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Abstract

A Monte Carlo method for computing the action of a matrix exponential for a
certain class of matrices on a vector is proposed. The method is based on generating
random paths, which evolve through the indices of the matrix, governed by a given
continuous-time Markov chain. The vector solution is computed probabilistically
by averaging over a suitable multiplicative functional. This representation extends
the existing linear algebra Monte Carlo-based methods, and was used in practice
to develop an efficient algorithm capable of computing both, a single entry or the
full vector solution. Finally, several relevant benchmarks were executed to assess
the performance of the algorithm. A comparison with the results obtained with a
Krylov-based method shows the remarkable performance of the algorithm for solving
large-scale problems.
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1 Introduction

Computing the action of a matrix function on a vector is experiencing these
days a reborn interest. This is not because of the absence of relevant appli-
cations in science and engineering in the past, but rather because the im-
provement in the numerical methods, along with the advent of highly massive
parallel computers, now allows one to be able to attack more realistic prob-
lems on a large scale, far beyond the merely academic problems capable of
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being simulated in the past. These applications include circuit simulations
[36]; power grid simulation [37,33]; nuclear reaction simulations [31]; analysis
of transient solutions in Markov chains [34]; simulations of quantum systems
[32]; numerical solution of partial differential equations (PDEs) [24,27]; and
analysis of complex networks [5].

Circuit and power grid simulation play an important role during the design of
integrated circuits, being in general a heavy computationally task of the whole
design process. In the analysis of a reactor fuel, a computational heavy task
of the analysis consists in solving the burnup equations describing the rates
of the concentration of the different nuclides of the nuclear fuel. Computing
the action of a matrix exponential over the initial state appears as an im-
portant numerical alternative among the different available techniques, such
as integrating the Chapman-Kolmogorov system of differential equations for
obtaining the transient solution of homogeneous irreducible Markov chains. In
the field of partial differential equations, numerically solving a boundary-value
PDE problem by means of the method of lines requires in practice to compute
the action of a matrix exponential over the initial condition. Finally, in net-
work analysis, determining some important metrics of the network, such as for
instance the total communicability which characterizes the importance of the
nodes inside the network, entails computing the exponential of the adjacency
matrix of the network.

Over the last few years many numerical methods have been proposed for
computing the action of a matrix function over a vector. There are already
excellent reviews in the literature describing the different numerical methods
proposed so far (see [10,20,22,23], e.g.); therefore it is not intended to go into
any details here. Instead we will briefly describe some of them for those readers
not familiar with the topic. Essentially we can classify these methods as fol-
lows: Krylov-based subspace methods, contour integration methods, ordinary
differential equation methods, and polynomial or rational methods. One of the
most studied methods in theory, and used in practice, are those based on the
Krylov subspace method. The idea behind the method consists in projecting
the given (typically large) matrix onto a Krylov subspace. For the specific case
of an exponential function, through a basis of the subspace constructed using
the Arnoldi process, the exponential of the projected matrix is computed by
using a standard technique based typically on the squaring and scaling method
[22].

The idea of using probabilistic methods based on Monte Carlo simulations
for computing functions of matrices goes back to the pioneering work of von
Neumann and Ulam during the 1940’s [18]. Although initially the method was
proposed merely for computing the inverse of a matrix, it was later gener-
alized for solving linear algebra problems in a series of seminal papers, see
[13] e.g., and [12] for further references. Briefly the underlying idea consists in
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generating a discrete Markov chain which evolves by random paths through
the different indices of the matrix. Mathematically, the method can be seen in
a way as a Monte Carlo sampling of the Neumann series of the matrix. The
convergence of the method was rigorously established in [26], and improved
further more recently (see for instance [15], and [7] just to cite a few refer-
ences). More recently, and for the specific case of computing the action of a
Hermitian matrix exponential over a vector, which is of interest in Quantum
Physics, it has been proposed in [32] an efficient algorithm based on a novel
randomized linear algebra technique known in the literature as the Nyström
method.

These probabilistic methods offer important computational advantages. Fur-
thermore, the algorithms are much simpler to code than their deterministic
counterparts, which impact positively in promoting an easy further optimiza-
tion of the codes; it turns out that they are specially suited for parallel com-
puting. This is because the solution is often computed through an expectation
value of a given finite sample, the simulations are independent from each other.
This is of paramount importance because it allows for the development of
parallel codes with extremely low communication overhead among processors,
and has a positive effect on properties such as scalability and fault-tolerance.
For the parallel implementation of the Monte Carlo method for solving linear
algebra problems see [14] e.g.

Another important advantage of the probabilistic methods consists in the fea-
sibility of computing the solution of the problem at specific chosen points,
without the need for solving globally the entire problem. This remarkable fea-
ture offers important advantages in dealing with some specific applications
found in science and engineering, and it has been explored for efficiently solv-
ing continuous problems such as boundary-value problems for PDEs in [1–3],
and references therein. However, this is not an exclusive advantage of the prob-
abilistic methods. In fact, for the specific problem of matrix functions, it has
been proposed in the literature several methods [19] capable also of estimating
individual entries of the matrix function. The main idea consists in applying
several quadrature rules along with a single iteration step of the Lanczos al-
gorithm to obtain a priori lower and upper bounds. Moreover the bounds can
be further improved a posteriori using several iterations of the Lanczos algo-
rithm in the quadrature formula. This idea has been applied succesfully to
the problem of estimating different metrics of complex networks in [8]. The
computational cost has been estimated to grow linearly with the matrix size
in the best case, since for each iteration of the Lanczos algorithm is required
to compute a matrix-vector multiplication.

The purpose of this paper is to extend the existing aforementioned Monte
Carlo methods for dealing with other functions of matrices, such as the matrix
exponential, and more specifically for the problem of computing the action of
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a matrix exponential on a vector for a certain class of matrices. This is done by
resorting to a probabilistic representation of the vector solution based on gen-
erating random paths corresponding to samples of a suitable continuous-time
Markov chain. The convergence of the method was conveniently analyzed, as
well as the computational cost estimated. In addition, several relevant numer-
ical examples, extracted from network analysis are given, focusing on both,
the accuracy and performance of the method.

The paper is organized as follows. The probabilistic representation of the vec-
tor solution is presented in Sec. 2. In Sec. 3, it is explained how the probabilistic
representation can be implemented in practice. Secs. 4 and 5 are devoted to
the analysis of the computational cost of the algorithm, and the associated
numerical errors of the method, respectively. Finally in Sec. 6 several bench-
marks are executed to assess the performance of the method in comparison
with the performance obtained by the classical Krylov-based method. To con-
clude we summarize the main results and discuss potential directions for future
research.

2 The numerical method

Let A = {aij}
n
i,j=1

a given sparse n-by-n symmetric matrix, v an n-dimensional
vector, and x an n-dimensional vector solution of evaluating eβA v. We assume
that A can be decomposed as A = D − L, where L is the Laplacian matrix
symmetric and irreducible [28], and D a diagonal matrix with entries di, i =
1, . . . , n. Since in general both matrices do not commute, it does not hold that
eβA v = e−βL eβDv. However, an approximation of the matrix exponential can
be easily obtained by resorting to the exponential Lie splitting, and yields

x̄L = (e−∆tLe∆tD)N v ≈ eβA v. (1)

Here ∆t = β/N , and in the following for convenience it will termed as the
time step. It is known that the local error εL = x − x̄L of the Lie splitting
after one time step is given by

εL =
∆t2

2
[D,L] v +O(∆t3), (2)

being in general of order of O(∆t) for the global error. A higher order ap-
proximation does exist, and in view of being the matrix D diagonal, it can be
computed without any additional computational cost. In fact, the well known
Strang splitting yields,

x̄S =
(

e∆tD/2e−∆tLe∆tD/2
)N

v. (3)
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The local error after one time step εS = x− x̄S of this approximation is known
[25] to be

εS = ∆t3(
1

12
[D, [D,L]]−

1

24
[L, [L,D]]) v +O(∆t4), (4)

and globally of order of O(∆t2). The next lemma will be used to derive a
probabilistic representation for the vector solution x̄S, in the following denoted
as x̄ for simplicity. To this purpose we need first to prove the following useful
fact for the partial solution e∆tD/2e−∆tLe∆tD/2 v.

Lemma 1 Assume j is a discrete random variable that takes values on S =
{1, 2, · · · , n} with probability pij(t) given by the transition probabilities of a
continuous-time Markov chain generated by the infinitesimal generator Q =
−(L)ij and evaluated at time ∆t. Then, any entry i of the vector

y = e∆tD/2e−∆tLe∆tD/2 v, (5)

can be represented as yi = e∆t di/2E[η], with η = e∆t dj/2 vj, and E[η] its ex-
pected value.

Proof. Since D is a diagonal matrix, yi can be computed as follows

yi =
n
∑

j=1

e∆t di/2(e−∆tL)ije
∆t dj/2 vj. (6)

By the definition of the unnormalized Laplacian matrix of a graph G, L(G)
is a matrix with diagonal elements Lii equal to the degree of each vertex di,
and the off-diagonal Lij, −1 if (i, j) is an edge, or 0 otherwise. Therefore, it
follows that

∑

j Lij = 0, and Lii > 0, and hence the matrix Q = −L can be
assumed to be a generator of a suitable continuous-time Markov chain on the
state space S = {1, 2, . . . , n}. Then,

yi = e∆t di/2
n
∑

j=1

pij (∆t)e∆t dj/2 vj, (7)

where pij(t) are the corresponding transition probabilities of the Markov chain
evaluated at time ∆t, solution of the Kolmogorov’s backward equations,

P ′(t) = QP (t), P (0) = 1 (t ≥ 0), (8)

for the matrix transition probability P = (pij). �

Note that such a probabilistic representation allows in practice to compute
a single entry i of the vector solution. This is done by generating suitable
random paths, corresponding to a continuous-time Markov chain, which evolve
backward in time from the state i at t = ∆t to a final state on S for t = 0.
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Finally, the chosen entry is computed by averaging the functional η over the
sample. Such a functional depends on the initial vector v and the diagonal
matrix D. Moreover, applying this Lemma to Eq. (3) allow us to derive the
following general theorem.

Theorem 2 Let ik, k = 1, . . . , N , a sequence of N discrete random variables
with outcomes on S = {1, 2, · · · , n}. The probabilities pik−1 ik(t), k = 2, . . . , N ,
and pi i1(t) for k = 1, correspond to the transition probabilities of a continuous-
time Markov chain generated by the same infinitesimal generator Q = −L and
evaluated at time ∆t for each k. Then, we have that any entry i of the vector
solution x̄ in Eq. (3) can be represented probabilistically as

x̄i = e∆t di/2E[
N
∏

k=1

ηk], (9)

where ηk = e∆t dik , k = 1, . . . , N − 1, and ηN = e∆t diN /2 viN .

Proof. In view of D being a diagonal matrix, from Eq. (3) the entry i of the
vector x̄ is given by

x̄i = e∆t di/2
n
∑

i1=1

n
∑

i2=1

· · ·
n
∑

iN=1

(e−∆tL)ii1e
∆t di1/2e∆t di1/2(e−∆tL)i1i2e

∆t di2/2 · · ·

×e∆t diN−1
/2(e−∆tL)iN−1iN e

∆t diN /2 viN . (10)

As proved in the Lemma above, the matrix −L can be assumed to be the gen-
erator of a continuous-time Markov chain with transition probability matrix
P (t). Therefore, the equation above can be rewritten as

x̄i = e∆t di/2
n
∑

i1=1

n
∑

i2=1

· · ·
n
∑

iN=1

pi i1 e
∆t di1pi1 i2 e

∆t di2 · · ·

× piN−1 iN (∆t)e∆t diN /2 viN . (11)

�

Similarly to Lemma 1, a neat picture of this general probabilistic representa-
tion can be described as follows: A random path starting at the chosen entry
i is generated according to the continuous-time Markov chain governed by the
generator Q, and evolves in time by jumping randomly from i to any state on
S. Along this process, N given functions ηk are evaluated, and the solution is
obtained through the expected value of a suitable multiplicative functional.

The Lemma 1 and Theorem 2 can be conveniently modified to represent prob-
abilistically the complete vector solution x̄. In fact, it is worth observing that
the transpose of the generator Q, Q⊺, corresponds to the generator of the
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continuous-time Markov chain generated rather forward in time, being in this
case the matrix transition probability P solution of Kolmogorov’s forward
equations,

P ′(t) = Q⊺ P (t), P (0) = 1 (t ≥ 0). (12)

This can be used to generate instead a random path that starts at a given
state according to a specific initial distribution, and evolves forward in time
governed by a continuous-time Markov chain generated by a suitable gener-
ator, which in practice corresponds to the transpose of the generator of the
backward equation. However, note that Q = Q⊺, since the matrix A is sym-
metric, and therefore it holds that the generator of the continuous Markov
chain forward in time coincides with the generator backward in time. This is
mathematically formalized through the following Lemma:

Lemma 3 Let i and j be discrete random variables on the state space S =
{1, 2, · · · , n}. The random variable j is governed by the probability function
pj = vj/

∑n
l=1

vl provided vj ≥ 0, while the random variable i by the probability
function pij(t) being the transition probabilities of a continuous-time Markov
chain generated by the infinitesimal generator Q = −L and evaluated at time
∆t. Then, the vector y = e∆tD/2e−∆tLe∆tD/2 v, can be represented probabilisti-
cally as

yi = e∆t di/2V E[η], (13)

where V =
∑n

l=1
vl, η = e∆t dj/2, and E[η] its expected value.

Proof. Since the proof is similar of the previous Lemma’s proof, for complete-
ness we sketch here only the main differences. From Eq. (6) in Lemma 1, yi
can be rewritten as follows

yi =

(

n
∑

l=1

vl

)

n
∑

j=1

e∆t di/2(e−∆tL)ije
∆t dj/2

vj
∑n

l=1
vl
. (14)

Whenever vj ≥ 0, vj/
∑n

l=1
vl can be defined as a suitable probability function

pj for the discrete random variable j on S. Similarly than in the previous
Lemma, P is the transition probability matrix for the continuous-time Markov
chain generated by −L, therefore it holds

yi =

(

n
∑

l=1

vl

)

n
∑

j=1

e∆t di/2pjie
∆t dj/2 pj, (15)

and hence yi can be represented as e∆t di/2 (
∑n

l=1
vl)E[e

∆t dj/2]. �

As before, we used the Lemma 1 to formulate a general theorem, which allows
in practice to represent probabilistically the vector solution x̄.

Theorem 4 Let ik, k = 1, . . . , N , and j, N + 1 be discrete random variables
with outcomes on
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S = {1, 2, · · · , n}. The probabilities pik−1 ik(t), k = 2, . . . , N , and pi i1(t) for
k = 1 correspond to the transition probabilities of a continuous-time Markov
chain generated by the same infinitesimal generator −L for each ∆t and k,
while for the random variable j the probability pj is given by pj = vj/

∑n
l=1

vl
provided vj ≥ 0. Then, we have that the vector solution x̄ in Eq. (3) can be
represented as

x̄i = e∆t di/2V E[
N
∏

k=1

ηk], (16)

where ηk = e∆t dik , k = 1, . . . , N − 1, and ηN = e∆t diN /2, and V =
∑n

l=1
vl.

3 The algorithm

To implement the theorems above in order to obtain numerically a single
entry or rather the full vector solution, we need to choose a finite sample of
given size M , replacing in such a way the expected value by the arithmetic
mean. Accordingly this entails a statistical error that it will be discussed
in the next section. Here we present the algorithm implemented so far to
compute the solution, but before doing that we describe the numerical method
used to generate in practice the continuous-time Markov chain. Let pij(t) be
the transition probability matrix, then the Kolmogorov backward equation in
Eq. (8) can be equivalently represented as the following system of integral
equations

pij(t) = δije
−dit +

∑

j 6=i

∫ t

0

ds di e
−di skijpij(t− s), (17)

where kij = Lij/di. Let S0, S1, . . . be a sequence of independent exponential
random times picked up from the exponential probability density p(Si) =
di e

−diSi . The integral equations above, along with the sequences of random
times, can be used to simulate a path according to the following recursive
algorithm: Generate a first random time S0 that obeys the exponential density
function. Then, depending on whether S0 < t or not, two different routes are
taken. If S0 > t, the algorithm is stopped, and no jump from the state i
to a different state is taken. If, on the contrary, S0 < t, then the state i
jumps to a different state j according to the probability function kij , and
a new second random number exponentially distributed S1 is generated. If
S1 < (t − S0) the algorithm proceeds repeating the same elementary rules,
otherwise it is stopped. To illustrate the procedure above, in Fig. 1 we show
two random paths of a continuous-time Markov chain corresponding to an
adjacency matrix of a small world network of size 100.

Algorithm 1 describes a pseudocode corresponding to the implementation of
Theorem 2, which allows one to compute single entries of the vector solution,
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Fig. 1. Two different sampled paths obtained for computing the first entry of the
vector e4A1. The paths correspond to random jumps to different states of a smal-
l-world network. The size of the network is 100, the initial state is i = 1, and the
discretization parameter ∆t = 0.25.

Algorithm 1. Algorithm to compute a single entry i of the vector solution x

Require: i,∆t, N,M
xi = 0
for l = 1,M do

η = 1,j = i
for n = 1, . . . , N do

η = ηedj∆t/2

generate(τ)
while τ < ∆t do

generate(S), generate(j)
τ = τ + S

end while

η = ηedj∆t/2

end for

xi = xi + (vjη)/N
end for

while Algorithm 2 describes the pseudocode for computing probabilistically
the complete vector solution x̄, mathematically formalized in Theorem 4.
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Algorithm 2. Algorithm to compute the complete vector solution x

Require: ∆t, N,M, n
xi = 0, V =

∑n
j=1

vl
for l = 1,M do

generate(i)
η = V, j = i
for n = 1, . . . , N do

η = ηedj∆t/2

generate(τ)
while τ < ∆t do

generate(S), generate(j)
τ = τ + S

end while

η = ηedj∆t/2

end for

xi = xi + η/N
end for

4 Computational complexity of the Monte Carlo algorithm

To estimate properly the computational cost of the algorithms above, the
tasks inside the two nested loops were analyzed separately from those that
were composed inside the do-while loop, and those outside it. Hence,

TCPU = Tin + Tout =
M
∑

l=1

N
∑

n=1

(tinln + toutln ). (18)

Note that the computational cost Tin of the inside task, which accounts for the
time spent in generating the sequences of random times for the evolving paths,
depends on the given matrix, while the cost of the outside tasks Tout are totally
independent. In fact, the computational time requires to generate a random
paths is random, and in practice depends on the specific entries of the row of
the matrix j randomly visited by the paths, including the connectivity and
degree dj of the adjacency matrix of the associated graph. More specifically, the
degree affects directly the time spent by the algorithm inside the do-while loop,
since the mean time < Sj > of the exponential probability density governing
the random time Sj is given by 1/dj . In view of the random jumping through
the rows of the matrix, in the following let us assume that the computational
time spent in total for all random paths can be reasonably approximated as

Tin = αin
∆t

τ̄
N M. (19)

Here τ̄ = 1/d̄ is the corresponding mean time value obtained for a suitable
matrix, and its associated adjacency matrix, with an average degree d̄ given
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by

d̄ =
1

n

n
∑

i=1

di, (20)

and αin the corresponding proportionality constant. Such a constant takes into
account the computational cost for evaluating the two functions (generate(S),
generate(j)) in Algorithms 1 and 2. These functions are responsible for gen-
erating both, a random time for the evolving paths (generate(S)), and a ran-
dom number j governed by the probability function kij defined in Eq. (17),
which determines the row of the matrix where to jump (generate(j)). Note
that the cost for generating the exponential random time using the function
generate(S) is fully independent of the matrix size, which is not the case when
generating the random jumping using the function generate(j). In fact, for
a matrix with arbitrary different matrix coefficients the probability function
described by kij is in general nonuniform, and therefore the cost for gener-
ating a random j increases at most linearly with the matrix size. However,
to improve the performance of this function more efficient algorithms can be
implemented, such as the row-searching method based in practice in a binary
search tree method as proposed in [32]. Nevertheless, interestingly, for the spe-
cific case of the adjacency matrix of undirected networks it turns out that such
a probability function becomes uniform, since all nodes are equally probable
to jump, and therefore the computational cost for generating the random j
becomes fully independent of the matrix size. Indeed such a random j can
be trivially generated by simply multiplying a random number uniformly dis-
tributed between 0 and 1 by the degree of the i node, and finally rounding to
the nearest integer.

Concerning the time spent by the remaining outside tasks, it can be readily
estimated as

Tout = αoutN M, (21)

where αout is the corresponding proportionality constant. Recall that ∆t =
β/N , therefore it holds that

TCPU = αinβd̄M + αout
β

∆t
M. (22)

Note that for a sufficiently small ∆t, the predominant term is the second
one, which appears to be almost independent of the matrix, while for a large
∆t the opposite behavior occurs. This is in good agreement with the results
shown in Table 1, corresponding to the CPU time spent by the Monte Carlo
algorithm when computing the total communicability of two different networks
characterized by different average degrees.
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∆t CPU Time SM (s) CPU Time SC (s)

0.5 2.08 2.91

0.25 2.88 3.85

0.125 4.11 4.96

0.0625 6.33 6.86

0.03125 10.71 11.05

0.0156 19.51 19.59

Table 1
CPU time spent by the Monte Carlo algorithm for computing the total communi-
cability of a small-world network (SM), and a scale-free network (SC) of size 106

nodes. The average degree of the small-world network is d̄ = 2.4, while for the
scale-free network is d̄ = 4. The sample size is M = 106

5 Numerical errors

In computing a single entry of the vector solution or the complete vector, we
should consider, in practice, two sources of numerical error. In fact, we have
to face the error due to the splitting in Eq. (2) and (4), and the error coming
from necessarily replacing the expected value in (16) by a finite sum over a
given finite sample of size M . In the following we focus exclusively on the
numerical scheme for computing the full vector solution, since the analysis
of the error for the companion method for computing a single entry turns
out to be identical. To be more precise, the global error made in computing
probabilistically the vector solution can be evaluated as

ε = x− e∆t di/2V
1

M

M
∑

l=1

[
N
∏

k=1

ηlk] = ε1 + ε2, (23)

where ηlk corresponds to the l realization of the ηk random variable defined in
Theorem 4, and

ε1 = x−
(

e∆tD/2e−∆tLe∆tD/2
)N

v (24)

ε2 =
(

e∆tD/2e−∆tLe∆tD/2
)N

v − e∆t di/2V
1

M

M
∑

l=1

[
N
∏

k=1

ηlk] (25)

As mentioned already in Sec. 2, the first error ε1 is due merely to the splitting
procedure, and the error is of the order of O(∆t) or O(∆t2) depending on
whether the Lie or the Strang splitting is used.

The second error, ε2 , is the pure Monte Carlo statistical error, and of order
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of O(M−1/2). In fact, it is well known that the arithmetic mean appearing in
(23) provides the best unbiased estimator for the expected value in (16). In
practice, one should simulate on the computer the random variables, based
on generating random numbers. By doing so, the error made in replacing the
expected value with the mean over a finite size sample is statistical in nature.
More precisely, ε2 turns out to be, for a largeM value, approximately a random
Gaussian variable with standard deviation proportional to M−1/2 , i.e.,

ε2 ≈
σν

M1/2
, (26)

where σ denotes the square root of the variance, and ν is a standard normal
(i.e., N(0, 1)) random variable. All this clearly shows that the proposed Monte
Carlo method could in principle have a poor numerical performance, and also
that the error is merely statistical, so it can only be bounded by some quan-
tity with a certain degree of confidence. However, there already exist many
available statistical techniques, such as variance reduction, multilevel Monte
Carlo, and quasi-random numbers, that can be used, in practice, to improve
greatly the order of the global error, and consequently the overall performance
of the algorithm.

To illustrate the global error of the numerical method, and its convergence,
several examples were run to examine the specific problem of computing the
total communicability of a complex network (see [6] e.g.) for different network
sizes. The error was computed assuming the solution obtained using the built-
in function expm of Matlab as if it were the theoretical solution. The underlying
algorithm consists essentially of a rational approximation by means of the Padé
approximation of an underlying series expansion of the matrix, along with a
direct method for computing the inverse of a suitable linear algebra problem,
which in practice entails an LU decomposition. Therefore, since it is based
on more highly accurate methods, we can assumed it to be a highly accurate
approximation of the generally unavailable theoretical solution. In Fig. 2 the
absolute error is plotted as a function of the time step ∆t for a network of 100
nodes in (a), and 1000 in (b), and the two different splitting methods. The
solid line corresponds in practice to the purely splitting error ε1, while the
dashed line corresponds to the error of the complete Monte Carlo method ε.
Surprisingly, both the Lie and Strang splitting seem to show the same order
of the error (which is 2 as can be seen from the slope of the ancillary function
plotted in the figure to help the reader). This can be readily explained from
Eq. (2) and the definition of total communicability. Indeed, by definition of
the total communicability of a network [6]

TC = (1, eA 1), (27)

where 1 is a vector of ones, (·, ·) the scalar product, and since L1 = 0, it holds
that

[(1, D L1)− (1, LD1)] = 0. (28)
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Therefore, from (2) the order of the local error for the Lie splitting turns out
to be of order O(∆t3), and in particular of order O(∆t2) as the global error,
as it happens for the Strang splitting. However, quantitatively the global error
for the Strang splitting appears to be smaller than the error obtained with
the Lie splitting. The reason can be found in that the proportionality constant
multiplying ∆t2 for the Strang splitting is smaller. Rather, this does not occur
when computing the communicability of a single node, which in practice entails
computing a single entry of the vector solution. In fact, Fig. 3 shows that the
error of the Strang splitting is one order of magnitude larger than for the Lie
splitting, being in both cases the order of convergence as was theoretically
expected.

Moreover, it is worth observing that the absolute error tends to a constant
value for sufficiently small values of ∆t, being such a critical value larger
when a smaller sample size is used. This is because for this range of values
of ∆t the global error comes predominantly from the statistical error (which
is independent of ∆t), since the splitting error is already much smaller than
the statistical error. In practice this means that from a given value of ∆t it
becomes useless to reduce further the time step ∆t, and consequently increase
the computational cost. From that point the error becomes mostly statistical,
being therefore required rather to increase the sample size M in order to
continue reducing the global error. In fact, in Fig. 4 the time step ∆t was
chosen to be sufficiently small, 10−3. This makes the splitting error negligible
compared with the statistical error, and therefore the absolute error shown is
mostly statistical, decreasing as M−1/2 as expected by theory.

For the specific problem of computing the total communicability of a network
in Eq. (27), it can be analytically estimated how the numerical error depends
on the network size. Concerning the error due to exponential splitting, from
Eq. (4) and since L1 = 0, we obtain

ǫTC ≤ |(1, D LD,1)|∆t2. (29)

By using the Cauchy-Schwarz inequality, the error can be bounded as follows

ǫTC ≤ ‖D‖2∞ ‖L‖∞ ∆t2 = 2d3max ∆t2, (30)

where dmax corresponds to the maximum degree of the network. Therefore,
for those networks characterized by having a maximum degree almost inde-
pendent of the network size, such as the small-world networks, the error is
almost independent of the size. In fact, this is in agreement with the results
plotted in Fig. 2, where the total communicability has been computed for two
different network sizes. Rather for those other networks where the maximum
degree increases with the network size, the error increases with the network
size requiring therefore to reduce ∆t accordingly to keep constant the error.
Concerning the other source of errors, as it was mentioned above this concerns
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Fig. 2. Absolute numerical error obtained when computing the total communicabil-
ity of a small-world network for different values of the time step ∆t. The networks are
composed of (a) 100 nodes and (b) 1000 nodes, respectively. The solid and dashed
lines correspond to the theoretical solution obtained with the Lie splitting, and the
Strang splitting, respectively, while the points denote the errors obtained when sim-
ulating using Monte Carlo. The gray line corresponds to an ancillary function of
slope 2.
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Fig. 3. Absolute numerical error obtained when computing the communicability of a
single node (i = 1) of a small-world network for different values of the discretization
step ∆t. The networks are composed of (a) 100 nodes and (b) 1000 nodes, respec-
tively. The solid and dashed lines correspond to the theoretical solution obtained
with Lie splitting, and Strang splitting, respectively, while the points denote the
errors obtained when simulating using Monte Carlo. The gray lines correspond to
ancillary functions of slope 1 and 2.

the statistical error due to the finite sample of the Monte Carlo simulations.
However, this error turns out to be independent of the network size as it is
shown in Fig. 4. This should not be so surprising since as it happens for Monte
Carlo integration of definitive integrals, the underlying error when computing
numerically the expected value of the function does not depend on the num-
ber of dimensions of the integral. In fact, this is the main advantage of Monte
Carlo integration against most deterministic methods, which it is known to
grow exponentially with the dimensions.
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Fig. 4. Statistical error obtained when computing the total communicability of a
small-world network for different values of the sample size M . The networks are
composed of 100 nodes and 1000 nodes, respectively. The time step is kept fixed to
∆t = 10−3. The gray line corresponds to an ancillary function of slope −1/2.

6 Some results and benchmarks

To illustrate the numerical method and performance of the underlying algo-
rithm, in the following we show the results corresponding to several bench-
marks run so far. They concern the numerical computation of the metric com-
municability in both synthetic and real complex networks. For comparison
with other methods, and to estimate the numerical errors, the Matlab toolbox
funm kryl developed in [4], and freely available in [21], has been used. Such a
code implements a Krylov subspace method with deflated restarting for ma-
trix functions. Concerning the Monte Carlo algorithm, it was implemented in
Fortran 90, and for a fair comparison with the performance obtained with the
Matlab code, no further optimization of the code or the Fortran compiler was
performed. Moreover, Fortran is purely sequential, while Matlab by default
employs multi-threading architecture for running simulations. Therefore, to
make a fair comparison between the systems, Matlab’s multi-threading feature
was completely disabled. The simulations were run on a computer equipped
with an Intel Xeon CPU E5620 at 2.40 GHz and 96 GB of RAM.
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Small-world networks. These networks were generated in Matlab using the
function smallw, freely available through the toolbox CONTEST [11]. In Table
2 the computational time to compute the total communicability of the network
for about the same error is shown for different network sizes. Up to a network
size of 10, 000 nodes, the error was estimated using Matlab’s built-in function
expm as if it were the theoretical solution. For increasingly larger networks
however, the high computational cost of this function makes its computation
a formidable task, making it necessary therefore to resort to other methods to
estimate the numerical error. For such a purpose, the aforementioned Krylov-
based method was used by setting a very small value of the stopping-accuracy
parameter, 10−16, as well as the restart parameter to 40. These are also the
parameters that have been modified in order to obtain a similar error with
the Monte Carlo simulations.

Table 2
CPU time spent for computing the total communicability of a small-world network.
For the Monte Carlo method the parameters are M = 106 and ∆t = 0.03125. The
error was kept fixed to 10−3.

Network size CPU Time MC (s) CPU Time Matlab (s)

103 0.52 0.009

104 0.83 0.011

105 0.85 0.050

106 0.95 0.491

107 0.98 6.036

108 1.07 73.22

It is remarkable to note that the computational cost of the Monte Carlo
method appears to be almost independent of the size of the network, while
increasing almost linearly for the Krylov-based method. For the Monte Carlo
method this can explained by the fact that the maximum degree of the network
is almost independent of the network size, and consequently as explained in
Sec. 5, the numerical error. Therefore, to compute the solution within a given
prescribed accuracy it is not required to modify the values of the sample size
M , and the time step ∆t for increasingly larger sizes, thereby ensuring the
same computational cost of the algorithm for any network size. Such a fea-
ture allows the Monte Carlo method to achieve a computational performance
which is notably higher than the classical counterpart, based on the Krylov-
based method, for large scale problems. In fact, it has been pointed out in the
literature [8,32] and more specifically in [30] through a suitable Theorem, that
there exists an algorithm based on the Lanczos method capable of computing
the vector solution of the action of a matrix exponential over a given vector in
a time that grows linearly with the matrix size. This is mostly due to the spar-
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sity of the adjacency matrix of the network, which simplifies considerably the
cost of the matrix-vector products associated to each Lanczos iteration. These
theoretical findings are therefore numerically confirmed in Table 2, where it
can be seen indeed that the CPU time for the Krylov-based method increases
almost linearly with the network size.

As discussed in Sec. 3, the Monte Carlo method can be used as well to com-
pute the full vector solution eβA v. In the particular case of complex networks,
and when v is the vector with all entries equal to 1, the vector solution rep-
resents the total subgraph communicability of each node of the network [6].
More important than the quantitative values of the entries of the vector, it
is the insight obtained through the ranking of the network organized by the
importance of its nodes in terms of being more or less communicable inside
the network, which could be of primary importance in the field of complex
networks. For this purpose, and to evaluate the similarities between the rank-
ings obtained with the Monte Carlo method and the Krylov-based method,
we use the intersection distance method [9] on both the full set of nodes of
the network, and on 10% of them. The intersection similarity distance for the
top K nodes of two vectors x and y is defined as

isimK(x, y) :=
1

K

K
∑

i=1

|xi∆ yi|

2i
. (31)

Here ∆ is the symmetric difference operator between the two vectors. In prac-
tice, small values of the intersection distance denote large similarities between
the vectors, while the limiting value of 1 suggests vectors that are totally dis-
jointed. Since computing the intersection distance could be computationally
costly for increasingly large networks, only relatively small sizes of the network
were analyzed so far. In Table 3 the results corresponding to networks com-
posed of 1000 and 10, 000 nodes are shown. Note that the two ranked vectors
show strong similarities, being even stronger for larger network sizes.

Table 3
Similarity results of the two computed ranked communicability vectors obtained
with the Krylov-based method, and the Monte Carlo method for different sample
sizes. The network is a small-world network of size a) 1000 nodes, and b) 10, 000
nodes. For the Monte Carlo method ∆t = 0.03125.

(a)

Sample size M isim (100%) isim (10%)

105 0.0037 0.0279

106 0.0022 0.020

107 0.0014 0.011

(b)

isim (100%) isim (10%)

4.89× 10−4 0.00379

3.39× 10−4 0.0021

2.24× 10−4 0.0014

Scale-free networks. Such networks have been generated using the function
pref belonging to the aforementioned toolbox CONTEST. In contrast to the
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small-world network, these networks are characterized by the presence of hubs,
which in practice entail a much larger maximum degree, and correspondingly
larger maximum eigenvalue than for the small-world networks. For this rea-
son, and to avoid dealing with very large values when computing the total
network communicability for large networks, it is more convenient instead to
analyze the so-called normalized total communicability [6], which corresponds
in practice to the average total communicability of the network per node. This
metric can be readily obtained dividing the total network communicability by
the network size, that is TCn = TC/n. Since the value of the maximum degree
increases with the network size, then in order to keep constant the numerical
error it may be necessary for the Monte Carlo method to reduce the time
step ∆t (or equivalently increasing the parameter N) accordingly. From Eq.
(30), and assuming dmax ≈ n as an upper-bound approximation, it holds that
the time step ∆t should reduce, at most, as n−1 (or equivalently the param-
eter N increase linearly with n), to ensure a constant numerical error when
computing the normalized total network communicability for arbitrary large
scale-free networks. As a result, the computational cost of the algorithm, es-
timated in Sec. 4 as being TCPU ≈ Tout for sufficiently small ∆t, increases
therefore linearly with the network size n for these type of networks.

To avoid such a computationally costly procedure, a reasonable alternative
relies on computing a generalization of the communicability, that is eβA, where
β is typically interpreted as an effective ”temperature” of the network (see [17],
e.g.). Essentially the idea is to use the inverse of the maximum eigenvalue as
the value of the parameter β, which in practice will control the rapid growth
of the norm of the matrix A with the size of the network. To ensure fast
convergence of the Monte Carlo solution, using β = 1/λmax, where λmax is
the maximum eigenvalue of A, should suffice. However, finding the maximum
eigenvalue for large networks is computationally costly, and in the following a
faster alternative, based on computing the maximum degree of the network,
dmax, was used instead as an upper bound value. Note that in doing that
the numerical error obtained when computing the normalized total network
communicability becomes independent of the network size. This can be proved
readily as follows: From Eq. (30), the error to compute the normalized total
network communicability is given by,

ǫTCn
≤ 2d3max ∆t2/n =

2dmax

N2n
. (32)

where the time-step ∆t defined in Eq. (1) was replaced by 1/(dmax N). Now
using dmax ≈ n as an upper-bound approximation, then it follows that the
error becomes indeed totally independent of the network size, and hence the
computational cost of the algorithm.

However, different values of β could have a direct impact not only on the
entries of the communicability vector, but also on the ranking of the nodes
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according to their communicability values, and therefore it becomes essential
to analyze at least qualitatively such an issue. In Table 4 the similarity results
of two ranked communicability vectors are shown for two different network
sizes. All the vector solutions are computed this time using the function expm
of Matlab to minimize the error, and the comparison is done by choosing as
the reference vector the ranked communicability vector with β = 1.

Table 4
Similarity results of two computed ranked communicability vectors obtained for
different values of β. The reference vector used for comparison corresponds to β = 1.
The network is a scale-free network of size a) 1000 nodes, and b) 10, 000 nodes.

(a) λmax = 10.22, dmax = 69

β isim (100%) isim (10%)

1 0 0

0.5 0.0025 0.0137

0.125 0.0026 0.0145

1/λmax 0.0026 0.0145

1/dmax 0.0026 0.0145

(b) λmax = 19.52, dmax = 357

isim (100%) isim (10%)

0 0

3.74× 10−4 0.0026

4.01× 10−4 0.0029

4.01× 10−4 0.0029

4.27× 10−4 0.00315

From Table 4 it is worthwhile to observe the close similarity of the ranked
vectors for different values of β, being even closer for larger values of the
network size. Recall that for the typical accuracy asked for Monte Carlo sim-
ulations, the error is already higher (10−3 in the previous examples) than the
values obtained for the intersection similarities. This fact can be exploited in
practice to choose values of β smaller, and consequently ∆t larger, and still
be able to characterize properly the communicability of the network, being
indeed indistinguishable within the prescribed accuracy for the Monte Carlo
simulations.

In Table 5 the times spent to compute the normalized total communicability
of scale-free networks of different sizes are shown. As for small-world networks,
in all Monte Carlo simulations the error has been kept fixed to 10−3. Similar
to the results obtained for the small-world network, the Monte Carlo method
outperforms the Krylov-based method for large size networks, having also a
computational time independent of the network size, in agreement with the
theoretical considerations discussed above.

Real networks. In Table 6 the results corresponding to a few real networks
of arbitrary large size are shown. These networks were downloaded from the
freely available sparse matrix repository SuiteSparse Matrix Collection [35],
and correspond to undirected graphs describing the largest strongly connected
components of the corresponding Open Street Map road networks in Europe
(Europe OSM), the USA roads (USA roads), and finally a directed graph
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Table 5
CPU time spent for computing the normalized total communicability of a scale-
free network. For the Monte Carlo method the parameters are M = 106 and ∆t =
0.03125. The error was kept fixed to 10−3.

Network size CPU Time MC (s) CPU Time Matlab (s)

103 0.62 0.0068

104 0.71 0.016

105 0.68 0.038

106 0.71 0.469

107 0.75 4.08

108 0.76 52.59

corresponding to Wikipedia. The latter network was conveniently symmetrized
following the procedure described in [5]. As in the previous examples, the
performance of the Monte Carlo method is notably superior to the Krylov-
based method, being that the differences are even more pronounced for large
network sizes.

Table 6
CPU time spent for computing the normalized total communicability of real complex
networks. For the Monte Carlo method the parameters are M = 106 and ∆t =
0.03125. The error in the norm L∞ was kept fixed to 10−3.

Network type Size CPU Time MC (s) CPU Time Matlab (s)

Wikipedia 7, 133, 814 0.75 5.104

USA roads 23, 947, 347 0.77 9.925

Europe OSM 50, 912, 018 0.79 11.79

7 Conclusion

A new Monte Carlo method for computing the action of an exponential matrix
on a vector has been proposed. The method is based on generating suitable
random paths corresponding to a continuous-time Markov chain governed by
the associated Laplacian matrix. It extends the existing Monte Carlo methods
discussed so far in the literature for solving linear algebra problems, for dealing
now with more involved functions of matrices such as the matrix exponential.
An important advantage of the Monte Carlo method is that the probabilistic
representation of the solution allows for efficiently computing single entries of
the vector solution, along with global metrics involving the full matrix, such
as the total communicability in the field of complex networks. Moreover, since
the solution is obtained through averaging independent calculations it is espe-
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cially well suited for parallel computation. In fact, it is known that the Monte
Carlo algorithm turns out to be fully scalable and naturally fault tolerant. To
test the performance of the algorithm, several benchmarks have been used,
consisting of a variety of complex networks (real and synthetic) for comput-
ing the communicability of the network. The numerical errors of the method
have been analyzed through the paper. The results have been compared with
a classical Krylov-based method, showing a notably superior performance of
the algorithm for large-scale matrices, both in terms of computational time
and memory requirements.

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia under
Grant No. UID/CEC/50021/2019.

References

[1] J.A. Acebrón, M.P. Busico, P. Lanucara, and R. Spigler,Domain decomposition
solution of elliptic boundary-value problems, SIAM J. Sci. Comput., 27 (2005)
pp. 440-457.
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