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Abstract. Self-assembling multi-robot systems can, in theory, overcome
the physical limitations of individual robots by connecting to each other
to form particular physical structures (morphologies) relevant to spe-
cific tasks. Here, we show for the first time how robots in a real-world
multi-robot system can autonomously self-assemble into and reconfigure
between arbitrary morphologies. We use a distributed control paradigm.
The robots are individually autonomous and homogeneous - they all
independently execute the same control program. Inter-robot communi-
cation is visual and strictly local. We demonstrate our technique on real
robots.

1 Introduction

In multi-robot systems, the individual robots can carry out different tasks in
parallel. When necessary, they can also cooperate. Self-assembly is a mechanism
that allows teams of cooperating robots to overcome the physical limitations
of the individual team members by connecting to each other to form physi-
cally larger composite robotic entities. In order to maximize the utility of self-
assembly, the morphology of the resulting robotic entity must be appropriate to
the task. In this paper, we demonstrate how a group of robots can autonomously
self-assemble into and reconfigure between different specific morphologies.

This paper’s contributions are as follows. 1) We demonstrate autonomous
distributed reconfiguration in a real world system of self-assembling robots. 2)
We build on our previous work to implement a coordination mechanism that
allows a group of connected, independently controlled, self-assembled robots to
coordinate the distributed reconfiguration process. 3) We show reconfiguration
with six real robots from a star morphology to a line morphology to a square
morphology and back to a star. 4) We demonstrate more complex reconfiguration
in simulation.

2 Related Work

There is a large body of existing research on self-reconfiguring robotic systems.
However, successful demonstrations of reconfiguration on real world robotic
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platforms have been restricted to systems in which the individual modules were
simple and incapable of independently executing meaningful tasks. Other studies
have explored the reconfiguration possibilities of systems made up of autonomous
self-assembling robots, but only in simulation.

In self-reconfiguring modular systems, morphological flexibility is explored
through the use of relatively simple connected units. Examples include CE-
BOT [1I, PolyBot [2], M-TRAN [3], ATRON [] and SuperBot []. For detailed
overviews see [0U7]. In a few self-reconfigurable systems such as the Super-Mechano
Colony [8] and the Swarm-bot platform (which we use in this study), the individ-
ual modules are capable of carrying out meaningful tasks on their own.

Some proposed control algorithms for self-assembly and/or reconfiguration are
centralized, see for instance [9]. Other approaches give each unit a unique ID and
a predefined position in the final structure, see for instance [10]. More distributed
approaches include [I1], [I2], and [I3]. In simulation, Stgy and R. Nagpal [T4J15]
have demonstrated algorithms for self-reconfiguration and directed growth of cubic
units based on gradients and cellular automata. Bojinov et al. [16] have shown how
a simulated modular robot (Proteo) can self-reconfigure into useful and emergent
morphologies when the individual modules use local sensing and local control rules.

3 Hardware Platform and Control Methodology

For our experiments we use the Swarm-bot robotic platform [I7], see Fig. [
(left). This platform was designed and built by Francesco Mondada’s group at
the Laboratoire de Systeme Robotiques (LSRO) of EPFL. The Swarm-bot plat-
form consists of a number of robots called s-bots. Each s-bot is self-propelled us-
ing a differential drive system composed of combined tracks and wheels (treels).
Physical connections between s-bots are established by a gripper-based connec-
tion mechanism as shown in Fig. [l An s-bot is surrounded by a transparent
ring that can be grasped by other s-bots. Eight sets of RGB-colored LEDs are
distributed around the inside of the transparent ring. Individual LEDs can be
independently illuminated. The s-bot camera can perceive the illuminated LEDs
of other s-bots at a range of up to approximately 50 cm depending on light con-
ditions. The camera records the panoramic images reflected in a spherical mirror
mounted above the s-bot in a perspex turret.

Our control paradigm is distributed. The robots are homogeneous and individu-
ally autonomous — each robot independently executes the same control program.
Because of the limited sensing range of the robots, no individual robot can per-
ceive the global shape of a morphology composed of physically connected s-bots.
This means that an unattached robot cannot deduce where it should connect in
order to extend or reconfigure a morphology appropriately. Instead, robots that
are already part of a morphology indicate how new robots should connect. This
is done using the directional self-assembly mechanism, which allows a robot to
light up a specific set of LEDs in order to invite a connection at a given point on
its body with a corresponding specified orientation for the connecting robot (see
Fig. M right). This mechanism is described in more detail in [18].
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Fig. 1. Left: Two physically connected s-bots. Right top: An s-bot with an open con-
nection slot to its rear (it has illuminated its left green LEDs and its right blue LEDs).
Right bottom: Representation of the eight possible connection slots that an s-bot can
open. The eighth connection slot (F) is only used for signalling, as it is occupied by
the gripper of the s-bot displaying the connection slot.

When a new connection is formed, the two connected robots communicate.
Using a low bandwidth visual communication protocol, instructions are typically
passed from the robot that is already part of the morphology to the newly con-
nected robot. Similar communication between connected robots occurs during
the reconfiguration process. Simple algorithmic rule sets describe when the ro-
bots choose to communicate and how to interpret and act upon received commu-
nication. Different rule sets allow self-assembly into and reconfiguration between
arbitrary morphologies. These rule sets are expressed in a high level descriptive
language — SWARMORPH-script. This language is described in more detail

in [19].

4 Reconfiguration

In our previous work [19], we showed how homogeneous independently operat-
ing robots executing SWARMORPH-script instructions can generate arbitrary
morphologies. In this study, we use the same principles to generate autonomous
reconfiguration in a distributed self-assembling system.

The key new challenge we have solved in this study is that of coordination be-
tween independently controlled robots once they are self-assembled. Coordination
is an essential component for any distributed reconfiguration system. Imagine a
group of connected robots crossing a hole. If the first robots to cross the hole detect
a new obstacle which triggers self-reconfiguration and these robots start trying to
reconfigure while some robots are still suspended over the hole, the consequences
could be disastrous. In this example, we would want each individual robot to wait
before reconfiguring until the whole morphology is ready to reconfigure. What ren-
ders this type of coordination difficult is the distributed nature of the system—
each robot is controlled independently, and at the same time communication is
local and can only occur between directly connected robots.
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Fig. 2. Coordinated reconfiguration example. A small grey circle in the center of an
s-bot indicates that the s-bot is waiting for a signal. For details see text.

On our hardware platform, each robot has a single gripper. This means that
any morphology formed, whatever its spatial configuration (shape), has a tree-
like connection topology, where a parent node can have many child nodes, but
a child node can only have a single parent node. To enable coordination in a
connected morphology, we allow for two types of communication. Information
can be passed up the tree, and instructions can be passed down the tree.

An example of reconfiguration using these two types of communication is
shown in Fig.[2l In this simple example, a three s-bot arrow morphology (one root
node, two child nodes) reconfigures into a line morphology. The SWARMORPH-
script to generate this behavior is shown in Algorithm [ (the script includes
instructions for the self-assembly of the initial arrow morphology which is not
shown in the figure). The control is homogeneous for the three robots—the root
node is the first robot to encounter a hole, the other two robots see an open
connection slot, attach, and become the child nodes.

In Fig. @ a small grey circle in the center of an s-bot indicates that the s-
bot is waiting for a signal. In Fig. 2l step 1, the arrow morphology has already
formed and the seed is waiting for both children to signal that they are ready to
reconfigure. In steps 2-4, the child nodes independently wait for a given timeout
before they are ‘ready’. Once the child nodes are ready to reconfigure, they both
independently signal their readiness to the root node Once they have signaled
their readiness to the root node (information passing up the tree), the child
nodes wait for a signal from the root node (instructions passing down the tree)
before proceeding with any further reconfiguration steps. In step 5, the root node
has received signals from both of its children, and thus knows that the whole
morphology is ready to reconfigure. In steps 6-8, the root node signals to both
of the child nodes in turn that they can proceed with the reconfiguration. In
steps 9-10, having received the relevant instruction, each child node carries out
its subsequent reconfiguration instructions. The result is the line morphology.

In the more general case, morphologies can be of arbitrary depth and have
arbitrary numbers of branches. Information is passed up the tree from child nodes
to parent nodes. Information continues to ascend the tree in this manner until one
node takes responsibility for collating the information and issuing instructions
to nodes beneath it in the tree. Starting from this collating node, instructions
to start the reconfiguration process are then passed down the tree from parent
nodes to child nodes.

! In this example, the child node signals do not overlap temporally. The algorithm
would be unaffected, however, if both child nodes signalled their readiness at the
same time—the root node would acknowledge receipt of each of the two signals in
turn.
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Algorithm 1. Reconfiguration script to generate the reconfiguration se-
quence in Fig. Pl The script is independently executed on each of the robots.

RandomWalk(); // until hole detected OR connection slot detected
if hole-detected then

// I am the root node since I detected the hole before I saw a connection slot

OpenConnSlot(back); // Attract a child robot and...

SendRuleID(1); // instruct it to follow rule 1

OpenConnSlot(left); // Attract another child robot and...

SendRuleID(2); // instruct it to follow rule 2

WaitForASignal(); // One child is ready

WaitForASignal(); // Other child is ready

SendSignal(back); // Instruct one child to start reconfiguration

SendSignal(left); // Instruct other child to start reconfiguration
end

else if connection-slot-detected then
// T am a child node since I saw a connection slot before I detected the hole

SearchForAndAttachToConnectionSlot();
ReceiveRuleID();
if receivedruleid = 1 then
Timeout(); // Ready after timeout
SendSignal(front); // Inform parent I am ready
WaitForASignal(); // Wait to receive reconfigure instruction
Disconnect();
SearchForConnSlot();
end
if receivedruleid = 2 then
Timeout(); // Ready after timeout
SendSignal(front); // Inform parent I am ready
WaitForASignal(); // Wait to receive reconfigure instruction
OpenConnSlot(back);
end
end
StopExecution();

In the experiments we perform in this study, the node that takes responsibility
for collating information is always the root node (that is, the node that has no
parents). However, in other cases, a purely local reconfiguration might be more
efficient—this can occur if a node further down the tree takes responsibility
for collating information and issuing reconfiguration instructions. Imagine, for
example, a self-assembled entity in which a single constituent robot develops a
fault. The local structure could reconfigure to eject the faulty robot, or otherwise
compensate for the fault. The rest of the assembled robots need not be involved
in or even be aware of the local reconfiguration. Note that local configuration
still requires coordination—it is just that the coordination is restricted to the
subset of assembled robots that are reconfiguring.

5 Results

We performed an experiment with real robots in which six s-bots form the
sequence of morphologies: star-line-square-star. We implemented a simple co-
ordination strategy to ensure that each individual morphology is complete be-
fore reconfiguration into the next morphology begins: each sub-branch of the



264 R. O’Grady, A.L. Christensen, and M. Dorigo

Fig. 3. Photos of different stages in a self-reconfiguration experiment with six real s-
bots. a) The start configuration. b) The star morphology. ¢) The line morphology. d)
The line morphology reconfiguring into the square. e) The square morphology. ) The
star morphology.

morphology reports local completion up the tree (information passing up the
tree). The root node collates the information, and once it is sure that all sub-
branches have completed, it sends the instruction to reconfigure down through
each branch (instructions passing down the tree). As individual nodes receive
the reconfiguration instruction, they execute their subsequent reconfiguration
control logic that results in the formation of the next morphology.

Photographic snapshots of this experiment with the real robots are shown in
Fig.Bl Videos of the experiments described in this section and other explanatory
material, including full SWARMORPH-script reconfiguration algorithms, can be
found on the web at http://iridia.ulb.ac.be/supp/IridiaSupp2008-004.

We conducted several more complex experiments in simulation. An exam-
ple is shown in Fig. @l Here, by executing the relevant SWARMORPH-script
program, the robots first assemble into a 9-robot square formation and then
reconfigure into three 3-robot arrow morphologies. During the reconfiguration,
two connected pairs of s-bots (four s-bots in total) remain connected. Using a
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Fig. 4. Snapshots of different stages in a self-reconfiguration experiment with fifteen
simulated s-bots (reconfiguration from single 9 s-bot square morphology to three 3
s-bot arrow morphologies)
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SWARMORPH-script primitive for coordinated motion, these pairs travel away
from the site of the original morphology in opposite directions to give them-
selves the space required to form subsequent morphologies. These pairs form the
basis for two of the three new arrow morphologies. The s-bot that seeded the
square morphology does not move, and becomes the seed for the third new arrow
morphology. All other s-bots detatch and try to join growing morphologies by
attaching to displayed connection slots.

6 Conclusions and Future Work

In this study, we showed how a group of real robots can autonomously reconfigure
using self-assembly and local communication between connected robots. Our
approach relies on a completely distributed control paradigm — the robots are all
independently autonomous and rely only on local communication to cooperate.
One advantage of distributed control is scalability. With large numbers of robots,
different subsets of robots could perform different tasks in parallel. Since our
approach is decentralized, multiple different morphologies can be formed and
undergo reconfiguration at the same time.

In our ongoing research we are trying to give the robots the capability to
identify different types of obstacle and to reconfigure adaptively into appropriate
morphologies based on the environments they encounter.
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