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1 IRIDIA, CoDE, Université Libre de Bruxelles, Belgium
{etuci,campatzi,alyhne,mdorigo}@ulb.ac.be

2 ISTC-CNR, Rome, Italy, vito.trianni@istc.cnr.it

Abstract. The adaptiveness of an autonomous multi-robot system is
reduced if the circumstances an agent should take into account to make
a decision concerning individual or collective behaviour are defined by a
set of a priory assumptions. Based on this premise, this research work
illustrates an alternative approach to the design of controllers for self-
assembling robots in which the self-assembly is initiated and regulated
by perceptual cues that are brought forth by the physical robots through
their dynamical interactions.

1 Introduction

Swarm robotics represents a novel way of doing collective robotics in which au-
tonomous cooperating agents are controlled by distributed and local rules [1].
That is, each agent uses individual mechanisms and local perception to decide
what action to take. Research in swarm robotics focuses on mechanisms to en-
hance the efficiency of the group through some form of cooperation among the
individual agents. An innovative way of cooperation is given by self-assembly [2].
In [3] the term self-assembly is meant to refer to “processes that involve pre-
existing components (separate or distinct parts of a disordered structure), are
reversible, and can be controlled by proper design of the components”. Self-
assembly can enhance the efficiency of a group of autonomous cooperating robots
in several different contexts. In general, self-assembly is advantageous anytime
it allows a group of agents to cope with environmental conditions which prevent
them from carrying out their task individually (see [4] for a review of the field).

Owing to the development of an innovative robotic platform called s-bot,
the research work carried out in the context of the SWARM-BOTS project—
see http://www.swarm-bots.org/ for details on the project—proved that self-
assembly can offer robotic systems additional capabilities useful for the accom-
plishment of the following tasks: a) s-bots collectively and cooperatively trans-
porting heavy items [5]; b) s-bots climbing a steep slope [6]; c) s-bots navigating
on very rough terrain in which a single agent might topple over [6]. A significant
contribution of these works is in the design of distributed control mechanisms.
In accordance with the swarm robotics principles, these research works show the
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effectiveness of hand-coded sets of individual rules in producing complex group
level behaviour such as self-assembly. In particular, the self-assembly process is
based upon a signalling system which makes use of colours. For example, the
decision concerning which robot makes the action of gripping, that is the s-bot -
gripper, and which one is gripped, that is the s-bot -grippee, is made through the
emission of red and blue light signals, according to which the s-bots emitting
blue light are playing the role of s-bot -gripper and those emitting red light the
role of s-bot -grippee. In [2], it is the heterogeneity among the robots with respect
to the colour displayed, a-priory introduced by the experimenter, that triggers
the self-assembly process. That is, a single s-bot “born” red among several s-bots
“born” blue is meant to play the role of s-bot -grippee while the remaining s-bot -
grippers are progressively switching their colour and role once assembled. In [6],
a stochastic mechanisms is employed so that, at each time cycle, with a certain
probability, each s-bot lights itself up in red given that no other red objects are
perceived. In this way, it is the first s-bot emitting red light that triggers the
self-assembly process. Once successfully assembled to another s-bot, each blue
light emitting robot was programmed to turn off the blue LEDs and to turn on
the red one. The switch from blue to red light signals to the non-assembled yet
s-bots the “metamorphosis” of a robot from s-bot -gripper to s-bot -grippee.

As mentioned in [5], although the results of these research works are particu-
larly encouraging, the authors should not underestimate the limitations of some
of the aspects of the proposed approach. For example, (a) the objects that can be
grasped must be red, and those that can not be grasped must be blue; (b) the ac-
tion of grasping is carried out only if all the “grasping requirements” are fulfilled
(e.g., the object or robot to grasp should not move). If the experimenter could
always know in advance in what type of world the agents will be located, as-
sumptions such as those concerning the nature of the object to be grasped would
not represent a limitation with respect to the domain of action of the robotic
system. However, since it is desirable to have agents which can potentially adapt
to variable circumstances or conditions that are partially or totally unknown to
the experimenter, it follows that the efficiency of autonomous robots should be
estimated also with respect to their capacity to cope with “unpredictable” events
(e.g., environmental variability, partial hardware failure, etc.). We believe that a
sensible step forward in this direction can be made by avoiding to constrain the
system to initiate its most salient behaviours (e.g., self-assembly) in response to
a-priory specified agent’s perceptual states. The work described in this paper
represents a significant step forward in this direction.

Our research work illustrates the details of an alternative methodological
approach to the design of homogeneous controllers (i.e., where a controller is
cloned in each robot of a group) for self-assembly in physical autonomous robots
in which no assumptions are made concerning how agents allocate roles at the
self-assembly task. By using dynamical neural networks, shaped by artificial
evolution, we managed to design mechanisms by which the allocation of the
s-bot -gripper and the s-bot -grippee roles is purely the result of an autonomous
negotiation phase between the two s-bots. In other words, the self-assembly pro-
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cess is triggered and regulated by perceptual cues that are brought forth by the
agents through their dynamical interactions. We show that, the evolved mecha-
nisms are as effective as the hand-coded one described in [2,6] when controlling
a group of two real s-bots. In the following sections, we first describe the evolu-
tionary machinery and the experimental scenario used to design neural network
controllers. Then, we show the results of post-evaluation tests on physical robots
(i.e., the s-bots) controlled by the best evolved controller. Conclusions are drawn
in section 6.

2 Simulated and real s-bot

The controllers are evolved in a simulation environment which models some of
the hardware characteristics of the real s-bots (see [7]). An s-bot is a mobile
autonomous robot equipped with many sensors useful for the perception of the
surrounding environment or for proprioception, a differential drive system, and
a gripper by which it can grasp various objects or another s-bot (see figure 1a).
The main body is a cylindrical turret with a diameter of about 12cm, which can
be actively rotated with respect to the chassis.

In this work, to allow robots to perceive each other, we make use of the
omni-directional camera. The image recorded by the camera is filtered in order
to return the distance of the closest red, green, or blue blob in each of the eight
45◦ sectors. Each sector is referred to as CAMi. Thus, an s-bot to be perceived
by the camera must light itself up in one of the three colours using the LEDs
mounted on its turret. Notice that the camera can clearly perceive coloured blobs
up to a distance of approximately 50cm, but the precision above 33cm is rather
low. Moreover, the precision with which the distance of coloured blobs is detected
varies significantly with respect to the colour of the perceived object. We also
make use of the optical barrier which is a hardware component composed of
two LEDs and a light sensor mounted on the gripper (see figure 1b). By post-
processing the readings of the optical barrier we extract valuable information
concerning the status of the gripper and about the presence of an object between
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Fig. 1. (a) The s-bot. (b) The gripper and sensors of the optical barrier. (c) Architec-
ture of the neural network that control the s-bots.



4 Elio Tuci et al.

the gripper claws. More specifically, the post-processing of the optical barrier
readings defines the status of two virtual sensors: a) the GS sensor, set to 1
if the optical barrier indicates that there is an object in between the gripper
claws, 0 otherwise; b) the GG sensor, set to 1 anytime a robot has gripped an
object, 0 otherwise. We also make use of the GA sensor, which monitors the
gripper aperture. The readings of the GA sensor range from 1 when the gripper
is completely open to 0 when the gripper is completely closed.

The simulator used to evolve the required behaviour relies on a specialized
2D dynamics engine (see [8]). In order to evolve controllers that transfer to
real hardware, we overcome the limitations of the simulator by following the
approach proposed in [9]; motion is simulated with sufficient accuracy, collisions
are not. Self-assembly relies on rather delicate physical interactions between
robots that are integral to the task (e.g., the closing of the gripper around an
object can be seen as a collision). Instead of trying to accurately simulate the
collisions, we force the controllers to minimise them and not to rely on their
outcome. In other words, in case of a collision, the two colliding bodies are
repositioned to their previous positions, and the behaviour is penalised by the
fitness function if the collision can not be considered the consequence of an
accepted grasping manoeuvre. Having taken care of the collisions involved with
gripping, the choice of a simple and fast simulator instead of one using a 3D
physics engine significantly speed up the evolutionary process3.

3 Controller and Evolutionary Algorithm

The agent controller is composed of a continuous time recurrent neural network
(CTRNN) of ten hidden neurons and an arrangement of eleven input neurons and
three output neurons (see figure 1c and [10] for a deeper illustration of CTRNNs).
Input neurons have no state. At each simulation cycle, their activation values
Ii—with i ∈ [1, 11]—correspond to the sensors’ readings. In particular, I1 corre-
sponds to the reading of the GA sensor, I2 to the reading of the GG sensor, I3

to I10 correspond to the normalised reading of the eight camera sectors CAMi,
and I11 corresponds to the reading of the GS sensor. Hidden neurons are fully
connected. Additionally, each hidden neuron receives one incoming synapse from
each input neuron. Each output neuron receives one incoming synapse from each
hidden neuron. There are no direct connections between input and output neu-
rons. The state of each hidden neuron yi—with i ∈ [1, 10]—and of each output
neurons oi—with i ∈ [1, 3]—are updated as follows:

τi

dyi

dt
= −yi +

11
∑

j=1

ωjiIi +

10
∑

k=1

ωkiZ(yk + βk); oi =

10
∑

j=1

ωjiZ(yj + βj); (1)

In these equations, τ are the decay constants, ωij the strength of the synaptic
connection from neuron j to neuron i, β the bias terms, and Z(x) = (1+e−x)−1 is

3 Further methodological details and movies of the post-evaluation tests on real s-bots

can be found at http://iridia.ulb.ac.be/supp/IridiaSupp2008-002/
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a sigmoid function. τ , β, and ωij are genetically specified networks’ parameters.
Z(o1) and Z(o2) linearly scaled into [-3.2 3.2] are used to set the speed of the
left and right motors. Z(o3) is used to set the gripper aperture in the following
way: if Z(o3) > 0.75 the gripper closes; if Z(o3) < 0.25 the gripper opens. Cell
potentials are set to 0 when the network is initialised or reset, and circuits are
integrated using the forward Euler method with an integration step-size of 0.2.

Each genotype is a vector comprising 263 real values. Initially, a random
population of vectors is generated by initialising each component of each geno-
type to values randomly chosen from an uniform distribution in the range [0,1].
The population contains 100 genotypes. Generations following the first one are
produced by a combination of selection, and mutation. For each new generation,
the five highest scoring individuals from the previous generation are chosen for
breeding. The new generations are generated by making 20 copies of each high-
est scoring individual with mutations. Mutation entails that a random Gaussian
offset is applied to each real-valued vector component encoded in the genotype,
with a probability of 0.25. All the genetically specified network parameters are
linearly scaled in the range [−10, 10].

4 The fitness function

During evolution, each genotype is translated into a robot controller, and cloned
onto each agent. Each group made of two simulated s-bots, is evaluated for 40
trials obtained by repeating for 4 times a set of 10 trials. At the beginning of
each trial, the s-bots are positioned in a boundless arena at a distance randomly
generated in the interval [25cm, 30cm], and with predefined initial orientations3.
Each trial (e) differs from the others in the initialisation of the random number
generator, which influences the robots’ starting position and orientation. Noise is
added to motors and sensors. In particular, uniform noise is added in the range
±1.25cm for the distance, and in the range ±1.5◦ for the angle of the coloured
blob perceived by the camera. 10% uniform noise is added to the motor outputs
Z(o1). Uniform noise randomly in the range ±5◦ is also added to the initial
orientation of each s-bot. Within a trial, the robots life-span is 50 simulated sec-
onds (250 simulation cycles). Each group is rewarded by an evaluation function

FF =
∑E

e=1 Fe with E = 40 which seeks to assess the ability of the two robots
to get closer to each other and to physically assemble through the gripper. Fe is
computed as follows:

Fe = Ae ∗ Ce ∗ Se; Ae =

{

1.0

1.0+atan( drr

0.16
)

if drr > 16cm;

1.0 otherwise;
(2)

Ce =











1.0 if nc = 0;

0.0 if nc > 20;
1.0

0.5+
√

nc

otherwise;

Se =











100.0 if t = T,GG = 1;

1.0 +
29.0

T
P

t=0

K(t)

T
otherwise;

(3)



6 Elio Tuci et al.

0  1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

Generations

F
itn

es
s

 

 

run 4
run 6
run 9
run 16
run 19

Fig. 2. Fitness of the best genotypes per generation of the best 5 evolutionary runs.

Ae is the aggregation component, Ce is the collision component, and Se is
the self-assembly component. drr is the distance between the two s-bots at the
end of the trial e; nc is the number of s-bot -s-bot collisions recorded during trial
e; T = 250 corresponds to the maximum length of a trial in simulation cycles;
K(t) is set to 1 for each simulation cycle t in which the sensor GS of any s-bot is
active, otherwise K(t) = 0. Notice that, given the way in which FF is computed,
no assumptions are made concerning which s-bot plays the role of s-bot -gripper
and which one the role of s-bot -grippee. The way in which collisions are modelled
in simulations is an element that favours the evolution of assembly strategies in
which the s-bot -gripper moves straight while approaching the s-bot -grippee. This
has been done to ensure transferability to real hardware.

5 Results

As mentioned in section 1, the goal of this research work is to design, through evo-
lutionary computation techniques, dynamical neural networks to allow a group
of two homogeneous s-bots to physically connect to each other. To pursue our
objective, we run, for 10000 generations, twenty randomly seeded evolutionary
simulations. Given the way in which the fitness is computed (see section 4), the
maximum fitness score a group of robots can obtain during evolution corresponds
to 100. In figure 2, we plot the fitness score of the best genotypes at each gener-
ation of the five runs which managed to achieve the maximum score. We noticed
that, with the exception of run n. 9, the fitness of the best agents oscillates
quite a lot throughout the evolution. Through a first series of post-evaluations
carried out in simulation, we re-evaluated all the best evolved genotypes from
generation 5000 to generation 10000 of the best five evolutionary runs shown
in figure 2. Based on the results of these tests, it turned out that the genotype
corresponding to the homogeneous group with the highest success rate at the
self-assembly task is one taken from evolutionary run n. 9. The best performing
genotype has been decoded into an artificial neural network which is cloned and
ported on both real s-bots. Then, the s-bots are evaluated in four different sets
of 36 trials each. The number of trials results from a systematic variation of the
robots’ initial orientations. This is done in order to rule out any effect associated
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with the relative orientation of the robots at the beginning of the trial on their
capability to perform self-assembly. Note that, for real s-bots, the trial’s termi-
nation criteria was changed with respect to those employed with the simulated
s-bots. In particular, there is no time-limit on the maximum duration of a trial,
and no limit on the maximum number of collisions allowed. In each trial, we
let the s-bots interact either until physically connected, or until the occurrence
of events—illustrated below—that hinder the robots to achieve their objective.
The new termination criteria allowed us to observe interesting and unexpected
behavioural sequences3. The first two post-evaluation sets are referred to as test
G25 and test G30. These are tests in which the s-bots light themselves up in
green and are initialised at a distance from each other of 25cm and 30cm, re-
spectively. The s-bots proved to be 100% successful in both tests. That is, they
terminated all the trials physically assembled. Table 1 gives more details about
the s-bots ’ performances in these trials. In particular, we notice that the number
of successful trials at the first gripping attempt is 28 trials and 29 trials out of 36
for G25 and G30 respectively (see Table 1, 2nd column). In few trials, the s-bots

managed to assemble after two/three grasping attempts (see Table 1, 3rd and 7th

column). The failed attempts were mostly caused by inaccurate manoeuvres of
type I1, in which a series of maladroit actions by both robots makes impossible
for s-bot -gripper to successfully grasp the s-bot -grippee’s cylindrical turret. In few
other cases, the group committed inaccuracy I2. That is, both robots assume
the role of s-bot -gripper. In such circumstances, the s-bots head towards each

Table 1. Results of post-evaluation tests on real s-bots. G25 and G30 refer to the tests
in which the s-bots light themselves up in green and are initialised at a distance from
each other of 25cm and 30cm, respectively. B30 and R30 refer to the tests in which the
s-bots light themselves up in blue and red respectively, and are initialised at a distance
of 30cm from each other. Trials in which the physical connection between the s-bots

requires more than one gripping attempts, due to inaccurate manoeuvres Ii, are still
considered successful. In inaccuracy I1, a series of maladroit actions by both robots
makes impossible for s-bot-gripper to successfully grasp the s-bot-grippee’s cylindrical
turret. In I2 both robots assume the role of s-bot-gripper, which results in a collision
between the robots’ grippers. In I3, after grasping the connected structure get slightly
elevated at the connection point. Failures correspond to trials in which the robots do
not manage to return to a distance from each other smaller than their visual field.

Test
Num. suc. trials per

gripping attempt and types
of inaccuracy

N.
failure

1st 2nd 3rd

N.
◦

N.
◦

I1 I2 I3 N.
◦

I1 I2 I3

G25 28 7 6 1 0 1 2 0 0 0

G30 29 6 3 3 0 1 1 1 0 0

B30 26 5 3 2 0 4 8 0 0 1

R30 21 12 8 0 2 4 7 0 1 0
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other until a collision between their respective grippers occurs. Note that, both
in G25 and in G30, the s-bots always managed to recover from the inaccuracies
and to successfully terminate the trials.

In a further series of tests on real s-bots we deliberately changed the colour of
the LEDs mounted on the s-bots turret. Although the s-bots have to lighten their
turret to perceive each other through their camera, the specific colour displayed
has not functional role within the neural machinery that brings forth the s-bots

actions. The aim of these tests is to show that the mechanisms that underpin the
s-bots self-assembling strategies do not depend on the specific colour displayed
by the LEDs. In other words, we test the robustness of the evolved mechanisms
with respect to changes in the perceived colour. To prove what said above, we
repeated the 36 trials with the s-bots initially placed at a distance of 30cm from
each other, a first time with the LEDs displaying blue light—this test is referred
to as B30—and a second time with the LEDs displaying red light—this test is
referred to as R30. The s-bots proved to be very successful both in B30 and
R30 (see Table 1, 2nd column). In the large majority of the trials the s-bots

managed to self-assemble at the first grasping attempt. In few trials, two or
three grasping manoeuvres were required (see Table 1, 3rd and 7th column).
A new type of inaccuracies emerged in test R30. That is, in three trials, after
grasping, the connected structure got slightly elevated at the connection point.
We referred to this type of inaccuracies as I3. Notice also that in a single trial, in
test B30, the s-bots failed to self-assemble (see Table 1, 11th column). The reason
of failure is what we refer to as the Lost-phase; that is, the s-bots moved so far
away from each other that they ended up significantly outside the perceptual
range of their respective camera. The trials in which the s-bots spend more than
1 minute in Lost-phase has been terminated once this time interval was expired,
and the trial has been considered unsuccessful.

For each single test (i.e., G25, G30, B30, and R30), the sequences of s-bots ’s
actions are rather different from one trial to the other. However, these different
histories of interactions can be succinctly described by a combination of few
distinctive phases and transactions between phases which exhaustively “portray”
the observed phenomena. During the starting phase the robots tend to get closer
to each other by leaving their respective starting positions. In the great majority
of the trials, the robots move from the starting phase to what we call the role-
allocation phase (RA-phase). In this phase, each s-bot tends to remain on the
right side of the other. They slowly move by following a circular trajectory
corresponding to an imaginary circle centred in between the s-bots. Moreover,
each robot rhythmically changes its heading by turning left and right. The RA-
phase ends once one of the two s-bots—that is, the one that is assuming the role
of the s-bot -gripper—stops oscillating and heads towards the other s-bot—that
is, the one that is assuming the role of the s-bot -grippee—which instead keeps on
moving in a similar way as during the RA-phase. The s-bot -gripper approaches
the s-bot -grippee’s turret and, as soon as its GS sensor is active, it closes its
gripper. A successful trial terminates as soon as the two s-bots are connected.
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As mentioned above, in few trials the s-bots failed to connect at the first
gripping attempts by committing what we called inaccuracies I1 and I3. These
inaccuracies seems to denote problems in the sensory-motor coordination dur-
ing grasping. Recovering from I1 can only be accomplished by returning to a
new RA-phase, in which the s-bots negotiate again their respective roles, and
eventually self-assemble. Recovering from I3 is accomplished by a slight back-
ward movement of both s-bots which restores a stable gripping configuration.
Given that I3 has been observed only in R30, it seems plausible to attribute
the origin of this inaccuracy to the effects of the red light on the perceptual
apparatus of the s-bots. In particular, it could be that, due to the red light, the
s-bot -gripper perceives through its camera the s-bot -grippee at a distance longer
than the actual one. Alternatively, it could be that the red light perturbs the
regular functioning of the optical barrier and consequently the readings of the
GS and GG sensors. Both phenomena may induce the s-bot -gripper to keep on
moving towards the s-bot -grippee up to the occurrence of I3, even though the
distance between the robots and the status of the gripper of the s-bot -gripper
would require a different response. I2 seems to be caused by the effects of the
s-bots ’ starting positions on their behaviour. Recall that, in those trials in which
I2 occurs, after a short starting phase, the s-bots head towards each other until
they collide with their grippers without going through the RA-phase. It looks
like that it is the way in which the robots perceive each other at starting posi-
tions that induces them to skip the RA-phase. Without a proper RA-phase, the
robots fail to autonomously allocate between themselves the roles required by
the self-assembly task (i.e., s-bot -gripper and s-bot -grippee), and consequently
they incur in I2. In order to recover from I2, the s-bots move away from each
other and start a new RA-phase in which roles are eventually allocated. In the
future we will further investigate the exact cause of the inaccuracies.

As shown in Table 1, except for a single trial in test B30 in which the s-

bots failed to self-assemble, the robots proved capable of recovering from all
types of inaccuracies. This is an interesting result because it is evidence of the
robustness of our controllers with respect to contingencies never encountered
during evolution. Indeed, as mentioned in section 2, in order to speed up the
evolutionary process, the simulation in which controllers have been designed is
not taking into account the dynamics of collisions. In those cases in which, after a
collision, the simulated robots had another chance to assemble, the agents were
simply re-positioned at a given distance to each other. In spite of this, s-bots

guided by the best evolved controllers proved capable of engaging themselves in
successful recovering manoeuvres which allowed them to eventually assemble.

6 Conclusions

The results of this work are a proof-of-concept: they proved that dynamical neu-
ral networks shaped by evolutionary computation techniques can provide phys-
ical robots all the required mechanisms to autonomously perform self-assembly.
Owing to this design approach—known in the literature as evolutionary robotics,
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see [11]—the self-assembly is initiated and regulated by perceptual cues that are
brought forth by the two homogeneous robots through their dynamical interac-
tions. Moreover, in spite of the system being homogeneous, role allocation—i.e.,
who is the s-bot -gripper and who is the s-bot -grippee—is successfully accom-
plished by the robots through an autonomous negotiation phase. Contrary to
the hand-coded controllers described in [2,6], the evolutionary robotics approach
did not require the experimenter to make any a-priory assumptions concerning
the roles of the robots during self-assembly (i.e., either s-bot -gripperor s-bot -
grippee) or about their status (i.e., either capable of moving or required not to
move). Moreover, the evolved mechanisms proved to be robust with respect to
changes of the colour of the light displayed by the LEDs. To cope with the same
type of changes the hand-coded controllers described in [2,6] would require to
be re-designed. Future work will focus on the analysis of the evolved mecha-
nisms as well as on the study of more complex scenarios in which self-assembly
is functional to the achievement of particular objectives that are beyond the
capabilities of a single s-bot.
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