
738 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 3, JUNE 2009

Short Papers

SWARMORPH: Multirobot Morphogenesis Using
Directional Self-Assembly

Rehan O’Grady, Anders Lyhne Christensen, and Marco Dorigo

Abstract—In this paper, we propose SWARMORPH: a distributed mor-
phology generation mechanism for autonomous self-assembling mobile
robots. Self-organized growth of global morphological structures emerges
through the repeated application of local morphology extension rules. We
present details of the directional self-assembly mechanism that provides
control over the orientation of interrobot connections. We conduct real-
world experiments to validate the low-level directional self-assembly mech-
anism and the growth of global morphologies. We demonstrate the scal-
ability of the approach with large numbers of robots in simulation-based
experiments.

Index Terms—Autonomous agents, cellular and modular robots, dis-
tributed robot systems, morphology control, self-assembly.

I. INTRODUCTION

Flexibility is one of the key potential advantages of multirobot sys-
tems. Robots in such systems can operate individually to carry out sim-
ple tasks in parallel. However, they can also work together to achieve
more complex goals through cooperation. With the right type of team-
work, even fundamental physical limitations of individual robots such
as power, size, or reach can be overcome. One enabling mechanism
for this type of physical cooperation is self-assembly—the process
of forming physical connections between robots to generate a larger
composite robotic entity [1], [2].

Multirobot self-assembling systems are made up of independent au-
tonomous mobile agents. These agents are capable of forming physical
connections with each other without external direction. To date, how-
ever, such systems have displayed little active control over the morphol-
ogy of the composite robotic entity formed through the self-assembly

Manuscript received July 14, 2008; revised December 1, 2008. First
published April 7, 2009; current version published June 5, 2009. This
paper was recommended for publication by Associate Editor I-M. Chen and
Editor L. Parker upon evaluation of the reviewers’ comments. This work
was supported by the SWARMANOID project, funded by the Future and
Emerging Technologies Programme of the European Commission, under Grant
IST-022888 and by the VIRTUAL SWARMANOID project, funded by the
Fonds de la Recherche Scientifique (FNRS).

R. O’Grady and M. Dorigo are with the Computer and Decision Engineering
Department, Institut de Recherches Interdisciplinaires et de Développements en
Intelligence Artificielle, Université Libre de Bruxelles, Brussels 1050, Belgium
(e-mail: rogrady@ulb.ac.be; mdorigo@ulb.ac.be).

A. L. Christensen is with the Departamento de Ciências e Tecnologias da
Informação, Lisbon University Institute, Lisbon 1649-026, Portugal (e-mail:
anders.christensen@iscte.pt).

This paper has supplementary downloadable multimedia material avail-
able at http://ieeexplore.ieee.org provided by the authors. This material
includes videos (arrow morphology 7 real robots h264.avi, line morphology
7 real robots h264.avi, rectangle morphology 7 real robots h264.avi, star
morphology 29 simulated robots h264.avi, star morphology 7 real robots
h264.avi, and t shape morphology 10 simulated robots h264.avi) that show
morphology generation experiments using SWARMORPH, both on real
robots and in simulation. The videos are encoded using h264 compression.
VLC media player 0.8.6 and above will play these videos. VLC media
player is available on almost every platform and can be downloaded from
http://www.videolan.org/vlc/. The total size of the supplementary material is
42 MB. Contact rogrady@ulb.ac.be for further questions about this work.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2008.2012341

process. This lack of morphological control is a major limitation, as
for any robotic entity to complete a task efficiently, its morphology
must be appropriate to the task. In the majority of existing multirobot
self-assembling systems, the geometry of the self-assembled entity is
either predefined by the connection mechanism of the hardware or is
stochastic.

There is a large body of work on morphologically flexible modular
robotic systems [3]–[12]. However, the modules of such self-
reconfigurable systems tend to be either incapable of autonomous
motion or so simple as to be incapable of meaningful indepen-
dent action. Furthermore, these systems are often incapable of
autonomously assimilating additional modules. For detailed overviews
of self-reconfigurable systems and self-assembling systems, see [1]
and [13]. Various approaches to controlling and assembling modular
robots have been proposed, including [14]–[18]. Existing research,
however, tends to be either quite abstract and simulation-based or
relies on specific robot IDs to control positions in the generated
structures.

In this paper, we propose a technique for controlling the self-
organized growth of morphological structures on a real-world self-
propelled self-assembling multirobot system. Using our system—
SWARMORPH—we can specify global morphologies using local
morphology extension rules that govern the self-assembly process.
Our rule definition paradigm avoids the use of central control, broad-
cast communication, and symbolic communication. The rules are ex-
ecuted in turn by each new robot that connects to the morphology.
SWARMORPH shares some stochastic features of many natural
and artificial self-assembling systems; the self-assembling compo-
nents (robots in our case) are interchangeable, and the movement
of the components in the environment is random. In contrast with
most previously studied self-assembling systems, however, the ran-
dom movement occurs through the use of a self-propelled random
walk. The main contribution of this paper is to show the systematic
self-assembly of global structures with self-propelled self-assembling
robots.

In a previous work [19], we showed the growth of four global mor-
phologies. Here, we extend that work into a generic morphology growth
platform. We abstract our local rules into a set of primitives and show
how these primitives can be combined in different ways to generate a
large number of different global morphologies. We detail the low-level
control mechanism—directional self-assembly—that these rules use to
control the self-assembly process and present experiments validating
this mechanism.

A key benefit of distributed control is scalability. We present results
in simulation to demonstrate the scalability of our system. We validate
our simulated environment by comparison with our earlier results on
real robots.

II. ROBOTIC PLATFORM

This study was conducted on the swarm-bot robotic platform [20],
which was designed and built by Mondada’s group at the École Poly-
technique Fédérale de Lausanne (EPFL) in Switzerland. The swarm-bot
system consists of a number of mobile autonomous robots called s-bots
(see Fig. 1) that are capable of forming physical connections with each
other.

Each s-bot is surrounded by a semitransparent LED ring that contains
eight sets of red, green, blue (RGB) colored LEDs. The LEDs are

1552-3098/$25.00 © 2009 IEEE

Authorized licensed use limited to: ISCTE. Downloaded on June 24, 2009 at 10:50 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 3, JUNE 2009 739

Fig. 1. S-bot: Autonomous, mobile robot capable of self-assembly. Weight:
∼700 g; battery: ∼2 h; processor: 400-MHz XScale CPU; operating system:
Linux.

distributed uniformly in eight locations around the ring. A green LED,
a blue LED, and a red LED are located at each LED location. The LED
ring can be grasped by another s-bot using its gripper. An optical light
barrier inside the s-bot gripper indicates when another s-bot’s LED ring
is between the jaws of the gripper. For more details, see [20].

III. DIRECTIONAL SELF-ASSEMBLY

A. Concepts and Terminology

Directional self-assembly is a mechanism we developed to allow
a self-assembling s-bot to specify the location and orientation of an
inter-robot connection. SWARMORPH relies on this directional self-
assembly mechanism to extend a morphology locally in a particular
direction.

To grow the morphology appropriately, an s-bot that is already
connected to the morphology illuminates a particular configuration
of LEDs to indicate a point on its body where a new s-bot should grip
and a corresponding orientation that the gripping s-bot should assume.
We term such a configuration of LEDs a connection slot. The left-hand
side and right-hand side of a connection slot are indicated by four il-
luminated green LEDs and four illuminated blue LEDs, respectively
(see Fig. 2, top). A connection slot can be opened between any two
neighboring LED locations on the s-bot LED ring, except between the
two front LED locations, where the gripper is mounted. As a connec-
tion slot requires the use of all eight LED locations, an s-bot can open
only one connection slot at a time. We refer to an s-bot that is display-
ing an open connection slot as an extending s-bot and an s-bot that is
navigating toward or trying to connect to (grip) a connection slot as a
connecting s-bot. A connection slot is considered “open” until an s-bot
connects to it, at which point, it is considered “filled.”

B. Approaching and Gripping

S-bots that are not already part of the connected morphology perform
a random walk until they see a connection slot. When an s-bot can
see a connection slot, it tries to connect to it. Unconnected s-bots
illuminate their red LEDs and avoid each other using proximity sensors
and their cameras. When two s-bots are both trying to connect to a single
connection slot, they both retreat and wait for a random amount of time
before trying again.

A connecting s-bot uses the illuminated LEDs of an extending
s-bot’s open connection slot to calculate the approach vector (see

Fig. 2. (Top) Connecting s-bot calculates the approach vector for a connection
slot displayed by an extending s-bot. The approach point (A), grip point (G),
and approach vector −−→AG, as calculated by the connecting s-bot. The connecting
s-bot calculates A and G from the closest blue LED to the closest green LED.
The distance from the approach point to the s-bot with the open connection slot
is 13 cm. (Bottom) Eight possible connection slots that an s-bot can open. The
eighth connection slot (F) is occupied by the gripper of the s-bot displaying the
connection slot and is therefore used only for signaling (see Section IV).

Fig. 2). The head of the approach vector is called the grip point and
indicates the point on the extending s-bot’s body at which the con-
necting s-bot should grip. The tail of the approach vector is called the
approach point and is 13 cm away from the body of the extending
s-bot. The heading of the approach vector matches the orientation that
the connection slot specifies for the connecting s-bot. Thus, by simply
following the approach vector to the grip point and then gripping, a
connecting s-bot will grip the extending s-bot at the correct location
and will assume the correct corresponding orientation.

A connecting s-bot first navigates to the approach point at the tail
of the approach vector. It then rotates to face the grip point at the
head of the approach vector and only then starts to navigate along the
approach vector to the grip point. The closer an s-bot gets to the grip
point, the more accurately it perceives the LEDs of the connection slot,
and therefore, the more precisely it can calculate the approach vector.
Corrections to the connecting s-bot’s trajectory are made continuously
as the s-bot approaches the grip point. During the approach, the speed of
the s-bot is reduced as a linear function of the distance to the grip point
(the magnitude of the alignment corrections becomes correspondingly
smaller). When the s-bot determines that it is close enough to connect,
it attempts to grip by closing its gripper. If the grip fails, the s-bot
moves back and starts navigating to the approach point again.

C. Results

We analyzed the performance of the directional self-assembly mech-
anism. We ran 96 trials of an experiment in which a single s-bot con-
nected to a stationary extending s-bot. In every trial, the extending
s-bot had the same position and orientation. At the start of each trial,
the extending s-bot opened connection slot B (directly behind it; see
Fig. 2, bottom). For the connecting s-bot, we used 12 possible starting
positions and eight possible starting orientations. Over the 96 trials, we
used each possible combination of these starting positions and orienta-
tions once. The starting positions for the connecting s-bot were evenly

Authorized licensed use limited to: ISCTE. Downloaded on June 24, 2009 at 10:50 from IEEE Xplore. Restrictions apply.

740 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 3, JUNE 2009

Fig. 3. Time spent in different navigation zones.

distributed around a circle of radius 35 cm centered on the extending
s-bot.

In all 96 trials, the connecting s-bot successfully connected to the
extending s-bot. In two of the 96 trials, the grip failed on the first attempt
and the connecting s-bot retreated to try another angle. In a further four
trials, the connecting s-bot retreated to try another angle before even
attempting to grip, as it determined that it was approaching from an
incorrect angle. In a single trial, the connecting s-bot lost sight of the
connection slot and was manually replaced on its starting position.

The location on the extending s-bot’s body was, on average, 0.75 cm
(standard deviation 0.62 cm) from the grip point. The connecting s-bot,
on average, assumed an angle of 9.9◦ (standard deviation 6.4◦) from
the optimum.

The mean times spent on the different navigation zones are shown
in Fig. 3. The largest share of the time was spent on the final alignment
and approach phases, during which the s-bot rotates on the approach
point to face the grip point and then follows the approach vector to the
grip point. Although the distances covered in the different navigation
zones vary significantly, the mean times spent in the different zones are
comparable. This near equivalence is a consequence of the increasing
precision required as the s-bot gets closer to the connection slot—the
more precision required, the slower the s-bot moves. The mean time
from the start of a trial until the connecting s-bot gripped was 54.3 s.

IV. GLOBAL MORPHOLOGIES FROM LOCAL RULES

SWARMORPH morphology growth occurs through the repeated ap-
plication of local extension rules. As each new s-bot connects to the
morphology, it becomes an extending s-bot and follows its extension
rules to determine how the local structure should be extended. To carry
out the extension dictated by a particular rule, the s-bots use the direc-
tional self-assembly mechanism described in the previous section. By
combining extension rules in different ways, we can build distributed
control algorithms that grow specific morphologies.

Morphology growth starts when an initial seed s-bot initiates mor-
phology growth by opening the first connection slot. The seed s-bot
has its own set of extension rules. A separate rule set governs the be-
havior of all other extending s-bots (the seed can also be considered an
extending s-bot).

A. Extension Rule Set

In this section, we describe the extension rules currently imple-
mented in SWARMORPH. All of the rules are based purely on locally
sensed information—none of the rules make reference to any kind of
global blueprint, nor do they rely on any symbolic communication
between modules.

The Extend rule uses directional self-assembly to extend the struc-
ture by opening a specified connection slot. The rule takes as a parame-
ter the connection slot that should be opened. Using only this extension
rule, we can form simple morphologies like the line and the circle in
Fig. 4. For the line morphology, each connected s-bot just executes the
rule Extend(B), while for the circle morphology, each connected s-bot
executes the rule Extend(BL).

Fig. 4. Examples of different morphologies that can be made using
SWARMORPH. These morphologies have been generated in simulation.

Fig. 5. Rectangle morphology growth. (1) Seed opens connection slot B. (2)
Connected s-bot sends handshake signal. (3) Seed sees handshake signal and
then opens connection slot R. First connected s-bot executes Decide rule—
sees connection slot and, therefore, executes no subsequent extension rules.
(4) Another s-bot connects and handshakes. (5) Seed sees handshake signal but
does not open another connection slot. Connected s-bot executes Decide rule—
does not see a connection slot and, therefore, opens connection slot L itself. (6)
Another s-bot connects and handshakes. (7) Morphology growth pattern repeats.

Fig. 6. Rectangle morphology extension rule sets.

The rules Send HS Sig and Wait HS Sig together make up the
handshake signal. The handshake signal allows a connecting s-bot
to signal to an extending s-bot that it has successfully connected to
the extending s-bot’s open connection slot (the s-bot hardware does
not include any dedicated sensors to detect when it has been gripped
by another s-bot). This signalling is required by the more complex
branching morphologies that require a single s-bot to extend the local
structure in more than one direction (for example, the last five mor-
phologies in Fig. 4). The extending s-bot must know when a connection
slot has been filled so that it can open the next connection slot at the
right time (an s-bot can open only one connection slot at a time). The
Send HS Sig rule tells the connecting s-bot to signal to the extending
s-bot after it grips successfully. The signal takes the form of opening
connection slot F. The Wait HS Sig rule tells the extending s-bot to
wait until it detects the handshake signal before executing subsequent
morphology-specific extension rules.

The Decide rule allows an s-bot to make conditional decisions
about how to extend the local structure based on what it can see in its
surroundings. In particular, this rule allows a connecting s-bot to modify
its behavior based on the posthandshake actions of the extending s-bot
to which it is connecting. In Fig. 5, we use the Decide rule to grow the
rectangle morphology. The rule sets used are shown in Fig. 6.

The Balance rule enforces balanced morphology growth until the
extremities of the morphology are no longer within visual range of
each other. When we use the Send HS Sig and Wait HS Sig rules to
generate branching morphologies, we run the risk that the morphology
will be unbalanced—it is stochastically possible that one branch will
develop much faster than another. Such imbalances are particularly
problematic when the number of s-bots is limited, as is the case in
our real robot experimentation. When executing the Balance rule,
a connected robot waits with its LEDs unilluminated until it cannot
see any connection slots around it. Once the s-bot can no longer see

Authorized licensed use limited to: ISCTE. Downloaded on June 24, 2009 at 10:50 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 3, JUNE 2009 741

Fig. 7. T-shape morphology growth. The seed s-bot opens connection slots R,
B, and L in turn (waiting each time for a handshake signal from the connecting
s-bots). The connected s-bots each execute the Balance rule and, therefore,
wait until they can see no green or blue LEDs before executing subsequent
extension rules. The result is that once the seed s-bot is no longer displaying an
open connection slot, all three connected s-bots open connection slot B at the
same time.

Fig. 8. T-shape morphology extension rule sets.

Fig. 9. Stochastic dense morphology extension rules.

any green or blue LEDs (i.e., connection slots), the connected s-bot
continues executing subsequent extension rules. In Fig. 7, we use the
Balance rule to grow a T-shape morphology. The rule sets used are
shown in Fig. 8. In the T-shape morphology, as long as the s-bots at the
ends of the three branches can still see each other, the branches will
differ in length by at most one s-bot.

The GrowDense rule enables the stochastic growth of dense mor-
phologies. When a connected s-bot executes the GrowDense rule, it
opens a series of connection slots (L, R, BR, BL, B) in a repeating
cycle. A connection slot remains open until filled or until it has been
open for 120 s. After a connection slot has been filled or after the
time-out, the next connection slot in the cycle is opened. The order
of connection slots in the GrowDense cycle has been chosen to en-
courage dense morphology growth—connection slots near the gripper
are opened first to encourage breadth-first expansion. The morphology
growth is unpredictable because stochastic local conditions determine
which of the opened connection slots get filled. In particular, for a
connection slot to be filled, there must be an unconnected s-bot nearby
(which depends on the unconnected s-bots’ random walk), and there
must be sufficient space available to extend the morphology (which
depends on the previous random growth of the morphology). The right-
most morphology in Fig. 4 is an example of a dense morphology. The
rule sets used are shown in Fig. 9.

B. SWARMORPH Generable Morphologies

Using SWARMORPH, we can generate a large number of different
morphologies (see Fig. 4).1 However, in the current rule set, there is no

1Each s-bot has a single gripper. This fact restricts us to the generation of tree-
like structures. A morphology consisting of a single closed loop would also be
possible but would require complex coordination between connected s-bots and
is therefore not possible with the current implementation of SWARMORPH.

Fig. 10. Reprinted from [19]. Four morphologies grown with seven real
robots: Line, arrow, star, rectangle. (The rectangle and star morphologies
would become symmetric with the addition of more robots.) Videos of
experiments conducted with real robots and in simulation can be found
in the supplementary material online at http://ieeexplore.ieee.org or at
http://iridia.ulb.ac.be/supp/IridiaSupp2008-017.

TABLE I
MEAN COMPLETION TIMES FOR DIFFERENT MORPHOLOGIES ON REAL S-BOTS

AND IN SIMULATION

way to change the growth pattern of a morphology during morphology
growth—all the morphologies we generated have repeating structures.
This limitation could be overcome, however, if the morphologies could
respond to the environment. With the GrowDense rule, we have al-
ready shown how a single rule set can generate different morphologies
stochastically. In a real task execution scenario, it might be interesting
to add an extension rule that could conditionally modify morphology
extension based on what an s-bot detects in its environment. Using
the s-bot infrared proximity sensors, we could imagine, for example,
encircling a prey object by having each s-bot extend the morphology
to match the local contours of the object. This type of rule would allow
for adaptive morphologies, while still avoiding the need for any global
or symbolic communication. Simple group size regulation could also
be achieved with a technique similar to that used by the Balance rule.
The seed s-bot could light up in a particular color. Morphology exten-
sion would stop (or change in nature) when s-bots lose sight of the seed
robot.

V. GROWING MORPHOLOGIES WITH REAL ROBOTS

We selected four morphologies to grow in experiments with seven
real s-bots. Examples of the four morphologies are shown in Fig. 10.
We grew each of the four example morphologies (line, arrow, star,
rectangle) ten times with seven real s-bots.

All six free robots successfully connected to the morphology in 38
out of 40 experiments. In a single-rectangle morphology experiment,
one robot failed to connect, and in another of the rectangle morphology
experiments, two robots failed to connect. A detailed analysis of the
timing of these experiments can be found in [19].

VI. SCALABILITY

A. Simulation Environment

We conducted experiments with larger numbers of s-bots in simu-
lation. Our simulation environment consists of a specialized software
simulator with a custom dynamics engine tailored to our robotic plat-
form [21]. We developed a control interface abstraction layer that al-
lowed us to transfer our control programs between the simulator and
the real robots without any modification.

The control abstraction layer allowed us to run and test
SWARMORPH-based control programs, both in simulation and on
real robots. This development model gave us a large degree of

Authorized licensed use limited to: ISCTE. Downloaded on June 24, 2009 at 10:50 from IEEE Xplore. Restrictions apply.

742 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 3, JUNE 2009

Fig. 11. Morphology growth over time for four morphologies formed with
simulated robots. We fix the number of unconnected s-bots in the system at
10 by feeding a new s-bot into the simulation after every connection. Each
line shows the growth over time of a single morphology averaged over 100
experimental trials.

confidence about the accuracy of our simulator. To further validate
the verisimilitude of our simulation environment, we repeated in sim-
ulation the experiments that we had already done with the real robots.
We set up an experiment with seven simulated s-bots for each of the
four morphologies tested on real s-bots in the previous section. Ta-
ble I lists the mean completion times for ten real robot trials for each
morphology and the results obtained in 100 trials in simulation for the
same morphologies. For the line, arrow, and star morphologies, the
mean completion time in simulation is slightly lower than the mean
completion time observed in the experiments with real robots. The
mean completion time for the rectangle morphology is 31% lower in
simulation than observed in our experiments with real robots. We be-
lieve that this difference is primarily due to the fact that when the
robots are densely packed, the camera is more accurate in simulation
than in reality. In the rectangle morphology, robots are located close
to each other, giving rise to effects such as occlusions and reflections
of the light emitted from the LEDs. These effects are not modeled by
our simulator. We therefore chose to avoid the use of densely packed
morphologies such as the rectangle morphology in our scalability tests.

B. Scalability

In order to test how fast various morphologies grow when more
robots are available, we conducted experiments with four different
morphologies. We chose the morphologies line, arrow, T-shape, and
star, because they can, respectively, have one, two, three, and four
connection slots open simultaneously (see Fig. 4). In order to keep our
arena size manageable, we added robots to the simulation gradually.
We kept the number of unconnected robots constant, at 10. Each time
an unconnected robot connected to the morphology, a new unconnected
robot was added to the simulation. For each morphology, we conducted
100 trials. In each trial, we varied the initial placement and orientation
of the unconnected s-bots. A trial was considered finished when the
morphology reached a size of 25 connected robots.

Fig. 11 shows morphology growth over time for the different mor-
phologies. The growth profiles of the morphologies are very similar
until the fifth robot connects to the morphology, at which point, they
start to differ. The star morphology can have up to four connection
slots open simultaneously and, on average, reaches a size of 25 robots
in 720 s. The T-shape morphology can have up to three connection

slots open simultaneously and reaches a size of 25 robots in 781 s.
The relatively small difference (61 s) between the average completion
times is probably due to the fact that the number of unconnected robots
is fixed at 10. In order for the extra open connection slots to speed
up morphology growth, there have to be robots in the vicinity each
time a new connection slot is opened. Since the ten unconnected robots
are not always evenly distributed, the star morphology completes only
marginally faster than the T-shape morphology.

Comparing the completion times for the star and the T-shape mor-
phologies with the arrow and line morphology, the benefit of multiple
open connection slots becomes more apparent; the arrow morphology
(which has up to two connection slots open simultaneously) and the
line morphology (which has only one connection slot open at a time)
reach the size of 25 robots in 1051 and 1473 s, respectively. For the
line morphology, the rate of growth slows down as the morphology
gets larger. The line morphology has only one connection slot open at
a time, and because of its 1-D growth, for any given number of s-bots,
it stretches further than the other morphologies. Thus, even once an
unconnected s-bot has approached the connected structure, it can take
a long time for the s-bot to navigate to the open connection slot. This
delaying factor is less present for the other morphologies, partly be-
cause more connection slots are open and partly because they grow in
two dimensions.

VII. CONCLUSION AND FUTURE RESEARCH

In this paper, we demonstrated the decentralized growth of specific
morphologies using a real-world self-assembling robotic platform. Our
system, called SWARMORPH, consists of a set of local extension
rules built on top of a dedicated directional self-assembly mechanism.
We analyzed the reliability of this low-level directional self-assembly
mechanism and found it both robust and precise. We achieved a high
success rate in building four different morphologies using seven real
robots. The absence of symbolic communication makes our morphol-
ogy growth algorithms simpler and, thus, potentially transferable to
less-sophisticated self-assembling robotic systems. We demonstrated
the scalability potential of our approach with experiments in simulation
using larger numbers of robots.

In the future, we intend to investigate adaptive use of morphogenesis
with respect to the robotic task. In an all-terrain navigation task, for
example, the group could self-assemble into an elongated morphology
in order to cross a ditch, while on rough and uneven terrain the robots
could self-assemble into a more dense, stable morphology.

ACKNOWLEDGMENT

This work would not have been possible without the innovative
robotic hardware developed by F. Mondada’s group at the École Poly-
technique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. The
information provided is the sole responsibility of the authors and does
not reflect the European Commission’s opinion. The European Com-
mission is not responsible for any use that might be made of data
appearing in this publication.

REFERENCES

[1] R. Gro and M. Dorigo, “Self-assembly at the macroscopic scale,” Proc.
IEEE, vol. 96, no. 9, pp. 1490–1508, Sep. 2008.

[2] R. O’Grady, R. Gro, F. Mondada, M. Bonani, and M. Dorigo, “Self-
assembly on demand in a group of physical autonomous mobile
robots navigating rough terrain,” in Proc. 8th Eur. Conf., Adv. Ar-
tif. Life (Lecture Notes in Artificial Intelligence), vol. 3630, Berlin,
Germany: Springer-Verlag, 2005, pp. 272–281.

Authorized licensed use limited to: ISCTE. Downloaded on June 24, 2009 at 10:50 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 3, JUNE 2009 743

[3] Y. Kawauchi, I. Makoto, and T. Fukuda, “A principle of distributed de-
cision making of cellular robotic system (CEBOT),” in Proc. IEEE Int.
Conf. Robot. Autom., Piscataway, NJ: IEEE Press, 1993, pp. 833–838.

[4] M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw, and S. B. Homans,
“Modular reconfigurable robots in space applications,” Auton. Robots,
vol. 14, no. 2/3, pp. 225–237, 2003.

[5] M. Yim, D. G. Duff, and K. D. Roufas, “PolyBot: A modular reconfig-
urable robot,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 1, Piscataway,
NJ: IEEE Press, 2000, pp. 514–520.

[6] A. Castano, W. M. Shen, and P. Will, “CONRO: Towards deployable
robots with inter-robots metamorphic capabilities,” Auton. Robots, vol. 8,
no. 3, pp. 309–324, 2000.

[7] S. Hirose, T. Shirasu, and E. F. Fukushima, “Proposal for cooperative
robot “Gunryu” composed of autonomous segments,” Robot. Auton. Syst.,
vol. 17, pp. 107–118, 1996.

[8] H. B. Brown, J. M. V. Weghe, C. A. Bererton, and P. K. Khosla, “Millibot
trains for enhanced mobility,” IEEE/ASME Trans. Mechatron., vol. 7,
no. 4, pp. 452–461, Dec. 2002.

[9] R. Damoto, A. Kawakami, and S. Hirose, “Study of super-mechano
colony: Concept and basic experimental set-up,” Adv. Robot., vol. 15,
no. 4, pp. 391–408, 2001.

[10] K. Motomura, A. Kawakami, and S. Hirose, “Development of arm
equipped single wheel rover: Effective arm-posture-based steering
method,” Auton. Robots, vol. 18, no. 2, pp. 215–229, 2005.

[11] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita,
and S. Kokaji, “M-tran: Self-reconfigurable modular robotic system,”
IEEE/ASME Trans. Mechatron., vol. 7, no. 4, pp. 431–441, Dec. 2002.

[12] W. M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and
J. Venkatesh, “Multimode locomotion for reconfigurable robots,” Auton.
Robots, vol. 20, no. 2, pp. 165–177, 2006.

[13] M. Yim, W. M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian, “Modular self-reconfigurable robot systems,” IEEE
Robot. Autom. Mag., vol. 14, no. 1, pp. 43–52, Mar. 2007.

[14] D. Rus and M. Vona, “Crystalline robots: Self-reconfiguration with com-
pressible unit modules,” Auton. Robots, vol. 10, no. 1, pp. 107–124,
2001.

[15] P. White, V. Zykov, J. Bongard, and H. Lipson, “Three dimensional
stochastic reconfiguration of modular robots,” in Proc. Robot. Sci. Syst.,
Cambridge, MA: MIT Press, 2005, pp. 161–168.

[16] C. Jones and M. J. Matarić, “From local to global behavior in intelli-
gent self-assembly,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 1, Los
Alamitos, CA: IEEE Comput. Soc. Press, 2003, pp. 721–726.

[17] E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to self-
organizing robotic systems,” IEEE Trans. Autom. Control, vol. 51, no. 6,
pp. 949–962, Jun. 2006.

[18] W. M. Shen, P. Will, A. Galstyan, and C. M. Chuong, “Hormone-inspired
self-organization and distributed control of robotic swarms,” Auton.
Robots, vol. 17, no. 1, pp. 93–105, 2004.

[19] A. L. Christensen, R. O’Grady, and M. Dorigo, “Morphology control in a
multirobot system,” IEEE Robot. Autom. Mag., vol. 14, no. 4, pp. 18–25,
Dec. 2007.

[20] F. Mondada, L. M. Gambardella, D. Floreano, S. Nolfi, J.-L. Deneubourg,
and M. Dorigo, “The cooperation of swarm-bots: Physical interactions in
collective robotics,” IEEE Robot. Autom. Mag., vol. 12, no. 2, pp. 21–28,
Jun. 2005.

[21] A. L. Christensen, “Efficient neuro-evolution of hole-avoidance and photo-
taxis for a swarm-bot,” D.E.A. thesis, Inst. Recherches Interdisciplinaires
Dév. Intell. Artif. (IRIDIA), Univ. Libre de Bruxelles, Brussels, Belgium,
Tech. Rep. TR/IRIDIA/2005-14, Oct. 2005.

Image-Based Visual Servo Control of the Translation
Kinematics of a Quadrotor Aerial Vehicle

Odile Bourquardez, Robert Mahony, Nicolas Guenard,
François Chaumette, Tarek Hamel, and Laurent Eck

Abstract—In this paper, we investigate a range of image-based visual
servo control algorithms for regulation of the position of a quadrotor aerial
vehicle. The most promising control algorithms have been successfully
implemented on an autonomous aerial vehicle and demonstrate excellent
performance.

Index Terms—Aerial robotic vehicle, visual servoing.

I. INTRODUCTION

Visual servo algorithms have been extensively developed in the
robotics field over the last ten years [7], [10], [19], [23]. Visual servo
control techniques have also been applied recently to a large variety of
reduced-scale aerial vehicles, such as quadrotors [1], [25], helicopters
[2], [22], [26], [29], airships [4], [30], and airplanes [5], [24]. In this
paper, we consider visual servo control of a quadrotor aerial vehicle.

Much of the existing research in visual servo control of aerial robots
(and particularly, autonomous helicopters) has used position-based vi-
sual servo techniques [1], [2], [22], [25]–[27], [29]. The estimated pose
can be used directly in the control law [1], or as part of a scheme fusing
visual data and inertial measurements [29]. In this paper, we do not deal
with pose estimation, but consider image-based visual servo (IBVS),
similar to the approach considered in [4], [17], and [30].

The system dynamics is sometimes explicitly taken into account
in IBVS. This strategy has been applied for robotic manipulators [9],
[12], [20] and for aerial vehicles [15], [30]. Another popular approach
(as usually done for most robotic systems such as robot arms, mobile
robots, etc.) is based on separating the control problem into an inner
loop and an outer position control loop. As for helicopters, the inner at-
titude loop is run at high gain using inputs from inertial sensors, rate gy-
rometers, and accelerometers acquired at high data rate, while the outer
loop is run at low gain using video input from the camera [26], [27]. The
outer (visual servo) loop provides set points for the inner attitude loop
and classical time-scale separation and high-gain arguments can be
used to ensure stability of the closed-loop system [1], [11], [15], [27].

Manuscript received June 17, 2008; revised December 4, 2008. First pub-
lished February 2, 2009; current version published June 5, 2009. This paper was
recommended for publication by Associate Editor P. Rives and Editor W. K.
Chung upon evaluation of the reviewers’ comments. This work was supported
by the Centre National de la Recherche Scientifique (CNRS) under the Project
Robotique et Entités Artificielles (ROBEA)–Robvolint and the International
Programs for Scientific Cooperation (PICS) between France and Australia on
visual servo-control of unmanned aerial vehicles.

O. Bourquardez and F. Chaumette are with the Institut de Recherche en In-
formatique et Systèmes Aléatoires (IRISA)–Centre National de la Recherche
Scientifique (CNRS) and l’Institut National de Recherche en Informatique et
en Automatique (INRIA), 35042 Rennes, France (e-mail: odile.bourquardez@
voila.fr; francois.chaumette@irisa.fr).

R. Mahony is with the Department of Engineering, Australian National Uni-
versity, Canberra, A.C.T. 0200, Australia (e-mail: robert.mahony@anu.edu.au).

N. Guenard and L. Eck are with the Commissariat à l’Energie Atomique
(CEA)/List, 92265 Fontenay-aux-Roses, France (e-mail: nicolas.guenard@
cea.fr; laurent.eck@cea.fr).

T. Hamel is with the Laboratoire d’Informatique, Signaux et Systèmes de
Sophia antipolis (I3S), Université de Nice Sophia-Antipolis (UNSA)–Centre
National de la Recherche Scientifique (CNRS), 06903 Sophia Antipolis, France
(e-mail: thamel@i3s.unice.fr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2008.2011419

1552-3098/$25.00 © 2009 IEEE

Authorized licensed use limited to: ISCTE. Downloaded on June 24, 2009 at 10:50 from IEEE Xplore. Restrictions apply.

