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From Fireflies to Fault-Tolerant Swarms of Robots
Anders Lyhne Christensen, Rehan O’Grady, and Marco Dorigo, Fellow, IEEE

Abstract— One of the essential benefits of swarm robotic
systems is redundancy. In case one robot breaks down, another
robot can take steps to repair the failed robot or take over the
failed robot’s task. Although fault tolerance and robustness to
individual failures have often been central arguments in favor of
swarm robotic systems, few studies have been dedicated to the
subject. In this paper, we take inspiration from the synchronized
flashing behavior observed in some species of fireflies. We derive
a completely decentralized algorithm to detect non-operational
robots in a swarm robotic system. Each robot flashes by lighting
up its on-board light-emitting diodes (LEDs), and neighboring
robots are driven to flash in synchrony. Since robots that are
suffering catastrophic failures do not flash periodically, they can
be detected by operational robots. We explore the performance
of the proposed algorithm both on a real-world swarm robotic
system and in simulation. We show that failed robots are detected
correctly and in a timely manner, and we show that a system
composed of robots with simulated self-repair capabilities can
survive relatively high failure rates.

Index Terms— Fault detection, self-organization, swarm intel-
ligence, swarm robotics, synchronization.

I. INTRODUCTION

IN THIS PAPER, we leverage some of the high-level
principles behind synchronizing systems found in nature

to obtain a robust, simple, decentralized approach to fault
detection in groups or swarms of autonomous robots. By
detecting the presence of faults, the robots can leverage their
multiplicity and ensure continued operation by reassigning
functional robots to the failed robots’ task or by taking steps
to have the failed robots repaired.

Carlson et al. [1] tracked the reliability of 15 mobile robots
from three different manufacturers over a period of 3 years and
found the average mean time between failures to be 24 h. The
result suggests that faults in mobile robots are quite frequent.
As the number of constituent robots increases, we would
expect the rate of failure to grow correspondingly. Faults are
therefore likely to be common events in multirobot systems.
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Many studies have been devoted to endogenous fault de-
tection, that is, a robot detecting faults in itself, see for in-
stance [2]–[10]. Some faults are, however, hard to detect in the
robot in which they occur. These faults include software bugs
that cause a control program to hang and mechanical faults
such as an unstable connection to a power source. Alterna-
tively, a robot might be able to detect a fault, but the fault itself
might render the robot unable to alert other robots or a human
operator. The robustness of a multirobot system is therefore
greater if the robots can detect the presence of faults in one
another. We refer to this process as exogenous fault detection.

We are interested in exogenous fault detection in a particular
type of multirobot systems, namely swarm robotic systems.
A swarm robotic system is composed of numerous relatively
simple robots. The philosophy behind swarm robotics is to rely
on group-level self-organization through local interactions be-
tween the robots. The potential advantages of designs adhering
to this philosophy include scalability, inherent parallelism, and
robustness to individual failures [11]–[13].

In this paper, we present a simple and completely distributed
approach that allows robots in a swarm robotic system to
detect the presence of faults in one another: through local
interactions, robots are able to synchronize and reach a state
in which they flash their on-board light-emitting diode (LED)
periodically in unison. When a robot breaks down, it also
ceases to flash. By detecting the absence of flashes, operational
robots can effectively detect failed robots.

This paper is organized as follows. In Section II, we discuss
previous studies related to fault detection and fault tolerance
in multirobot systems. In Section III, we present the robotic
hardware (the swarm-bot platform) used in this paper. In
Section IV, we discuss different ways of detecting faults based
on different flashing schemes, and we motivate our firefly-
inspired approach. In Section V, we discuss synchronization
in systems of pulse-coupled oscillators. In Section VI, we
show how simulated and real robots can synchronize their
flashing and we explore various parameters such as robot
density, group size, and coupling strength. In Section VII, we
show how non-operational robots can be detected and present
results of experiments with a system in which the robots have
(simulated) self-repair capabilities. Concluding remarks and
directions for future research are provided in Section VIII.

II. RELATED WORK

For swarm robotic systems, little work on exogenous fault
detection has been done. Previous studies have mostly been
concerned with the analysis of a swarm’s implicit tolerance
to faults (as opposed to studying methods to explicitly detect
and deal with faults). Lewis and Tan [14] have shown that
their control algorithm for maintaining geometric formations
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exhibits correct behavior even if one of the robots fails.
Winfield and Nembrini [15] analyzed potential faults and
their effect in a containment task for a swarm of robots
connected through local wireless links. The authors found that
their system exhibited a high level of tolerance to individual
failures, but at the same time that certain types of faults could
effectively anchor the swarm at the failed robot’s position. In
their conclusions, they envisage a new behavior in which the
swarm can identify failed members and isolate them from the
rest of the swarm. In both [14] and [15] mentioned above, fault
tolerance is a consequence of the simple and adaptive nature of
the controller design and not of explicit fault detection, diagno-
sis, and accommodation. Although attempts to generalize fault
tolerance by design have been made (see for instance [16]),
it is not known whether such designs are feasible (or even
theoretically possible) for all systems and all tasks.

Fault detection and fault tolerance in systems composed
of a limited number of relatively complex robots have, how-
ever, been studied in the past. Parker [17] has, for instance,
demonstrated that cooperating teams of robots based on the
ALLIANCE software architecture can achieve a high degree of
fault tolerance. ALLIANCE was developed for heterogeneous
robots performing missions composed of loosely coupled
tasks with possible ordering dependencies. Fault tolerance is
obtained by modeling “motivations” mathematically and by
adaptive task selection based on these motivations. When a
robot fails to register satisfactory progress in its current task
(for instance due to the presence of a fault), it decreases
its motivation to perform the task. Eventually, the robot will
switch to another task that it may still be able to perform.
Alternatively, another robot will discover that there is limited
or no progress in the task undertaken by the failed robot, and
take over. Other approaches, such as MURDOCH [18], [19]
and TraderBots [20], have been proposed. In both MURDOCH
and TraderBots, explicit communication is used to negotiate
task allocation. Fault detection and fault tolerance are built
into this negotiation process.

The objective of approaches such as ALLIANCE, MUR-
DOCH, and TraderBots is to enable a team of robots to coor-
dinate their efforts effectively—even when faults are present.
These approaches require that the robots are tightly coupled.
For multirobot systems consisting of a limited number of
relatively sophisticated robots, these approaches have proved
to be practical. We are, however, interested in multirobot
systems of the swarm robotic variety. For swarm robotic
systems, tightly coupled and/or centralized approaches are
less easily applicable. Robots in such systems tend to lack
the means to facilitate centralized swarm-level coordination.
Furthermore, both tightly coupled and centralized approaches
often have serious scalability issues.

In this paper, we are interested in a fault detection approach
that scales up to hundreds of relatively simple robots. There-
fore, we propose an approach that is completely decentralized
and in which each robot uses only local information.

III. HARDWARE PLATFORM

For our experiments, we use the swarm-bot robotic plat-
form [21]. This innovative platform was designed and built

S bot:

 Body diameter: 116mm 
 Body height: 100mm
 Weight: ~700g
 Autonomy: 2h+
 Rotation of the main

   body with respect to
   the motion base

 400 MHz XScale CPU
 15x 20 MHz PICs
 WiFi communication
 Linux OS
 All terrain mobility

Loudspeakers

Microphones

Proximity sensors

Camera

Differential treels

Hemispherical mirrorGripper

Fig. 1. s-bot: an autonomous, mobile robot capable of forming physical
connections with other s-bots.

ba

Fig. 2. a) s-bot with all its LEDs off. b) s-bot with its red LEDs illuminated.

by Francesco Mondada’s group at the Laboratoire de Système
Robotiques (LSRO) of the Ecole Polytechnique Fédérale de
Lausanne (EPFL). The system consists of a number of mobile
autonomous robots called s-bots (see Fig. 1) that are capable of
forming physical connections with each other. The swarm-bot
platform has been used for several studies, mainly in swarm
intelligence and collective robotics (see for instance [22],
[23]). Overcoming steep hills and transport of heavy objects
are notable examples of tasks which a single robot could not
complete individually, but which have been solved successfully
by teams of collaborating robots [24]–[27].

Each s-bot is equipped with an XScale CPU running at
400-MHz, a number of sensors including an omni-directional
camera, light sensors, and proximity sensors. Physical con-
nections between s-bots are established by a gripper-based
connection mechanism. Each s-bot is surrounded by a trans-
parent ring that can be grasped by other s-bots. S-bots can
advertise their location by means of eight sets of RGB-colored
LEDs distributed around the inside of their transparent ring
(see Fig. 2).

Each s-bot control program operates in a discrete manner:
A control program is run as a succession of sense-think-act
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cycles. In each cycle, the control program reads data from
sensors such as the on-board camera, infrared proximity sen-
sors, and so on, processes the data, and sends control signals
to the actuators such as the motors that drive the robot. In this
paper, we use a control cycle period of 0.15 s.

A. S-bot Camera and Image Processing

The s-bots are equipped with an omnidirectional camera
mounted in the turret. The camera points upward at a hemi-
spherical mirror mounted in a transparent perspex tube above
the turret. The s-bot camera captures images of the robot’s
surroundings reflected in the hemispherical mirror. The camera
sensor records 640× 480 pixel color images. The s-bots have
sufficient on-board processing power to scan entire images
and identify objects based on color. Images are divided into
a grid of multipixel blocks and the image processor outputs
the prevalent color in each block (or indicates the absence of
any relevant color). We have configured the image processor
to detect the location of the colored LEDs of the s-bots and
discard any other information. Depending on light conditions,
an s-bot can detect LEDs on neighboring s-bots up to 50 cm
away. In our experiments, robots always illuminate their green
LEDs, except when they are flashing, to ensure that nearby
robots are always able to see one another.

B. Simulation Environment

We use a custom software simulator [28]. All of the sensors
and actuators shown in Figs. 1 and 2 have been implemented in
the simulator. Combined with an implementation of the robot’s
application programming interface (API), this allows programs
developed for the real s-bots to be run in the simulator and vice
versa. Although differences exist between the real world and
simulation, a software simulator allows us to experiment with
setups that, for instance, contain more robots than are available
in reality. Also, in a simulator, we can easily conduct a large
number of replications of an experiment and thereby discover
trends in the behavior of the system.

IV. MOTIVATION AND METHOD

In this section, we discuss the motivation for a protocol in
which s-bots periodically and in unison illuminate their on-
board LEDs in a certain color. We first explain why color-
based communication is a sensible communication modality
to use for exogenous fault detection. We then go on to discuss
three different protocols for exogenous fault detection based
on visual color-based communication.

Robots can detect the presence of faults in one another when
they periodically send out an “I am operational” signal. By
detecting the absence of this signal over a certain time period,
team members can detect non-operational robots. On the
s-bots, we have a number of options concerning the medium
for the signal: radio communication, sound communication,
and visual color-based communication. Over a radio network,
robots could periodically send out broadcast messages to
indicate that they are still operational. If sound communication
is used, the robots could periodically emit a tone with a

certain frequency. If visual communication is used, s-bots
could periodically illuminate their on-board LEDs in a certain
color.

When robots detect the presence of an exogenous fault,
it is important that they at the same time can detect the
location of the failed robot. To this end, the communication
between robots should be situated rather than abstract [29].
Both radio and sound often provide only abstract commu-
nication: when one robot sends out a message, other robots
may receive the message but they are unable to determine
the location of the sender relative to their own frame of
reference. Thus, the messages are separated from environment
localization information. In some cases, radio and sound can
provide some level of situated communication: certain radio-
based technologies allow robots to confine communication to
short distances. Furthermore, it may be possible to obtain
a crude approximation of the direction and distance to the
emitting source if directional antennas are used. Such hardware
is, however, rarely available on current robotic platforms.
Alternatively, using sound-based communication in a system
where each robot is equipped with multiple microphones, a
robot can with reasonable accuracy detect the direction of a
sound emitter using time delay estimates. However, estimating
the distance with a sufficiently high accuracy can be very
difficult.

Visual communication is, on the other hand, implicitly
situated: robots detect changes in each other’s LED colors by
analyzing camera images. As a direct result of this analysis,
the perceiving robot knows the location of any LEDs it detects
in its own frame of reference. Some other multirobot systems
have different situated communication modalities. On iRobot’s
Swarm platform, for instance, each robot can estimate the
range and bearing of neighboring robots with a high level of
accuracy using a communication system based on multiple
infrared transceivers [30]. Such hardware is, however, not
available on our platform. We therefore chose to use visual
communication.

In the following sections, we justify our so called syn-
chronized flashing protocol by comparing it with two other
possible visual communication-based protocols, namely the
unsynchronized flashing protocol and the ping-pong protocol.

A. Unsynchronized Flashing Protocol

In this protocol, either the red LEDs or the green LEDs of all
the s-bots are constantly illuminated. Each s-bot periodically
switches the LED color that it is illuminating. The s-bots share
a common system-wide illumination period, but make no effort
to synchronize their switching. Using a common illumination
period of 2 s, for example, each s-bot would illuminate its
green LEDs for 2 s, then its red LEDs for 2 s, then its green
LEDs for 2 s and so on. A robot that does not change the
color of its LEDs may have a fault.

The unsynchronized flashing protocol requires that every
robot continuously monitors all its neighboring robots. Keep-
ing track of individual robots is hard. The image processing
capabilities of the s-bots are limited: the s-bots can see only
illuminated LEDs. Features such as the gripper, the treels,
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and chassis cannot be identified by the image processor. Each
LED is detected as one or more distinct objects. One robot
can partly or completely occlude another robot. When a robot
moves around, the perspex tube holding the camera and the
hemispherical mirror (see Fig. 1) shakes and as a result even
static objects “jump around” from frame to frame. Hence, it
can be difficult for a robot to determine which LEDs belong
to which robot, especially when two or more neighboring
robots are close to one another. Furthermore, due to the robots’
limited visual range, they enter and exit each other’s view
repeatedly. The difficulty of identifying and keeping track of
moving robots makes the unsynchronized flashing protocol
hard to implement in practice.

B. Ping-Pong Protocol

Assume that each robot with a small probability sends out a
message (a ping) to which neighboring robots should respond
(with a pong). If a robot does not reply, it may have a fault. In
the following discussion, we assume that a robot sends out a
ping by illuminating its red LEDs, while other robots respond
with a pong by illuminating their green LEDs.

In the ping-pong protocol, the pinging robot (a robot that
illuminates its red LEDs for a brief period) has to ensure that
all of its neighboring robots correctly respond with a pong (by
illuminating their green LEDs for a brief period). Therefore,
as with the unsynchronized flashing protocol, a robot using
the ping-pong protocol needs to keep track of neighboring
robots. However, the ping-pong protocol has the advantage
that a robot only needs to keep track of its neighbors right
after it has sent out a ping. When a robot sends out a ping, it
can stop its motion so that the camera and perspex tube do not
move. In this way, the s-bot can see more accurately whether
its neighboring robots respond correctly. The issue of keeping
track of neighboring robots is therefore not as pronounced in
the ping-pong protocol as it is in the unsynchronized flashing
protocol. However, the following two problematic situations
can arise: A robot (N) does not see a ping from another robot
(P), due, for instance, to occlusion or to the distance between
the two robots. P, however, is able to see some of Ns LEDs
while waiting for its neighbors to respond with a pong: P
would wrongly assume that N has a fault giving that N does
not reply to the ping that it did not see. Another situation can
arise in which a robot receives ping messages from different
robots in succession and therefore illuminates its green LEDs
for an extended period. A robot that is merely responding to
a series of pings is hard to distinguish from a robot that has
become non-operational while it was replying.

C. Synchronized Flashing Protocol

The problems associated with the two protocols above
disappear if we assume that the robots change color in a
synchronized fashion. In the synchronized flashing protocol,
any robot that is not flashing when the rest of the swarm flashes
may have a fault. In both the unsynchronized flashing protocol
and the ping-pong protocol, robots need to correlate visual
information distributed in time in order to determine whether
a robot is faulty. In contrast, when robots flash in unison,

there is no need for a single robot to identify and track all of
its neighbors. It is sufficient for a robot to detect LEDs with
the wrong color (which indicates that one of its neighbors
is not flashing) while the robot itself is flashing. Hence, the
presence of a potentially failed robot can be detected on the
basis of a single image captured by the camera. More complex
reasoning required to keep track of all of the neighboring
robots over time is not necessary. Furthermore, the two issues
listed above for the ping-pong protocol (unseen pings and
constantly replying to pings) do not arise in the synchronized
flashing protocol: since the robots flash in synchrony, every
robot is in effect “pinging” and “ponging” at the same time.

The challenge in implementing a synchronized flashing
protocol is to make all the robots change color periodically at
the same time. However, nature has found an elegant solution
to this problem.

V. SYNCHRONIZATION OF PULSE-COUPLED OSCILLATORS

In nature, we find many examples of coupled oscillating
systems with various types of synchronous behavior. The
canonical example is large groups of tropical fireflies, found on
river banks in Southeast Asia that spontaneously synchronize
their rhythmic flashes [31], [32]. Other examples include
cardiac cells [33], choruses of grasshoppers [34], female
menstrual cycles [35], and clapping in theaters [36].

Systems of coupled oscillators can be divided into two
classes: oscillators that continuously influence one another (see
for instance [37]) and so called integrate-and-fire or pulse-
coupled oscillators, where one oscillator only influences other
oscillators during short, periodic pulses. In this paper, we focus
on the latter type. The internal state or activation of each
oscillator increases over time until it reaches a certain thresh-
old. When the threshold is reached, the oscillator discharges
(fires) and its activation instantly jumps back to zero—the
cycle then repeats. When a nearby oscillator observes a flash,
it immediately increases its activation by a (small) amount.
If this increase causes the oscillator’s activation to exceed the
firing threshold, the oscillator fires, resets its activation to zero,
and commences a new cycle. Analytically, many pulse-coupled
networks can be written in the following form [38]:

ẋi = f (xi )+ ε
∑

j∈N

h
(
xi

)
δ(t − t∗j ) (1)

where xi ∈ 0, 1 denotes the activation of oscillator i . The
function f describes its dynamics. The constant ε defines
the strength of the coupling between oscillators. N is the
set of oscillator i ’s neighbors. The pulse-coupling function
h describes the effect of the firing of another oscillator j
on i . The time t∗j marks the moment when j last fired. The
delta distribution function δ(t) satisfies δ = 0 for all t �= 0,
δ(0) = ∞ and

∫
δ = 1. An example with two oscillators for

which f is constant and h is linear is shown in Fig. 3.
The self-synchronization of pulse-coupled oscillators was

first described by Peskin [39], who observed the phenomenon
in cardiac pacemaker cells. Mirollo and Strogatz later showed
that a population of fully connected pulse-coupled oscillators
almost always evolves to a state in which all oscillators are
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Fig. 3. Example of two pulse-coupled oscillators. Both oscillators increase at
a constant rate until the threshold is reached—at which point the oscillator fires
and jumps back to 0—or until the firing of the other oscillator is observed.
When one oscillator observes the other’s firing, it increases its own state
by ε h(x), where ε is the pulse-coupling constant, h(x) the pulse-coupling
function, and x the activation of the oscillator.

firing synchronously [40]. Recently, Lucarelli and Wang [41]
showed that a group of pulse-coupled oscillators will even-
tually synchronize even when each oscillator interacts with
only a subset of the population. This holds true for systems
with changing topologies as long as the interaction graphs are
connected.1

Understanding synchronization is not only important for
describing natural phenomena—synchronization is a central
issue in distributed computing and distributed sensing. The
problem of establishing a consistent global time base across
nodes in a distributed system subject to message delays,
network congestion, node failures, and clock skews has re-
ceived a great deal of attention (see for instance [42], [43]).
The behavior of fireflies has inspired algorithms for heartbeat
synchronization in overlay networks [44], imposing reference
timing in wireless networks [45], and in sensor networks for
coordinating sensing and communication [46].

In this paper, we rely on local visual communication. We are
therefore not faced with issues such as variable propagation
delays and congestion that several studies on synchronization
across data networks have had to deal with.

VI. SYNCHRONIZATION IN ROBOTS

We let each robot act as an integrate-and-fire oscilla-
tor. When the activation of the oscillator reaches a certain

1We obtain the interaction graph for a population of oscillators by letting
every oscillator correspond to a node in the graph with an edge to each
member of its neighbor set.

threshold, the robot illuminates its red LEDs as in the example
shown in Fig. 2 and resets its activation. When neighboring
robots (within 50 cm) detect the flash, they increment their
own activation.

A. Discrete Oscillators

Due to the inherent discreteness of the sense-think-act
control paradigm, we transform the continuous model in (1)
into a discrete model with piece-wise linear dynamics

xi (n + 1) = xi (n)+ 1

T
+ ε αi (n) h

(
xi (n)

)
(2)

where xi (n) is the activation of robot i at control cycle n. T is
the period between flashes of an isolated robot. In this paper,
we have chosen T to be 100 control cycles (corresponding
to 15 s). We experiment with different values for the pulse-
coupling constant ε in Section VI-B. αi (n) is the number of
flashing robots seen by i in control cycle n. We use the linear
pulse-coupling function

h(x) = x . (3)

When xi (n) exceeds 1, robot i flashes and its activation is
reset to 0. There is a (small) latency from the moment when
the control program sends a signal to the flash LEDs until the
moment they respond. Before a neighboring robot can perceive
a flash, it must have already recorded and processed a frame
from its on-board camera in which the flash is visible. This
step entails an additional latency. Furthermore, images from
the camera are retrieved and processed asynchronously by the
on-board software in a separate execution thread. We have
experimentally found that we can compensate for these delays
by keeping the flash LEDs on for five control cycles (0.75 s).
Flash spans of this length allow the robots to reach and remain
in a synchronized state. When robots in a synchronized system
keep their flash LEDs on for five consecutive control cycles,
they perceive the flashes from other robots, while they are
flashing themselves. This creates a stable fix-point for the
system. We compute αi (n) based on the most recent frame
recorded by the on-board camera. In order to prevent the
robots from perceiving the same flashes multiple times, we
compute αi (n) in the following way. We dissect a robot’s
omni-directional field of view into 16 equally sized slices and
count only flashes from slices from which no flashes were
perceived in the previous control cycle. In this way, we obtain
a reasonable estimate of the number of flashing robots without
the need to identify and track individual robots (as discussed
in Section IV, it is difficult for one robot to keep track of all
of its neighboring robots).

B. Synchronization Experiments in Simulation

We are interested in the time it takes for our swarm robotic
system to synchronize. We define the system to be synchro-
nized when it is in a state where the value of every activation
xi (n) is no further than 1/T from all other activations. An
example of the development of activation values sampled every
T th control cycle during a run with 25 robots in simulation
is shown in Fig. 4. The activation for each robot at every T th
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Fig. 4. Example of the evolution of activations sampled every T th control
cycle in 25 mobile robots over the course of 10 min. One cross represents
the activation for a single robot at the corresponding time.

control cycle is plotted as a cross. In the example, the robots
synchronize after 435 s.

The time it takes for a swarm of robots to synchronize de-
pends, apart from the parameters ε and T , also on the density
of robots, on how the robots move, and on the total number of
robots. In a given environment, the density of robots together
with the total number of robots defines the average degree
and the diameter of the interaction graph, while the pattern
of movement for the robots defines its dynamic properties.
As the pattern of movement is strongly task-dependent, we
limit our experiments to two extreme cases: one in which all
robots perform a random walk and one in which all robots are
static. In both types of experiments, the robots start at random
positions and with random orientations. In the experiments
with static robots, a check is performed before the start of each
experiment to ensure that the interaction graph is connected.
In case it is not, all the robots are repositioned until a config-
uration is found that produces a connected interaction graph.

In simulation, we have explored the time it takes for swarms
of 10, 25, 50, and 100 robots to synchronize (see Fig. 5), at
densities of 2, 4, 6, 8, and 10 robots/m2 in square-shaped
arenas with 50 simulated robots (see Fig. 6), and for coupling
strengths ε ranging from 0.01 to 0.50 (see Fig. 7). In all
figures, one bar represents the mean synchronization time
observed in 100 replications of the experiment and the error
bars denote the standard deviation.

For all experimental configurations, moving robots tend
to synchronize faster than static robots. Visual inspection of
the experiments confirmed that a system of static robots in
many cases reaches a state of near-synchrony, where flashes
propagate in waves through the swarm before the robots
synchronize. Snapshots of a flash wave propagating through
a static swarm of robots are shown in Fig. 8. When the flash
wave starts, all the robots have activations close to the firing
threshold and they therefore flash as soon as a nearby robot
flashes. Flashes would not propagate in waves if robots could
perceive and respond to flashes instantly, because as soon as
one robot flashes, all robots would flash (and they would be
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randomly.

synchronized). Wave propagation of flashes can thus occur due
to the latencies associated with turning on the flash LEDs in
the flashing robot and the image capture and image processing.

In moving robots, the wave propagation phenomenon is not
as pronounced. Robots that are close to each other have similar
activation values when flashes propagate in waves. However,
when the robots move, the interaction graph changes. This
means that the individual robots do not remain at the same
distance from the origin of the flash wave as the system
evolves. When individuals that are close to the robot that
triggers the flash waves move away, they cause other robots
(more distant from the wave origin) to flash sooner. Similarly,
as individuals further away from the robot that triggers the
flash wave move closer to the wave origin, they are driven
to flash sooner, thus speeding up the global synchronization
process.
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Fig. 8. Example of a flash wave in a group of static robots.

The synchronization time is linearly proportional (with a
gentle slope) with swarm sizes up to 100 s-bots (see Fig. 5).
The mean synchronization time for a group of 10 s-bots is
62 s, while for 100 s-bots the mean synchronization time is
164 s—less than three times slower.

The synchronization time at different robot densities plotted
in Fig. 6 shows that denser swarms tend to synchronize faster.
When a swarm is dense, more members are within each others’
sensory range. The results indicate that the larger the subset
of robots each individual interacts with, the faster the overall
group synchronizes.

The strength of each interaction is controlled by the cou-
pling constant ε. The results in Fig. 7 show that if ε is large,
a swarm tends to synchronize faster. Setting ε too high is,

TABLE I

SYNCHRONIZATION TIME FOR 10 REAL ROBOTS. CORRESPONDING

RESULTS FOR SIMULATED ROBOTS ARE SHOWN IN BRACKETS

Mean (s) St.dev. (s) Shortest (s) Longest (s)

Static 94 72 55 174
(91) (30) (39) (224)

Moving 77 28 30 118
(71) (28) (27) (158)

however, problematic when we want to detect faults because
one robot—including a failed one—has a significant effect on
its neighbors. In this case, a robot that experiences a fault,
such as a control program crash, that may cause it to become
non-operational with its flash LEDs illuminated can effectively
disrupt the whole system. Furthermore, for large swarm sizes,
high values of ε can make the system unstable and prevent it
from synchronizing.

An interesting question is how the presence of obstacles
affects the synchronization time for a swarm of robots. In an
additional set of experiments, we evaluated the synchroniza-
tion time for a swarm of moving robots in an environment
containing obstacles and a low density of robots (2 robots/m2).
We used a 5 m × 5 m arena. The arena was divided into
two rooms connected by a narrow corridor (50 cm wide),
see Fig. 9. Both rooms contained two rectangular obstacles
measuring 100 cm × 50 cm each. We conducted 100 trials
with 50 simulated robots and with ε = 0.1. In every trial,
all the robots synchronized. The average synchronization time
was 779 s (st. dev.: 343 s). The synchronization time for 50
simulated robots in an arena of the same dimension with no
obstacles was 462 s (st. dev.: 180 s, see Fig. 6). A swarm
of robots is thus able to synchronize even when obstacles are
present although the synchronization process takes longer than
if no obstacles are present.

C. Synchronization Experiments with Real Robots

We conducted two sets of experiments with 10 real robots:
one set of experiments with static robots and one set of exper-
iments with moving robots. The experiments were performed
in a walled arena with dimensions 1.6 m× 1.6 m (yielding a
density of 4 robots/m2). The coupling constant ε was set to
0.1 and the flash period T was 100 control cycles. The robots
were assigned different initial random activations. The initial
positions for the robots were obtained in the same way as
in simulation (see Section VI-B). Based on video recordings,
the synchronization time was measured as the time from the
frame in which the robots were started until the first frame
in which all the robots had their flash LEDs illuminated. The
experimental setups with static robots and with moving robots,
respectively, were replicated 10 times with different initial
conditions. Table I reports the results obtained in the real
robot experiments, as well as the results obtained in simulation
(same experimental conditions, 100 replications). Videos of the
experiments can be downloaded from [47].

On real robots, we observe the same trend as in simulation:
moving robots tend to synchronize faster than static robots.
The mean synchronization time of static robots was 94 s, while
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Fig. 9. Arena containing obstacles.

the mean synchronization time for mobile robots was 77 s. In
all 10 experiments with static robots and in all 10 experiments
with moving robots, the robots synchronized. The results indi-
cate that real robots operating as pulse-coupled oscillators are
able to synchronize despite the discrete nature of the control
sense-think-act paradigm and despite the inherent latencies
associated with the sensor and actuator systems.

VII. FAULT DETECTION

Synchronization can be used as an exogenous fault detection
tool if the robots assume that a robot that is not flashing has
a fault. A robot can stop flashing voluntarily if it detects
a fault in itself. In this way, it can signal that it requires
assistance. A robot also stops flashing when it experiences
a catastrophic fault (software bug, physical damage, and so
on) which causes the control program and thus the periodic
flashing to stop. When operational robots discover a non-
flashing teammate, they know that a fault has occurred and
they can take steps to rectify the situation. Conceptually, the
scheme is straightforward. However, two issues need to be
addressed in order for the scheme to be implemented on real
robots. Firstly, it cannot be assumed that the robots are always
synchronized. Secondly, the sensory range of the robots is
limited.

A. Detecting Faults in Nonsynchronized Robots

In a normal situation, the robots would be operational and
synchronized (see Fig. 10a). However, when robots commence
a task or when they encounter each other after having been
separated for a period of time, their activations are likely
to differ. In other words, they are not synchronized. This
means that one robot cannot assume that another robot has
become non-operational just because the two robots do not
flash in unison. To address this issue, a flashing robot does
not immediately consider another robot non-operational if
the two robots do not flash at the same time. Instead, the
flashing robot (F) treats the robot (N) that did not flash
when F flashed as a candidate robot. We say that F becomes
suspicious of N. If N flashes before F flashes again, both robots

a) Both robots operational and synchronized:

FlashFlash

hsalFhsalF

Time

t0 t0 + T
2 t0 + T t 0 + 3T

2

b) Both robots operational but not synchronized:

?

?

?

?
FlashFlash

hsalFhsalF

Time

t0 t0 + Δ1 t0 + Δ2 t0 + Δ3

c) One robot failed:

?? !
FlashFlash

Time

t0 t0 + T
2 t0 + T t 0 + 3T

2

d) One robot failed with flash LEDs on:

Flash

Flash Flash

!?

Flash Time

t0 t0 + T
2 t0 + T

2 + 5control cycles

Legend:

? !

Non−flashing
robot

Flashing
robot

Failed
robot

Suspicious
robot

Robot detects
a failed robot

Fig. 10. Four possible scenarios. See text.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on August 20, 2009 at 10:53 from IEEE Xplore.  Restrictions apply. 



762 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

are operational but they are just not (yet) synchronized (see
Fig. 10b). However, if F flashes again before N flashes, F
assumes that N is non-operational (see Fig. 10c). Hence, a
robot detects a fault if it flashes twice while observing that
another robot does not flash at all.

There is, however, a problem with this scheme. In fact, there
is a rare situation in which one operational robot (R2) can flash
twice while another operational robot (R1) does not flash a
single time. This can happen when R1 flashes right before R2
and when R2 subsequently perceives sufficient flashes to
increase its activation so much that it flashes again before R1
flashes a second time. Under these circumstances, R2’s second
flash will often provoke R1 to flash. R2 can, in fact, calculate
the sufficient conditions under which its second flash will
provoke R1 to flash. When these conditions are met and R2’s
second flash does not provoke R1 into flashing, R2 can safely
assume that R1 has a fault. We let � denote the amount by
which R2’s activation has been increased due to flashes from
other robots. In the worst case, R1’s activation has not been
advanced by any flashes. When R2 reaches the firing threshold
(= 1), R1’s activation is therefore at most � away from the
firing threshold, i.e., R1’s activation is at least 1−�. Assuming
that the two robots perceive each others’ flashes, R2’s second
flash will increase R1’s activation by at least εh(1 − �).
Thus, R2’s second flash will drive R1 to flash if

εh(1−�) ≥ �. (4)

That is, if R2 flashes twice while R1 does not flash at all
(including not being provoked to flash by R2’s second flash)
and if (4) is true, R2 can conclude that R1 has a fault.
Otherwise, R2 must wait until its next flash to determine
whether or not R1 is operational. If R1 has still not flashed in
the meantime, it must have a fault.

The case in which a robot breaks down while it is flashing is
not caught by the scheme presented above. In other words, no
robot would ever become suspicious of a robot that becomes
non-operational while its flash LEDs are illuminated. Conse-
quently, the non-operational robot would never be detected.
Faults that occur while the robot is flashing, leaving the flash
LEDs illuminated, however, can easily be detected: when
a robot’s activation passes its midpoint (0.5), it becomes
suspicious of any robot that has its flash LEDs illuminated. If
the candidate robot still has it LEDs on after the normal flash
span (5 control cycles), the suspicious robot can conclude that
the candidate robot with the flash LEDs on is not operating
correctly. This situation is illustrated in Fig. 10d.

B. Limited Sensory Range

Since the robots are mobile and their sensors have a limited
range, the robots can come into and exit each other’s view
repeatedly. We do not assume that robots have unique IDs or
that they can identify each other. In other words, a robot cannot
keep track of the flashing activity of every other robot in the
swarm. Therefore, whenever a robot becomes suspicious, it
stops in order to keep the candidate robot within sensory range
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Fig. 11. Average percentage of the control cycles spent in the suspicious state
over intervals of 15 s during a run with 50 simulated robots in a 2.5 m×2.5 m
arena. The robots were not initially synchronized.

until it can determine if the candidate robot has a fault or
not.2

C. Time Overhead

When a group of robots start a new task, they are not
always synchronized. This means that the robots do not flash
at the same time. While a group of robots is in the process of
synchronizing, they frequently become suspicious. While they
are suspicious, they stop performing their task and wait while
they determine whether the candidate robot is non-operational
or whether it is just not synchronized. This has a negative
impact on the performance of the group, as time that could
have been used for carrying out a task is spent on being
suspicious. In Fig. 11, we have plotted the average percentage
of control cycles that the robots spent being suspicious in the
beginning of an example run.

The time initially spent by the robots being unnecessarily
suspicious while a group of robots is synchronizing can
be reduced or eliminated entirely by introducing a warm-
up period. During the warm-up period, a robot ignores any
indications of faults and does not become suspicious. If we
had introduced a warm-up period of 120 s or longer in the
experiment summarized in Fig. 11, none of the robots would
have become suspicious during the initial synchronization
period, and the initial overhead of the stop-while-suspicious
strategy would have been eliminated. However, there is a
tradeoff between the length of the warm-up period and the
latency of fault detection since faults cannot be detected during
the warm-up period.

D. Implementation

An overview of the control and fault detection logic
executed every control cycle is shown in Algorithm 1. The
activation x is incremented by the sum of the constant

2For simplicity we assume that the presence of a fault causes a robot to
stop its movement. If this were not the case, then a suspicious robot would
have to follow the candidate robot and stay within visual range until it could
determine whether or not the candidate robot has a fault.
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Algorithm 1: ControlCycle()

ReadSensors();
if HasFlashed(candidate) then

candidate = none;
end
x ← x + 1

T + εαh(x);
�← �+ εαh(x);
if x > 1 then

FlashAndCheckForFailedRobots();
x ← 0;

end
if x has passed 0.5 then

CheckForFailedRobotsWithFlashOn();
end
if candidate �= none then

StopMoving();
else

RandomWalkAndAvoidObstacles();
end

Algorithm 2: FlashAndCheckForFailedRobots()

TurnOnFlashLeds(5 cycles);
if candidate = none then

...In case two or more neighboring robots are not flashing,

...the position of the closer one is returned:
candidate = CheckForNonFlashingRobots();
� = 0;

else
if εh(1−�) ≥ � then

f ailedrobot ← candidate;
...A fault has been detected. Take
...actions to deal with the fault.

else
...Wait until next flash before concluding
...whether the candidate robot has failed or not.

end
end

increase 1/T and the product of the coupling strength ε, the
number of flashes seen α, and the pulse-coupling function
h(x). When x exceeds 1, the robot flashes and checks for
non-flashing robots, while if x has just passed 0.5, a check
is made to determine whether any neighboring robot has
become non-operational with its flash LEDs illuminated. In
case a candidate robot is found, the robot stops and waits
until it can be concluded whether the candidate is operational
or not. If no candidate was found, the robot performs a
random walk while avoiding obstacles.

The logic for checking for non-flashing candidates and for
candidates with their flash LEDs illuminated is shown in
Algorithm 2 and Algorithm 3, respectively.

The current implementation of the s-bot vision software
only allows the s-bots to see objects that display illuminated
LEDs. In our experiments, the s-bots therefore always illumi-
nate their on-board LEDs in some color—in red to indicate that
they are flashing and in green in order to be visible to other
robots while they are not flashing. Some faults, such as a dead
battery, would cause an s-bot to go dark, that is, since the robot
would no longer display any LEDs it would not be visible to
the other s-bots. If we assume that operational robots have
their LEDs illuminated in some color and if dark s-bots could
be detected in some way (e.g., via proximity sensors), faults
causing an s-bot to turn dark could be easily detected: the
absence of any illuminated LEDs would immediately indicate
that the dark s-bot had become non-operational. In this paper,

Algorithm 3: CheckForFailedRobotsWithFlashOn()

candidate = CheckForFlashingRobots();
if candidate �= none then

StopMoving();
if CandidateRobotStillFlashing() after 5 control cycles then

f ailedrobot ← candidate;
...A fault has been detected. Take
...actions to deal with the fault.

end
end

however, we have not implemented any logic to detect dark
s-bots.

E. Fault Detection Experiments with Real Robots

In 10 experiments, we measured the time it took for one
or more robots to detect and react to a failed robot. We took
the first steps toward a scenario in which robots can repair
one another—either directly or by physically connecting and
transporting failed robots3 to a special zone where the robot
is then repaired or replaced. The experiments were performed
in the same arena and with the same parameter settings as
the synchronization experiments for mobile robots described
in Section VI-C (an arena of 1.6 m x 1.6 m, ε = 0.1, and
T = 100 control cycles). In each experiment, we let a group
of 10 robots synchronize and then we simulated a fault in one
of the robots. The fault caused the robot to stop its movement
and prevented it from changing the color of its LEDs. We
measured the time from the moment a fault was injected until
one of the operational robots reacted to the fault by detecting
the fault and physically connecting to the failed robot. The
results are shown in Table II.

The presence of the fault was correctly detected in all 10
experiments. The mean reaction time was 53.2 s. This result
includes the times required for the following activities: an
operational robot detects the absence of a flash, the operational
robot is suspicious for up to T (15 s), the operational robot
navigates to and grasps the failed robot.

The shortest reaction time to a fault was 30.2 s. In the cor-
responding experiment, the fault was injected just before the
other robots in the swarm flashed and a nearby robot therefore
became suspicious less than a second after the fault had been
injected. Furthermore, the robot that detected the fault was
close to the failed robot and had an orientation that allowed
it to quickly connect to the failed robot. In the experiment
in which the longest reaction time (135.5 s) was observed,
at first only a single operational robot detected the fault. It
attempted to grasp the failed robot twice, unsuccessfully on
both occasions. Eventually another operational robot detected
the fault and connected to the failed robot.

In one of the experiments, a real fault occurred. After an
operational robot had detected and connected to the robot
in which we had injected a fault, another robot stopped
responding due to a hardware I/O error. The error rendered
the robot unable to control any of its actuators, including its
treels and its LEDs. This real (non-simulated) fault was also
detected and an operational robot connected to the failed robot.

3S-bots have been shown to be capable of collectively transporting objects
that are larger and heavier than an s-bot, see for instance [48].
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TABLE II

FAULT REACTION TIME RESULTS ON REAL ROBOTS

Mean reaction time 53.2 s
Standard deviation 31.3 s
Shortest reaction time 30.2 s
Longest reaction time 135.5 s

F. Fault Tolerance Experiments with Real Robots

In order to test our approach in a scenario where more
than one robot can become non-operational, we conducted an
experiment with a group of 10 robots, in which a fault was
injected in each operational robot with a probability of p =
0.0005 every control cycle. We simulated a repair mechanism
that allowed one robot to “repair” another robot by physically
connecting to it and illuminating its blue LEDs for 15 s. When
a failed robot detected that it had been “repaired,” it set its
activation to a random value and restarted its controller. We
let the experiment run for 12 min. All robots were operational
from the start of the experiment, and the first fault occurred
after 20 s. During the experiment a total of 13 simulated
faults occurred. At one point a total of four robots were non-
operational, while only one robot was non-operational when
the experiment was stopped.

During the experiment, one of the robots experienced a real
hardware I/O fault similar to the real fault described above in
Section VII-E. Two neighboring robots detected the fault and
connected to the robot with the real fault. After the two robots
had connected to the failed robot and performed the repair
action, we removed the failed robot from the arena. We let the
other nine robots continue while we restarted and reintroduced
the failed robot 3 min later. Furthermore, we manually righted
a robot after it had toppled over due to a collision with two
other robots. A video of the experiment can be found on [47].

These results suggest that our approach is robust even
when several robots are experiencing faults at the same time.
Furthermore, the results indicate that a swarm of robots can
survive a relatively high rate of failure if the robots are able
to repair one another.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a distributed approach for
detecting non-operational members in swarms of robots. Our
algorithm is inspired by the synchronous flashing behavior
observed in some species of fireflies. Robots flash periodi-
cally by lighting up their on-board LEDs. Whenever a robot
perceives a flash from a nearby robot, it increases its own
activation and flashes slightly sooner than if it had not seen
a flash. We showed that swarms of simulated and real robots
following this scheme are driven to flash in synchrony. The
synchronization time was found to depend on the size of the
swarm, the number of robots that each member interacts with,
the coupling strength between the robots (the effect of one
robot’s flash on another nearby robot), and whether the robots
move or are stationary.

In our fault detection scheme, the periodic flashes function
as a heart-beat mechanism. A failed robot need not actively
signal other nearby robots that it requires assistance—it

only needs to stop flashing. We do not, therefore, need to
distinguish between robots that voluntarily have stopped
flashing and robots that, for instance, have experienced a
catastrophic fault rendering them unable to take any action—
including flashing. We showed that real robots are able to
detect and respond to faults by detecting non-flashing robots.
We also showed that the scheme is robust to multiple faults
and that a team of robots with self-repair capabilities is able
to survive a relatively high rate of failure.

Our firefly-inspired fault detection approach is completely
distributed and relies on local information only. A potential
advantage of a distributed approach is scalability, which be-
comes an increasingly important factor as larger swarms of,
for instance, hundreds or thousands of robots are considered.
In our experiments, we found that the time it takes for a swarm
to synchronize depends on its size. This means that as the size
of a swarm grows, it takes longer for the robots to synchronize.
However, swarms need not be globally synchronized for our
fault detection scheme to work efficiently—it suffices that
robots are synchronized locally with nearby robots. It would
therefore be interesting to determine the performance of our
approach when a swarm is in a global state of near-synchrony,
for instance, when waves of flashes are propagating through
the swarm (see Section VI-B).

A potential direction for future research is to implement
and evaluate the performance of our approach in a real task-
execution scenario. While carrying out a task, operational
robots could detect and transport failed robots to a pre-
designated zone and alert a human operator, who could
then repair or replace the failed robots. Another interesting
question is how to extend the approach to take advantage
of possible heterogeneities in a swarm, e.g., robots with
different sensory, manipulation, and/or repair capabilities. This
type of heterogeneity could possibly be leveraged to facilitate
faster synchronization, faster fault detection, and true self-
repair, while still allowing for a completely distributed swarm
intelligence approach.
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