
A probabilistic linear solver based on a

multilevel Monte Carlo method

Juan A. Acebrón a,b

aDept. Information Science and Technology, ISCTE-University Institute of Lisbon,

Portugal

bINESC-ID,Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract

We describe a new Monte Carlo method based on a multilevel method for com-
puting the action of the resolvent matrix over a vector. The method is based on the
numerical evaluation of the Laplace transform of the matrix exponential, which is
computed efficiently using a multilevel Monte Carlo method. Essentially, it requires
generating suitable random paths which evolve through the indices of the matrix
according to the probability law of a continuous-time Markov chain governed by the
associated Laplacian matrix. The convergence of the proposed multilevel method
has been discussed, and several numerical examples were run to test the perfor-
mance of the algorithm. These examples concern the computation of some metrics
of interest in the analysis of complex networks, and the numerical solution of a
boundary-value problem for an elliptic partial differential equation. In addition, the
algorithm was conveniently parallelized, and the scalability analyzed and compared
with the results of other existing Monte Carlo method for solving linear algebra
systems.

Key words: Multilevel, Monte Carlo method, network analysis, parallel
algorithms, high performance computing
PACS: 65C05, 65C20, 65N55, 65M75, 65Y20

1 Introduction

Among the many numerical methods proposed in the literature for solving lin-
ear algebra problems, the probabilistic methods were often perceived within
the linear algebra community more as a curiosity than a serious alternative to

Email address: juan.acebron@iscte-iul.pt (Juan A. Acebrón).

Preprint submitted to Elsevier Science 17 January 2020

the state-of-the-art deterministic methods. Even though it is broadly accepted
that they offer interesting features from a computational point of view, such
as being easily parallelizable, fault-tolerant, and more suited to heterogeneous
architectures (features of paramount importance in view of the current high
performance computers). However, the truth is that they also exhibit some sig-
nificant weakness, such as a very slow convergence to the solution. This made
the underlying algorithms highly demanding computationally, especially when
dealing with high accuracy solutions. In addition, they require a continuous
close monitoring by the user in order to control the numerical errors, being
therefore often necessary to repeat several times the simulations before ac-
cepting the solution within the accuracy prescribed by the user. Rather the
deterministic methods, such as the iterative methods, are basically governed
by an automatic procedure, being often only necessary to impose initially a
certain tolerance that should be reached by the algorithm before stopping
safely the execution. This tolerance should be enough (with the exception of
some pathological problems) to guarantee the convergence of the solution to
the prescribed accuracy. Some of the aforementioned issues affecting the prob-
abilistic methods have been progressively improved over the years, although it
may seem that the advance is often relatively modest, specially when compared
with the advance experimented by the counterpart deterministic methods.

Historically, the idea of using probabilistic methods based on Monte Carlo
simulations for solving linear algebra problems goes back to the pioneering
work of von Neumann and Ulam during the 1940’s [18]. Although initially
the method was proposed merely for computing the inverse of a matrix, it
was later generalized for solving linear algebra problems in a series of seminal
papers, see [13,14] e.g., and [12,30] for further references. Briefly the underlying
idea consists in generating a discrete Markov chain which evolves by random
paths through the different indices of the matrix. Mathematically, the method
can be seen in a way as a Monte Carlo sampling of the Neumann series of
the matrix. The convergence of the method was rigorously established in [27],
and improved further more recently (see for instance [15], and [8] just to
cite a few references). More specifically, in [16,8] an important step forward
has been done in the applicability of the probabilistic methods for solving
more realistic problems. The method called Monte Carlo synthetic acceleration
method is in fact a kind of hybrid scheme which combines the Richardson
iterative method along with a Monte Carlo method. Essentially the role played
by the Monte Carlo method consists in accelerating the convergence of the
underlying iterative method, and has been shown to be competitive enough
for a class a problems, comparing even with perhaps one of the most widely
used iterative method such as the GMRES method.

Another related area of application of the probabilistic methods where some
significant progress has recently made is in the field of matrix functions [24,25].
In fact, in the specific case of the action of a matrix exponential over a vector,

2

it was proposed in [3,4] a probabilistic method based on a multilevel Monte
Carlo method [21], which as an important feature improves notably the typical
slow convergence rate of any Monte Carlo method. The multilevel method has
become in fact a widely used method for accelerating stochastic simulations
in general (see the excellent review in [20] e.g., and [5] for a specific appli-
cation to Markov Chains), and in particular for the matrix exponential has
been shown in [4] that can be even competitive against the classical determin-
istic methods based on Krylov subspace methods. Specifically, for large scale
problems and extremely large number of processors, the multilevel method
clearly outperforms the deterministic method for solving problems consisting
in large matrices, not only in terms of computational time, but also in terms of
memory requirements. Another remarkable feature of the multilevel method
is precisely to be a method that gives rise to automatic algorithms in the
aforementioned sense. In fact, typically the only interaction of the user with
the algorithm consists merely to set up initially the prescribed accuracy of the
solution, and subsequently the algorithm is capable of reaching autonomously
the desired goal.

The aim of this paper is precisely to apply such a multilevel method for the
problem of computing the action of a resolvent matrix over a vector. This is
done in practice exploiting the well-known connection existing between the
resolvent matrix with the matrix exponential through the Laplace transform.
The multilevel method derived in [4] for the case of the matrix exponential is
conveniently adapted for this specific problem, as well as the convergence of
the resulting method and computational cost of the underlying algorithm con-
veniently analyzed. Moreover, to test the performance of this new algorithm
several numerical examples were run. Those concern the computation of the
so-called Katz centrality, which describes some important features in com-
plex networks, and the numerical solution of a linear system coming from the
discretization of a boundary-value problems for an elliptic partial differential
equation. Finally, another noteworthy contribution of the paper was to par-
allelize the resulting algorithm, and compare the scalability of the algorithm,
when running both algorithms in a multicore architecture, with other available
Monte Carlo methods. A key result from this comparison is the autonomous
operation of our approach, that, unlike other available Monte Carlo meth-
ods [8], the proposed method does not require parameter tuning for optimal
scaling.

The paper is organized as follows. The probabilistic representation of the vec-
tor solution is presented in Section 2 along with the description of the multi-
level method for the resolvent of a matrix. Section 3 describes the implemen-
tation of the multilevel algorithm. The analysis of the numerical errors and
convergence of the method is presented in Section 4, while Section 5 is de-
voted to the analysis of the computational cost of the algorithm. In addition,
in Section 6 the algorithm is tested running a few numerical examples, and

3

the parallel performance of the method is compared with the performance of
a classical Monte Carlo method. Finally, this work is closed summarizing the
high points of the paper and discussing potential directions for future research.

2 Mathematical description of the probabilistic method

In order to apply a multilevel method to any Monte Carlo method, it is first
required to have a probabilistic representation of the solution. To this pur-
pose, next we describe the probabilistic method adopted for representing the
action of the resolvent of a matrix over a vector. Let A = {aij}n

i,j=1 a given
sparse n-by-n matrix, and v and x an n-dimensional vectors. Using the Laplace
transform, it holds that

x = (s 1 − A)−1 v =
(∫ ∞

0
dt e−st et A

)

v, (1)

provided ‖A‖2 < s. The integral above can be discretized using a suitable
Newton-Cotes numerical quadrature, and after approximating the improper
integral by a finite one we obtain

x ≈
(

N
∑

i=1

ωie
−sti eti A

)

v = [
N
∑

i=1

ωi

i−1
∏

j=1

(

e−s∆t e∆t A
)

] v, (2)

where ti = (i−1)∆t, i = 1, . . . , N , ∆t = T/N the corresponding discretization
step, and ωi the suitable weights corresponding to the chosen quadrature rules.
Both, the integral discretization as well as the truncation of the improper
integral by replacing the infinite limit by a finite one, T , introduces two source
of errors which they will be analyzed in Section 4.

Concerning the action of the exponential matrix e∆t A over the vector v, this
can be computed probabilistically resorting to the representation introduced
in [3], and it was conveniently generalized here to deal with more general
classes of matrices. Essentially the main idea consists in decomposing the
matrix A as D − U . D is a diagonal matrix with entries dij = 0 ∀i 6= j,
dii = di = aii + Lii, i = 1, . . . , n, and the matrix U with entries uij is given by

uij =

Lii, if i = j

(−1)σij Lij, otherwise
(3)

where σ = {σij} is a binary matrix with entries taking the value 1 when
aij < 0, and 0 otherwise. Here L = (Lij) denotes a generalized Laplacian
matrix, defined in the broad sense as a matrix with nonpositive off-diagonal
entries Lij = −|aij|, and zero row sums, that is Lii = −∑

j 6=i Lij. Note that

4

this does not constitute any restriction in the class of matrices amenable to be
represented probabilistically. Quite the contrary one can see that any arbitrary
matrix can be straightforward decomposed in such a way. Such decomposition
allows in practice to approximate the action of the matrix exponential over
the vector using a suitable splitting method. In [3] it was used the Strang
method in view of being of sufficiently high order, and even more important
for not introducing any additional computational cost when compared with
the lower order Lie splitting method.

As it happens for the probabilistic representation described in [6], for this new
representation it can be used as well for both, computing a single entry of
the vector solution, or the full vector solution. In the following for simplicity
we described merely the probabilistic representation for computing a single
entry of the vector solution, being the derivation of the other straightforward
(see [4],e.g.). Therefore, the probabilistic representation for computing a single
entry of the action of the resolvent matrix over the vector reads as follows

x̄i = E[
N
∑

k=1

ω̄k

k
∏

j=1

ηj

], (4)

where ηj = φj e∆t d̄ij , j = 1, . . . , N − 1, ηN = φN e∆t d̄iN
/2 viN

, ω̄k = e∆t d̄i/2ωk,
and d̄i = di − s. Concerning φk, this corresponds to a two-point random
variable taking values −1 and 1 with a probability related to the matrix σ.
Q = −L is the infinitesimal generator of a continuous-time Markov chain on
the set S = {1, 2, · · · , n}, being the matrix transition probability P = (pij)
the solution of the Kolmogorov’s backward equations,

P ′(t) = Q P (t), P (0) = 1 (t ≥ 0). (5)

For each starting point i, the variables ik, k = 1, . . . , N , correspond to a se-
quence of N discrete random variables with outcomes on S, and probabilities
pik−1 ik

(t), k = 2, . . . , N , and pi i1(t) for k = 1, defined by P (∆t) for each k.
Note that x̄ corresponds in fact to an approximation of the true solution x,
being the true solution recovered in the limit N → ∞ and T → ∞. This
representation can be interpreted intuitively as follows: Lets generate a ran-
dom path which starts at the chosen entry i of the vector x̄. This evolves
according to a continuous-time Markov chain governed by the generator Q,
moving therefore randomly from i to any possible state on S. We evaluate
the N functions ηk using the random values obtained along the process, and
accumulated the number obtained after multiplying all previous functions ηk

weighted by the corresponding quadrature weight ω̄k. Finally the solution is
obtained through a suitable expected value.

5

2.1 A multilevel method for computing the resolvent matrix

As it was described in the literature (see the excellent survey in [20], and
references therein), essentially the idea behind the so-called geometric multi-
level Monte Carlo method (MLMC for short) consists in approximating the
finest solution PL obtained to the level of discretization L using a sequence of
coarser approximations obtained at previous levels l, from l0 to L − 1. This
in practice entails accelerating the Monte Carlo simulations, since for a fixed
given accuracy, the method generates more samples for the coarsest level with
low computational cost, and less samples for the higher levels with higher
computational cost. This method can be conveniently adapted to this specific
problem, assuming in particular that the different levels of discretization cor-
respond to the value of ∆tl, being now ∆tl = T/Nl, with Nl = 2l. Moreover,
concerning the minimum level of discretization l0, as it was already pointed
out in [4], it should be chosen specifically different from zero. This is be-
cause the computational cost turns out to be almost independent of the level
when simulating the coarsest level. The multilevel method can be expressed
in mathematical form through the following telescoping series,

x̄L = E[PL] = E[Pl0] +
L
∑

l=l0+1

E[Pl − Pl−1], (6)

where Pl =
∑N

k=1 ω̄k

(

∏k
j=1 ηj

)

, and ηj = φj e∆tl d̄ij , j = 1, . . . , N − 1, ηN =

φN e∆tl d̄iN
/2 viN

Since this series should be truncated for computational pur-
pose, this entails a truncation error which is proportional to E[PL−PL−1]. For a
numerical purpose, when a finite independent sample of sizes Ml, l = l0, . . . , L
is used, Eq. (6) can be approximated by the following estimator, which is the
empirical mean,

x̄L ≈ 1

M0

M0
∑

m=1

P
(m)
l0

+
L
∑

l=l0+1

1

Ml

Ml
∑

m=1

(P
(m)
l − P

(m)
l−1). (7)

Since an empirical mean is used, one has to generate Ml independent samples
{i

(m)
1 , i

(m)
2 , . . . , i

(m)
N } of the set of variables {i1, i2, . . . , iN}, and to evaluate the

previously defined quantity Pl in Eq. (6), denoted hereafter as P
(m)
l . The

specific values taken by the set of random variables {i
(m)
1 , i

(m)
2 , . . . , i

(m)
N } are

determined by the transition probabilities P of the continuous-time Markov
chain in Eq. (5). The detailed procedure followed so far to generate the random
variables are described in Sec. 3.

It becomes crucial here to remark that the samples used for computing the
approximation at level l should be reused for computing the level l − 1. This
is because the underlying correlation appearing between the two consecutive
levels belonging to the same sample, works by reducing the overall variance. In

6

fact, as it was pointed out in [21,23] the multilevel Monte Carlo method can be
seen as a recursive application of the control variate technique [22], frequently
used in applied statistics for variance reduction. For the specific problem of
Monte Carlo path simulation in Finance, the correlation appears when the
samples used correspond to same discretized Brownian path generated using
different time stepsizes, and for more general applications and examples, see
[20] e.g.. In our particular problem, the procedure followed to reuse the paths
are described in Sec. 3. As a consequence, the multilevel method is capable
of reducing the computational cost by choosing conveniently an optimal sam-
ple size Ml, and this is done by keeping fixed the overall variance within a
prescribed accuracy ε2. The detailed procedure, consisting mostly in a mini-
mization process, to find the optimal sample size is explained in detail in [20].
Here the main results are summarized only for the sake of completeness. The
optimal sample size Ml for an accuracy ε turns out to be

Ml =
1

ε2

√

Vl

Cl

L
∑

l=l0

VlCl, (8)

where Cl, ml and Vl are the computational cost, mean and the variance for each
level l, respectively. The overall computational cost and variance is calculated
as follows

CT =
L
∑

l=l0

MlCl, VT =
L
∑

l=l0

Vl

Ml

, (9)

3 The multilevel algorithm

Before explaining the detailed algorithm followed to implement in practice
the multilevel method described above, lets describe first the algorithm used
to generate the random paths, and second the procedure followed to reuse
the paths generated for a higher level of discretization l to a lower one l − 1.
Essentially the algorithm to generate the paths was introduced first in [4] for
the specific problem of computing the action of a matrix exponential over a
vector, and here it is summarized for the purpose of illustration. The random
paths are generated in practice as it is done for a typical continuous-time
Markov chain. More specifically, if pij(t) represents the transition probability
matrix governing the transition between the state i and j, we can use the
Kolmogorov’s backward equation in Eq. (5) in integral form,

pij(t) = δij e−Lii t +
∑

j 6=i

∫ t

0
ds Lii e−Lii skijpij(t − s), (10)

where kij = |Lij|/Lii, to simulate a random path. In practice the random paths
are given by the transitions among the different states on S = {1, 2, · · · , n},

7

0 1 2
∆t

l

1

2

3

4

5

6

7

8

9

10
M

at
ri

x
 r

o
w

0 1 2
∆t

l

1

2

3

4

5

6

7

8

9

10

M
at

ri
x

 r
o

w

0 1 2
∆t

l

1

2

3

4

5

6

7

8

9

10

M
at

ri
x

 r
o

w

0 1 2
∆t

l

1

2

3

4

5

6

7

8

9

10

M
at

ri
x

 r
o

w

(a) (b)

(c) (d)

Fig. 1. Sketch diagram showing the four possible sampled paths obtained for level
l = 2, and for a matrix of size N = 10. The solid line corresponds to a random path
obtained for a level number l, and the dotted line with l − 1.

being those states the values taken by the set of random variables {i1, i2, . . . , iN}.
Therefore, an algorithm to generate a path may work as follows: Generate a
first random time S0 obeying the exponential density function
p(S0) = Lii e−LiiS0 ; Then, depending on whether S0 < t or not, two different
alternatives are taken; If S0 > t, the algorithm is stopped, and no jump from
the state i to a different state is taken; If, on the contrary, S0 < t, then the
state i jumps to a different state j, which is chosen randomly according to
the probability function kij, and a new second random number exponentially
distributed S1 governed now by the density function p(S1) = Ljj e−LjjS1 is gen-
erated; If S1 < (t − S0) the algorithm proceeds repeating the same elementary
rules, otherwise eventually it is stopped.

To illustrate graphically how the paths generated from a higher level are reused
for the lower one, in Fig. 1 a sketch diagram for the case of l = 2 is shown. Here
they are plotted the four different scenarios that may occur when generating
random paths starting at the same point i. Then, from Eq. (4), the possible
outcomes of the two random variables may induce two transitions to any of
the rows of a given matrix during the two time steps of size ∆t2. Rather only
the last one should be used for determining the paths corresponding to the

8

Algorithm 1. Multilevel Monte Carlo (MLMC) algorithm.

INPUT: L = l0,M = M0,i, N ,ε
while error ≥ ε do

Call MLMCL(i,∆tl, N, M0) for fast estimating ml and Vl for l =
l0, . . . , L

Compute the optimal number of samples Ml for l = l0, . . . , L
Call MLMCL(i,∆tl, N, Ml − M0) for further improvement for l =

l0, . . . , L
if error ≤ ε then EXIT
else

Increase number of levels, L = L + 1
end if

end while

previous level l = 1. More specifically, the set of the four figures describe the
following scenarios: a) Transitions occur at the first and at the second time
step; b) Transition only at the first time step; c) Transition only at the second
time step, and d) no transition at all. Note that the last scenario contributes
with zero to the term E[P2 − P1] in (6).

The pseudocode implementing the described multilevel method is shown in
Algorithm 1, which consists in practice in the general setting for any imple-
mentation of the method particularized for this specific problem choosing a
procedure to compute the mean ml and the second moment m2l for any of
the levels l. Note that both quantities are needed to compute the variance Vl,
which is given by Vl = m2l/Ml −m2

l . This procedure is described in Algorithm
2.

4 Numerical errors

In this Section the different source of errors of the Monte Carlo method for
computing Eq. (4) are discussed. Note that the error ε made in computing the
vector solution at a single point i can be decomposed as follows

ε = xi − 1

M

M
∑

m=1

N
∑

k=1

ω̄k

k
∏

j=1

η
(m)
j

 v = ε1 + ε2 + ε3 + ε4, (11)

where η
(m)
k corresponds to the mth sample of the random variable ηk defined

in (4), and

9

Algorithm 2. Procedure to compute a single entry i of the vector solution x̄i.

procedure MLMCL(i,∆tl, N, M)
for l = 1, M do

η1 = 1,η2 = 1,j = i
for n = 1, . . . , N do

η2 = η2e
d̄j∆tl/2

if n mod 2 6= 0 then

η1 = η1e
d̄j∆tl

end if

generate(τ)
while τ < ∆tl do

k = j
generate(S), generate(j)
τ = τ + S
η2 = (−1)σkj η2
η1 = (−1)σkj η1

end while

η2 = η2e
d̄j∆tl/2

if n mod 2 = 0 then

η1 = η1e
d̄j∆tl

end if

integ1 = integ1 + ωnη1
integ2 = integ2 + ωnη2

end for

ml = ml + [vj(integ2 − integ1)]/M
m2l = m2l + [vj(integ2 − integ1)]

2/M
end for

Vl = m2l/M − m2
l

return (ml, Vl)
end procedure

ε1 = xi −
(

∫ T

0
dt e−st et A

)

v, (12)

ε2 =

(

∫ T

0
dt e−st et A

)

v −
(

N
∑

k=1

ωke−s tk etk A

)

v, (13)

ε3 =

(

N
∑

k=1

ωke−stk etk A

)

v −
(

N
∑

k=1

ωk [e
∆tD̄/2e−∆t Ue∆tD̄/2]k−1

)

v, (14)

ε4 =

(

N
∑

k=1

ωk [e
∆tD̄/2e−∆t Ue∆tD̄/2]k−1

)

v − 1

M

M
∑

m=1

N
∑

k=1

ω̄k

k
∏

j=1

η
(m)
j

 v.(15)

Here the matrix D̄ = D − s 1. Lets analyze then these four different errors
separately. The first error ε1 is due to the truncation of the improper integral
in Eq. (1) by a finite one, where the unbounded domain of integration has

10

been replaced by a finite one, replacing conveniently the infinite limit by a
finite one, T . Such an error can be further evaluated and is given by

ε1 =
(∫ ∞

T
dt e−st eA t

)

v. (16)

Note that the integral can be computed analytically, and yields

ε1 = B−1e−B T v, (17)

where B = s 1 − A. Moreover, it turns out that

‖ε1‖2 ≤
∥

∥

∥B−1
∥

∥

∥

2

∥

∥

∥e−B T
∥

∥

∥

2
, (18)

and since we assume ‖A‖2 < s, it holds that

‖ε1‖2 ≤
∥

∥

∥B−1
∥

∥

∥

2
e−λmin(B)T . (19)

Here λmin(B) denotes the smallest eigenvalue of B, which corresponds in prac-
tice to s − λmax(A), being, λmax(A) the largest eigenvalue of A. Hence

‖ε1‖2 ≤ 1

s − λmax(A))
e−[s−λmax(A)]T . (20)

The formula above can be used to find the minimum value, Tc, such as the
error is less than the prescribed accuracy ε, and is given by

T ≥ Tc ≡ 1

λmax(A) − s
ln [(s − λmax(A))ε]. (21)

To use in practice such formula the largest eigenvalue of the matrix A should
be known. In general, especially for large matrices, this could be a formidable
task in itself, being required in general to use suitable available approxima-
tions. For the specific case of complex networks, there are indeed some useful
approximations (see [9] e.g), and they have used in Fig. 17 to verify this esti-
mation. In fact, in Fig. 17 it is plotted the result corresponding to the absolute
error made when truncating the improper integral as function of the finite limit
T . In this example the solution corresponds to the Katz centrality of a given
node for two different complex networks of the same size. The theoretical solu-
tion, which is needed to compute the error, was obtained using Matlab, being
Eq. (17) computed using a high accuracy numerical method. For this specific
example we have used two different approximations for the largest eigenvalue
of the adjacency matrix A. One assumes the largest eigenvalue equals to the
maximum degree of the network, dmax (Approx1), while the other one (much
more accurate), assumes the value to be max(davg,

√
dmax) (Approx2), where

davg denotes the average degree of the network, davg = 1
n

∑n
i=1 di. Note how the

latter approximation fits in fact much better with the theoretical error curve
plotted in Fig. 2.

11

2 4 6 8 10
T

-15

-10

-5

0

lo
g 1

0(|
|e

rr
o

r|
| 2)

Theory
Approx 1
Approx 2

0 0.2 0.4 0.6 0.8 1
T

-15

-10

-5

0 (b)(a)

Fig. 2. Absolute numerical error in log-scale made when truncating the improper
integral in Eq. (1) using a finite limit, T . The solution corresponds to the Katz
centrality of two complex networks: (a) a small-world network, and (b) a scale-free
network, both of size of 1, 000 nodes. The dashed (Approx 1) and dot-dashed (Ap-
prox 2) lines correspond to the solution obtained using the approximation of the
largest eigenvalue as dmax, and max(davg,

√
dmax), respectively. The value of the

variable s was chosen to be dmax/0.85.

Concerning the second error ε2, this appears when the definite integral is
approximated numerically using a suitable quadrature. Hence, the order of
the error is merely the order of the error of the chosen quadrature rules, and
therefore to minimize this error it would be advisable to use higher order
methods However, as it will be shown later, it turns out that the order of
the third error ε3 is proved to be of order O(∆t2). Then, it becomes useless at
this point to implement any higher order method for this approximation, since
the order of the error ε3 becomes dominant. Consequently, for the algorithm
proposed it was used a simple trapezoidal quadrature, which is well known
to be of order O(∆t2). Therefore, the quadrature weights used are given by
ωi = ∆t, i = 2, . . . , N − 1, and ω1 = ωN = ∆t/2.

The analysis of the remaining errors, ε3 and ε4, coincides exactly with the
analysis done in [3], but for the sake of completeness it is summarized here.
The third error ε3 is due merely to the splitting procedure, as a result of

12

decomposing the matrix A as D − U , and the error turns out to be of order
O(∆t) or O(∆t2) [1], depending on whether the Lie or the Strang splitting is
used. As mentioned already in Sec. 2, since the matrix D is diagonal matrix,
it can be computed almost without any computational cost, being therefore
much more convenient to adopt the Strang splitting to this purpose. The
fourth error, ε4 , is the pure Monte Carlo statistical error, and known to be of
order O(M−1/2). In fact, it is well known that the arithmetic mean appearing
in (11) provides the best unbiased estimator for the expected value in (4). In
practice, one should simulate on the computer the random variables, based
on generating random numbers. By doing so, the error made in replacing the
expected value with the mean over a finite size sample is statistical in nature.
More precisely, ε4 turns out to be, for a large M value, approximately a random
Gaussian variable with standard deviation proportional to M−1/2 , i.e.,

ε2 ≈ σν

M1/2
, (22)

where σ denotes the square root of the variance, and ν is a standard normal
(i.e., N(0, 1)) random variable. All this clearly shows that the proposed Monte
Carlo method could in principle have a poor numerical performance, and also
that the error is merely statistical, so it can only be bounded by some quan-
tity with a certain degree of confidence. However, there already exists many
available statistical techniques, such as variance reduction, and quasi-random
numbers [28], that can be used, in practice, to improve greatly the order of
the global error, and consequently the overall performance of the algorithm.

5 Computational complexity of the multilevel algorithm

To properly estimate the computational complexity of the multilevel algo-
rithm, it is required to establish first the convergence rate of both, the mean
ml = |E[Pl − P]| and variance Vl = V [Pl − Pl−1], as a function of the corre-
sponding level l. In [4] this was done for the particular problem of computing
the action of a matrix exponential over a vector. Note that the method pro-
posed here required to compute the action of a matrix exponential over a
vector, and therefore the results found there can be applied here straightfor-
wardly. More specifically in [4] it was proved that the mean |E[Pl − P]| turns
out to be of order O(∆t2l). This is because the splitting method used for the
computing the matrix exponential was the Strang splitting. Besides comput-
ing the matrix exponential, recall that it is required as well to approximate
numerically the definite integral in Eq. (1). As was mentioned above this is
done through a suitable trapezoidal numerical quadrature. However, this pro-
cedure does not modify the order of convergence, and this can be seen readily
through the following Lemma.

13

Lemma 1 Let consider I =
∑N

i=1 ωi fi the discretization of a given definite

integral obtained by means of a trapezoidal numerical quadrature, where ωi are

the corresponding quadrature weights, and fi the values of a given function

evaluated at equally spaced points within the integration domain. Assume that

the values fi, i = 1, . . . N are known with an error of order O(∆t3). Then it

holds that the error of I is of order O(∆t2).

Proof. If every term of the sum is of order O(∆t3), the sum of all of them turns
out to be of order of O(N2∆t3), and since N = T/∆t the order is reduced in
a factor of two. However, after multiplying by the trapezoidal weights, which
are proportional to ∆t, the order of the error becomes finally O(∆t2). �

Concerning the convergence rate of the variance V [Pl − Pl−1], the same result
already proved for the mean holds. Since the convergence rate of the variance
for computing the action of the matrix exponential over a vector was proved
to be O(∆t2l) in [4], the convergence rate for this specific problem turns out
to be similarly of order O(∆t2l).

In Fig. 3, the mean E[Pl − Pl−1]| (a) and V [Pl − Pl−1] (b) are shown as a
function of the level l. The matrices correspond to the adjacency matrices of
a small-world network of two different size. Note that the obtained numerical
convergence rate fully agrees with the theoretical estimation.

To determine theoretically the computational complexity of the multilevel al-
gorithm, it is needed also an estimation of the computational time of the Monte
Carlo method. We have seen that the numerical method requires to compute
in practice the action of the matrix exponential over a vector, and note that
this should be done a few times, namely as many as the number of discretized
points of the numerical quadrature. Therefore, one might wrongly conclude
that the overall computational time depends on such a number. However, it
turns out that the matrix exponential required for any time step is computed
using the matrix exponential obtained for all the previous time steps, as it
can been seen from Eq. (2). In practice this means that is enough to com-
pute once the matrix exponential (and only for the finite limit Tc), provided
that all the values of the matrix exponential obtained for intermediate times
are conveniently saved. Therefore, the computational time of the algorithm
is merely due to the computational time required to compute the action of a
matrix exponential over a vector evaluated exclusively at Tc. This time was
already estimated in [3]. In Fig. 4 the results corresponding to the CPU time
spent by the Monte Carlo algorithm when computing the Katz centrality of
two different networks characterized by different values of davg are plotted.
Note that for ∆tl sufficiently large (or equivalently l sufficiently small) the
computational time tends to a constant value, while for smaller values the
computational time scales as 1/∆tl. Using the theoretical estimation in [3], it
can be estimated that the minimum value of the level l0 to obtain a better

14

5 10
level l

-20

-15

-10

-5

0

lo
g 2(m

l)

n=10
6

n=10
7

4 8 12
level l

-30

-25

-20

-15

-10

-5

0

lo
g 2(V

l)

(b)(a)

Fig. 3. (a) Mean and (b) variance of Pl −Pl−1 in log2 scale versus the level number l
obtained numerically. The adjacency matrix corresponds to a small-world network
of different size n. The brown line denotes to an ancillary function of slope −2.

performance of the MLMC algorithm is given by

l0 ≫ lc ≡ log2(Tcdavg). (23)

Known the convergence rates of the mean, variance, and computational time,
the theorem in [20] can be applied, and as a result it can be established that
the computational complexity of the proposed MLMC algorithm for com-
puting the resolvent of a matrix should be of order O(ε−2). This contrasts
favorably with the complexity of the Monte Carlo method, which can be con-
cluded to be of order O(ε−5/2). In fact, the action of the matrix exponential
over a vector using the Monte Carlo method was estimated in [3] as being of
order O(ε−5/2). Recall that the algorithm for computing the resolvent matrix
requires computing such a matrix exponential, and to avoid calculating such
matrix exponential several times for each time steps, we can use the same
procedure explained already for the MLMC method. Consequently we can
conclude than the computational time of the Monte Carlo method for this
problem remains of order O(ε−5/2). In Fig. 5 the results corresponding to the
computational time spent to compute the Katz centrality of a single node of

15

0 2 4 6 8 10
level l

0

1

2

3

4

5

6

7
lo

g 2(T
im

e l)

Small-world
Scale-free

Fig. 4. Computational time in log2 scale versus the level l for adjacency matrices
corresponding to two different complex networks of size n = 106. The brown line
corresponds to an ancillary function of slope 1.

a small-world network of size n = 106 is plotted as a function of the cho-
sen prescribed accuracy ε for both, the MLMC method and the Monte Carlo
method. Note the perfect agreement with the theoretical estimates, and the
performance notably superior to the Monte Carlo method for lower accuracy
values.

6 Numerical examples and computational-related issues

6.1 Numerical examples

In this section the results corresponding to several numerical examples are
shown. The chosen examples consist in both, the numerical computation of
the aforementioned metric Katz centrality in some synthetic complex net-
works and the numerical solution of some elliptic boundary-value problems
with Dirichlet boundary conditions. More specifically, these are the Poisson

16

-5 -4 -3
Accuracy log

10
 (ε)

-1

0

1

2

3

4

5

6
lo

g 1
0(C

P
U

 T
im

e)

Monte Carlo
Multilevel MC

Fig. 5. Computational time as function of the prescribed accuracy ε, both in log10
scale. The brown solid line corresponds to an ancillary function of slope −5/2,
while the dotted line to a function of a slope −2. The results correspond to the
Katz centrality for a single node of a small-world network of size n = 106

equation discretized by means of the finite difference method, and a reaction-
diffusion equation in an arbitrary domain discretized by the finite element
method. In all of them the solution is computed exclusively at a single node.
Concerning the synthetic networks, these consist of small-world and scale-free
networks that can be generated easily for an arbitrary size using the functions
smallw, and pref, respectively, freely available through the toolbox CONTEST
[11] for Matlab.

To compare the performance of the algorithm with others available in the
literature, we implemented a different available Monte Carlo method. This
method was first proposed in [6], and in the following to distinguish from our
Monte Carlo method it will be termed the classical Monte Carlo method. Ba-
sically this method depends on two free parameters to be fixed by the user
according to the accuracy desired for the solution. These are first, the so-called
history length, which basically is related with the number of random jumps
allows to occur within the matrix before stopping the algorithm, and second,
the number of random walks picked up from a finite sample. Both discretized
parameters are involved in different source of errors. Essentially they are the

17

equivalent of the bias error, and statistical error appearing as source of errors
for the MLMC method, but they are treated by the algorithm in a totally dif-
ferent way. In fact, while the classical Monte Carlo algorithm considers both
separately, the MLMC algorithm works with both parameters in a unified
way within the goal to reach the prescribed accuracy for the solution. The
algorithm proposed in [6] is indeed adaptative, being capable of finding au-
tomatically the optimal solution within a prescribed accuracy. However, note
that this is done considering only the statistical error, but seems to fail to
find the optimal history length satisfying such an accuracy. Concerning the
statistical error this is done basically by increasing progressively the number
of random walks simulated until a certain condition (related basically with
the variance) is satisfied. On the other hand, the history length, which con-
trols the bias error, this should be fixed independently according to another
stopping criterion of the algorithm. This truncation criterion to stop running
the random walks was proposed in [16], and consists in imposing a certain rel-
ative weight, which acts basically as a cutoff threshold stopping automatically
the random walk whenever the underlying random variable overcomes such a
threshold. However, it becomes not trivial to relate the value of this threshold
with the statistical error, and with the prescribed accuracy of the solution de-
sired by the user. In practice what happens is that the user may have to run
several times the algorithm, changing accordingly such a threshold, until the
desired solution within the prescribed accuracy is finally reached. Rather the
multilevel algorithm by construction is a truly automatic algorithm, meaning
that the only intervention of the user consists in setting initially the accuracy
desired for the solution, leaving the algorithm to find alone both the optimal
sample size and history length. Moreover, this offers a further computational
advantage for the parallelization point of view, as it will be discussed below.

All Monte Carlo codes were implemented in Fortran 90 and the simulations
run in a multi-core architecture consisting on a computer equipped with an
AMD Ryzen 1800X Octa-core at 3.6 GHz with 32 GB of RAM.

Due to the random nature of any of the Monte Carlo algorithms, it is worth
observing that the measured computational time can vary from simulation
to simulation. To mitigate such a variability of the computational times, the
CPU times shown in the tables below correspond to an average CPU time
obtained repeating the simulations with 10 different initial random seeds of
the pseudorandom generator.

Example A: Complex networks

As it was mentioned above, in the case of complex networks the evaluation of
the resolvent matrix over a vector is related with the so-called Katz centrality
of the network. In fact, the Katz centrality of a node i of a network is defined

18

mathematically [7,26] as

Ki(α) = [(1 − αA)−11]i, (24)

where A is the adjacency matrix of the network, 1 a vector of ones, an α, with
0 < α < 1/λmax(A), is a attenuation factor suitable chosen. Intuitively, the
Katz centrality is a metric of the network that measures the relative degree of
influence of a node within the network, weighting conveniently the importance
of the connection between the node i and distant neighbors by an attenuation
factor α.

In Tables 1, and 2 the CPU time spent to compute the Katz centrality of a
small-world network and scale-free network using the Monte Carlo method,
the MLMC method, and the classical Monte Carlo method in [6] is shown.
This has been done for different network sizes, being the accuracy kept fixed to
ε = 3×10−5 for all simulations. Note that the CPU time is almost independent
of the network size for any of the Monte Carlo methods. This is due to the
fact that the Monte Carlo method essentially is based on local computations,
rather than the classical deterministic methods which typically require as part
of the algorithm multiplying a matrix by vector or even worse a matrix by a
matrix. This gives rise in practice to an implicit dependence on the size of the
problem as it can be seen in [3].

Concerning the results, it is worth observing the notably performance of both,
the MLMC method and the classical Monte Carlo, compared with the Monte
Carlo method, and a similar performance between the MLMC method and
the classical method.

Table 1
CPU time spent for computing the Katz centrality of a small-world network using
the Monte Carlo method (MC), the multilevel Monte Carlo method (MLMC), and
the classical Monte Carlo method (MCc). The accuracy ε of the solution was kept
fixed to 3 × 10−5.

Network size CPU Time MC (s) CPU Time MLMC (s) CPU Time MCc (s)

105 8, 534 2, 054 1, 848

106 8, 575 2, 063 1, 869

107 8, 601 2, 141 1, 980

108 8, 620 2, 250 2, 034

Table 2
CPU time spent for computing the Katz centrality of a scale-free network using the
Monte Carlo method (MC), the multilevel Monte Carlo method (MLMC), and the
classical Monte Carlo method (MCc). The accuracy ε of the solution was kept fixed
to 3 × 10−5.

Network size CPU Time MC (s) CPU Time MLMC (s) CPU Time MCc (s)

105 8, 410 2, 323 1, 819

106 8, 489 2, 441 1, 951

107 8, 537 2, 583 2, 134

108 8, 663 2, 635 2, 356

Example B: Partial differential equations

19

• Example 1. This example concerns the numerical solution of a Dirichlet
boundary value problem consisting in the 2D Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= f, in Ω = [−1, 1]2, (25)

and solved on a square domain Ω with zero Dirichlet boundary condition,
u(x, y)|∂Ω = 0. The domain is conveniently discretized using a computational
grid with discretization parameters ∆x = ∆y = ∆z = 2/nx, and the operator
by a finite difference scheme using the standard 5−point stencil [29]. Therefore,
the discretized problem to be solved is A u = f̄ , being A the well-known block
tridiagonal matrix corresponding to the discrete Laplace operator with zero
Dirichlet boundary conditions, and f̄ the source term evaluated at the grid
nodes.

The Monte Carlo method can be applied readily to solve such a linear problem,
but first to guarantee the convergence of the method, it is necessary to use a
suitable preconditioner as it was pointed out in [6], and second to rewrite the
solution of the problem as follows

u = (1 − H)−1P −1f̄ . (26)

Here P denotes the preconditioner, and H = 1 − P −1A. Specifically for this
problem has been used a left Jacobi preconditioner. Comparing Eq. (1) with
Eq. (26), note that Eq. (26) corresponds indeed to the action of the resolvent
of the matrix H (setting s = 1) over the vector P −1f̄ , and therefore both,
the Monte Carlo method and the MLMC method can be applied indeed for
solving this problem.

Table 3 shows the computational time spent by the three Monte Carlo algo-
rithms for different grid sizes. As in the previous example, the same conclusions
can be drawn. In fact, both, the MLMC method and the classical Monte Carlo
method, exhibit a similar performance, being notably superior than the per-
formance of the Monte Carlo method, and furthermore this holds for any size
of the problem.

Finally, it is worth observing in Table 3 that the computational time spent
by all three methods scales almost linearly with the matrix size. In fact, when
the grid size is scaled by a factor of 4, or equivalently the matrix size by a
factor of 16, the computational time increases approximately by a factor equal
to 16, since n = n2

x. This can be explained as follows: The largest eigenvalue
of the discrete 2D Laplace operator with zero Dirichlet boundary condition is
known to be

λmax(A) = 4 − 8 sin2 (
π

2nx + 2
), (27)

20

therefore λmax(H) = 1 − 2 sin2 (π
2nx+2

). From the definition of Tc in Eq. (21),

asymptotically for large nx, it holds that Tc ∼ n2
x ln (nx), and therefore from

Eq.(23) it follows that lc ∼ log2 (n
2
x lnnx). Note that the computational time

of the MLMC method depends on the value of the minimum level lc, being
TMLMC > TCP U(lc). Using the theoretical estimation in [3] asymptotically
for sufficiently small ∆tl, it is known that TCP U(l) ∼ 2l, then it holds that
TCP U(lc) ∼ n ln (n).

Table 3
CPU time spent for computing the solution of the 2D Poisson equation at a single
point using the Monte Carlo method (MC), the multilevel Monte Carlo method
(MLMC), and the classical Monte Carlo method (MCc). The accuracy ε of the
solution was kept fixed to 10−3, and the chosen point i = n/2.

nx Matrix size CPU Time MC (s) CPU Time MLMC (s) CPU Time MCc (s)

256 65, 536 35 21 16

1, 024 1, 048, 576 596 322 277

4, 096 16, 777, 216 10, 065 5, 207 4, 811

• Example 2. This second example consists in the numerical solution of the
underlying linear algebra problem corresponding to the discretization of a 2D
reaction-diffusion equation given by

−∇(β(x)∇u) + u = 1, x ∈ Ω, u(x)|∂Ω = 0, (28)

where Ω ⊂ R
2, ∇ = (∂

∂x
, ∂

∂y
), and β(x, y) corresponds to the diffusion coeffi-

cient characterized by a 2×2 positive-definite matrix β = {βij}2
i,j=1. In partic-

ular, for this example this matrix has been chosen to be diagonal with entries
β11 = 1 + y2/α2(α2 − x2/α2), and β22 = 1 + x4/α4(α2 − y2/α2). The domain
consists in an arbitrary geometry, which is plotted in Fig. 6, and the Dirichlet
boundary data was chosen to be 0 at both, the inner and outer circle with
radius 0.25α and α, respectively. The size of the domain can be conveniently
increased by simply rescaling both circles using a single scale parameter α.
To generate the computational mesh, and obtaining the corresponding FEM
stiffness matrix and right-hand side vector, the scientific software COMSOL

[10] was used, setting specifically linear elements as the discretization basis.
Different values of the corresponding maximum element size hmax used when
meshing the geometry was chosen to test the algorithms for different matrix
sizes.

Similarly to the previous example, to ensure the convergence of the Monte
Carlo method it is required to use suitable preconditioners. Also in this exam-
ple it has been used a left Jacobi preconditioner as it was described in Eq. (26).
However, note that for this more involved problem, the maximum eigenvalue
of the matrix is not theoretically known, being therefore necessary to resort
to suitable approximations in order to apply Eq. (21) and thus obtaining the
minimum value, Tc. For this purpose it has been used the Gershgorin circle
theorem to find a reasonable bound for the maximum eigenvalue of the matrix.

21

Fig. 6. Computational mesh describing the domain used for solving the 2D reac-
tion-diffusion equation.

The computational time spent for computing the solution at a single point
inside the domain is shown in Table 4, and the same conclusions hold as in
the previous example.

Table 4
CPU time spent for computing the solution of a 2D reaction-diffusion equation at
a single point using the Monte Carlo method (MC), the multilevel Monte Carlo
method (MLMC), and the classical Monte Carlo method (MCc). The accuracy ε
of the solution was kept fixed to 10−3, the scale parameter α to 10, and the chosen
point x = (0, 0).

hmax Matrix size CPU Time MC (s) CPU Time MLMC (s) CPU Time MCc (s)

0.1 48, 314 7.8 4.5 2.7

0.03 513, 455 52 33 29

0.02 1, 1143, 744 202 110 91

6.2 Computational-related issues

Parallel performance. To analyze the scalability of the Monte Carlo meth-
ods, the algorithms were conveniently parallelized using OpenMP. This allows
to exploit fully the multi-core architecture of the available server. In Table 5
the computational time required to compute the Katz centrality of a small-
world network of size n = 107 is shown as function of the number of cores.
Note that both the Monte Carlo method, and MLMC method exhibit a re-
markable scalability being almost close to the ideal one. This is not surprising,

22

since as it was theoretically anticipated before, any Monte Carlo method re-
quires to compute independent simulations which can be trivially split in so
many independent tasks as the available cores of the server, being therefore the
intercommunication overhead of the parallelized algorithm almost negligible.

For the classical Monte Carlo method, as was explained above it is based on
a adaptive algorithm, which requires to fix a given parameter before running
in parallel . It consists namely on the number of random paths N0 chosen to
be increased for each iteration of the algorithm, and it turns out that this
parameter is fundamental to improve the scalability of the algorithm. In fact,
this parameter affects indeed the total iterations of the algorithm, and more-
over has a strong impact in the intercommunication overhead of the algorithm,
and consequently in the scalability and parallel performance. In fact, as it can
be seen in Table 5, for a fixed number of cores increasing N0 has always a
positive impact on the scalability improving accordingly the speed-up of the
algorithm. This is because in practice it reduces the total iterations needed to
achieve convergence. However note that this may increase unnecessarily the
overall CPU time, since it could happen that the total number of random
paths simulated exceeds unnecessarily the random paths needed to attain the
prescribed accuracy.

This would never happen with the MLMC method, because the algorithm
exploits the mathematical relation in Eq. (8). Therefore the MLMC algorithm
is capable of computing precisely the number of random paths needed to
attain the prescribed accuracy, provided the variance and computational cost
for each level is known. Since in practice these values have to be computed
numerically as well, further iterations may be needed to improve the accuracy
of such values. However, it is important to remark that typically only a few
number of iterations are required after all. This indeed explains the remarkable
scalability of the algorithm observed in Table 5.

Table 5
Elapsed time spent for computing the Katz centrality of a small-world network as a
function of the number of cores. The size of the matrix is n = 107, and the accuracy
ε was kept fixed to 3 × 10−5. The simulations were run on a octa-core server.

Cores Time MC (s) Time MLMC (s)
Time MCc (s)

N0 = 100 N0 = 1000 N0 = 10000

1 8, 601 2, 141 1, 819 1, 617 1, 543

2 4, 361 1, 066 1, 362 980 960

4 2, 185 527 986 544 497

8 1, 076 267 1, 276 583 395

Simultaneous computing of both, Katz centrality and total subgraph

communicability, of a complex network Another important feature of
the MLMC method compared with the classical Monte Carlo is the fact that
without any additional computational cost it allows to compute other useful
metrics, such as the total subgraph communicability of a node [7], and this

23

could be done simultaneously. This metric is defined as

Ci(A) = (eβA1)i, (29)

and measures the importance of the node i, weighting now the walks of length
k by a penalty factor of value βk/k!. Concerning β, it is typically interpreted
as an effective ”temperature” of the network (see [17], e.g.). Note from Eq.
(2) that both, the Monte Carlo method and the MLMC method, compute
automatically ancillary quantities such as

ξj
i = (e−j s∆t ej ∆t A v)i, j = 1, . . . , N, (30)

as part of the algorithm. These quantities are trivially related with the to-
tal subgraph communicability of a given node for a discrete set of effective
temperatures as follows

Ci(A) = ej s∆tξj
i , (31)

where βj = j∆t. Although in practice they are not saved individually, because
they are not indeed needed to compute the Katz centrality, being rather only
effectively computed the sum of all of them, however a simple modification
in the algorithm would allow in practice saving such quantities. Furthermore
this might be done without almost any additional computational cost of the
algorithm. In case of the MLMC method, a crucial point here is to ensure that
the numerical error made when computing these ancillary quantities does not
exceed the prescribed accuracy. In fact, this cannot be guaranteed by the
method, because the proposed MLMC method was developed to compute
exclusively the resolvent matrix within a prescribed accuracy, and not any of
their ancillary quantities. Nevertheless, in all the examples analyzed so far the
error made never exceeded the prescribed accuracy of the algorithm as it is
shown in Fig. 7 for the particular case of a small-world network. The numerical
error was computed here using the solution obtained using a Krylov-based
method [19] of higher accuracy as it was the theoretical solution.

7 Conclusion

The goal of this paper was to propose a new probabilistic method based on
the multilevel Monte Carlo method for computing the action of the resolvent
matrix over a vector. More specifically, the idea was to compute such an action
resorting to the numerical evaluation of the Laplace transform of the matrix
exponential, because it is known that the action of a matrix exponential over a
vector can be computed efficiently using a multilevel Monte Carlo method. In
fact a method was introduced recently in the literature for such a purpose, and
essentially it requires generating suitable random paths which evolve through
the indices of the matrix according to the probability law of a continuous-
time Markov chain governed by the associated generalized Laplacian matrix.

24

0 0.5 1 1.5 2 2.5
t

0

100

200

300

400

500

600

700
ex

p
(t

A
)v

MLMC
Krylov

0 0.5 1 1.5 2
t

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05
E

rr
o

r

Fig. 7. Total subgraph communicability of a single node (n/2) for different values of
the effective temperature t. The network is a small-world network of size n = 107.
The solid line corresponds to the solution obtained using a Krylov-based method,
while the dotted-line to the solution obtained simultaneously when computing the
Katz centrality using a modified MLMC algorithm capable of saving the ancillary
quantities. In the inset it is shown the relative error of the computed solution.

The convergence of the proposed multilevel method has been conveniently
analyzed in this paper, and several numerical examples were run to test the
performance of the algorithm.

Since there is in the literature other well-established Monte Carlo method for
solving linear algebra systems, we compared in this paper the results obtained
using both methods. It is needless to say that being both methods based on
the Monte Carlo method they share similar advantages from a computational
point of view, such as the comparative ease of implementation in parallel, fault-
tolerant, and in general they are well suited for heterogeneous architectures.
However, we show here that the multilevel stands out especially in a feature
that is apparently lacking in the classical method, which is the autonomous
operation of the multilevel algorithm, in contrast with the classical Monte
Carlo algorithm. In fact, for the multilevel method is enough, in general, to
prescribe the desired accuracy of the solution, and the algorithm proceeds
automatically in order to meet the requirements established for the solution.

25

Rather the classical method requires typically a continued surveillance of the
underlying errors by the user, being often necessary to repeat simulations
in order to satisfy the requirements demanded for the solution in terms of
accuracy.

This feature of the multilevel method is of paramount importance, and it was
namely one of the main goals of this paper. In fact, it was not intended to show
here that the multilevel method is more efficient than the classical Monte Carlo
method, which is clearly not the case in view of the results obtained, but rather
to draw the attention to this inherent feature of the multilevel method. Other
than facilitating the interaction of the user with the algorithm, it has a positive
impact in the scalability of the algorithm when parallelized conveniently, as is
also shown in this paper. To this purpose both methods have been parallelized
and some examples run in a multicore architecture. The results show in general
a clearly better scalability of the multilevel method compared with the classical
Monte Carlo.

Finally, a further advantage of the proposed method is discussed, and lies in
the potential capability of the method to compute simultaneously two different
metrics of a complex networks for about the same computational cost. These
are the Katz centrality, and the total subgraph communicability of a network.
This is discussed to close the paper, being left as a possible future work the
analysis of the associated errors.

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia under
Grant No. UID/CEC/50021/2019.

References

[1] T. Jahnke, and C. Lubich: Error bounds for exponential operator splittings.
BIT,40 (2000) 735744.

[2] R. Merris: Laplacian matrices of graphs: A survey. Linear Algebra and Its
Applications, 197 (1994) 143-176.

[3] J. A. Acebrón: A Monte Carlo method for computing the action of a matrix
exponential on a vector. Appl. Math. Comput., 362 (2019) 124545.

[4] J. A. Acebrón, J.R. Herrero, and J. Monteiro: A highly parallel algorithm for
computing the action of a matrix exponential on a vector based on a multilevel
Monte Carlo method. Submitted (2019). https://arxiv.org/abs/1904.12754

26

[5] D.F Anderson, and D.J. Higham: Multilevel Monte Carlo for continuous time
Markov chains, with applications in biochemical kinetics. Multiscale Model.
Simul., 10 (2012) 146179.

[6] M. Benzi, E. Estrada, and C. Klymko: Ranking hubs and authorities using
matrix functions. Linear Algebra and Its Applications,438 (2013) 2447-2474.

[7] M. Benzi, and C. Klymko: Total communicability as a centrality measure. J.
Complex Networks, 1 (2013) 124149.

[8] M. Benzi, T.M. Evans, S.P. Hamilton, M.L. Pasini, and S.R. Slattery: Analysis
of Monte Carlo accelerated iterative methods for sparse linear systems.
Numerical Linear Algebra with Appl., 24 (2017).

[9] F. Chung, and L. Lu: Complex Graphs and Networks. American Mathematical
Society, 2006.

[10] http://www.comsol.com/

[11] http://www.maths.strath.ac.uk/research/groups/numerical_analysis/
contest

[12] I.T. Dimov: Monte Carlo Methods for Applied Scientists. World Scientific,
2008.

[13] I. T. Dimov, T. T. Dimov, and T. V. Gurov: A new iterative Monte Carlo
Approach for Inverse Matrix Problem. J. Comput. Appl. Math., 92 (1998) 1535.

[14] I. T. Dimov, V.N. Alexandrov, and A. Karaivanova: Parallel resolvent Monte
Carlo algorithms for linear algebra problems. Mathematics and Computers in
Simulation, 55 (2001) 25-35.

[15] I. Dimov, S. Maire, and J.M. Sellier: A new Walk on Equations Monte Carlo
method for solving systems of linear algebraic equations. Applied Mathematical
Modelling, 39 (2015) 4494-4510.

[16] T.M. Evans, S.W. Mosher, S.R. Slattery, and S.P. Hamilton: A Monte
Carlo synthetic-acceleration method for solving the thermal radiation diffusion
equation. J. Comput. Phys., 258 (2014) 338-358.

[17] E. Estrada, N. Hatano, and M. Benzi: The physics of communicability in
complex networks. Physics Reports 514 (2012) 89-119.

[18] G. Forsythe, and R. Leibler: Matrix inversion by a Monte Carlo method. Math.
Tables Other Aids Comput., 4 (1950) 127129.

[19] http://www.mathe.tu-freiberg.de/guettels/funmkryl/

[20] M.B. Giles: Multilevel Monte Carlo methods. Acta Numerica, 24 (2015) 259-
328.

[21] M.B. Giles: Multilevel Monte Carlo path simulation. Operations Research, 56
(2008) 607-617.

27

[22] P. Glasserman: Monte Carlo Methods in Financial Engineering. Springer, 2004.

[23] D. Higham: An introduction to multilevel Monte Carlo for option valuation.
Int. J. Comput. Math.,92 (2015) 2347-2360.

[24] N.J. Higham, and A. H. Al-Mohy: Computing matrix functions. Acta Numerica,
19 (2010) 159208.

[25] N.J. Higham, and A. H. Al-Mohy: Functions of matrices: Theory and
Computation. SIAM, 2008.

[26] L. Katz: A new status index derived from sociometric analysis. Psychometrika,
8 (1953) 39-43.

[27] H. Ji, M. Mascagni, and Y. Li: Convergence Analysis of Markov Chain Monte
Carlo Linear Solvers Using Ulam–von Neumann Algorithm. SIAM J. Numer.
Anal., 51 (2013) 21072122.

[28] M. Mascagni, and A. Karaivanova: A parallel Quasi-Monte Carlo method for
solving systems of linear equations. International Conference on Computational
Science, (2002) 598-608.

[29] R.M.M. Mattheij, S.W. Rienstra, and J.H.M. ten Thije Boonkkamp:
Partial Differential Equations: Modeling, Analysis, Computation. SIAM
monographs,2005.

[30] G. Ökten: Solving linear equations by Monte Carlo simulation. SIAM J. Sci.
Comput. 27 (2005) 511531.

28

