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1 Introduction

In contrast to the numerical methods for solving linear algebra problems, the
development of methods for evaluating function of matrices has been in gen-
eral much less explored. This can be explained partially due to the underlying
mathematical complexity of evaluating the function, but also under the com-
putational point of view, because the algorithms developed so far tend to be
less efficient and in general more difficult to be parallelized. In addition, re-
lated to the first issue, an added difficulty appears in estimating the associated
error of the numerical method, which is well understood for solving iteratively
linear algebra problems, but becomes a rather cumbersome process for func-
tions of matrices. This is even worse in the case of the matrix exponential,
due to the lack of a clear and consensually agreed notion of the residual of the
iterative method, see for instance [13].

In particular the second issue represents indeed a serious drawback, since it is
preventing in practice to deal with large scale problems appearing in science
and engineering. Nowadays there are a plethora of applications described by
mathematical models which require evaluating some type of function of matri-
ces in order to be solved numerically. For the specific case of the matrix expo-
nential, we can find applications in fields as diverse as circuit simulations [41];
power grid simulations [35,42]; nuclear reaction simulations [34]; analysis of
transient solutions in Markov chains [36]; numerical solution of partial differen-
tial equations (PDEs) [30]; and analysis of complex networks [10], to cite just
a few examples. More specifically, in the field of partial differential equations,
numerically solving a boundary-value PDE problem by means of the method
of lines requires in practice to compute the action of a matrix exponential
using therefore exponential integrators [28]. On the other hand, in network
analysis, determining some relevant metrics of the network, such as for in-
stance the total communicability which characterizes the importance of the
nodes inside the network, entails computing the exponential of the adjacency
matrix of the network.

For the specific problem of computing the action of the matrix exponential
over a vector several classes of numerical methods have been proposed in the
literature in the last decades (see the excellent review in [26], and references
therein). Probably the most analyzed and disseminated methods are those
based on Krylov-based subspace methods, which use in practice a basis of a
subspace constructed using the Arnoldi process, and compute the exponential
of the projected matrix (typically much smaller) by using standard matrix
exponential techniques [27].

An alternative to the aforementioned deterministic methods does exist, and
consists in using probabilistic methods based on Monte Carlo (MC) simula-
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tions. Although much less known than the former methods, the Monte Carlo
methods specifically used for solving linear algebra problems have been dis-
cussed in the literature in various forms along the years. In fact, it was the
seminal paper by von Neumann and Ulam during the 40’s [22] that gives rise
to an entire new field, and from there a multitude of relevant results, and sub-
stantial improvements of the original algorithm have appeared in the literature
during the last years, see e.g. [17] and [16] for further references. Essentially
the main goal is to generate a discrete Markov chain whose underlying ran-
dom paths evolve through the different indices of the matrix. The method can
be understood formally as a procedure consisting in a Monte Carlo sampling
of the Neumann series of the inverse of the matrix. The convergence of the
method was rigorously established in [29], and improved further more recently
(see for instance [12], and [19] just to cite a few references).

Generalizing the method for dealing with some functions of matrices, such as
the matrix exponential, was only recently accomplished in [7]. The method is
based on generating random paths, which evolve through the indices of the
matrix, governed now by a suitable continuous-time Markov chain. The vector
solution is computed probabilistically by averaging over a suitable multiplica-
tive functional.

The main advantages of the probabilistic methods, as it was already stated in
the literature, are mainly due to its privileged computational features, such as
simplicity to code and parallelize. This in practice allows us to develop parallel
codes with extremely low communication overhead among processors, having
a positive impact in parallel features such as scalability and fault-tolerance.
Furthermore, there is also another distinguishing aspect of the method, which
is the capability of computing the solution of the problem at specific chosen
points, without the need for solving globally the entire problem. This remark-
able feature has been explored for efficiently solving continuous problems such
as boundary-value problems for PDEs in [3,5,6], offering significant advantages
in dealing with some specific applications found in science and engineering.

Yet an important disadvantage of any Monte Carlo method is the slow con-
vergence rate to the solution of the numerical method [20], being in general of
order O(N−1/2), where N denotes the sample size. Nevertheless, there already
exist a few statistical techniques, such as variance reduction, multilevel Monte
Carlo (MLMC), and quasi-random numbers, which have been proposed to mit-
igate in practice such a poor performance, improving the order of the global
error, and consequently the overall performance of the algorithm. Among all
the aforementioned methods, the multilevel method clearly stands out, and
currently it has become in fact the preferred method to speed up the conver-
gence of a variety of stochastic simulations, with a remarkable impact on a wide
spectrum of applications. An excellent review has been recently published in
[24] describing in detail the method as well as a variety of applications where

3



it was successfully applied (see also [8] for more details specifically related
with the topic of this paper).

One of the main contributions of this paper is precisely to develop a multilevel
method for the problem of computing the action of a matrix exponential over
a vector. This is done by conveniently adapting the probabilistic representa-
tion of the solution derived in [7] to the multilevel framework. In addition,
the convergence of the method is analyzed, as well as the computational cost
estimated. The second important contribution was to parallelize the resulting
algorithm, and finally run successfully several relevant benchmarks for an ex-
tremely large number of processors using high performance supercomputers
belonging to the top-performance supercomputers in the world (according to
the well-known TOP500 list [40]).

The outline of the paper is as follows. Briefly, the mathematical description of
the probabilistic method is summarized in Sec. 2, and the problem is math-
ematically formalized according to the multilevel framework. In Sec. 3, the
developed algorithm is described through the corresponding pseudocodes. Sec.
4 is devoted to the analysis of both, the algorithm complexity, and the nu-
merical errors of the method. Finally in Sec. 5 several benchmarks are run to
assess the performance and scalability of the method, and whenever available,
a comparison with the performance obtained by the classical Krylov-based
method is done. In closing, we highlight the main results and suggest further
directions for future research.

2 Mathematical description of the probabilistic method and mul-

tilevel Monte Carlo method

In order to implement any multilevel Monte Carlo method it is mandatory to
have a probabilistic representation of the solution. Thus, we describe next the
probabilistic method used so far to compute the action of a matrix exponential
over a vector.

2.1 A probabilistic method

A probabilistic representation for the action of a matrix exponential over a
vector was introduced in [7] for dealing exclusively with adjacency matrices of
undirected graphs. However, in the following we show that this representation
can be straightforwardly generalized for dealing with arbitrary matrices.

Consider A = (aij)i,j=1,...,n a general n-by-n matrix, u a given n-dimensional
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vector, and x an n-dimensional vector. This vector corresponds to the vector
solution after computing the action of a matrix exponential over the vector u,
that is x = eβA u. Here the parameter β is a constant, typically interpreted as
the time variable in partial differential equations, or an effective ”temperature”

of the network in problems related with complex networks (see [21], e.g.).

Let us define a diagonal matrix D, represented hereafter as a vector d, with
entries dij = 0 ∀i 6= j, dii = di = aii + lii, i = 1, . . . , n, and a matrix T with
entries tij given by

tij =







lii, if i = j

(−1)σij lij , otherwise
(1)

where σij is a binary matrix with entries taking the value 1 when aij < 0, and
0 otherwise. Here L = (lij) denotes the Laplacian matrix, defined in the broad
sense as a matrix with nonpositive off-diagonal entries lij = −|aij|, and zero
row sums, that is lii = −

∑

j 6=i lij. Then, it holds that A = D − T . Note that
our definition differs from the classical one A = D−L addressed to adjacency
matrices [2]. Instead, in this paper matrix A can be any matrix. This is possible
due to two changes. First, our diagonal matrix D is not a degree matrix since
the diagonal term aii in the original matrix is added to the degree of the row
(stored in lii). Second, we replace matrix L with matrix T , which takes into
account that matrix A can have both positive and negative values unlike an
adjacency matrix. Thus, this does not constitute any restriction in the class
of matrices amenable to be represented probabilistically. Quite the contrary,
one can see that any arbitrary matrix can be straightforward decomposed in
such a way.

Finding a probabilistic representation for this problem requires in practice [7]
to use a splitting method for approximating the action of the matrix expo-
nential over the vector u as follows,

x̄ =
(

e∆tD/2e−∆tT e∆tD/2
)N

u, (2)

where ∆t = β/N , which in the following and for convenience it will be termed
as the time step. Note that x̄ corresponds to an approximation of the true solu-
tion x. In fact, this corresponds to the Strang splitting method, and therefore
leads to an error, which after one time step is known [1] to be of order O(∆t3)
locally, and of order O(∆t2) globally. Therefore, the true solution is recovered
in the limit N → ∞.

In [7] a probabilistic representation for the particular problem consisting of ad-
jacency matrices was derived. Here such a representation is generalized to deal
with more general matrices. This is done resorting first to the following Lemma
which provides a way to represent probabilistically the vector e−∆tT e∆tD/2 u.

Lemma 1 Let {Xt : t ≥ 0} be a stochastic process with finite state space
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Ω = {1, 2, · · · , n} corresponding to a continuous-time Markov chain generated

by the infinitesimal generator Q = −(lij), and final state X0 = i. Then, any
entry i of the vector

y = e−∆tT e∆tD/2 u, (3)

can be represented probabilistically as yi = E[η], with η = φ e∆t dX∆t
/2 uX∆t

,

and E[η] its expected value. Here φ is a multiplicative random variable defined

as φ =
∏K−1

k=1 (−1)
σXSk−1

XSk if K ≥ 2, and φ = 1 otherwise, where {Sk : k =
0, 1, · · · } are random times defined as S0 = 0, S1 = inf{t > 0 : Xt 6= X0},
Sk = inf{t > Sk−1 : Xt 6= XSk−1

}, k > 1, and K = inf{k ≥ 0 : Sk > ∆t}.

Proof. Since D is a diagonal matrix, then yi can be computed as follows

yi =
n
∑

j=1

(e−∆tT )ijwj, (4)

where wj = e∆t dj/2 uj . Note that the matrix F = (fij) = (e−∆tT )ij is the
solution of the system of differential equations

dfij
dt

=
n
∑

k=1

tikfkj, fij(0) = δij , (5)

evaluated at time ∆t, or expressed in matrix notation as

dF

dt
= T F, F (0) = 1 (t ≥ 0). (6)

Here δij denotes the Kronecker delta function. Using the definition of matrix
T in Eq. (1), this system can be rewritten as the following system of integral
equations

fij(t) = δij e
−liit +

∑

k 6=i

∫ t

0
ds lii e

−lii s (−1)σik µik fkj(t− s), (7)

where µik = |lik|/lii. Note that when σik = 0, which corresponds to matrices
characterized by having all positive entries, aik > 0, these equations reduce to
the corresponding equations for the transition probabilities of the continuous-
time Markov chain solution of the Kolmogorov’s backward equations,

dP

dt
= QP, P (0) = 1, (8)

for the matrix transition probability P (t) = (pij) = P(X0 = j|Xt = i) [9], and
infinitesimal generator Q = −L. For general matrices with entries of arbitrary
sign this does not hold, however for this case, an alternative probabilistically
representation of the solution can be established. This has been done by adapt-
ing conveniently the formalism introduced in [4] in the framework of parabolic
partial differential equations for this specific matrix problem.
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Let S be a continuous random variable defined on a suitable probability
space, and governed by the exponential density function p(s) = d

ds
P[s <

S] = lii e
−lii s, and k a discrete random variable that takes values on Ω =

{1, 2, · · · , n} with probability µik. Note that
∑

k 6=i µik = 1 by definition of
the Laplacian matrix. Then, the following probabilistic representation for
ξij = fij(t)wj is obtained

ξij(t) = δij wj P [S > t] + E

[

(−1)σik µik ξkj(t− S)1[S≤t]

]

. (9)

Here E is the expected value with respect to the joint distribution function of
the random variables S and k, and 1A denotes the indicator function, being
1 or 0 depending on whether the event A occurs. Note that this system of
equations is an implicit coupled system in which to evaluate ξij for a given time
t is required to evaluate ξkj at previous instants of time. This can be readily
solved resorting to Picard iteration for ξij(t) as it was proposed in [4], thus
obtaining a Picard series that it can be probabilistically sampled according to
the following recursive algorithm:

(1) Generate a first random time S0 obeying the exponential density function
lii e

−lii s;
(2) Then, depending on whether S0 < t or not, two different alternatives are

taken;
(3) If S0 > t, the algorithm stops, and no jump from the state i to a different

state is taken;
(4) If, on the contrary, S0 < t, then the state i jumps to a different state

k according to the probability function µik, and a new second random
number exponentially distributed S1 is generated. Furthermore, the sign
of the entry aik is taken into account by updating conveniently the value
of the random variable φ;

(5) If S1 < (t − S0) the algorithm proceeds repeating the same elementary
rules, otherwise it stops.

Such a procedure generates a random path, which evolves backward in time
from the state i at t = ∆t to a final state for t = 0, jumping randomly from i
to any state on Ω governed by an exponential random time distribution with
rate parameter lii, and transition probabilities between states µik. Note that,
mathematically, this corresponds to a realization of the stochastic process con-
sisting in a continuous-time Markov chain having the infinitesimal generator
−L. In addition, when generating the random path, and every time a jump is
taken, the multiplicative random variable φ, which has been initialized to 1,
is updated multiplying the previous obtained value by the number (−1)σik .

Intuitively, the role played by the variable φ in the probabilistic representation
is collecting the signs of all entries aij of the matrix A multiplying conveniently
its values. Here i and j correspond to the different states the random path has
visited when jumping randomly through the matrix.
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Therefore, from Eq. (4) and using the probabilistic representation for ξij in
Eq. (9), a probabilistic representation for yi can be written as follows

yi = E[φwX∆t
]. (10)

Here {Xt} is a random process with state space Ω = {1, 2, · · · , n}, whose paths
corresponds to a continuous-time Markov chain generated by the infinitesimal
generator −L, matrix transition probability P (t), and with initial state X∆t =
i. �

It is worth to remark here the following fact concerning the matrix transition
probability. Unlike what happens for the probabilistic methods developed so
far for solving linear systems (see [10] e.g), where the choice for the transition
probability of the corresponding Markov chain is not uniquely determined, this
does not hold anymore for the proposed method. In fact, note that the tran-
sition probability of the corresponding continuous-time Markov chain P (t),
which is the solution of the Kolmogorov’s backward equations in Eq. (8), is
unique, being the solution of the Kolmogorov’s backward equations in Eq.
(8). Moreover, the infinitesimal generator of a continuous-time Markov chain
is also unique, since by construction of the method the original matrix A has
to be decomposed as A = D − T , and it is mandatory that D should be a
diagonal matrix, and T a matrix related with the Laplacian matrix L, as it
was defined in Eq. (1).

This probabilistic representation for the vector y can be used straightforwardly
to derive the probabilistic representation for computing a single entry i of the
vector solution x̄. In fact, from Eq. (2) the vector x̄ can be obtained applying
the following recursive procedure

y(1) = e−∆tT e∆tD/2 u,

y(k) = e−∆tT e∆tD y(k−1), k = 2, . . . , N.

x̄i = e∆tD/2y(N),

Then, applying the Lemma 1 to every partial vector y(k) we can derive the
probabilistic representation, and is given by

x̄i = e∆t di/2E[
N
∏

k=1

ηk], (11)

where ηk = φk e
∆t dik , k = 1, . . . , N − 1, and ηN = φN e∆t diN /2 uiN . The ik,

k = 1, . . . , N , is a sequence of N discrete random variables with outcomes on
Ω = {1, 2, · · · , n}. The probabilities pik−1 ik(t), k = 2, . . . , N , and pi i1(t) for
k = 1, correspond to the transition probabilities of a continuous-time Markov
chain generated by the infinitesimal generator Q = −L and evaluated at time
∆t for each k. φk was defined already in the Lemma 1 , and in practice consists
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in a two-point random variable taking values −1 and 1 according to the matrix
σij, and with a probability of occurrence governed by the transition probability
P of the Markov chain. A neat picture of this probabilistic representation
can be described as follows: A random path starting at the chosen entry i
is generated according to the continuous-time Markov chain governed by the
generator Q, and evolves in time jumping randomly from i at time t to any
state on Ω. Along this process, N functions ηk are evaluated, being the solution
obtained through an expected value of the multiplicative functional

∏N
k=1 ηk.

Notice that such a representation allows in practice to compute a single en-
try i of the vector solution, but can be conveniently modified to represent
as well the full vector solution x̄. For the specific problem of solving linear
systems this has been done resorting to the so-called adjoint method [10]. In
our problem the procedure to follow is similar. Essentially the representation
requires generating random paths, which start now at a randomly chosen state
j and time t = 0 according to a suitable distribution p

(0)
j = P(X0 = j), and

evolve forward in time governed by a continuous-time Markov chain having
now Q⊺ as the infinitesimal generator. This is partially proved by the following
Lemma.

Lemma 2 Let {Xt : t ≥ 0} be a stochastic process with finite state space Ω =
{1, 2, · · · , n} corresponding to a continuous-time Markov chain generated by

the infinitesimal generator Q⊺, final state X∆t, and initial distribution X0 = j
with j randomly chosen from a given probability function p

(0)
j . Then, the vector

y = e−∆tT e∆tD/2 u, (12)

can be obtained probabilistically as yX∆t
= E[η], where η = φ e∆t dX0

/2 uX0
/p

(0)
X0

and E[η] is the expected value. Here φ is the multiplicative random variable

defined in Lemma 1.

Proof. The proof of this Lemma is similar to Lemma 1, being the more sig-
nificant difference the direction of time when generating the random paths.
Essentially, it can be seen that both probabilistic representations are connected
through the Bayes’ theorem. In fact, applying the theorem to the transition
probability P = (pij) in Eq. (8), we obtain

pij = P(Xt = i|X0 = j)
P(X0 = j)

P(Xt = i)
= pji

p
(0)
j

pi
= (P ⊺)ij

p
(0)
j

pi
, (13)

where pi = P(Xt = i). Note that the matrix transition probability (P ⊺)(t)
is the solution of the transposed equation of Eq. (8). This equation is the
Kolmogorov’s forward equation, and therefore the solution corresponds to a
continuous-time Markov chain with generator Q⊺. Another important differ-
ence is that the initial distribution for X0 is not a prescribed state anymore,
being instead randomly chosen according to the distribution function p

(0)
j .
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Concerning the final state, the random path Xt could end at any state on Ω
at time ∆t. If the state i is reached at time ∆t for a given trial, then this
path will contribute to the ith component of the vector y with the value η.
Therefore, in practice the vector y is obtained probabilistically as a whole,
and not componentwise as in Lemma 1, and is given by yX∆t

= E[η]. �

Notice that the choice of the distribution function p
(0)
j is not unique, and clearly

the choice of the function may have a direct impact on the variance, and, in
turn, on the performance of the algorithm. The more reasonable choice seems
to be choosing p

(0)
j proportional to |uj|, since this resembles the well known

importance sampling method for variance reduction, where the sampling is
done according to the importance of the data. In fact, in this work we chose
the probability function to be p

(0)
j = |uj|/u, with u =

∑n
j=1 |uj|. But obviously

there are many other possible choices, some of them could even provide better
performance results than the results already shown in Sec. 5. Therefore it is
worth investigating more carefully this issue in future works, searching for
an optimal probability function given the specific input vector u. Moreover,
note that when the probability function p

(0)
j is used, the function η in Lemma

2 should be redefined as η = uφ e∆t dX0
/2 sgn(uX0

) to account for possible
arbitrary signs in the coefficients of the vector u.

Concerning the probabilistic representation for the full vector x̄, this can be
derived using the same procedure as in (11). The contribution to every en-
try i of the vector is then mathematically formalized through the following
representation:

x̂i = e∆t di/2 uE[
N
∏

k=1

ηk], (14)

where ηk = φk e
∆t dik , k = 1, . . . , N − 1, and ηN = φN e∆t diN /2 uiN . Concerning

the expected value now is taken with respect also to a random variable j on
Ω governed by the probability function p

(0)
j .

In order to adapt this representation to the multilevel Monte Carlo framework,
it is convenient to use the typical notation used so far in the literature. This
entails rewriting the probabilistic representation for computing a single entry
i of the vector solution as

x̄i = E[P ], P =
N/2
∏

j=1

ηj, (15)

where

ηj = φ̄j e
∆t(dik/2+dik+1

+dik+2
/2), j = 1, . . . , N/2− 1,

ηj = φ̄j e
∆t(dik/2+dik+1

+dik+2
/2) uk+2, j = N/2. (16)
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Here k = 2j − 1, i = i1, and φ̄j = φkφk+1. Note that this representation can
be obtained by simply expanding Eq. (11),

x̄i = e∆t di1/2E[φ1 e
∆t di1 φ2 e

∆t di2 · · ·φN e∆t diN /2 uiN ], (17)

then renaming the random variables as i1 → i2, i2 → i3, . . . , iN → iN+1, i → i1,
and finally rearranging the expression in groups of terms as follows,

x̄i = E

[

φ1φ2 e
∆t(di1/2+di2+di3/2)φ3φ4 e

∆t(di3/2+di4+di5/2) · · ·

×φN−1φN e∆t(diN−1
/2+diN+diN+1

/2) uiN+1

]

. (18)

Note that this rearranging of terms reduces in practice by a half the upper
limit in the product of Eq. (11).

It is worth observing here that we have to deal with two sources of error when
implementing in practice the probabilistic method, that is the statistical error
coming from the use of a finite sample size for estimating the expected value,
and the error due to the splitting method. In fact this error can be consid-
ered as being the equivalent to the truncation error appearing in discretizing
differential equations, and in the following it will be termed as truncation
error.

Concerning the statistical error, and to ensure the convergence to the mean of
the corresponding estimator used in our Monte Carlo simulations, it is manda-
tory to guarantee the finiteness of its variance, and therefore the finiteness of
both moments, E[

∏N/2
j=1 ηj], and E[

∏N/2
j=1(ηj)

2]. However, in practice it is only
needed to prove the finiteness of the second moment, since the finiteness of
the first one follows from the finiteness of the second one. From the definition
of ηj in Eq. (15), and considering the worst case scenario in which dik is the
maximum positive value of d, say dmax, for all k, then it holds that

N/2
∏

j=1

(ηj)
2 = e2N ∆t dmax u2

iN+1
= e2β dmax u2

iN+1
< ∞. (19)

From here it follows the finiteness of the random variable
∏N/2

j=1(ηj)
2 for any

other possible scenario, and consequently this guarantees the convergence of
the estimator for any matrix A.

2.2 An alternative probabilistic method

We discuss other possible probabilistic method to compute the action of a
matrix exponential over a vector can be derived as follows. Let x(t) be the
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solution of the system of differential equations,

dx

dt
= Ax, x(0) = u (t ≥ 0). (20)

Such a system of differential equations can be rewritten in an integral form,
and is given by

xi(t) = edit e−liit ui +
∑

k 6=i

∫ t

0
ds lii e

dis e−lii s (−1)σik µik xk(t− s). (21)

The solution can be obtained recursively, replacing the solution xk(t − s) on
the right-hand side with the solution xi(t), obtaining in such way an expansion
in terms of multiple exponential random times, Si. This procedure was done
for the previous proposed probabilistic representation in Eq. (7), and can be
applied here straightforwardly. Note, however, that the procedure now is much
more involved since now the integral term contains, along with the solution
itself, the time-dependent coefficient, edis. A probabilistic representation can
be written as follows

xi(t) = edit ui P [S > t] + E

[

ediS (−1)σik µik xk(t− S)1[S≤t]

]

, (22)

where the random variables S and k are the same variables already defined
in Eq. (9). Similarly to the previous probabilistic representation, this implicit
equation can be solved resorting to Picard iteration for xi, and then sampled
probabilistically using the same recursive algorithm proposed in Sec. 2.1.

Note that the main advantage of this alternative probabilistic method is the
fact that the solution xi(t) can now be obtained directly at time t without the
need of discretizing the time variable as required for the probabilistic represen-
tation proposed in Sec. 2.1. As a result, the corresponding numerical method
is free of any truncation error due to the time discretization, remaining ex-
clusively the statistical error as the unique source of error of the numerical
method. However, some caution should be paid since other important disad-
vantages compared with the previous probabilistic representation may arise,
and therefore it is required to be carefully investigated elsewhere.

A major concern is the fact that the coefficient ediS multiplying the solution
xk(t−S) in Eq. (22) might be much greater than 1, therefore being the conver-
gence of the numerical procedure not guaranteed. In fact, the series obtained
by expanding the implicit equation could be divergent, and in general can-
not be summed simply by a sequence of partial sums. A similar behavior has
been already described in [5]. Moreover, the presence of such a coefficient in
the probabilistic method may increase the variance of the underlying Monte
Carlo algorithm, thus increasing the statistical error of the solution, and con-
sequently degrading the computational performance of the algorithm.
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Another important disadvantage of this approach lies in the fact that this
probabilistic method is able to compute the solution exclusively at time t in
a single evaluation, while the probabilistic method proposed in Sec. 2.1 yields
in a single evaluation the values of the matrix exponential at N intermediate
times. This will be explained carefully later, and has been explored specifically
in Sec. 5 for solving efficiently boundary-value problems with time-dependent
boundary data as it is shown in the example in Eq. (44).

Finally, we will show in the following that the multilevel Monte Carlo method
based on the probabilistic representation proposed in Sec. 2.1 stands out es-
pecially in a feature that is apparently lacking for any other probabilistic
methods, which is the autonomous operation of any multilevel algorithm. In
fact, for the multilevel method it is enough, in general, to prescribe the desired
accuracy of the solution, and the algorithm proceeds automatically in order
to meet the requirements established for the solution. Rather, this alternative
probabilistic method may require a continued surveillance by the user of the
underlying statistical errors, being often necessary to repeat simulations a few
times in order to satisfy the requirements demanded for the solution in terms
of accuracy.

2.3 The multilevel Monte Carlo method

The multilevel Monte Carlo method we have developed is essentially based on
the well-known method many times described in the literature. In the following
we introduce briefly the ideas underlying the method for those readers not
familiar with the topic. For further details see the excellent survey in [24], and
references therein.

Essentially, the goal of the geometric multilevel Monte Carlo method consists
in approximating the finest solution PL, obtained to the level of discretization
L, using a sequence of coarser approximations obtained at previous levels l,
from l0 to L − 1. In our specific problem this corresponds to different levels
of discretization according to the value of ∆t, being now ∆tl = β/Nl, with
Nl = 2l. The minimum and initial level l0 is chosen typically to be the entire
interval, that is ∆t0 = β. However this is not theoretically required, and for
this specific problem we show in Sec. 4 that it is best not to do so. This is
because the computational cost tends to be independent of the level when
simulating for the coarsest level of simulation. Therefore, in the following we
assume that the minimum level to be chosen is l0. The multilevel method can
be formalized mathematically through the following telescoping series,

x̄L = E[PL] = E[Pl0 ] +
L
∑

l=l0+1

ml, (23)
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where ml = E[Pl − Pl−1], Pl =
∏N/2

j=1 η
(l)
j , and

η
(l)
j = φ̄

(l)
j e∆tl(dik/2+dik+1

+dik+2
/2), j = 1, . . . , N/2− 1,

η
(l)
j = φ̄

(l)
j e∆tl(dik/2+dik+1

+dik+2
/2) uk, j = N/2, (24)

with k = 2j−1, i1 = i, and the superscript l denotes the corresponding level of
discretization. Note that this induces a truncation error which is proportional
to E[PL − PL−1]. Numerically, when a finite sample of sizes Ml, l = l0, . . . , L
is used, Eq. (23) can be approximated by the following estimator

x̄L ≈
1

M0

M0
∑

i=1

P
(i)
l0

+
L
∑

l=l0+1

1

Ml

Ml
∑

i=1

(P
(i)
l − P

(i)
l−1). (25)

It is worth observing that the samples used for computing the approximation
at level l are reused for computing the level l− 1 adapting them conveniently
for such a coarse level. In fact, the underlying correlation appearing between
the two consecutive levels belonging to the same sample becomes essential in
order to reduce the overall variance for the same computational cost. However,
the final goal of the multilevel method is the opposite, that is, reducing the
computational cost by choosing conveniently an optimal sample size Ml, keep-
ing fixed the overall variance within a prescribed accuracy ε2. After a suitable
minimization process, the result as explained in [24] is given by

Ml =
1

ε2

√

Vl

Cl

L
∑

j=l0

VjCj, (26)

where Cl, and Vl are the computational cost, and the variance for each level
l, respectively. The overall computational cost and variance can be calculated
as follows

CT =
L
∑

l=l0

MlCl, VT =
L
∑

l=l0

Vl

Ml

, (27)

3 The multilevel algorithm

To implement in practice the multilevel method for computing the action of
the matrix exponential over a vector, it is first necessary to introduce a suitable
algorithm capable of generating efficiently the random paths. Second, we need
to describe the strategy followed to compute the difference between any two
consecutive levels as appears in Eq. (25). This requires an efficient technique
to reuse the paths obtained when simulating with a higher level l for the lower
level at discretization l − 1.
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Fig. 1. Sketch diagram showing the four possible sampled paths obtained for level
l = 2, and for a matrix of size n = 10. The solid line corresponds to a random path
obtained for a level number l, and the dotted line with l − 1.

Concerning the first issue, it was already described in Sec. 2, and in Fig. 1 a
sketch diagram for the case of l = 2 is shown.

This illustrates graphically how the second issue, related to the computation
of the coarse level l − 1 using the higher level l, has been solved in practice.
There we plot the four different scenarios that may occur when generating
random paths (assuming we are interested in computing only a single entry
i of the vector solution, and therefore forcing all random paths to start at
the same state i). Thus, from Eq. (15), the possible outcomes of the two
random variables may induce two transitions to any of the rows of a given
matrix during the two time steps of size ∆t2. But only the last one should
be used for determining the paths corresponding to the previous level l = 1.
More specifically, the set of the four figures describe the following scenarios:
a) Transitions occur at the first and the second time step; b) Transition only
at the first time step; c) Transition only at the second time step, and d) no
transition at all. Note that the last scenario contributes with zero to the term
E[P2 − P1] in (23).

In Algorithm 1, we describe a pseudocode corresponding to the implemen-
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Algorithm 1. Multilevel Monte Carlo (MLMC) algorithm.

INPUT: L = l0 + 4, M = M0, i, N , ε, β
Call MLMCL(i,∆tl, N,M0) for fast estimating ml and Vl for l = l0, . . . , L
while error ≥ ε do

Compute the optimal number of samples Ml for l = l0, . . . , L
Call MLMCL(i,∆tl, N,Ml) for further improvement for l = l0, . . . , L
if error ≤ ε then EXIT
else

Increase number of levels, L = L+ 1
end if

end while

tation of the multilevel method. In fact, this consists in the general setting
for any implementation of the method for a variety of problems. The distin-
guishing feature among them is the suitable procedure chosen to compute in
practice any of the terms of the expansion in Eq. (23), as well as the associated
variances. The pseudocode of the procedure for computing a single entry of
the vector solution is described in Algorithm 2.

Although the multilevel method could be used to compute the full vector solu-
tion as well, the implementation is much more involved and the performance
of the algorithm less efficient. This is because it will require in practice to save
vectors instead of scalars for any of the levels in Eq. (23). This can be miti-
gated instead by computing a scalar function of the full vector solution, and
since the complexity of the algorithm for computing the full vector solution
by Monte Carlo is similar to that for obtaining the solution of a single entry,
in principle the computation time of the multilevel method for the former case
should be comparable. In fact, the pseudocode is similar (see Eq. (11) and Eq.
(14)).

4 Convergence and Computational complexity of the multilevel

algorithm

The computational complexity of any MLMC algorithm can be established
properly resorting to Theorem 1 in [24]. However, it is mandatory to char-
acterize previously the convergence of some important quantities such as the
mean |E[Pl−P ]| and variance V [Pl−Pl−1], as well as the computational time
of the Monte Carlo algorithm, as a function of the level l.

Concerning the scaling of the mean |E[Pl − P ]| with the level l, it can be
readily estimated as follows. Since E[P ] corresponds to the theoretical solution,
x = eβA u, obtained probabilistically in practice when N → ∞, |E[Pl − P ]|
corresponds in fact to the truncation error |E[Pl] − x]|. Recall that this was
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Algorithm 2. Procedure to compute a single entry i of the vector solution x̄i.

procedure MLMCL(i,∆tl, N,M)
ml = 0, m2l = 0
for l = 1,M do

η1 = 1, η2 = 1, j = i
for n = 1, . . . , N do

η2 = η2e
dj∆tl/2

if nmod 2 6= 0 then

η1 = η1e
dj∆tl

end if

generate τ exponentially distributed
while τ < ∆tl do

generate S exponentially distributed
k = j
generate j according to Eq.(7)
τ = τ + S
η2 = (−1)σkjη2
η1 = (−1)σkjη1

end while

η2 = η2e
dj∆tl/2

if nmod 2 = 0 then

η1 = η1e
dj∆tl

end if

end for

ml = ml + [uj(η2 − η1)]/M
m2l = m2l + [uj(η2 − η1)]

2/M
end for

Vl = m2l/M −m2
l

return (ml, Vl)
end procedure

considered previously as being due to the Strang splitting method. Therefore,
the local error after one time step εS of this approximation is known [1] to be

εS = ∆t3l (
1

12
[D, [D,T ]]−

1

24
[T, [T,D]]) u+O(∆t4l ), (28)

and globally of order O(∆t2l ), where [·, ·] denotes the commutator of the two
matrices, defined as [A,B] = AB −BA. This is in agreement with Fig. 2(a),
where the mean |E[Pl − Pl−1]| is plotted as a function of the level l for the
example consisting in simulations of a small-world network of three different
sizes.

Characterizing the variance V [Pl − Pl−1] as a function of the level l turns out
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to be a much more involved procedure. To start, it holds that

V [Pl − Pl−1] = E[(Pl − Pl−1)
2]− (E[Pl − Pl−1])

2 ≤ E[(Pl − Pl−1)
2]. (29)

Hence, the problem can be reduced to the problem of estimating E[(Pl −
Pl−1)

2]. For this purpose, and as a preliminary step, it will be estimated next

a partial result regarding the random variable η
(l)
2 and η

(l−1)
1 , and then the

final result will be estimated accordingly. These random variables are obtained
when generating paths for a single time step (when the level is l− 1), and two
consecutive time steps (when the level is l). The subscripts 2 and 1 denote
two and one consecutive steps respectively. Therefore, we first establish the
following Lemma.

Lemma 3 Let j and k discrete random variables that take values on Ω =
{1, 2 · · · , n}, with probability pij(t) and pjk(t) given by the transition probabil-

ities of a continuous-time Markov chain generated by the infinitesimal gener-

ator Q = −(L)ij and evaluated at time ∆tl. Then, it holds that

E[(η
(l)
2 − η

(l−1)
1 )2] = O(∆t3l ), (30)

where η
(l)
2 = e∆tl di/2e∆tl dje∆tl dk/2 uk, and η

(l−1)
1 = e∆tl die∆tl dk uk, respectively.

Proof. Expanding η
(l)
2 and η

(l−1)
1 in powers of ∆tl yields

E[(η
(l)
2 − η

(l−1)
1 )2] = ∆t2lE[ξ

2] + E[O(∆t3l )], (31)

where ξ = (−di/2 + dj − dk/2)uk. The possible outcomes of the random vari-
ables j, and k can be one of the following four different cases: (a) j 6= k 6= i;
(b) j 6= i, k = j; (c) j = i, k 6= i and (d) j = k = i (see Fig. 1 for illustration).
To distinguish among them, consider one pair of binary variables (α1, α2),
taking values {(0, 0), (0, 1), (1, 0), (1, 1)} and corresponding to the cases a, b, c,
and d, respectively. From the transition probabilities of the corresponding
continuous-time Markov chain, the probability of obtaining each of them is
given by

pα1α2
= [α1 e

∆tl di +(1−α1)(1− e∆tl di)][α2 e
∆tl dj +(1−α2)(1− e∆tl dj)] (32)

It is worth observing that any multiple transitions within time ∆tl are not
considered in this calculation, since it can be seen that they contribute to a
higher order O(∆t2l ) to the transition probability.

By expanding pα1α2
in powers of ∆tl, we have

pα1α2
= α1 α2 + C∆tl +O(∆t2l ), (33)
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Fig. 2. (a) Mean ml and (b) variance Vl of Pl − Pl−1 in log2 scale versus the level
number l obtained numerically. The adjacency matrix corresponds to a small-world
network of different sizes n. The blue line denotes an ancillary function of slope −2.

where C depends merely on di, dj , dk. Note that for the case (d), which cor-
responds to (α1, α2) = (1, 1), ξ turns out to be 0, therefore it follows that

E[(η
(l)
2 − η

(l−1)
1 )2] is O(∆t3l ) and the proof is complete. �

To find the global convergence rate, consider the following Lemma.

Lemma 4 Assume ik, with k = 1, · · · , N , are N discrete random variables

taking values on Ω = {1, 2 · · · , n}, with probability pik ik+1
(t) given by the

transition probabilities of a continuous-time Markov chain generated by the

infinitesimal generator Q = −(L)ij and evaluated at time ∆tl. Then, it holds
that

E[(Pl − Pl−1)
2] = O(∆t2l ) (34)

Proof. Expanding η
(l)
j and η

(l−1)
j in Eq. (24) in powers of ∆tl, we have

E[(Pl − Pl−1)
2] = ∆t2lE[(

Nl/2
∑

j=1

ξj)
2] +O(∆t3l ), (35)

where ξj = (dik/2 + dik+1
+ dik+2

/2) − (dik + dik+2
), and k = 2j − 1. We can

estimate the probability of occurrence of the event q characterized by the value
∑Nl/2

j=1 ξj = 0. This event may occur when zero transitions took place during
time t. Recall that we are ignoring here, for the same reason pointed out in
Lemma 4, the contribution to the probability of multiple transitions leading
to a final state equal to the initial one. Therefore, assuming the initial state
to be i, the probability of occurrence of the event q is given by

P(q) =
Nl
∏

k=1

e−∆tl lii = e−Nl∆tl lii , (36)
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Fig. 3. Computational time in log2 scale versus the level l for adjacency matrices
corresponding to two different complex networks of size n = 106. The blue line
corresponds to an ancillary function of slope 1.

which is independent of ∆tl, since Nl = β/∆tl, and moreover for β 6= 0 strictly
different from 1. Therefore, when ∆tl → 0 we have a non-zero probability of
obtaining non-zero values for

∑Nl/2
j=1 ξj. Then, E[(

∑Nl/2
j=1 ξj)

2] cannot be zero,
and consequently, from Eq. (35) it follows that E[(Pl − Pl−1)

2] should be of
order O(∆t2l ). �

In Fig. 2(b), V [Pl − Pl−1] is shown as a function of the level l. The adjacency
matrices correspond to a small-world network of three different sizes. Note
that the obtained numerical convergence rate fully agrees with the theoretical
estimation.

The computational time of the Monte Carlo algorithm was already estimated
in [7], and it is given by

TCPU = αinβd̄M + αout
β

∆tl
M. (37)

Here d̄ is d̄ = 1
n

∑n
i=1 di, while αin and αout are suitable proportionality con-

stants. In Fig. 3, the results corresponding to the CPU time spent by the Monte
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Carlo algorithm when computing the total communicability of two different
networks characterized by different values of d̄ is shown. The results are in
agreement with the theoretical estimation in Eq. (37). In particular, note that
for ∆tl sufficiently large (or equivalently l sufficiently small) the computational
time tends to a constant value, while for smaller values the computational time
scales as 1/∆tl. This also explains what was mentioned previously in Sec. 2,
which is that the initial level l0 of the multilevel method could be different from
zero to obtain a better performance of the MLMC algorithm. In fact, depend-
ing on the value of ∆tl and consequently on the level l, two different working
regimes can be observed, and only for the regime characterized by a value of
∆tl sufficiently small, the computational time asymptotically increases with
l. Specifically this occurs when the contribution to the computational time of
the second term in Eq. (37) is much larger than the first term. Assuming that
the value of the proportionality constants αin, αout are similar, we can readily
estimate the minimum value of the level needed for this purpose, and is given
by

l0 ≫ log2(βd̄). (38)

However, in general both constants αin, and αout are not only different, but also
difficult to be theoretically estimated. From numerical simulations, however,
a more practical lower bound has been found and is given by

l0 = log2(2βdmax), (39)

where dmax corresponds to the maximum value of the diagonal matrix D.
In Fig. 4 the computational time spent by the MLMC method for different
values of the initial level l0 is shown. Here the MLMC was applied to the
problem of computing the total communicability [11] of two different networks,
small-world and scale-free, of size n = 106. For the small-world network the
maximum degree is 7, while for the scale-free network is 3763. The value of β
was chosen to be 1 for the small-world network and 1/dmax for the scale-free
network. The last one was chosen specifically to ensure the convergence of
the method, as it was pointed out in [7]. Note that, for both networks, the
computational time attains a minimum at a specific value of l0, which is well
approximated by Eq. (39).

In view of the convergence rates estimated above, we can apply the aforemen-
tioned Theorem 1 in [24] and conclude that the computational complexity of
the proposed MLMC algorithm is of order O(ε−2). In practice this means that
the error due to the splitting in Eq. (2) is totally canceled out from the al-
gorithm, remaining only the computational cost inherent to any Monte Carlo
method due to the statistical error. Rather, the complexity of the classical
Monte Carlo algorithm proposed in [7] is of order of ε−5/2. Indeed this can be
readily proved as follows. Concerning the statistical error, the sample size M
required to achieve a prescribed accuracy ε is given by M = ε−2, while for
the splitting error, being the method of order of ∆t2, the time step required
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Fig. 4. Computational time of the MLMC method for different values of the ini-
tial level l0. The matrices correspond to the adjacency matrices of two different
complex networks of size n = 106. The accuracy for the small-world network is
ε = 6.25× 10−4, while for the scale-free network is ε = 2× 10−7.

for a given ε is ∆t = ε1/2. Therefore, the computational complexity, which
depends on M/∆t, is given by O(ε−5/2). In Fig. 5 the results corresponding
to the computational time spent to compute the communicability of a single
node of a small-world network of size n = 106 are plotted as a function of
a chosen prescribed accuracy ε for both, the multilevel Monte Carlo and the
classical Monte Carlo method. Note the perfect agreement with the theoretical
estimates, and the performance notably superior to the classical Monte Carlo
method in [7] for lower accuracy values.

5 Performance evaluation

To illustrate the performance of the multilevel Monte Carlo method, in the
following we show the results corresponding to several benchmarks conducted
so far. They concern the numerical solution of a linear parabolic differential
equation by means of an exponential integrator, as well as, the numerical

22



-4 -3.5 -3 -2.5 -2 -1.5 -1
Accuracy log

10
 (ε)

0

1

2

3

4

5

6
lo

g
1
0
(C

P
U

 T
im

e)

Monte Carlo
Multilevel MC

ε−5/2

ε−2

Fig. 5. Computational time as a function of the prescribed accuracy ε, both in
log10 scale. The blue solid line corresponds to an ancillary function of slope −5/2,
while the dotted line to a function of a slope −2. The results correspond to the
communicability for a single node of a small-world network of size n = 106

computation of the total communicability metric in some complex synthetic
networks.

In fact, among an important application of the multilevel algorithm for com-
puting the action of a matrix exponential, we have the numerical solution
of parabolic PDEs by means of the method of lines, using therefore an ex-
ponential integrator. When the method of lines [31] is applied to an initial
parabolic PDE problem discretizing the spatial variable, a system of coupled
ordinary differential equations, with time as the independent variable, is ob-
tained. Finally, the system can be solved resorting to the computation of a
matrix exponential which acts on the discretized initial value function. The
method was here applied for solving the Dirichlet boundary-value problem for
both, a 3D heat equation, and a 3D convection-diffusion equation. The former
problem is given by

∂u

∂t
= ∇2u, in Ω = [−δ, δ]3, t > 0, (40)
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with boundary- and initial-conditions

u(x, t)|∂Ω = 0, u(x, 0) = f(x). (41)

The approximated solution û(x, t) where x ∈ R3, x = (x, y, z), after dis-
cretizing in space with grid spacing ∆x = ∆y = ∆z = 2δ/nx, and using
the standard 7−point stencil finite difference approximation, can be written
formally as

û(x, t) = e
n2
xt

4δ2
L̂ û0(x), (42)

where L̂ denotes the corresponding discretized Laplacian operator.

This problem is specially relevant, because the eigenvalues of the matrix A =
n2
x/4δ

2L̂ can be analytically obtained [38]. In fact, the largest eigenvalue is
known to be λmax = 6n2

x/4δ
2(1 − cos nxπ

nx+1
), while the smallest one is λmin =

6n2
x/4δ

2(1−cos π
nx+1

). Therefore, we can compute readily the so-called stiffness
ratio r = λmax/λmin for this problem, and asymptotically for large values of
nx is given by r ∼ 4n2

x/π
2. Note that in view of the values of nx used for

the simulations in Tables 1 and 2, this problem represents indeed a suitable
example to test the performance of the method for solving stiff problems.

Concerning the convection-diffusion equation, mathematically we have

∂u

∂t
= ∇2u+ β · ∇u, x ∈ Ω, t > 0,

u(x, t)|∂Ω = g(x, t), (43)

u(x, 0) = f(x),

where β is the velocity field. After applying the standard Galerkin finite ele-
ment method [43] to the discretized nodes xi, i = 1, . . . , n, the following linear
system of coupled first order ODEs is obtained

M
du

dt
= Ku+ F, u(0) = u0, (44)

where u = (u(x1, t), . . . , u(xn, t)), M is the assembled mass matrix, K is the
corresponding assembled stiffness matrix, and F is the load vector. Concerning
the boundary data, these are included modifying as usual the matrices and
the vector. For computational convenience, in the following the mass matrix
was lumped [43], resulting in practice in a diagonal mass matrix.

Formally, the solution of the inhomogeneous system of ODEs (44) can be
written in terms of a matrix exponential as follows

u(x, t) = e−tM−1Ku0 +
∫ t

0
ds e−sM−1KF(t− s). (45)
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Note that for the particular case of having time-independent boundary data,
the load vector becomes therefore constant, and the solution simplifies to

u(x, t) = e−tM−1Ku0 −K−1M
(

e−tM−1K − 1

)

F. (46)

On the other hand, for arbitrary time-dependent boundary data, the integral
in Eq. (45) can be computed resorting to suitable numerical quadratures. This
procedure can be followed in any case to avoid evaluating the inverse of the
matrix K in Eq. (46), which in general can be computationally costly. In fact,
this was specifically used here for solving numerically the system of equations
in (44). Since to compute the matrix exponential the error was estimated to be
of order O(∆t2) (see Sec. 4), to avoid lowering down this order, in the following
we have implemented the Simpson quadrature rule, which is known to be of
much higher order. More specifically, the solution û(x, t) can be computed as
follows

û(x, t) = e−tM−1Ku0 +∆t



F(t) + 2
N/2−1
∑

j=1

e−tj M
−1KF(t− tj)

+4
N/2
∑

j=1

e−tj M
−1KF(t− tj) + e−tM−1KF(0)



 , (47)

where tj = j∆t, j = 1, . . . , N , and ∆t = t/N . Note that we require to compute
N independent matrix exponential evaluations at N different instants of time.
However, it turns out that using the Algorithm 2, in practice only a single
evaluation at the final time t is needed to compute. This is because when
using the Monte Carlo method for computing the matrix exponential at time
t, the information required to evaluate the matrix exponential at intermediate
times have been also automatically generated by the algorithm. In fact, the
random paths generated up to time t, which have been simulated advancing in
time steps of size ∆t, can be used directly to evaluate the matrix exponential
over the vector F at time j∆t. Moreover, it should be stressed that this can
be accomplished without any additional computational cost.

In practice this can be readily done modifying slightly the Algorithm, as it is
shown in boldface in the new Algorithm 3. Here ωn is a vector containing the
suitable weights (1, 2, 4, . . . , 2, 4, 1) corresponding to the Simpson quadrature
rule.

Other important application of the matrix exponential consists in computing
the total communicability of a network. By definition, the total communica-
bility of a network [11] is given by

TC = (1, eA 1), (48)

where 1 is a vector of ones, and (·, ·) denotes the scalar product. In the fol-
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Algorithm 3. Procedure to compute a single entry i of the vector solution û(x, t)

procedure MLMCL-FEM(i,∆tl, N,M)
ml = 0, m2l = 0,integ1 = 0,integ2 = 0
for l = 1,M do

η1 = 1, η2 = 1, j = i
for n = 1, . . . , N do

η2 = η2e
dj∆tl/2

if nmod 2 6= 0 then

η1 = η1e
dj∆tl

end if

generate τ exponentially distributed
while τ < ∆tl do

k = j
generate S exponentially distributed
generate j according to Eq.(7)
τ = τ + S
η2 = (−1)σkjη2
η1 = (−1)σkjη1

end while

η2 = η2e
dj∆tl/2

if nmod 2 = 0 then

η1 = η1e
dj∆tl

end if

integ1 = integ1 + ωnη1
integ2 = integ2 + ωnη2

end for

ml = ml + [uj(η2 − η1)]/M+ [Fj(integ2 − integ1)]/M
m2l = m2l + [uj(η2 − η1)]

2/M+ [Fj(integ2 − integ1)]
2/M

end for

Vl = m2l/M −m2
l

return (ml, Vl)
end procedure

lowing we analyze the total communicability for several networks consisting
in generated synthetic networks of the type small-world and scale-free of arbi-
trary size. These networks have been generated in Matlab using the functions
smallw and pref, respectively, both freely available through the toolbox CON-
TEST [15]. In contrast to the small-world network, the scale-free networks are
characterized by the presence of hubs, which in practice entail a much larger
largest eigenvalue than for the small-world networks. Then, since the value of
this eigenvalue increases with the network size, and in order to keep constant
the numerical error, it may be necessary for the MLMC method to increase
strongly the number of required levels accordingly. To prevent such a com-
putationally costly procedure, a reasonable alternative relies on computing a
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generalization of the communicability, that is eβA, where β is typically inter-
preted as an effective ”temperature” of the network (see [21], e.g.). Essentially
the idea that was exploited in [7] was to use the inverse of the largest eigen-
value as the value of the parameter β, which in practice will control the rapid
growth of the norm of the matrix A with the size of the network. Different
values of β could have a direct impact not only on the entries of the com-
municability vector, but also on the ranking of the nodes according to their
communicability values. However, in practice this does not occur. Through
the analysis of the intersection similarity of several networks [7] it was shown
that the chosen value of β does not affect significantly the results, being in all
cases the differences well below the typical error tolerances, and even becoming
smaller for increasingly larger network sizes. Consequently, and to ensure fast
convergence of the method, in the simulations below we have used β = 1/λmax,
where λmax is the largest eigenvalue of A. However, finding the largest eigen-
value for large networks is itself computationally costly and, in the following,
a faster alternative based on computing the maximum degree of the network,
dmax, was used instead as an upper bound value.

5.1 Shared memory architecture

The simulations corresponding to the shared memory architecture were run
on both a commodity server equipped with 12 cores and 32 GB of RAM,
and the MareNostrum supercomputer using a single node with 48 cores. The
MLMC algorithm has been implemented in OpenMP, and the SPRNG library
[37] for the parallel random number generator. To compare the performance
with other methods, as well as to control the numerical errors, the MATLAB
toolbox funm−kryl freely available in [23] has been used. This method consists
in the implementation of a Krylov subspace method with deflated restarting
for matrix functions [27]. Note that Matlab was originally written in C/C++
and, specifically, operations involving matrix-vector multiplication or matrix-
matrix multiplication show nowadays an optimal performance in the latest
versions of Matlab, since they are exploiting very efficiently multithreading
execution as well as SIMD units available in current microprocessors. Taking
into account that the Krylov subspace method requires matrix-vector multipli-
cations extensively, we assume the obtained performance of the Matlab code
to be more than competitive with respect to the performance of a native code
in C/C++. Moreover, our implemented OpenMP code was not optimized to
ensure a fair comparison with Matlab. Finally, it is worth remarking that the
choice for using Matlab for comparison and not a native code was essentially
motivated by the lack of any parallel code freely available in C/C++.

Example A: Partial Differential equations.
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The computational time spent by both, the MC and MLMC method, for
solving the initial-boundary value problem for a 3D heat equation at a single
point is shown in Tables 1 and 2. This has been done for different matrix sizes
and number of cores running on the commodity server, and for about the same
accuracy.

It is worth noting that in view of the probabilistic nature of any Monte Carlo-
based algorithm, the measured computational times cannot be uniquely de-
fined. For that reason the simulations have been repeated a few times, re-
porting therefore in the corresponding tables both, the mean value and the
value of the two standard deviation (95% confidence interval) in parenthe-
sis. However, this has been done exclusively for the simulations run using the
commodity server, since for the other simulations run using supercomputers
(MareNostrum and Marconi) the computational time was measured only once
in a single simulation due to the limited CPU-time available during the course
of this work.

Concerning the error, this was estimated using the aforementioned Krylov-
based method by setting a very small value of the stopping-accuracy param-
eter, 10−16, as well as the restart parameter to 40.

For comparison, the computational time spent by Matlab is also shown only
for the smaller matrix size, since for the larger one Matlab simulations run
out of memory. As it was pointed out in [7] this is mainly due to the memory
demands of any Krylov-based algorithm. Instead, the Monte Carlo method is
extremely efficient in terms of memory management, since it requires only to
allocate in memory the input matrix.

Table 1
Elapsed time spent for computing the solution of the 3D heat equation at the single
point (0, 0, 0), and for time t = 1 as a function of the number of cores. The initial
value function was f(x) = e−(x2+y2+z2). The accuracy was kept fixed to 5 × 10−4.
The length of the domain was δ = 4 and the number of grid points was n3

x, with
nx = 256.

Cores Time MC (s) Time MLMC (s) Time Matlab (s)

1 231(1) 164(5) 428

4 66(3) 46(2) 306

8 33(1) 24(2) 327

12 22(1) 16(1) 334

For the solution of the convection-diffusion equation, the arbitrary complex
geometry plotted in Fig. 6 was used as the domain, being the Dirichlet bound-
ary data chosen to be u = 0 at the surface of the outer sphere, and u = 1 at
the surface of the inner cylinder. The size of the domain can be conveniently
increased by simply rescaling both, the sphere and cylinder, using a single
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Table 2
Elapsed time spent for computing the solution of the 3D heat equation at the single
point (0, 0, 0), and for time t = 1 as a function of the number of cores. The accuracy
was kept fixed to 5× 10−4. The length of the domain was δ = 4 and the number of
grid points was n3

x, with nx = 512.

Cores Time MC (s) Time MLMC (s)

1 1120(1) 786(10)

4 316(5) 227(6)

8 164(2) 117(6)

12 110(2) 78(2)

scale parameter scale. To generate the computational mesh, and obtaining the
corresponding FEM matrices and vector, the scientific software COMSOL [14]
was used, choosing specifically linear elements at the discretization setting.
Concerning the element size used when meshing the geometry, it was kept
fixed to be 0.8 and 0.14 for the maximum and minimum size, respectively.

It is worth to remark here that this is the more general example, consisting in
an unsymmetric matrix with entries of arbitrary sign.

To gain some insight about the properties of the underlying matrix used in
this example, it can be useful to analyze the largest and smallest eigenvalue
of the matrix, as it was done for the previous example. However, it turns out
that there is no available analytical solution for this problem, being required
therefore to resort to some numerical approximations. This was done specifi-
cally for this problem using the Arnoldi method, which has been implemented
in Matlab and executed through the command eigs. In general, especially for
large matrices, it is known that this could be a formidable numerical task in
itself. In fact, here it was only possible to compute such eigenvalues for the
smallest problem, which corresponds to the size domain denoted as scale = 4
in Table 4. The real part of the eigenvalues, since the matrix is unsymmetric,
are given by Re(λmax) = 2.08× 103, Re(λmin) = 3.47.

The computational time spent for computing the solution at a single point and
time inside the domain for different number cores is shown in Table 3. Note
that both the MC method and the MLMC method scale well with the number
of cores, while the computational time spent with Matlab rapidly saturates
when increasing the number of cores, due to the heavier intercommunication
overhead of the Krylov-based algorithm.

In Table 4 the computational time spent when computing the solution for
different size domains is shown, being now the number of cores kept fixed to
the maximum number of cores available.
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Fig. 6. Computational mesh describing the domain used for solving the 3D convec-
tion-diffusion equation.

Table 3
Elapsed time spent for computing the solution of the 3D convection-diffusion equa-
tion at a single point, and for time t = 1 as a function of the number of cores. The
spatial point where the solution is computed, has been chosen to be the nodal point
of the computational mesh closer to the physical point (0, 0, 0). The accuracy was
kept fixed to 5× 10−4. The radius of the sphere was r = 4× scale, with scale = 12,
being the total number of nodes of the computational mesh n = 2, 375, 211.

Cores Time MC (s) Time MLMC (s) Time Matlab (s)

1 1, 519(33) 423(15) 152

4 378(8) 106(3) 107

8 215(4) 77(10) 91

12 167(5) 64(9) 89

It is remarkable that the computational cost of the MC and MLMC method
appears to be almost independent of the size of the domain, while it increases
almost linearly for the Krylov-based method. As it was already explained in
[7] for the specific case of complex networks, this is mainly due to the similar
matrix structure observed for any value of the matrix size. Because of this,
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the error becomes mostly independent of the size, and consequently it is not
required to modify further the value of the sample size M, or the time step
∆t for increasingly larger matrix sizes (assuming a given prescribed accuracy
for the solution), making therefore the computational cost of the algorithm
almost independent of the size of the domain. This does not happen with the
Krylov-based method, allowing specifically for the MLMC method to achieve
a computational performance higher than the Matlab solution for large scale
problems.

Table 4
Elapsed time spent for computing the solution of the 3D convection-diffusion equa-
tion at a single spatial point, and time t = 1 for different sizes of the domain. This
has been done rescaling both, the sphere and cylinder, choosing different values of
the scale parameter. The number of cores was kept fixed to 12 cores. The spatial
point where the solution was computed consisted in the nodal points closer to the
physical point (0, 0, 0). The accuracy was kept fixed to 5× 10−4.

Scale n Time MC (s) Time MLMC (s) Time Matlab (s)

4 83, 813 125(3) 59(11) 2

8 694, 751 146(5) 66(10) 24

12 2, 375, 211 167(5) 64(9) 90

Even though, the MC and MLMC methods were proposed initially to com-
pute the solution at single temporal points, it turns out that they can be used
as well to obtain the solution at intermediate instants of time. As a remark-
able feature this can be done without any additional computational cost, as
it was already explained in Sec. 5. For the Krylov-based methods, it is worth
pointing out that there were also some recent attempts [32] to improve the
performance of the method for computing the solution in a finite time inter-
val, being however the performance of the resulting algorithm slightly worse
than the performance of the algorithm for computing the solution at a single
time. To test the accuracy of the obtained solution for intermediate times,
in Fig. 7 the solution computed using the Monte Carlo method is compared
with the solution obtained using the Krylov-based method. Note the excellent
agreement between both solutions for any value of time.

Example B: Complex networks

Small-world networks. In Table 5 the computational time required to compute
the total communicability of a small-world network of size n = 108 is shown
as a function of the number of cores for the Monte Carlo, MLMC method, and
Matlab.

In Table 6 the results corresponding to a sort of weak scalability analysis of the
MLMC algorithm are shown. For this purpose the algorithm was run for an
increasing number of cores, searching for the value of the accuracy ε that equals
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Fig. 7. Solution of the 3D convection-diffusion equation evaluated at the nodal points
closer to the physical point (0, 0, 0), and for different values of time. The initial value
function was f(x) = e−(x2+y2+z2), and the velocity field β (−1,−1,−1). The solid
line denotes the solution obtained with the MLMC method, and the dotted line
corresponds to the Krylov-based solution.

Table 5
Elapsed time spent for computing the total communicability of a small-world net-
work as a function of the number of cores. The size of the matrix is n = 108, and
the accuracy ε was kept fixed to 6.25 × 10−4. The simulations were run on the
commodity server.

Cores Time MC (s) Time MLMC (s) Time Matlab (s)

1 825(2) 508(4) 348

4 225(2) 137(7) 258

8 114(2) 71(8) 257

12 76(2) 47(3) 282

the simulation time. Note that when the number of used cores increases, the
accuracy ε should be reduced accordingly. Moreover, since the computational
cost of the MLMC algorithm is of order O(ε−2), the workload of the algorithm
increases when reducing the value of ε, being therefore required to increase
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conveniently the number of used cores to keep approximately constant the
overall execution time.

From the results in Table 6 it can be seen, for instance, that whenever the
number of used cores increases 24 times (passing from 1 to 24 cores), the value
of ε should be reduced by a factor of approximately 0.22 for the same execution
time. It is worth observing that for such a reduction of ε, the workload of the
algorithm increases by a factor of 21, which can be fully mitigated by increasing
the number of used cores up to 24. This is due to the remarkable scalability
of the parallel algorithm. Similar conclusions can be drawn from the results
obtained when using 48 cores.

Table 6
Weak scalability analysis of the MLMC algorithm for computing the total com-
municability of a small-world network. The elapsed execution time was kept fixed
around 1100 seconds, and the size of the matrix was n = 108. The simulations were
run on the MareNostrum supercomputer.

Cores ε Time MLMC (s)

1 4.05× 10−4 1107

24 8.8× 10−5 1095

48 6.25× 10−5 1115

Table 7
Elapsed time spent for computing the total communicability of a small-world net-
work as a function of the network size. The accuracy ε was kept fixed to 6.25×10−4,
and the number of cores on the commodity server to 12.

Size n Time MC (s) Time MLMC (s) Time Matlab (s)

105 36(1) 26(2) 0.2

106 38(1) 30(1) 1.9

107 75(1) 45(2) 21

108 76(1) 47(3) 282

Table 7 shows the results corresponding to the computational time when com-
puting the total communicability for different network sizes. Here the number
of cores was fixed to the maximum number of cores available. It is remarkable
to note that the computational cost of the MLMC method appears to be al-
most independent of the size of the network, while it increases almost linearly
for the Krylov-based method.

Concerning the largest and smallest eigenvalues of the matrix, since again no
analytical solution is available, we resort here to numerical approximations
for the smallest network size, n = 105, and the results are λmax = 3.14, and
λmin = 2.6959× 10−5.
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Scale-free networks. In Table 8 the results corresponding to a scale-free network
for an arbitrarily large size are shown for different number of cores. Similar to
the results obtained for the small-world network, the MLMC method outper-
forms the Krylov-based method for large size networks and cores. Since the
network size used in this example has a matrix extremely large, no numerical
approximations for the largest and smallest eigenvalues could be computed.

Table 8
Elapsed time spent for computing the total communicability of a scale-free network
as a function of the number of cores. The size of the matrix was n = 108, and the
accuracy ε was kept fixed to 2.5×10−8. The simulations were run on the commodity
server.

Cores Time MC (s) Time MLMC (s) Time Matlab (s)

1 136(1) 87(10) 98

4 35(1) 23(10) 88

8 18(1) 11(3) 89

12 12(1) 8(3) 95

5.2 Distributed memory architecture

The simulations for a distributed memory architecture were carried out on the
MareNostrum Supercomputer of the Barcelona Supercomputing Center (BSC)
and on the Marconi Supercomputer at CINECA. In both cases, two processes
were launched on each node (one per processor), with as many threads as
physical cores available (24 threads on MareNostrum and 18 on Marconi). Up
to 200 nodes (a total of 9600 cores) were used on MareNostrum and up to 160
nodes (5760 cores) on Marconi, which are respectively the maximum we had
access to.

To the best of our knowledge, no parallel code suitable for distributed memory
architecture capable of computing the action of a matrix exponential over a
vector is currently available. Therefore, in the following, only results corre-
sponding to the proposed multilevel method implemented in MPI are given.

Example A: Partial Differential equations.

The computational time spent by the multilevel method for computing the
solution of the boundary value problem for the 3D heat equations at a single
point is shown in Table 9 for different number of cores. These results were
all obtained in the Marconi system. The speedup column indicates how much
faster the execution is relative to half the number of cores (previous row in
the table).
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Table 9
Elapsed time spent for computing the solution of the 3D heat equation at the single
point (0, 0, 0), and for time t = 1 as a function of the number of cores. The accuracy
ε was kept fixed at 10−5. The length of the domain was δ = 4, and three different
numbers of discretization points, nx, were used. Note that the matrix size for the
system is given by n3

x × n3
x.

nx Cores Time MLMC (s) Speedup

720 153

128 1440 82 1.9

2880 41 2.0

5760 21 2.0

720 774

256 1440 395 2.0

2880 196 2.0

5760 107 1.8

720 3577

512 1440 1773 2.0

2880 906 2.0

5760 467 1.9

In all cases, the speedup is very close to the ideal, even for such a large number
of cores. This is because most of the calculations are totally independent,
corresponding to the Monte Carlo simulations performed at the each level of
the method. For the defined level of accuracy ε, a very large number of samples
is required, exceeding the number of 109 for the coarsest level. Communication
is required between levels, but the overhead is negligible.

Example B: Complex networks

Small-world networks. In Table 10 the computational time required to compute
the total communicability of a small-world network of size n = 108 is shown
as a function of different number of cores for the multilevel method.

As in the case of the partial differential equation, the scalability of the method
is almost perfect.
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Table 10
Elapsed time spent for computing the total communicability of a small-world net-
work as a function of the number cores. The size of the matrix was n = 108, and
the accuracy ε was kept fixed at 10−7.

Cores Time MLMC (s) Speedup

1200 315

MareNostrum 2400 175 1.8

4800 87 2.0

9600 50 1.7

720 320

Marconi 1440 166 1.9

2880 86 1.9

5760 44 2.0

6 Conclusion

The multilevel Monte Carlo method was conveniently recast to be able to com-
pute the action of a matrix exponential over a vector. As the main ingredient
of the method, the leading probabilistic method requires generating suitable
random paths which evolve through the indices of the matrix according to the
probability law of a continuous-time Markov chain governed by the associated
Laplacian matrix.

This new method extends the previous work in three respects. First, the prob-
abilistic method proposed in [7] has been generalized allowing now to be ap-
plied to any class of matrices (not only adjacency matrices). Second, it allows
now to compute much more efficiently a highly accurate solution. In fact the
computational complexity has been proved in this paper to be significantly
better than that of the classical Monte Carlo method. Third, the underlying
algorithm after parallelization has been shown to be highly scalable, which in
practice enables simulation of large-scale problems for extremely large number
of cores. We analyzed the performance of the algorithm running several bench-
marks of interest in science and engineering. These consist in computing the
total communicability of the network for a variety of complex networks (real
and synthetic), and in solving at single points inside the domain a boundary-
value problem for parabolic partial differential equations. Finally, whenever
available, simulations based on a standard Krylov-based method have been
conducted, and the performance compared with the multilevel MC method.
In particular, the multilevel MC method clearly outperforms the deterministic
method for solving problems consisting in large matrices, not only in terms of
computational time, but also in terms of memory requirements.

36



To conclude, an interesting question deserving further investigation is whether
the proposed method can be extended to deal with other matrix functions such
as trigonometric functions arising in oscillatory problems, and even hyperbolic
functions appearing in coupled hyperbolic systems of partial differential equa-
tions.
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