: the centrality and the resolvent Estrada index of
different networks. Since the required computational steps of the MC method
are essentially the same for both metrics, we analyzed separately only the ac-
curacy for these two metrics. Concerning the examples simulated so far, they
consist of the adjacency matrices corresponding to two different complex net-
works, namely a small-world network and a Kronecker graph. In addition, the
so-called Poisson matrix resulting from the numerical discretization of the 2D
Laplacian operator through a 5-point finite difference stencil is considered. Al-
though the underlying adjacency matrix of such problem cannot be regarded as
complex (quite the opposite, it is typically used as the prototype of a perfectly
structured homogeneous lattice), it is used in the following with the purpose
of merely assessing the efficiency of our implementation for dealing with highly
heterogeneous networks. The results are compared with those obtained with a
homogeneous network characterized by an extremely regular intercommunica-
tion pattern among the different processors involved in the parallel computa-
tion. For the case of the small-world network, a custom algorithm was used to
generate the matrices. For the Kronecker graph, the algorithms we used to gen-
erate the corresponding adjacency matrices belong to the well-known Graph500
benchmarks suite. Both networks are specifically generated to be directed, and
therefore the corresponding adjacency matrices are asymmetric.

Direct solvers can produce accurate solutions. However, they suffer from
a lack of scalability when dealing with large sparse matrices. This is due to
the fill-ins incurred by direct methods that cause the matrix to become dense,
with the consequent increase in memory and computation time requirements.
Hence, iterative solvers are the methods of choice when solving large linear
systems of equations if the matrix is sparse unless the coefficient matrix is ill-
conditioned [19]. For instance, the GMRES method implemented in PETSc
is very efficient in calculating the product of a vector by the inverse of the
matrix (B−1v) used when computing the vector of centralities of a network.
This is because only a few iterations are needed to achieve a solution with
sufficiently good accuracy. MC methods cannot be competitive in this case
since they have a slow convergence rate to the solution of the numerical method
due to their stochastic nature, requiring many repetitions in order to reach some
desired accuracy level. However, in view of the Woodbury formula presented
in Section 2.4, the MC algorithm can be used to compute the action of the
inverse matrix over several different vectors during a single execution. This is
a competitive advantage which can make MC very efficient at computing the
resolvent Estrada index, as well as other metrics that require calculating the

2The current version of the code is available at https://github.com/filipepgm/

MatrixInversion.

15

https://github.com/filipepgm/MatrixInversion
https://github.com/filipepgm/MatrixInversion

trace of a matrix.
In the sequel of this section, we first check the quality of the solutions found

by DMC against those provided by direct methods of reference. Next, we show
the scalability of DMC. Finally, we compare the performance of DMC against
an iterative method when computing the trace of the inverse of a matrix or
the action of the inverse matrix over several vectors. We do so by comparing
DMC results with those obtained by other well-established methods: on the one
hand, we use direct methods based on the LU factorization in Matlab [37] and
a multifrontal method in MUMPS [38]; on the other hand, we use the GMRES
implementation in PETSc [39] as the iterative solver.

The simulations on a distributed memory architecture were carried out on a
subset of the MareNostrum 4 Supercomputer at the Barcelona Supercomputing
Center (BSC). In our experiments we used up to 16 computational nodes, where
each node has two Intel Xeon Platinum chips, each with 24 processors, amount-
ing to a total of 768 cores. Nodes are interconnected by an InfiniBand network.
We used Intel’s icc, MPI and OpenMP in version 2018.1; MUMPS version 5.1.2;
and PETSc version 3.8. The OS used was a Linux kernel release 4.4.114. All
computations were performed using single-precision floating point operations
except for the direct solver used as a reference in order to check the accuracy
of the solution calculated by DMC. In those cases computations were done in
double-precision and the order of the relative error was 10−15. On the other
hand, PETSc has a configurable tolerance that can be initially set up by the user
and determines in practice the accuracy of the numerical solution. Therefore,
it can be conveniently adjusted to obtain a solution characterized by an error
similar to that of the solution obtained using the MC method. Since the target
relative error of the numerical simulations using the MC method was kept fixed
to 10−5, PETSc was conveniently adjusted to obtain the corresponding solution
within the same relative error range.

Due to the random nature of any of the MC algorithms, it is worth observing
that the obtained results can vary from simulation to simulation. To mitigate
such variability, all the results presented in this section correspond to an average
solution obtained repeating the simulations with 6 different initial random seeds
of the pseudo-random generator.

5.1. Numerical Errors and Solution Accuracy

Our numerical method has two sources of error, we have to face the error due
to the truncation of the infinite power series (Eq. 4) by a sum of a finite number
of powers of the matrix, and the error due to using a given finite number p of
plays. The second error is the well-known Monte Carlo statistical error, and is
known to be of order of O(p−1/2) [40]. More precisely, for a large value of p, this
error turns out to be close to a random Gaussian variable with standard devia-
tion proportional to p−1/2, being approximately σν

p1/2
, where σ denotes the square

root of the variance and ν is a standard normal (i.e., N(0, 1)) random variable.
To ensure the convergence to the expected value of the corresponding estimator
used in the MC simulations, it is important to guarantee the finiteness of the

16

variance and, consequently, the first and second moment of the multiplicative
random variable η defined in Sec. 3. Since η =

∏k
l=1 vXl

, it suffices to ensure
that every component vj of the vector v is less than one. This indeed holds
true in view of the definition of the Katz centrality in Eq. (2). In fact, from the
definition of the centrality, the adjacency matrix has to be rescaled multiplying
it by the scalar parameter α, which turns out to be smaller than 1/

∑
j aij by

the Gershgorin theorem, and hence it holds that vj < 1. Moreover, following
the same reasoning, it can be seen that the variance turns out to be independent
of the size of the matrix, and consequently it is not needed to increase further
the sample size when dealing with larger matrices.

Concerning the first error, it is in practice related to the length of the ran-
dom walk. Therefore, it decreases when a large number of powers are computed,
or equivalently, long random walks inside the matrix are generated. Since the
power series is known to converge (provided the requirements laid out in Sec-
tion 3 are verified), computing matrix powers of higher order, which entails
a high computational cost, can be avoided. Quantifying precisely the error
incurred when ignoring such matrix powers requires specifically knowing the
convergence rate to the solution of the given matrix, which in general is not
available. Naturally, the length, as well as the number, of plays is directly
related to the computational time.

In the following, and for the specific case of the Katz centrality, the ac-
curacy of the vector solution computed with the proposed MC method was
assessed by comparing the results with those obtained using Matlab’s direct
method linsolve, which corresponds to an LU factorization with partial piv-
oting. This method is based on more precise methods than MC, and therefore
we can assume its results to be an accurate approximation of the, generally
unavailable, theoretical solution. The relative error εr of KMC was computed
using the L2-norm as usual, that is

εr =
‖KMC −KMatlab‖2
‖KMatlab‖2

, (7)

where ‖x‖2 = (
∑
i x

2
i)

1/2.
These experiments were performed on a small-world network with 4,096

nodes generated using Matlab with default parameters for the number of nearest-
neighbors to link and the probability of adding a shortcut (Matlab uses 1 and
0.1 for these values, respectively). We performed the same experiments with
Poisson matrices and observed similar results.

Figure 2 shows the relative error as a function of the number of plays for
a small-world network adjacency matrix, and this is done for several lengths
of the random walks, i.e., maximum power of the matrix. Note that the error
decreases when the number of plays increases, and this occurs independently
of the length of the plays. Moreover, the slope of the curves can be readily
computed, and it turns out to be approximately −1/2, hence in good agreement
with the theoretical considerations explained above.

For the case of a small-world network adjacency matrix, Figure 3 shows that
when the length of the plays increases, the error decreases accordingly. The

17

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 4000 8000 12000 16000 20000

y=0.0506x
-0.45

R
e

la
ti
v
e

 E
rr

o
r

Number of Plays

10
20
30
40
50
60

Figure 2: Relative error of the centrality of a small-world network with 4,096 nodes as a
function of the number of plays. Each curve corresponds to a different length of the random
walk.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15

y=0.5898e
-0.536x

R
e
la

ti
v
e
 E

rr
o
r

Play Length

16000

Figure 3: Relative error of the centrality for a small-world network adjacency matrix with
4,096 nodes as a function of the length of the play. The number of plays was kept fixed at
16,000 plays.

specific decreasing rate depends on the matrix, as it was pointed out above.
Moreover, it is worth noting that the overall error seems to reduce exponentially
fast with the length of the plays, as can be seen in the figure after a suitable
regression of the numerical results. Obviously, this trend can only be sustained
until the statistical error due to the finite number of plays becomes smaller than
the error related to the finite length of the plays.

The relative error for the case of the trace of the inverse matrix of a small-
world network is presented in Figure 4. The results obtained follow the same
behavior as the results for the vector centralities (Figure 2). Consequently,
similar conclusions can be drawn. However, since now the relative errors are
much smaller, they are strongly affected by the inherent randomness of any MC
simulations, being in practice advisable to increase further the number of plays.

18

 0

 1x10
-5

 2x10
-5

 3x10
-5

 4x10
-5

 5x10
-5

 6x10
-5

 0 4000 8000 12000 16000 20000

R
e
la

ti
v
e
 E

rr
o
r

Number of Plays

10
20
30
40
50
60

Figure 4: Relative error of the trace of the inverse matrix for a small-world network adjacency
matrix with 4,096 nodes as a function of the number of plays. Each curve corresponds to a
different length of the random walk.

Table 1: MUMPS execution time (in seconds) for small-world matrices with different sizes.

Processes
Matrix size

64,000 128,000 256,000

1 44.94
2 77.81
4 39.42 Out of memory
8 29.49 184.13
16 21.58 119.89 Out of memory
32 21.06 97.50 511.08
64 27.61 111.36 497.40
128 38.75 160.75 684.34

5.2. Parallel Performance

In Figure 5 the execution time of the distributed Monte Carlo method is
plotted as a function of the problem size for two different matrices and varying
the number of processes and threads.

Note that the time increases linearly with the size of the matrix, and this
occurs independently of the number of process/threads and matrix type. How-
ever, it is worth observing that the results are especially better for the case of
the Poisson matrix. This is due to the small number of links across the nodes
of the network, as well as, because of the inherent homogeneity of its associated
network reduces in practice the intercommunication overhead of the parallel
code.

To put in perspective the deterministic methods used for comparison, we
show in Table 1 that MUMPS suffers from significant scalability problems when
increasing either the number of processes or the problem size. For easier com-
parison with Figure 5, we present in Figure 6 a graph with the bottom three
rows of Table 1. It is important to observe that the shape of the curves is very

19

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600

T
im

e
 (

s
)

Matrix size (Millions of rows)

poisson 64p 12t
rsmallw 64p 12t
rsmallw 128p 6t

Figure 5: Execution time of DMC as a function of the problem size, for different number
of processes and threads, operating on two different matrices: a small-world matrix and a
Poisson matrix. In the legend, the type of matrix is stated first, followed by the number of
processes used and then the number of threads per process. The values used for n and p were
respectively 40 and 4,000.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300

T
im

e
 (

s
)

Matrix size (Thousands of rows)

rsmallw 32p
rsmallw 64p

rsmallw 128p

Figure 6: Execution time of MUMPS on small-world matrices as a function of the problem
size and for different number of processes.

different, with MUMPS execution time departing clearly from the desired ideal
linear behavior. Furthermore, storing the matrix in memory quickly becomes
an unaffordable task for MUMPS, becoming in practice impossible to operate
on large matrices. These are the reasons why the former plot (DMC) presents
results operating on matrices with millions of rows and the latter (MUMPS) on
matrices with only thousands of rows.

For the case of Kronecker matrices generated with the Graph500 generator,
we have conducted weak scalability tests for DMC (see Table 2). Note that the
presence of hubs in these networks might adversely affect the results since these
can break the initially established computational load balancing. However, the
asymmetric redistribution of nodes, as well as the presence of nodes with no
outbound connections, mitigates this issue.

In summary, computing the product of the inverse of a matrix times a vector

20

Table 2: Execution time of DMC on Kronecker matrices from Graph500 with the number of
processes and matrix size scaling with similar rate (weak scalability).

Size N. Processes Time DMC (s)

0.85 M 8 85
1.6 M 16 82
11 M 107 101
41 M 400 127

the DMC implementation is highly scalable and produces the correct results
up to the desired accuracy. Since the iterative methods are extremely fast
at solving such kind of problems they are in general the method of choice.
However, resolvent-based metrics require the calculation of a parameter (α)
such that the centrality scores obtained from the Katz centrality vector (I −
αA)−11 and the action of the exponential of the adjacency matrix eA1 are
similar. Such parameter tends to lead to linear systems that are potentially ill-
conditioned. Although ill-conditioning has essentially no effect on the suitability
of the computed centralities for ranking, iterative methods are not likely to be
successful [41]. However, we observed when running our simulations with the
DMC method that no preconditioning of the adjacency matrices was required to
guarantee convergence, and in such a case, the highly scalable DMC can provide
a very convenient alternative.

The same method can be used to compute the trace of the inverse matrix.
In fact the trace can be computed as follows

Tr(A−1) =

N∑
i=1

eTi xi, (8)

where N is the size of the matrix, and e1, e2, . . . , eN are the vectors of the
canonical orthonormal basis, being ei the vector whose ith component is equal
to 1 and the rest are equal to 0. Here xi is the solution of the linear algebra
problem Axi = ei, which can be obtained iteratively by means of the GMRES
method. Note that the solution of the problem Axi = ei corresponds to ob-
taining the ith column of the inverse matrix. However, in order to compute the
trace of the inverse matrix, it is required to evaluate every term in Eq. (8), which
in practice requires to compute each column of the inverse matrix. Although
the simulation of each term is completely independent of each other, and as
such, can be perfectly parallelized, the overall procedure turns out to be still
computationally costly. Nevertheless, we can easily estimate theoretically the
total processing time, since computing each column should take approximately
the same time independently of the column. For this purpose, we obtain the
time Tb to compute a batch of b columns of the inverse matrix running PETSc
sequentially with a single process, and then estimate the full theoretical serial
time simply multiplying the size of the matrix by Tb/b. For this specific case,
the corresponding parallel time can be readily theoretically estimated simply

21

Table 3: Elapsed computational time of PETSc and of DMC when computing the trace of
the inverse of small-world matrices (M indicates 220), and running both codes in parallel with
768 cores.

Size Time PETSc(s) Time DMC (s)

1 M 40 14
4 M 970 68
16 M 14,378 244
64 M 303,274 1237

Table 4: Execution time of DMC on 768 cores when computing the action of the inverse
matrix over several result vectors using a small-world matrix with a size of 16 million rows.

Number of vectors Time (s)

1 262
2 318
4 476
8 674

dividing the total serial time by the number of cores. To compare with the
performance of the DMC method, we have run in parallel with 768 cores and
setting the same absolute and relative error as the GMRES method, which is
of order 10−6 and 10−5, respectively. The results are shown in Table 3 for the
specific case of the inverse of a small-world matrix with different sizes.

Therefore, for computing the trace of the inverse matrix the MC method
clearly outperforms the deterministic algorithm, with striking differences in per-
formance. Furthermore, the PETSc implementation used exhibits major flaws
when dealing with very large matrices, while our approach is able to effectively
tune the MC method for dealing with distributed matrices.

As it was mentioned in Section 2.4, our MC algorithm can be used as well
to compute the action of the inverse matrix over several different vectors, and
this can be done during a single execution. The efficiency of the method for
dealing with this problem is shown in Table 4 through the parallel execution
times obtained using 768 cores when computing the solution for several input
vectors. Moreover, this approach can be used to compute weighted centralities
according to different sets of weights in a single execution. This can be useful in
order to apply successfully the Woodbury formula (see Section 2.4). Note that
the computational cost increases weakly with the number of vectors used, being
therefore much more convenient to use this algorithm for computing several
vectors in a single run than computing them independently in multiple runs.

Furthermore, the proposed approach can be readily modified to allow the
computation of other matrix functions. In practice, this would allow the algo-
rithm to compute several functions of the input matrix during a single execution.
For instance, still in the context of the analysis of complex networks [42] con-
siders the calculation of the exponential matrix, which characterizes another
metric of paramount importance, the overall communicability of the network.

22

6. Conclusion

This paper proposes a distributed implementation of a Monte Carlo method
that computes the solution of linear systems of equations. The method requires
generating suitable Markov chains that evolve jumping randomly through the
indices of an input matrix, and averaging numerical approximations of the dif-
ferent powers of the matrix. By distributing the input matrix through computa-
tional nodes, our method extends the reach of the size of the problems that can
be handled. However, this creates a potentially large communication overhead
as the Markov chains used in Monte Carlo may now need to migrate between
computational nodes frequently. We have effectively solved this problem both
by minimizing the number of messages exchanged through appropriately sized
buffers, and by overlapping these message exchanges with computation.

We have applied our method in practice to compute several network metrics,
such as the Katz centrality and the trace of the inverse of a matrix. The algo-
rithm has been implemented in an efficient parallel code capable of handling very
large matrices, of sizes far beyond the available memory of a single machine. The
algorithm was tested simulating several examples consisting of different complex
networks, and run on a high performance supercomputer equipped with a high
speed network interconnecting nodes with several cores each.

Furthermore, we have shown that when computing the trace of the inverse
matrix, within about the same error, the Monte Carlo method can be much
faster than the alternative deterministic methods. In addition, the method
can be readily adapted to compute other matrix functions, provided that such
functions can be expanded through a convergent power series, as it happens
for instance for the exponential matrix. Finally, it is worth pointing out that
although typically the convergence to the solution of any Monte Carlo method
is slow (being the approximated solution obtained with low accuracy within
a reasonable computational cost), when necessary the accuracy can be easily
improved by resorting to parallel computation since the method is based on
independent calculations. For a fast low-accuracy estimation of the solution,
the method stands out as an efficient alternative to the deterministic methods,
especially as it has been shown for dealing with large-scale problems.

References

[1] N. Higham, A. H. Al-Mohy, Functions of matrices: Theory and Computa-
tion, SIAM (2008).

[2] A. H. Al-Mohy, N. Higham, Computing the Action of the Matrix Exponen-
tial with an Application to Exponential Integrators, SIAM J. Sci. Comput.
3 (2011) 488–511.

[3] J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yelick, Minimizing commu-
nication in sparse matrix solvers, Proceedings of the ACM/IEEE Super-
computing SC09 Conference (2009).

23

[4] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-optimal
parallel and sequential QR and LU factorizations, SIAM J. Sci. Comput.
34 (2012) A206–A239.

[5] G. E. Forsythe, R. A. Liebler, Matrix Inversion by a Monte Carlo Method,
Mathematical Tables and Other Aids to Computation 4 (31) (1950) 127–
129.

[6] H. Ji, M. Mascagni, Y. Li, Analysis of Markov Chain Monte Carlo Linear
Solvers Using Ulam–von Neumann Algorithm, SIAM Journal on Numerical
Analysis 51 (2013) 2107–2122.

[7] M. Benzi, T. M. Evans, S. P. Hamilton, M. Lupo Pasini, S. R. Slattery,
Analysis of monte carlo accelerated iterative methods for sparse linear sys-
tems, Numerical Linear Algebra with Applications 24 (3) (2017) e2088.
doi:10.1002/nla.2088.

[8] I. Dimov, S. Maire, J. Sellier, A new Walk on Equations Monte Carlo
method for solving systems of linear algebraic equations, Applied Mathe-
matical Modelling 39 (2015) 4494–4510.

[9] I. T. Dimov, V. Alexandrov, A. Karaivanova, Parallel resolvent Monte
Carlo algorithms for linear algebra problems, Mathematics and Computers
in Simulation 39 (2015) 25–35.

[10] D. Balcan, H. Hu, B. Goncalves, P. Bajardi, C. Poletto, J. J. Ram-
asco, D. Paolotti, N. Perra, M. Tizzoni, W. Van den Broeck, V. Colizza,
A. Vespignani, Seasonal transmission potential and activity peaks of the
new influenza A(H1N1): a Monte Carlo likelihood analysis based on human
mobility, BMC Medicine 7 (1) (2009) 45. doi:10.1186/1741-7015-7-45.

[11] M. Panteli, C. Pickering, S. Wilkinson, R. Dawson, P. Mancarella, Power
System Resilience to Extreme Weather: Fragility Modeling, Probabilis-
tic Impact Assessment, and Adaptation Measures, IEEE Transactions
on Power Systems 32 (5) (2017) 3747–3757. doi:10.1109/TPWRS.2016.

2641463.

[12] C. M Schneider, A. Moreira, J. S Andrade, S. Havlin, H. J Herrmann,
Mitigation of malicious attacks on networks, Proceedings of the National
Academy of Sciences 108 (10) (2011) 3838–41.

[13] F. C. Santos, J. M. Pacheco, Scale-Free Networks Provide a Unifying
Framework for the Emergence of Cooperation, Phys. Rev. Lett. 95 (2005)
098104. doi:10.1103/PhysRevLett.95.098104.

[14] M. Newman, Networks : an introduction, Oxford University Press, Oxford
New York, 2010.

[15] E. Estrada, D. J. Higham, Network properties revealed through matrix
functions, SIAM Rev 52 (4) (2010) 696–714.

24

https://doi.org/10.1002/nla.2088
https://doi.org/10.1186/1741-7015-7-45
https://doi.org/10.1109/TPWRS.2016.2641463
https://doi.org/10.1109/TPWRS.2016.2641463
https://doi.org/10.1103/PhysRevLett.95.098104

[16] D. J. Watts, S. H. Strogatz, Collective dynamics of ’small-world’ networks,
Nature 393 (6684) (1998) 440–442. doi:10.1038/30918.

[17] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani,
Kronecker Graphs: an Approach to Modeling Networks, J. Mach. Learn.
Res. 11 (2010) 985–1042.

[18] Graph500, https://graph500.org, accessed: 2021-05-31.

[19] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia,
2003.

[20] K. Atkinson, An introduction to numerical analysis, Wiley, New York, 1989.

[21] P. Amestoy, I. Duff, J.-Y. L’Excellent, Multifrontal parallel distributed
symmetric and unsymmetric solvers, Computer Methods in Applied Me-
chanics and Engineering 184 (2) (2000) 501–520. doi:https://doi.org/

10.1016/S0045-7825(99)00242-X.

[22] R. Fletcher, Conjugate Gradient methods for indefinite systems, in: G. A.
Watson (Ed.), Numerical Analysis, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1976, pp. 73–89.

[23] Y. Saad, M. H. Schultz, GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Sci-
entific and Statistical Computing 7 (3) (1986) 856–869. doi:10.1137/

0907058.

[24] H. A. van der Vorst, Bi-CGSTAB: A Fast and Smoothly Converging Variant
of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM Journal
on Scientific and Statistical Computing 13 (2) (1992) 631–644. doi:10.

1137/0913035.

[25] J. S. Rosenthal, Parallel computing and Monte Carlo algorithms, Far East
Journal of Theoretical Statistics 4 (1999) 207–236.

[26] W. R. Gilks, Markov chain Monte Carlo in practice, Chapman & Hall,
London, 1996.

[27] L. Katz, A new status index derived from sociometric analysis, Psychome-
trika 18 (1) (1953) 39–43. doi:10.1007/BF02289026.

[28] C. H. Hubbell, An Input-Output Approach to Clique Identification, So-
ciometry 28 (4) (1965) 377–399.

[29] C. Klymko, Centrality and Communicability Measures in Complex Net-
works : Analysis and Algorithms, Ph.D. thesis, Emory University (2013).

[30] S. A. Gershgorin, Uber die abgrenzung der eigenwerte einer matrix, Izv.
Akad. Nauk. SSSR Ser. Mat (6) (1931) 749–754.

25

https://doi.org/10.1038/30918
https://graph500.org
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00242-X
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00242-X
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0913035
https://doi.org/10.1137/0913035
https://doi.org/10.1007/BF02289026

[31] J. A. de la Peña, I. Gutman, J. Rada, Estimating the Estrada index, Linear
Algebra and its Applications 427 (1) (2007) 70 – 76. doi:https://doi.

org/10.1016/j.laa.2007.06.020.

[32] E. Estrada, J. A. Rodŕıguez-Velázquez, Subgraph centrality in complex
networks, Physical Review E 71 (5) (May 2005). doi:10.1103/physreve.
71.056103.

[33] H. Avron, Counting triangles in large graphs using randomized matrix trace
estimation, Workshop on Large-scale Data Mining: Theory and Applica-
tions 10 (2010) 10,9.

[34] J. Sherman, W. J. Morrison, Adjustment of an Inverse Matrix Correspond-
ing to a Change in One Element of a Given Matrix, The Annals of Mathe-
matical Statistics 21 (1) (1950) 124–127. doi:10.1214/aoms/1177729893.

[35] M. A. Woodbury, Inverting modified matrices, Statistical Research Group,
Memo. Rep. no. 42, Princeton University, Princeton, N. J., 1950.

[36] Paraver, https://tools.bsc.es/paraver, accessed: 2021-05-31.

[37] MATLAB, (R2020a), The MathWorks Inc., Natick, Massachusetts, 2020.

[38] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, J. Koster, A Fully Asyn-
chronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM
Journal on Matrix Analysis and Applications 23 (1) (2001) 15–41. doi:

10.1137/S0895479899358194.

[39] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-
man, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
D. A. May, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang,
H. Zhang, PETSc Web page, http://www.mcs.anl.gov/petsc (2019).

[40] A. C. Berry, The Accuracy of the Gaussian Approximation to the Sum of
Independent Variates, Transactions of the American Mathematical Society
49 (1) (1941) 122. doi:10.2307/1990053.

[41] M. Aprahamian, D. J. Higham, N. J. Higham, Matching exponential-based
and resolvent-based centrality measures, J. Complex Networks 4 (2) (2016)
157–176.

[42] J. A. Acebrón, J. R. Herrero, J. Monteiro, A highly parallel algorithm
for computing the action of a matrix exponential on a vector based on
a multilevel monte carlo method, Computers & Mathematics with Ap-
plications 79 (12) (2020) 3495–3515. doi:https://doi.org/10.1016/j.

camwa.2020.02.013.

26

https://doi.org/https://doi.org/10.1016/j.laa.2007.06.020
https://doi.org/https://doi.org/10.1016/j.laa.2007.06.020
https://doi.org/10.1103/physreve.71.056103
https://doi.org/10.1103/physreve.71.056103
https://doi.org/10.1214/aoms/1177729893
https://tools.bsc.es/paraver
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
http://www.mcs.anl.gov/petsc
https://doi.org/10.2307/1990053
https://doi.org/https://doi.org/10.1016/j.camwa.2020.02.013
https://doi.org/https://doi.org/10.1016/j.camwa.2020.02.013

	Introduction
	Background
	Systems of Linear Algebraic Equations
	Matrix Representation
	Network Metrics
	Evolving Networks

	Description of the Method
	Parallel Implementation
	Row Distribution
	Communication
	Terminating the Computation
	Threads
	Thread Organization
	Workload Distribution among Threads
	Sending Messages
	Storing the Results

	Numerical Errors and Parallel Performance of the Algorithm
	Numerical Errors and Solution Accuracy
	Parallel Performance

	Conclusion

