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Abstract

Fault detection is one of the most prominent challenges in
the field of multirobot systems (MRS). Most existing fault-
tolerant systems prescribe a characterisation of normal be-
haviours (fault-free behaviours), and train a model to recog-
nise them. Behaviours not recognised by the model are la-
belled abnormal. MRS employing these models do not tran-
sition well to scenarios involving gradual changes in normal
behaviour. In such scenarios, existing fault-detection systems
may not be applicable, or may incur potentially costly false
positive detections. We propose to address this challenging
problem by taking inspiration from the regulation of toler-
ance and (auto)immunity in the adaptive immune system. We
deploy an immune system-based fault-detection approach to
detect abnormalities in heterogeneously behaving robots. Re-
sults of extensive simulation-based experiments demonstrate
that a distributed MRS can correctly tolerate delayed prop-
agation of different normal behaviours in the collective, at
low false-positive rates. Furthermore, the fault-detection sys-
tem is able to reliably detect robots performing different fault-
simulating behaviours.

Introduction
The field of multirobot systems (MRS) has progressed
rapidly in recent years, with groups of robots performing in-
creasingly complex behaviours, ranging from self-assembly
(Christensen et al., 2008a), to warehouse-management
(Wurman et al., 2007). Despite the availability of several
low-cost robot platforms (IFR, 2014), and coordination al-
gorithms for task allocation and division of labour (e.g.,
Berman et al. (2009)), platform reliability and endurance
still inhibit the wide-spread usage of MRS outside of the
laboratory (Dunbabin and Marques, 2012). The individual
robots of a MRS are susceptible to failures, prominently re-
sulting from electro-mechanical faults in the robot’s sensor
and actuation devices, and bugs in the software controlling
the robot (Winfield and Nembrini, 2006). Consequent to
the wide variety of intricate inter-robot interactions affect-
ing robot behaviour, the prediction, detection and/or diagno-
sis of potential faults for an individual robot represent major
challenges. While the large number of individual robots in
self-organised robot collectives may produce a robust and

resilient system, even in such systems, robots that exhibit
partial failure have the potential to disrupt the entire collec-
tive (Bjerknes and Winfield, 2013). Explicit fault detection
is therefore crucial to enhance the autonomy and operating
capacity of MRS.

In most engineered fault-detection systems, robots are
trained (e.g., using supervised learning) to detect anoma-
lies in their own sensory and actuator data (e.g., Christensen
et al. (2008b)). While these approaches can provide robust
fault detection when trained on the normal behaviour (no
faults present) of the target system, they do not transcend
well to changes in this behaviour. Other fault-detection sys-
tems, specifically designed for MRS, allow the robots to de-
tect faults in each other (e.g., Lau et al. (2011)). However,
many of these approaches are centralised and/or rely on de-
tailed knowledge of the MRS tasks. Furthermore, the more
task-generic and decentralised versions of such approaches
are limited to detecting robots experiencing complete failure
(details in the Related Work section).

An interesting analogy can be made between task-generic
fault-detection systems and the adaptive immune system
in vertebrates (e.g., Timmis et al. (2010); Tarapore et al.
(2012)). The immune system acts to help defend and repair
the body’s cells and tissues in response to pathogenic insults,
has the need to differentiate between what might be normal,
that is, normally functioning cells and tissues, and abnormal-
ities such as invading pathogen (Janeway et al., 1997). The
characteristics of these abnormalities are in principle open-
ended, and therefore differ from the limited set of faults the
current approaches to robot fault-detection are designed to
detect. Experimental evidence indicates that the tolerance
exhibited by the immune system results from the dynamics
and interactions between specific regulatory and effector T-
cells (e.g., Sakaguchi (2004)). The decentralised nature of
these intercellular interactions imparts a high degree of ro-
bustness within the system, and a flexibility to respond to a
very broad range of possible pathogenic attacks. Such prop-
erties provide rich inspiration for the engineering of robust,
fault-tolerant systems.

In previous work, we developed a generic fault-detection
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approach, based on the adaptive immune system, for ex-
ogenous fault detection in large-scale MRS (Tarapore et al.,
2015). An agent-based simulator was used to model sce-
narios where individual robots have to tolerate certain be-
haviours, while mounting an immune response against oth-
ers. The salient feature of the developed fault-detection sys-
tem was that the characterisation of behaviour (normal or
faulty) were not prescribed apriori, but rather learned on-
line based on their abundance in the MRS. Behaviours ex-
hibited by many of the robots in the MRS were considered
normal. By contrast, rare behaviours exhibited by a single or
few robots were detected as abnormal behaviours that could
be caused by a fault. The resultant fault-detection system
was successfully utilised in MRS comprising of homoge-
neously behaving robots. However, in many MRS, the in-
dividual robots of the collective often exhibit distinct be-
haviours at any given time. For example, even in simple
foraging scenarios, the different behaviours exhibited may
include, searching for resources, signalling the presence of
new resources, and returning them to the nest. The scenarios
are often more complex, and include composite exploration
and exploitation like behaviours. In such tasks, existing
adaptive fault-detection systems may result in a large num-
ber of false-positive classifications of normal behaviours.

In this paper, we propose a solution to the above is-
sue, specifically: extending our generic exogenous fault-
detection system to operate successfully on heterogeneously
behaving robots of an MRS. In our extended model, a history
of past behaviour observations is taken into account in order
to classify robot behaviour, not only as normal/abnormal,
but also as suspicious. Using a history of past T-cell pop-
ulations embodied on the robot, observed behaviours mis-
classified as abnormal in our original model are now simply
treated as suspicious, if the behaviour was considered nor-
mal in the past. We demonstrate the capacity of the system
to tolerate normal behaviours, despite temporal variations –
ranging from an almost simultaneous to slow changes in the
behaviour across the MRS. Furthermore, our extended fault-
detection system continues to reliably detect abnormally be-
having robots.

The rest of the paper is organised as follows: in the
following section, we describe the different approaches to
fault detection in autonomous robots, followed by our fault-
detection system based on the adaptive immune system. We
then present extensions to our fault-detection system for het-
erogeneously behaving robots. We go on to report the results
of our experiments in different scenarios, and under varying
behaviour transition rates. Finally, we discuss our approach
to fault detection and highlight the conclusions of this study.

Related work
The engineering of fault-detection systems for robots is a
well-studied problem, and can be broadly classified into en-
dogenous and exogenous approaches. The endogenous fault

detection approaches have robots proprioceptively detecting
faults in their individual behaviour (e.g., Christensen et al.
(2008b); Skoundrianos and Tzafestas (2004)). The models
assume that hardware faults affect the flow of sensory in-
formation, and actuation of the robot. Consequently, sta-
tistical learning algorithms (e.g., artificial neural networks)
are trained to detect anomalies based on the input-output
relationship of focal components on the robot. These ap-
proaches have been successfully used to detect faults in
components such as, wheels (Skoundrianos and Tzafestas,
2004), and tracks with wheels (Christensen et al., 2008b)
of a mobile robot. Most endogenous fault-detection models
are built on the assumption that the normal operating be-
haviour of the robot is known, and can be characterised pre-
deployment. Consequently, the models are trained to recog-
nise prescribed normal behaviour, and behaviours not recog-
nised by the model are labelled abnormal. However, while
such approaches have resulted in reliable fault detection in
specific scenarios, they may not easily transition to differ-
ent and varying characterisations of normality in MRS (e.g.,
online adaptation of existing behaviours or even learning of
new behaviours). In summary, endogenous fault-detection
systems are finely tuned to the particular behaviour of the
target system, under a specific set of task parameters.

Exogenous fault detection systems leverage the multitude
of robots constituting a MRS, to provide individual robots
the capability to detect faults in one another (e.g., Parker
(1998); Christensen et al. (2009); Millard et al. (2014); Lau
et al. (2011)). Such an approach is particularly advantageous
to detect faults that are difficult to detect endogenously by
the robot (e.g., mechanical failures consequent to an unsta-
ble connection to a power source), or that disable the robots
communication and capability to alert other robots or a hu-
man operator. However, while exogenous approaches do
provide some interesting results of robust fault detection and
tolerance (e.g., see ALLIANCE software architecture Parker
(1998)), successful fault detection require prior knowledge
of the various tasks to be performed, and their correspond-
ing measures of performance. Furthermore, many of these
fault-detection approaches (e.g., Gerkey and Matarić (2002);
Parker (1998)) are designed for MRS consisting of a limited
number of tightly coupled, and relatively complex robots.

Adaptive immune system based fault-detection
Our previously developed fault-detection system for homo-
geneously behaving robots is based on the crossregulation
model (CRM) (Leon et al., 2000), a mathematical model
that captures the robust maintenance of immunological tol-
erance by allowing the system to discriminate between anti-
gens based solely on their density and persistence in the en-
vironment. According to Leon et al. (2000), the immune sys-
tem is able to tolerate body antigens (the molecular compo-
nents of body tissues) that are characteristically persistent
and abundant, and to mount an immune response to foreign
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pathogens, that are characterised as being neither persistent
nor abundant.

The CRM describes the population dynamics of cells of
the adaptive immune system, consisting of three mutually
interacting cell types: (a) Antigen presenting cells (APCs)
that present the antigen on their surface. Individual APCs
have a fixed number of binding sites on which effector and
regulatory cells can form conjugates; (b) effector cells TE
that can potentially mount immune responses which, de-
pending on receptor specificity, may be directed to foreign
pathogens or to body-antigens; and (c) regulatory cells TR
that suppress proliferation of TE cells with similar specifici-
ties. Furthermore, APCs are classified into different sub-
populations of equivalent APCs, with each APC in a sub-
population presenting the same antigen on its surface. Sim-
ilarly, effector and regulatory cells are also classified into
different clones according to their specificity.

A mathematical formulation comprising ordinary differ-
ential equations, of the dynamics of interactions between
effector cells and regulatory cells, with APCs, is detailed
in Tarapore et al. (2015). In the next subsection, we pro-
vide an overview of these interactions, introduce the impor-
tant parameters, and highlight the interesting properties of
the CRM (detailed description of model at Carneiro et al.
(2007)). We then describe the implementation of the CRM
in the MRS, and the resultant fault detection achieved by the
model.

Functioning of the CRM

The CRM provides a differential equation governing each
of the clonal types (i) of effector (Ei), and regulatory (Ri)
T-cells. The sub-populations of each of these clonal types is
subject to the following: (a) growth by proliferation (divi-
sion of parent cells to two daughter cells) of their individual
activated cells; and (b) shrinkage consequent to death of T-
cells.

The density of proliferating T-cells of each clonal type i,
is dependent on their interactions with APCs of each sub-
populations j. Consider the interactions between the i-th T-
cell clone and the j-th APC population. The resulting con-
jugates Cij are subject to the following: (a) Formation of
new conjugates by the free T-cells of clone i with available
binding sites on APCs of sub-population j. This conjuga-
tion rate is also controlled by the affinity between the T-cells
clone i and APCs sub-population j; and (b) Dissociation of
existing conjugated T-cells from APCs. The density of ac-
tivated effector and regulatory cells is computed from the
quasi-steady state densities of the conjugates. The conju-
gated effector cells proliferate in the absence of regulatory
cells on the same APC. In contrast, conjugated regulatory
cells can only proliferate if at least one effector cell is si-
multaneously conjugated to the same APC.

Table 1: Parameters of the CRM implementation.
Param. Description Value

l Length of binary feature vector 6 bits

M Maximum number of different feature vec-
tors

2l

N Maximum number of T-cell clones 2l

c Cross-reactivity between T-cells and APCs 0.15

IE Density of new effector cells introduced at
each simulation time-step

10 a.u.

IR Density of new regulatory cells introduced
at each simulation time-step

10 a.u.

k Feature vectors to APCs scaling factor 0.002

S Length of time CRM instance is numeri-
cally integrated, in a single robot control
cycle

5× 107 a.u.

d Proportion of T-cells diffused to neigh-
bouring robots

0.5

sj Suspicion value associated with feature
vector FVj

−

∆s Increment to suspicion value for newly ob-
served feature vector

0.95

γ Threshold below which feature-vector is
interpreted as suspicious and not abnormal

0.95

Execution of the CRM on a robot
Our original CRM-based model implemented on a dis-
tributed embodied MRS, in simulation, affords the system
the capacity to detect abnormally behaving robots, whilst
maintaining a tolerance towards normal robot behaviour
(see Tarapore et al. (2015)). Within the CRM frame-
work, behaviours exhibited by an abundant proportion of the
robots (normal behaviour) are interpreted as body antigens
(so normal). By contrast, faulty or abnormal behaviours are
considered foreign antigens (abnormal). Each robot exe-
cutes an independent instance of the CRM.

The CRM-based fault-detection model was tested for four
normal swarm behaviours (aggregation, flocking, disper-
sion, and homing) and four fault-simulating behaviours.
The fault-simulating behaviours performed by one of the 20
robots (selected at random) was, (a) move continually in a
straightly line (STRLN); (b) perform a random walk, with
a 0.01 probability of changing to a new random direction
each simulation time-step (RNDWK); (c) circle with diam-
eter 1 unit around a fixed point (CIRCLE); or (d) stop com-
pletely (STOP). These additional behaviors were introduced
to mimic: (a) software bugs and sensor faults in the robot
controller (STRLN and RNDWK); (b) motor malfunctions
(CIRCLE); and (c) a broken or dead battery (STOP).

In both the original, and extended CRM-based models,
a robot computes a 6 bit binary feature vector (concatena-
tion of 6 simple Boolean features) encoding its behaviour
(Table 2), at the start of each control cycle. The robot then
senses the feature vectors of its 10 nearest neighbours (tested
with up to 100 simulated robots in MRS, see Tarapore et al.
(2015)), and counts the number of robots assigned to each of
the 26 feature vectors (FVj , j ∈

{
1 . . . 26

}
). In an individ-
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Table 2: Boolean features encoding robot behaviour (param-
eters in Table 3).

Notation Value at time τ*
F1(τ)

∑τ−W
t=τ U[ni(t)]

W > 0.5

F2(τ)
∑τ−W
t=τ U[no(t)]

W > 0.5

F3(τ) p(τ) > 0.05W |~vmax|
F4(τ) |~v(τ)| > 0.05|~vmax|
F5(τ)

∑τ−W
t=τ U [ni(τ) + no(τ)] ∧ U [ω′(τ)− 0.03ω′max] > 0

F6(τ)
∑τ−W
t=τ ¬U [ni(τ) +no(τ)]∧U [ω′(τ)− 0.03ω′max] > 0

*The Boolean feature is set if the condition is satisfied, else 0. Function U [x] is
1 if x > 0, and 0 otherwise.

ual robot’s internal CRM instance, APCs are then generated
corresponding to each of the feature vectors perceived. Each
APC presents an individual feature vector to the T-cells. The
number of each type of the APCs generatedAj = kFVj , for
j ∈ {1, . . . ,M}, where k is a scaling constant, andM is the
number of different feature vectors perceived by the robot.
The T-cell clones (T1, T2, . . . , TN ), each have a different re-
ceptor encoded as a binary string, which determines their
affinity to the APC population. The affinity between T-cell
clonal i and APC population j is denoted by θij :

θij = exp

(
−H[i, j]

cl

)
(1)

where H is the Hamming distance between the receptor of
Ti and the feature vector presented by Aj , l is the length
of the presented feature vector, and c is the cross-reactivity
between T-cells and APCs.

At the start of the simulation, the number of effector and
regulator cells on each robot is initialised to IE and IR, re-
spectively. Following this, Algorithm 1 (parameters in Ta-
ble 1) is performed by every robot in each control cycle, al-
lowing the robots to execute their internal CRM. The robots
begin by sensing their neighbours, and then compute the dis-
tribution of feature vectors. The CRM is then numerically
integrated for time S, allowing the system to respond to the
different APCs. After computing the number of effector and
regulatory cells at time S, the cells diffuse among robots.
In this communication phase, each robot selects at random
(linear distribution weighted on total T-cell density in the
CRM instance) another robot, from one of its 10 nearest
neighbours. Following the selection, each robot sends and
receives d of its effector and regulatory cells. Finally, the
robot decides the nature of each feature vector FVj sensed
by first computing the following quantities:

E =
N∑

i=1

θijEi R =
N∑

i=1

θijRi (2)

and tolerating the feature vector if R > E. By contrast, if
E > R, the feature vector is classified as faulty by the robot.

Figure 1: Example of a robot (left) unable to join an ag-
gregate (right) due to faulty sensors. This robot is detected
as behaving abnormally (coloured red) by its neighbours,
whereas the rest of the swarm is behaving normally and tol-
erated (coloured green).

The CRM deployed in the MRS is passive and does not al-
ter the behaviour of the robots. Rather, the individual robots
merely report the outcome of the classification for the differ-
ent behaviors observed in their vicinity, at each simulation
time step. At the end of each time step, a robot’s behaviour
is considered normal, if a simple majority of the robot’s 10
nearest neighbours tolerate it. Similarly, the behaviour is
treated abnormal, if a simple majority of these neighbours
interpret it as faulty.

Extending fault-detection to heterogeneously
behaving robots

The CRM-based abnormality detection system classifies be-
haviours solely based on their abundance in the MRS. Be-
haviours exhibited by many, or the majority of the robots of
the MRS are considered as normal. By contrast, rare be-
haviours exhibited by one of few robots are considered as
abnormal, and assumed to be resulting from a fault on the
robot. While such an approach is capable of robustly tol-
erating normal behaviours, and reliably detecting faults in
homogeneously behaving robots, it is not designed to de-
tect faults in robots executing complex (or composite) be-
haviours, or in which behaviour transitions propagate grad-
ually across the MRS. In such scenarios, normal behaviour
exhibited by a minority of robots of the MRS trigger false
positive incidents.

In order to extend our CRM-based model to scenarios in
which robots independently perform different behaviours at
different times, behaviour classification must be based on
observations made over a period of time. In accounting for
past observations, we may ask if a behaviour detected as
abnormal in the current time step, has always been abnor-
mal? Considering the behaviour was also abnormal in the
previous contexts that it was observed (context is the be-
haviours of the rest of the MRS), than it may indeed be ab-
normal. However, if the behaviour was treated as normal
in the past, or if a new behaviour has just emerged in the
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MRS and was therefore not encountered in the past, we may
not want to classify it as abnormal (and take appropriate ac-
tion), but merely treat such behaviour as suspicious. This
suspicion associated with an observed behaviour quantifies
the proportion of past contexts, with respect to which the
presently observed behaviour would have been considered
as abnormal.

Algorithm 1 A robot’s control loop (simulation of a CRM
instance).
1: Compute distribution of feature vectors (FVj) of neighbouring

robots
2: Assign feature vectors to APCs i.e., ∀j, Aj = kFVj

3: ∀j ∈ {1, 2 . . .M}, if Aj > 0, increment Ej and Rj by IE
and IR, respectively

4: while time ≤ S do
5: ∀i ∈ {1, 2 . . . N} and Ti > 0, and ∀j ∈ {1, 2 . . .M}

whereAj > 0, compute the number of conjugated cells Cij

in quasi-steady state.
6: Using the number of conjugated cells, compute the updated

number of effector and regulatory cells with the Euler-Heun
adaptive step method (Butcher, 2003).

7: Increment time
8: end while
9: Randomly select one of the robots in the communication range

following a linear distribution and weighted by the total num-
ber of cells on the respective neighbouring robots

10: Exchange cells with robot
11: For each feature vector, compute the sum of effector and regu-

latory cells, weighted by their affinity.
12: Tolerate the feature vector if total regulatory cells exceeds ef-

fectors, else interpret it as faulty.

The suspicion is computed by the robot, when its instance
of the CRM classifies an observed behaviour as abnormal.
Algorithm 2 details the procedure to compute the suspicion
(sj) associated with a feature vector FVj , already classified
as abnormal. It involves an increment to the suspicion value
for every simulation time-step t over the recorded historyD,
when FVj would have been considered abnormal (parame-
ters in Table 1).

Et =
N∑

i=1

θijE
t
i Rt =

N∑

i=1

θijR
t
i (3)

where Eti and Rti are the recorded density of effector and
regulatory cells at simulation time-step t.

When Et > Rt, the FVj is considered abnormal with
respect to the context at simulation time-step t, and the sus-
picion sj associated with FVj is incremented by 1.

The appearance of a new behaviour, i.e., a behaviour not
observed by the robot at time-step t, also results in an incre-
ment to sj , but by a smaller value of ∆s (∆s < 1).

Finally, the feature vector FVj is considered as abnormal
if its normalised suspicion value (sj/D) exceeds a threshold
γ. Otherwise, FVj is merely considered as suspicious.

Latency in fault detection: The minimisation of the time
required to detect a behaviour as abnormal since it began

Algorithm 2 Subroutine to determine suspicion, called
when feature vector FVj is interpreted as abnormal.
1: {Initialise suspicion value associated to FVj}
2: sj ← 0
3: {Iterate over past D time-steps}
4: for t = current to current−D do
5: {If FVj was not observed at time t, increment sj by a lower

value}
6: if FVj not observed at time t then
7: sj ← sj + ∆s

8: else
9: {Analyse FVj with T-cell population of time t}

10: E(t)←∑N
i=1 θijEi(t)

11: R(t)←∑N
i=1 θijRi(t)

12: {If FVj would have been interpreted as abnormal at time
t, increment sj by a higher value}

13: if E(t) > R(t) then
14: sj ← sj + 1
15: end if
16: end if
17: end for
18: {Compare normalised suspicion value to threshold}
19: if sj/D < γ then
20: FVj is suspicious
21: else
22: FVj is abnormal
23: end if

to be executed is an important requirement of any fault-
detection system. At the offset of a new behaviour, our
suspicion towards the behaviour is incremented by a small
value (∆s), since we may not want to immediately classify
it as abnormal. Obviously, the suspicion parameter ∆s in-
fluences detection latency, and can be analysed. For a be-
haviour to be detected as abnormal in our extended model,
the following condition has to be satisfied:

y

D
+ ∆s

(
D − y
D

)
≥ γ (4)

where y is the amount of time in the past that the behaviour
would have been classified as abnormal (see eq. 3).

Solving eq. 4 for y with parameters in Table 1, the latency
is at least 295 s, 128.3 s, and 45 s, for ∆s at 0.90, 0.94, and
0.95, respectively (including time window W to formulate
the feature vector). The latency may be longer if the dis-
criminatory features in the feature vector are not present in
time window W .

Experiments

Experimental setup: We conducted a series of experiments
to assess the performance of our abnormality detection ap-
proach. In all experiments, we simulated a swarm of 20 e-
puck like robots located in a 5× 5 m2 toroidal environment.
Each robot had a diameter of 7.5 cm and a maximum speed
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Table 3: Parameters of simulated robot
Param. Description Value

|~vmax| Maximum linear speed of robot 10 cm/s

|~v| Linear speed of robot −
ωmax Maximum change in direction of robot

per control cycle
π radians

ω Change in direction of robot per control
cycle

−

ni Number of neighbouring robots in the in-
ner range of [0, 30] cm

−

no Number of neighbouring robots in the
outer range of (30, 60] cm

−

W Length of the time window for feature
computation

45 s

p Distance traversed by the robot in the
pastW s

−

of 10 cm/s (see Table 3).1 At the start of each experiment,
the robots were placed at a random location and assigned a
random orientation drawn from uniform distributions.
Latency in fault detection: In a first set of experiments,
we assessed the capacity of our CRM-based detector to cor-
rectly detect abnormally behaving robots. All robots ini-
tially performed Dispersion in which they tried to maximise
the distance to all neighbours. Halfway through each exper-
iment, one of the robots in the swarm simulated a fault by
switching to the STOP behaviour, which caused the robot
to remain immobile. We conducted 20 replicates of each of
three experimental setups with different values of the suspi-
cious increment parameter, ∆s: 0.90, 0.94, and 0.95. Each
experimental replicate had a duration of 1, 500 seconds of
simulated time. In all 20 out of 20 replicates, for all values
of ∆s, we observed that the fault-simulating robot was cor-
rectly detected as behaving abnormally by other members
of the swarm. However, the latency, that is the time between
a fault-simulating robot begins to execute STOP behaviour,
and until it is detected, varied significantly across the three
setups (Mann-Whitney test, df = 18, all p < 0.001, see
Fig. 2). For ∆s = 0.90, the median fault detection latency
was 288.2 ± 23.6 s (Median ± IQR), for ∆s = 0.94 the
median latency was 108.8±20.7 s, while for ∆s = 0.95 the
median latency was 33.2 ± 21 s. As expected (see eq. 4),
with suspicion parameter ∆s at 0.95, the MRS achieved the
lowest latency in detecting simulated faults.

Using ∆s at 0.95, we also tried the following nor-
mal/abnormal behaviour combinations in the same setup:
(i) Aggregation/Dispersion; (ii) Flocking/RNDWK; and
(iii) Homing/Dispersion (see Table 4). In the three behaviour
combinations, the abnormally behaving robot was detected
in less than 3.5 minutes (median). However, for the Aggre-
gation/Dispersion and Homing/Dispersion behaviours, the
abnormal robot exhibiting Dispersion was not detected in

1Simulation source code can be downloaded from
https://github.com/daneshtarapore/robotsim_
ecal2015.git
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Figure 2: Latency in the detection of fault simulating be-
haviour. Time required to detect an robot performing fault
simulating behaviour across 20 replicates for different suspi-
cion increment parameters. The detected robot switches its
behaviour from dispersion (normal behaviour of the MRS)
to stop halfway through the simulation.

8 of 20, and 7 of 20 replicates, respectively. In these repli-
cates, the abnormal robot was trapped by other aggregating
or homing robots when it switched to performing Disper-
sion, and therefore could not be differentiated from these
robots.
False-positive incidents for heterogeneously behaving
robots: The minimisation of false positives is important
in fault-detection systems, as subsequent fault accommoda-
tion may be costly and could lead to the exclusion of ca-
pable robots. In a series of experiments, we assessed the
system’s capacity to avoid false positives when transitions
in behaviour occur over time. We conducted 20 replicates
in which all robots switched behaviour. In each replicate,
the robots started out by performing Dispersion, then grad-
ually switched to the STOP behaviour over a period of time,
and then reverted back to Dispersion over a period of time.
Each experimental replicate had a duration of 1, 500 sec-
onds. During the first 500 seconds, all the robots of the
MRS performed Dispersion. Then, robots selected at ran-
dom (following a uniform distribution), began switching to
the STOP behaviour. The time between robots switching
behaviour was 3.75 s, 6.25 s, 12.5 s, and 25.0 s (in four sep-
arate and independent experimental setups). After all robot
had switched behaviour, robots (selected at random) began
to switch back to Dispersion with the same delay used in
the initial switch. It should be noted that while in the pre-
vious set of experiments (Fig. 2), the STOP behaviour was
used to simulate a fault, in this new set of experiments, the
STOP behaviour should no longer be considered abnormal
since all the robots in the swarm eventually transition to this
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Table 4: Number of false-positive incidents per robot, and
the latency, for different behaviours propagated in the MRS.
Suspicion parameter ∆s is 0.95.

Behaviours Number of false-positives inci-
dents at behaviour switching time Latency (s)

3.75 s 6.25 s 12.5 s 25 s

Dispersion,
STOP

8.1 ±
12.6

14.8 ±
22.6

38.0 ±
30.7

83.0 ±
22.4

33.2 ±
21.0

Aggregation,
Dispersion

2.3 ±
7.0

3.5 ±
9.7

5.1 ±
13.1

21.5 ±
25.9

49.9 ±
28.0†

Flocking,
RNDWK

9.1 ±
15.7

17.8 ±
17.6

19.9 ±
22.1

18.8 ±
27.6

194.7 ±
219.4

Homing,
Dispersion

0.4 ±
5.5

0.2 ±
7.2

7.7 ±
9.3

4.7 ±
10.6

88.2 ±
67.7‡

†In Aggregation/Dispersion, the dispersing robot was not detected as abnormal in
8 of 20 replicates.

‡In Homing/Dispersion, the dispersing robot was not detected as abnormal in 7
of 20 replicates.

behaviour. The results, in terms of number of false-positive
incidents, for the original (suspicion disabled) and the ex-
tended CRM-based fault detector (suspicion enabled), and
for different behaviour transition periods are shown in Fig. 3.

Our extended CRM-based model achieved at least an
order of magnitude improvement in the number of false-
positive incidents over the original model, for all four be-
haviour switching times. The difference in performance was
higher for the more gradual transitions in behaviour. For
the extended CRM-based model, at ∆s = 0.90, the number
of false-positive incidents incurred by the MRS was not af-
fected by the behaviour switching delay. However, for ∆s =
0.95, the behaviour switching delay significantly affected
the number of false-positive incidents (Kruskal-Wallis test:
p < 0.001). Experiments where the MRS was subjected to
a higher behaviour switching delay between robots of 25 s
incurred more false-positive classifications than MRS expe-
riencing behaviour-switching delays of 3.75 s, 6.25 s and
12.5 s (Mann-Whitney test, df = 18, all p < 0.001), but
with the difference not exceeding 75 incidents in a total of
15,000 control cycles.

In our extended CRM-based model, a trade-off exists
between latency and the number of false positives, reg-
ulated by the suspicion parameter ∆s. For ∆s at 0.90,
the model registered a low number of false positives, but
a high latency in detecting fault-simulating robots (Fig. 2
and 3). Incrementing ∆s to 0.95 resulted in a much
lower latency, and only a slight increase in the num-
ber of false positives. Using this suspicion parameter at
0.95, we also tried the following behaviour propagations
across the MRS, each replicated 20 times: (i) Aggregation–
Dispersion–Aggregation; (ii) Flocking–RNDWK–Flocking;
and (iii) Homing–Dispersion–Homing (see Table 4). In all
three behaviour combinations, the number of false-positive
incidents per robot was no higher than 22 (median across 20
replicates) in 15, 000 control cycles, and irrespective of the
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Figure 3: False-positive incidents of fault-detection for
heterogeneously behaving robots. Number of false-
positive incidents per robot across 20 replicates for four
different behaviour switching times (for Dispersion–STOP–
Dispersion), in each of the following three fault-detection
experiments: (i) suspicion disabled (our original fault-
detection model); (ii) suspicion enabled, and incremented
by 0.90 (∆s = 0.90) for new behaviour feature vectors;
and (iii) suspicion enabled, and incremented by 0.95 (∆s =
0.95) for new behaviour feature vectors.

tested behaviour switching times.

Conclusions and future work
The results demonstrate the suitability of our generic fault-
detection system for MRS exhibiting composite swam be-
haviours. In our approach, the individual robots of the MRS
utilise a record of past behaviour observations to make more
accurate normal/abnormal classifications of the behaviours
of neighbouring robots. While our approach relies on an
immune system-based model to operate in scenarios involv-
ing a gradual transition in MRS behaviour, other more tra-
ditional methods, such as statistical hypothesis testing could
also be applied to detect changes in distribution of past sam-
pled observations (Ladi et al., 2014). In future work, we
plan to investigate how these more centralised classification
approaches could be integrated into our distributed fault-
detection system.

Noise evident in real sensor and actuator readings only
has an impact on our fault-detection system if it can cause
changes in one or more features of the feature vector. One
approach to compensate for perturbations in feature vectors
is to account for the specific hardware platform in the design
of individual features. Additionally, the value of individual
features is calculated based on several observations made
over a period of time (W s), and the decision on whether to
classify a faulty robot is based on votes from several robots.
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There are thus several mechanisms in place to avoid mis-
classification, when noise is added to our simulation as part
of future work.

Our fault-detection system is designed to be generic
with respect to the behaviours of the underlying MRS. Be-
haviours are classified (normal/abnormal) solely based on
their persistence and abundance in the MRS. However, a
number of behaviours may be known in advance to be ab-
normal, or normal, in particular contexts. “Vaccinating” our
immune system-based model with this information, may ex-
pedite the process of fault detection and improve the perfor-
mance of the suspicion module. The long-term goal is to as-
sess our fault-detection system in more complex behaviours
for realistic task scenarios.
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