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Abstract. A comparison is made between the probabilistic domain de-
composition (DD) method and a certain deterministic DD method for
solving linear elliptic boundary-value problems. Since in the determin-
istic approach the CPU time is affected by intercommunications among
the processors, it turns out that the probabilistic method performs bet-
ter, especially when the number of subdomains (hence, of processors) is
increased. This fact is clearly illustrated by some examples. The prob-
abilistic DD algorithm has been implemented in an MPI environment,
in order to exploit distributed computer architectures. Scalability and
fault-tolerance of the probabilistic DD algorithm are emphasized.

1 Introduction and generalities

Domain decomposition is considered as one of the most natural ways to decouple
boundary-value (BV) problems for partial differential equations (PDEs) into
subproblems, in order to take advantage of parallel computer architectures, thus
allowing for high-performance scientific computing of large-scale problems. The
seminal idea of DD can be traced back to the 1870 work of H. A. Schwarz,
and consists of splitting the given domain into a number of subdomains, then
assigning the task of the numerical solution on each separate subdomain to
as many separate processors. A major problem, however, is represented by the
need of having the solution on the interfaces, internal to the domain, which
divide it into subdomains, while solving BV problems for PDEs is global in
character. This means that the solution cannot be obtained even at a single
point inside the domain before solving the entire problem. Consequently, some
iterative procedures are required, across the chosen (or prescribed) interfaces, in
order to determine approximate values of the sought solution inside the original
domain. Both, overlapping (Schwarz-type) and not overlapping domains have
been considered in the literature so far [13]. In both cases, some additional
numerical work is required in advance to decouple the problem into subproblems,
and it is unclear whether algorithms based on such strategies might be scalable as
the number of the subdomains (hence, of the processors) increases unboundedly.
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In the classical (deterministic) DD method, an important issue is represented
by the condition number inherent to the iterative algorithms adopted to precom-
pute interfacial values, see [13]. In fact, the operator governing such an iterative
procedure is typically ill-conditioned. Preconditioning is therefore essential, and
it is necessary to construct optimal and efficient preconditioners. Optimality
means that their spectral condition number (i.e., the ratio between maximum
and minimum eigenvalue) is bounded uniformly with respect to the mesh size,
h, and to the average diameter, say H, of the subdomains. It is known from the
literature that in Schwarz-type domain decomposition methods, that is those
with overlapping, the aforementioned condition numbers are actually indepen-
dent of both, h and H, provided that the overlapping is sufficiently wide. Optimal
bounds were indeed found for this case, see [5, 7].

A method of completely new type, based on a probabilistically induced do-
main decomposition (PDD), has been recently proposed which avoids the sev-
eral problems inherent to the aforementioned traditional approach to DD [1, 2, 4].
Moreover, the method seems to be specially suited for heterogeneous computing,
due to its low communication overhead, and since it is fault-tolerant.

Nowadays, it seems that, using parallel computers with up to a few hundreds
of processors in problems with up to few millions of variables, the total compu-
tational cost is dominated by that spent by the local solvers. However, machines
working in the petaflops regime and endowed with hundreds of thousands or even
millions of processors are planned for the near future, and taking full advantage
from massive parallel computing would be highly desirable. Indeed, the IBM
Blue Gene is expected to break the petaflops barrier within the 2007. With such
machines, the issue of scalability remains open, at least in some cases. As it was
pointed out in [11], Schwarz-type DD methods are not truly scalable, at least in
the theoretical sense, since their parallel efficiency in solving elliptic problems is
subject to degradation as the number of processors, p, goes to infinity, indeed
when p starts being over the thousands. It seems however that things go a little
better, in practice, for a number of reasons, as described in [11].

Besides, the possibility of failure of even few processors (even of only one!) is
very likely to occur frequently [9]. Therefore, algorithms which are scalable and
fault-tolerant at the same time would (and will) be extremely important, if not
mandatory.

Briefly, the idea of the PDD algorithm consists of generating first the val-
ues of the solution at few points inside the domain. Then, an interpolation on
such nodes is constructed, and finally the traces of the solution on the inter-
faces are obtained. This allows to fully decompose the domain into a number
of subdomains, and at the same time this procedure seems to be free of the
previous drawbacks. In fact, decoupling is complete and no conditioning prob-
lem does exist concerning interfacial iteration problems. In [1, 2], it was shown
that scalability is attained with respect to an arbitrary number of subdomains
or processors, and the algorithm is naturally fault-tolerant. The latter property
rests on two ingredients, one due to the intrinsic parallelizability of the Monte
Carlo methods, the other to the full decoupling into subdomains that can be
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realized. As for the scalability, it was shown in [1] that the speedup Sp achieved
with p processors, assumed to act independently from each other on p subdo-
mains, scales as Sp ∼ c

√
p as p → ∞, c being a constant. The ideal (theoretical)

speedup, Sp ∼ c p, cannot be attained since some (nonnegligeable) time should
be spent to compute the values of the solution by Monte Carlo at few points.
Here the speedup is defined as the ratio T1/Tp, where T1 is the time spent to
solve sequentially the given problem on the full domain, while Tp is the time
spent for solving the same problem in parallel with p processors.

In the paper [4] the essentials of the PDD method developed in [1, 2] have
been described, and some additional examples have been presented. In all such
papers, however, the code implementing the PDD algorithm was written in
OpenMP environment. The numerical results worked out in this paper are based,
instead, on a code written in MPI environment. This has been done in order to
fully exploit distributed computer architectures. The main purpose of this pa-
per is to compare the performance of the PDD and of the deterministic DD
algorithms implemented in MPI environment.

2 The algorithm

We confine our discussion to the case of the Dirichlet problem for a linear elliptic
equation in two dimensions, i.e.,

Lu − c(x, y)u = f(x, y), (x, y) ∈ Ω ⊂ R2, u|∂Ω = g(x, y), (1)

where L :=
∑2

i,j=1 aij(x, y)∂i∂j +
∑2

i=1 bi(x, y)∂i is a linear elliptic operator
with smooth coefficients, c(x, y) ≥ 0, the boundary ∂Ω of the domain Ω also
smooth, as well as the boundary data, g, and the source term, f . The basic idea
is to generate only few values of solution, u, by a probabilistic method, all being
based on the Monte Carlo method [6].

In some sense, this approach allows to obtain the solution at any point in-
ternal to Ω without solving the entire problem in advance. This can be realized
by means of the the probabilistic representation of the solution,

u(x, y) = EL
x,y

[

g(β(τ∂Ω))e
−

∫

τ∂Ω

0
c(β(s)) ds −

∫ τ∂Ω

0

f(β(t)) e
−

∫

t

0
c(β(s)) ds

dt

]

(2)
[8], where β(t) is the two-dimensional stochastic process associated to the ellip-
tic operator L, which solves the system of two Ito-type stochastic differential
equations (SDEs)

dβ = b(x, y)dt + σ(x, y)dW (t). (3)

Here W (t) represents the two-dimensional standard Brownian motion (also called
Wiener process), and τ∂Ω is the first passage (or hitting) time of the path β(t)
started at the point (x, y) to ∂Ω. When the operator L is the Laplace operator,
∆, the stochastic process β(t) reduces to the standard two dimensional Brownian
motion. The drift vector, b = b(x, y) in (3), is the same appearing in the operator
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L, that is b = (b1, b2)
T , while the diffusion matrix, σ = σ(x, y), is related to the

coefficients aij by the relation σσT = a ≡ (ai,j)i,j=1,2.
We use the representation formula in (2) to obtain few values of the solution,

at some points inside the domain Ω. The expected value is then approximated
by an arithmetic mean (known to provide its best estimator) over N realizations
of the process β, at the price of a (statistical) error of order of N−1/2. The
main catch of using a Monte Carlo method rests on this fact, which entails a
rather poor accuracy, unless N is taken extremely large. Even for N not very
large, the computational cost is high, but in the PDD algorithm we limit its use
to very few points. The points where the solution is computed by Monte Carlo
simulations are then used as nodes for interpolation. Such interpolation allows to
obtain boundary values of solution on certain interfaces internal to the domain,
and hence to fully decouple the original problem into subproblems, see Fig. 1.
We always use Chebyshev interpolation.

The PDD algorithm can be briefly described as follows:

1. Compute only few interfacial values by Monte Carlo simulations.
2. Interpolate on the corresponding nodes to obtain boundary values for the

subdomains.
3. Compute the solution to the original problem in each subdomain by standard

methods (e.g., finite differences or finite elements).
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Fig. 1. Sketchy diagram which shows how the PDD algorithm works.

The Monte Carlo approach is trivially parallelizable, since each of the N
problems above can be runned independently of the others. Stated in such terms,
clearly, the method appears to be scalable as well. Moreover, it is also naturally
fault-tolerant. In fact, assuming that a fraction, n, of the N processors being used
fails, meaningful results will be obtained from the remaining N − n processors,
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and it will suffice just to ignore what could have come from the n processors
which have failed. The final error will be slightly worse, of the order of O((N −
n)−1/2). Note that

(N − n)−1/2 ≈ N−1/2

(

1 +
1

2

n

N

)

, for n ¿ N, (4)

that is 1.005N−1/2 for a small fraction n/N = 1/100 (1%) of failing processors.
Even though the probabilistic algorithm we derived and considered here is

scalable, naturally fault tolerant, and well suited to grid and heterogeneous com-
puting, it suffers for some weakness, due to the inherently poor accuracy of all
Monte Carlo methods. A considerable improvement, however, can be achieved
using sequences of “quasi-random numbers” [6, 12] instead of sequences of pseu-
dorandom numbers. The pseudorandom numbers are those numbers obtained
in practice, when we try to generate truly random numbers, hence are approx-
imately characterized by a statistical distribution. The quasi-random numbers,
instead, are deterministic uniformly distributed numbers. Using the latter al-
lows to obtain an error (now deterministic) of order of O(N−1 logd∗

−1 N), d∗

representing a certain “effective” space dimension. It was shown in [3] that the
underlying system of SDEs can indeed be solved numerically in a very efficient
way. However, a reordering strategy is required at each step to break somehow
the inherent correlations of the sequence of numbers. This makes it difficult to
parallelize the algorithm, and raises some doubts on whether using quasi-random
numbers can be useful in practice. But if this would be possible, the failure of
n ¿ N processors would imply the slightly larger error

(N − n)−1 log(N − n) = N−1
(

1 − n

N

)

−1 [

log N + log
(

1 − n

N

)]

≈ (1 + α)N−1 [log N − α] . (5)

Here we assumed d∗ = 2 and set α := n/N . With α = 0.01, and considering
that N will be at least of the order of the thousands, hence log N À α (e. g.,
log N = 3 against α = 0.01), we obtain

(N − n)−1 log(N − n) ≈ (1 + α)N−1 log N = 1.01N−1 log N. (6)

Moreover, due to the full uncoupling among the various subdomains, the
PDD algorithm exhibits fault-tolerance also when those processors working on
small fractions of subdomains fail. In this case, one can fully neglect (in the
first instance) the corresponding output, without the need of resorting to restart
procedures.

The various sources of numerical error which affect the evaluation of u(x, y)
by means of (2) include, besides the finite sample size mentioned above, (i)
the truncation error made in the numerical solution of the SDEs in (3), not to
mention the round-off errors, (ii) the uncertainty in estimating first exit times
(hitting times), and (iii) the numerical quadrature errors in (2). The latter is
missing whenever the potential term, c(x, y), and the source, f(x, y), in (1) are
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identically zero. In particular, estimating accurately first exit times and first exit
points (which are also needed when c(x, y) and f(x, y) do not vanish identically),
has been often overlooked in the literature. An efficient way to locate accurately
first exit times is adopting exponential timesteppings, see [10]. This choice allows
in fact to use an explicit analytic form of the hitting probability. All these sources
of error have been analyzed in [1, 2], and we shall not do it here again.

3 Numerical examples

Some numerical examples are provided here to compare the performance of the
PDD algorithm described in §1 with that obtained by means of certain deter-
ministic DD algorithms. Despite the fact that “pivotal” values generated by the
Monte Carlo method are poorly accurate and the Chebyshev interpolation adds
some further error, the total error inside of each subdomain is estimated by the
boundary errors. This is due to the maximum principle, and the error decays
rapidly going inside.

In [1, 2, 4], a comparison was made only with “parallel finite differences”,
hence a comparison with a true deterministic DD method was not made there.
Moreover, the code was implemented in OpenMP, and runned in a shared mem-
ory computer architecture. In addition to the fact that the PDD method outper-
forms the deterministic DD method, the former wins regarding to the issues of
scalability and fault-tolerance. These properties, not easily achieved by the DD
deterministic methods, should instead be considered at the present time if one
wants to exploit the forthcoming massively parallel supercomputers, equipped
with hundreds of thousands or even millions of processors. The numerical exam-
ples presented below concern, for the purpose of illustration, partial differential
equations on rather elementary domains, indeed, the unit square. Monte Carlo
methods, however, are expected to be useful even on domains having highly
complex geometries. Here we only stress that our probabilistic DD approach can
be easily applied, for instance, to polygonal domains with an arbitrary number
of sides. In fact, one of the most delicate points, which contributes significantly
to the overall numerical error, is given by the need of evaluating accurately the
first exit times and points, see [1, 2]. While such a task may be challenging when
the boundaries are very irregular, it can be handled easily when the boundary
is piecewise linear. We do not enter into details in this paper.

Another related issue is that of having one or more rather general interfaces,
inside the domain. Their shape may be prescribed, due to geometrical or physical
reasons. The idea is to “approximate” every (sufficiently smooth) interface by
a piecewise linear one, i.e., by a polygonal line, evaluating numerically on it
few values of the sought solution, to be used for interpolation. This can be
accomplished computing the solution by Monte Carlo methods at some more
points on such a line. These points should include the endpoints of each segment
of the polygonal, say the k−2 internal points for a polygonal line of k segments,
and perhaps another point on each segment. The overall cost may therefore
increase, and load balancing become a little harder.
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Fig. 2. Example 1. Pointwise numerical error in the PDD algorithm for p = 4. Param-
eters are N = 105, ∆x = ∆y = 1.25 × 10−3, λ = 102.

Finally, we stress that, due to the full decoupling that the PDD method
realizes, arbitrary and possible different algorithms can be implemented to solve
the problem on each subdomain. In particular, serial solvers can be adopted,
taking into account that one will face smaller-size problems on each subdomain.
However, the point in serious applications is not that to cope with small-size
problems, but, rather, to be able to solve problems that are much bigger.

A code in an MPI environment has been implemented and runned on the
MareNostrum supercomputer located at the Barcelona Supercomputing Center
(BSC). Below, in order to compare the relative performance of the PDD method
against some deterministic method, we solved the same examples in both ways.
The chosen deterministic algorithm is extracted from the numerical package
pARMS, having chosen the overlapping Schwarz method with a FGMRES iter-
ative method preconditioned with ILUT as local solver, see [14]. We chose the
package pARMS for its wide and reliable usage, though better codes may ex-
ist for a comparison. The values of the parameters were chosen as follows: For
the outer iterations, the Krylov subspace dimension was 20 and the tolerance
10−5, while for the ILUT preconditioner the dropping threshold was 10−3 and
the amount of fill in any row 20. The inner iterations were set equal to zero.
To make the comparison meaningful, we discretized the local problems within
the PDD algorithm by finite differences, and solved the ensuing linear algebraic
system by the same FGMRES iterative solver preconditioned with ILUT. Here
are our numerical examples.

Example 1. Consider the following Dirichlet problem,

uxx + uyy = 0 in Ω := (0, p) × (0, 1), (7)
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u(x, y)|∂Ω = g(x, y), (8)

where g(x, y) :=
[(

x2 − y2
)

/p2
]

∂Ω
, for the Laplace equation in two dimensions.

The solution of such a problem is explicitly known, and is u(x, y) = (x2−y2)/p2

in Ω = [0, p] × [0, 1]. Note that the domain was scaled along the x dimension
proportionally to the number of processors, p, involved. This has been done in
order to keep constant the computational load per processor, being the space
discretization fixed to ∆x = ∆y = 1.25 × 10−3.

In Fig. 2, the pointwise numerical error made in the PDD method is de-
picted in a contourplot. Here only two nodes on each interface have been used.
Note that the maximum error made in each subdomain is indeed attained on
the corresponding boundary. The exponential timestepping used to solve the
underlying SDEs (3) was characterized by λ := 〈∆t〉−1, ∆t being the random
exponentially distributed time step used in solving the SDEs, and the bracket
denoting its average. Note that maximum error is of order 10−2, which corre-
sponds mainly to the statistical error obtained from the Monte Carlo method
at the nodal points. Increasing the accuracy can be attained by increasing the
sample size, or resorting to sequences of “quasi-random” numbers keeping fixed
the sample size, see [2].

Table 1. CPU time in seconds

Processors DD PDD

4 110.49 84.05

8 132.23 84.12

16 163.81 90.84

32 192.22 90.54

64 335.20 88.89

128 14184.35 102.22

256 NA 132.15

512 NA 129.35

1024 NA 148.07

Table 1 shows the CPU time spent in solving the present problem by the
two algorithms. Clearly, the PDD outperforms the DD method for any number
of processors. This fact becomes more pronounced when the number of proces-
sors increases. This behavior can be explained by the high intercommunication
overhead existing among processors, which affects strongly the deterministic al-
gorithm. Note that the CPU time for the PDD method remains bounded when
the number of processors grows. Testing scalability for larger number of proces-
sors (starting for p = 256) have been accomplished only for the PDD, because
CPU time for DD increases unboundedly. For this reason, in table 1 CPU times
are Not Available (NA).
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Example 2. The Dirichlet problem

uxx + (6x2 + 1)uyy = 0 in Ω = (0, p) × (0, 1), (9)

with the boundary data

u(x, y)|∂Ω =
[

(x4 + x2 − y2)/2(p4 + p2)
]

∂Ω
, (10)

has the solution u(x, y) = (x4 + x2 − y2)/2(p4 + p2). Again, the CPU times are
reported in Table 2. The same comments made in the previous example can be
repeated here.

Table 2. CPU time in seconds

Processors DD PDD

4 115.94 69.38

8 110.80 70.06

16 113.41 70.61

32 133.09 70.12

64 255.07 72.19

128 25827.83 75.73

256 NA 67.08

512 NA 65.67

1024 NA 64.12

4 Conclusions

A probabilistic method, to accomplish domain decomposition for the numerical
solution of linear elliptic boundary-value problems in two dimensions, has been
described. The solution is generated by Monte Carlo simulations to solve the
associated stochastic differential equations only at very few points inside the do-
main. A Chebyshev interpolation using such points as nodes is then constructed,
and a full splitting into several subdomains, to be handled by separate processors
acting concurrently, is made.

A comparison with a deterministic DD algorithm has been made here for the
first time. This has been done in an MPI environment. Working in an MPI en-
vironment also allows to test the effect of processor intercommunications which
beset all deterministic DD algorithms. Besides the competitive results observed
in the numerical examples, the PDD method is expected to be competitive con-
cerning scalability and fault-tolerance. These are key issues if one intends to run
codes on machines working with hundreds of thousands of processors or more.
Finally, we believe the PDD method could be applied, and likely more advan-
tageously, in three or more dimensions. In practice, some more work is needed,
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especially concerning the important issue of accurately compute first exit times
of the trajectories of the underlying stochastic processes from high-dimensional
domains.
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