
Hierarchical Evolution of Robotic Controllers
for Complex Tasks

Miguel Duarte, Sancho Oliveira and Anders Lyhne Christensen
Instituto de Telecomunicações & Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal

e-mail: {miguel_duarte,sancho.oliveira,anders.christensen}@iscte.pt

Abstract—In this paper, we demonstrate how an artificial
neural network (ANN) based controller can be synthesized for
a complex task through hierarchical evolution and composition
of behaviors. We demonstrate the approach in a task in which
an e-puck robot has to find and rescue a teammate. The robot
starts in a room with obstacles and the teammate is located in a
double T-maze connected to the room. We divide the rescue task
into different sub-tasks: (i) exit the room and enter the double
T-maze, (ii) solve the maze to find the teammate, and (iii) guide
the teammate safely to the initial room. We evolve controllers
for each sub-task, and we combine the resulting controllers in
a bottom-up fashion through additional evolutionary runs. We
conduct evolution offline, in simulation, and we evaluate the best
performing controller on real robotic hardware. The controller
achieved a task completion rate of more than 90% both in
simulation and on real robotic hardware.

I. INTRODUCTION

Evolutionary robotics (ER) is a field in which evolutionary
computation is used to synthesize controllers and sometimes
the morphology of autonomous robots. ER techniques have
the potential to automate the design of behavioral control
without the need for manual and detailed specification of
the desired behavior [1]. Artificial neural networks (ANNs)
are bio-inspired computational models that are often used
as controllers in ER because of their capacity to tolerate
noise [2] such as that introduced by imperfections in sensors
and actuators. Numerous studies have demonstrated that it is
possible to evolve robotic control systems capable of solving
tasks in surprisingly simple and elegant ways [3]. It has proven
difficult, however, to bootstrap the evolutionary process when
a controller for a complex task is sought.

In order to overcome the bootstrapping problem and to en-
able the evolution of behaviors for complex tasks, researchers
have experimented with different approaches, such as incre-
mental evolution. In incremental evolution, the task is either
divided in to sub-tasks and/or the controller is divided into
sub-controllers. We follow the latter approach and recursively
decompose the goal task into sub-tasks and train different
ANN-based controllers to solve the sub-tasks. The controllers
for the sub-tasks are then combined though an additional
evolutionary step into a single controller for the goal task.

We use a task in which a robot must rescue a teammate.
Our rescue task requires several behaviors typically associated
with ER [4] such as exploration, obstacle avoidance, memory,
delayed response, and the capacity to navigate safely through
corridors. The environment is composed of a room, in which

the robot starts, and a double T-maze [5], [6] (see Figure 1). A
number of obstacles are located in the room. The room has a
single exit that leads to the start of a double T-maze. In order to
find its teammate, the robot should exit the room and navigate
to the correct branch of the maze. Two rows of flashing lights
in the main corridor of the maze give the robot information
regarding the location of the teammate. For instance, if the left
light of the first row and the right light of the second row are
activated, the robot should turn left at the first junction and
right at the second junction. Upon navigating to the correct
branch of the maze, the robot must guide its teammate back
to the room.

Second
row

First row
of lights

120 cm

20 cm

130 cm

120 cm

160 cm

Teammate

Obstacle

Fig. 1. The environment is composed of a room with obstacles and a double
T-maze. The room is rectangular and its side wall length can vary between
1 m and 1.2 m. The two rows with the lights are located in the central maze
corridor. The activation of these two rows of lights indicate the location of a
teammate.

Our study is novel in three respects: (i) sub-tasks are solved
by one or more continuous time recurrent neural networks
that are evolved independently, (ii) we introduce the concept
of derived fitness functions during composition for sequential
tasks, and (iii) we demonstrate a fully evolved behavioral
controller solving a complex task on real robotic hardware.

II. BACKGROUND AND RELATED WORK

Artificial evolution potentially allows for the self-
organization of behavior, which frees the designer from manu-



ally specifying the desired behavior in detail. Several examples
of evolved controllers that manage to solve tasks in surpris-
ingly simple and elegant ways have been reported [4].

Nelson et al. [4] survey different types of fitness functions
used in the field of evolutionary robotics. In the discussion of
their findings, they state:

“ ... is it possible to generate intelligent systems
capable of solving large classes of tasks in the realm
of intelligent autonomous systems? The answer to
this question is unknown, but current evolutionary
robotics results indicated that it may be possible to
generate autonomous systems with limited general
abilities at some point in the future”

In their survey of over one hundred different ER studies, no
author was able to bootstrap evolution for tasks with multiple,
non-trivial parts, although some promising approaches have
been proposed. In a different survey, Meyer et al. [7] stated
that “the challenge is to move from basic robot behaviours to
ever more complex, non-reactive ones”.

Several different incremental approaches have been studied
as a means to overcome the bootstrapping problem and to
enable the evolution of behaviors for complex tasks. In in-
cremental evolution, the initial random population starts in a
simple version of the environment to avoid bootstrapping is-
sues. The complexity of the environment is then progressively
increased as the population improves (see for instance [8], [9]).
Alternatively, the goal task can be decomposed into a number
of sub-tasks that are then learned in an incremental manner
(see for instance [10], [11], [9]).

While a single ANN controller is sometimes trained in each
sub-task sequentially, different modules can also be trained to
solve different sub-tasks. Moioli et al. used a homeostatic-
inspired GasNet to control a robot [12]. They used two dif-
ferent sub-controllers, one for obstacle avoidance and one for
phototaxis, that were inhibited or activated by the production
and secretion of virtual hormones. The authors evolved a
controller that was able to select the appropriate sub-controller
depending on internal stimulus and external stimulus.

In a garbage collection task, Nolfi and Parisi [13] experi-
mented with dividing a neural network into different modules.
A Khepera robot with a gripper module had to grasp objects
within an environment and release them outside of the en-
vironmental bounds. The network’s output layer was divided
into two modules that competed for activation. The controller
evolved one of the modules to find and pick up the objects, and
one to release them outside the bounds of the environment.

Lee [14] proposed an approach in which different sub-
behaviors were evolved for different sub-tasks and then com-
bined hierarchically through genetic programming. The ap-
proach was studied in a task where a robot had to search for
a box in an arena and then push it towards a light source. By
evolving different reactive1sub-behaviors such as “circle box”,
“push box” and “explore”, the author managed to synthesize a

robotic controller that solved the task. The author claims that
his controllers were transferable to a real robot, but only the
sub-controllers were tested on real hardware. Larsen et al. [16]
extended Lee’s work by using reactive neural networks for
the sub-controllers and for the arbitrators instead of evolved
programs. However, the chosen goal task used by both Lee and
Larsen is relative simple and the scalability of their respective
approaches to more complex tasks was never tested.

Our approach shares many similarities with Lee’s [14] and
Larsen et al.’s [16] approaches in that controllers are evolved
and composed hierarchically based on task decomposition.
However, as we demonstrate in this study, our approach scales
to complex tasks because (i) we use non-reactive controllers,
which are able to keep an internal state, and (ii) during the
composition of sub-controllers into larger and more complex
controllers, the fitness function for the composed task can be
derived directly from the decomposition. We also demonstrate
transfer of behavioral control from simulation to real robotic
hardware without a significant loss of performance (we cross
the reality gap [17]), and we discuss the benefits of transferring
controllers incrementally. We propose to exploit the automatic
design capabilities of artificial evolution in order to synthesize
controllers capable of solving complex tasks in real robotic
hardware.

III. METHODOLOGY

The main purpose of the proposed methodology is to allow
for the synthesis of behavioral control for complex tasks
using evolutionary processes. In our approach, controllers
have a hierarchical structure and are composed of several
ANNs. Each network is either a behavior arbitrator or a
behavior primitive. These terms were used in [14] to denote
similar controller components. A behavior primitive network
is usually at the bottom of the controller hierarchy and directly
controls the actuators of the robot, such as the wheels. If it
is relatively easy to find an appropriate fitness function for
a given task, a behavior primitive (a single ANN) is evolved
to solve the task. An appropriate fitness function is one that
(i) allows evolution to bootstrap, (ii) evolves a controller
that is able to solve the task consistently and efficiently, and
(iii) evolves a controller that transfers well to real robotic
hardware. In case an appropriate fitness function cannot be
found for a task, the task is recursively divided into sub-tasks
until appropriate fitness functions have been found for each
sub-task. The process of choosing a suitable decomposition is
task-dependent, and must be defined by the experimenter.

Controllers evolved for sub-tasks are combined through
the evolution of a behavior arbitrator. A behavior arbitrator
receives either all or a subset of the robot’s sensory inputs, and
it is responsible for delegating control to one or more of its
sub-controllers. Each behavior arbitrator can have a different
sub-controller activator. The sub-controller activator activates
one or more sub-controllers based on the outputs of the ANN

1Reactive controllers are not able to keep a state between control cycles
and simply respond to the current external stimulus [15].



in the behavior arbitrator. The behavior arbitrators used in this
study have one output neuron for each of their immediate sub-
controllers. The sub-controller activator we use activates the
sub-controller for which the corresponding output neuron of
the arbitrator has the highest activation. The state of a sub-
controller is reset whenever it gets deactivated.

If the fitness function for the evolution of a behavior
arbitrator is difficult to define, it can be derived based on the
task decomposition. The derived fitness function is constructed
to reward the arbitrator for activating a sub-controller that
is suitable for the current sub-task, rather than for solving
the global task. The use of derived fitness functions in the
composition step circumvents the otherwise increase in fitness
function complexity as the tasks considered become increas-
ingly complex.

The basic behavior primitives are evolved first. The behavior
primitive are then combined though the evolution of a behavior
arbitrator. The resulting controller can then be combined
with other controllers through additional evolutionary steps to
create a hierarchy of increasingly more complex behavioral
control. Each time a new sub-controller (either a behavior
primitive or a composed controller) has been evolved, its
performance on real robotic hardware can be evaluated. The
experimenter can thus address issues related transferability
incrementally as the control system is being synthesized.

IV. ROBOT AND SIMULATOR

We used an e-puck [18] robot for our experiments. The
e-puck is a small circular (diameter of 75 mm) differential
drive mobile robotic platform designed for educational use.
The e-puck’s set of actuators is composed of two wheels, a
loudspeaker, and a ring of 8 LEDs. Among other sensors, the
e-puck is equipped with 8 infrared proximity sensors which are
able to detect nearby obstacles and changes in light conditions.
Additionally, our e-puck robots are equipped with a range &
bearing board [19] which allows them to communicate with
one another.

We use JBotEvolver for offline evolution of behavioral con-
trol. JBotEvolver is an open source, multirobot simulation plat-
form, and neuroevolution framework. The simulator is written
in Java and implements 2D differential drive kinematics.
Evaluations of controllers can be distributed across multiple
computers and different evolutionary runs can be conducted
in parallel. The simulator can be downloaded from: http:
//sourceforge.net/projects/jbotevolver.

We use four of the e-puck’s 8 infrared proximity sensors:
the 2 front sensors and the 2 lateral sensors. We collected
samples (as advocated in [20]) from the sensors on a real e-
puck robot in order to model them in JBotEvolver. Distance-
dependent noise was added to the sensor readings in simulation
corresponding to the amount of noise measured during the
sampling of the sensors. We furthermore added a fixed offset
noise of up to 5% to the sensor’s value. We use ambient light
readings from the 2 lateral proximity sensors to detect light
flashes in the double T-maze sub-task. When a light flash is
detected, the activation of one of the 2 dedicated neurons is

set to 1 for 15 simulation cycles (equivalent to 1.5 seconds)
depending on the side from which the light flash is detected.
We also included a boolean “near robot” sensor that lets the
robot know if there is any other robot within 15 cm, using
readings from the range & bearing board. In simulation, we
added Gaussian noise (standard deviation of 5% of the value
set by the controller) to the wheel speeds in each control cycle.

Since the e-puck’s memory is too limited (8 kB) for our
control code to run on-board, we use off-board execution
of control code in the real robot experiments conducted
in this study (we successfully used on-board control in a
previous study [6] with a smaller controller). The e-puck starts
each control cycle by transmitting its sensory readings to a
workstation via Bluetooth. The workstation then executes the
controller, and sends back the output of the controller (wheel
speeds) to the robot at the rate of 10 cycles per second.

V. EXPERIMENTS AND RESULTS

Our rescue task is relatively complex, especially given the
limited amount of sensory information available to the robot,
and it would be difficult to find an appropriate fitness function
for the complete task. We therefore divided the rescue task
into three sub-tasks: (i) exit the room, (ii) solve T-maze to find
teammate, and (iii) return to the room leading the teammate.
Below, we detail how we evolved the controllers to solve the
individual sub-tasks, and how we combined them to obtain
a controller for the complete rescue task. A summary of the
simulation results can be found in Table I.

TABLE I
SUMMARY OF THE SIMULATION RESULTS FOR EACH CONTROLLER

Turn
Left

Turn
Right

Follow
Wall

Exit
Room

Solve
Maze

Return to
Room

Rescue

Gens. 100 100 100 500 1000 500 1000
Avg. 89% 69% 99% 52% 93% 75% 85%
Best 100% 100% 100% 96% 99.5% 100% 93%

A. Controller Architecture

The structure of the controller for the complete rescue
task can be seen in Figure 2. We recursively divided the
task into sub-tasks until appropriate fitness functions could be
found, and we then evolved the sub-controllers in a bottom-up
fashion, starting with the behavior primitives.

For each evolutionary run, we used a simple generational
evolutionary algorithm with a population size of 100 genomes.
The fitness score of each genome was averaged over 50 sam-
ples with varying initial conditions, such as the robot’s starting
position and orientation. After the fitness of all genomes
had been sampled, the 5 highest scoring individuals were
copied to the next generation. 19 copies of each genome
were made and for each gene there was a 10% chance that
a Gaussian offset with a mean of 0 and a standard deviation
of 1 was applied. All the ANNs in the behavior primitives
and in the behavior arbitrators were time-continuous recurrent
neural networks [15] with one hidden layer of fully-connected
neurons. After the evolution, we post-evaluated the controllers
in a total of 100 samples.



Behavior Primitive

Turn LeftFollow Wall

Behavior Primitive Behavior Primitive

Turn Right

Solve Maze

Behavior Arbitrator

Main

Behavior Arbitrator

Behavior Arbitrator

Return to RoomExit Room

Behavior Primitive

Fig. 2. The controller used in our experiments is composed of 3 behavior
arbitrators and 4 behavior primitives.

1) Exit Room Sub-task: The first part of the rescue task was
an exploration and obstacle avoidance task in which the robot
must find a narrow exit leading to the maze. The room was
rectangular with side lengths that varied between 100 cm and
120 cm. 2 or 3 obstacles were randomly placed in the room
depending on its size. Each obstacle was rectangular with side
lengths randomly ranging from 5 cm to 20 cm. The location
of the room exit was also randomized in each trial.

We found that an ANN with 4 input neurons, 10 hidden
neurons, and 2 output neurons could solve the task. Each
of the input neurons was connected to an infrared proximity
sensor, and the output neurons controlled the speed of the
robot’s wheels. In order to evolve the controller, the robot
was randomly oriented and positioned near the center of the
room at the beginning of each sample.

The robot was evaluated differently depending on whether
it succeeded or failed to find the exit of the room within the
allotted time (100 seconds), according to f1:

f1 =

 5 + C−c
C if exit was found

D−d
D if exit was not found

where C is the maximum number of cycles (100 seconds × 10
cycles/second = 1000 cycles), c is the spent number of cycles,
D is the distance from the center of the room to its exit, and
d is the closest point to the exit that the robot navigated to.

The “exit room” controllers were evolved until the 500th
generation and each sample was evaluated for 1000 control
cycles, in a total of 10 evolutionary runs. The controllers
achieved an average solve rate of 52%, with a solve rate
of 96% in the best evolutionary run. The best performing
controller starts by moving away from the center of the
room until it senses a wall, which it then follows clockwise
until the room exit is found. 3 of the 10 evolutionary runs
produced consistent results, in which controllers find the exit
of the room in over 90% of the samples. The remaining
runs did not produce successful behaviors: the robots would
spin/circle around, sometimes finding the exit by chance and
often crashing into one of the walls or into an obstacle.

2) Solve Double T-maze Sub-task: In the second sub-task,
the robot had to solve a double T-maze in order to find the

teammate that had to be rescued. In a previous study [6], we
experimented with the double T-maze task and found that it
was difficult to reliably evolve a controller capable of solving
the task based on a single ANN. We therefore further divided
the solve maze sub-task into three different sub-tasks: “follow
wall”, “turn left” and “turn right”, for which appropriate fitness
functions could easily be specified. The behavior primitive
network for each of these three sub-tasks had 4 input neurons,
3 hidden neurons, and 2 output neurons. The input neurons
were connected to the infrared proximity sensors and the
outputs controlled the speed of the wheels. The three behavior
primitives were evolved in corridors of various lengths. The
environment for the “turn” controllers was also composed of
either left or right turns, depending on the controller.

The robot was evaluated according to f2:

f2 =


1 + C−c

C if navigated to destination

D−d
3D if crashed or chose wrong path

0 if time expired

where C is the maximum number of cycles, c is the number of
cycles spent, D is the total distance from the start of the maze
to the robot’s destination, and d is the final distance from the
robot to its destination. The maximum allotted time was 300
cycles (equivalent to 30 seconds).

A total of 5 evolutionary runs were conducted for each
of the basic behaviors (“follow wall”, “turn left” and “turn
right”). The evolutionary process lasted 100 generations, and
the best controller from each evolutionary run was then sam-
pled 100 times in order to evaluate the controller’s solve rate.
The “turn left” controllers achieved an average solve rate of
89%, with a solve rate of 100% for the controller that obtained
the highest fitness; the “turn right” controllers achieved an
average solve rate of 69%, with a solve rate of 100% for the
controller that obtained the highest fitness; and the “follow
wall” controllers achieved an average solve rate of 99%, with
a solve rate of 100% for the controller that obtained the highest
fitness. The controllers for the basic behaviors achieved a good
performance in relatively few generations and the majority of
the evolutionary runs converged towards the optimal solve rate,
with an occasional run getting stuck in a local optimum.

We then evolved a behavior arbitrator with the three best
behavior primitives as sub-controllers. The behavior arbitrator
network had 6 input neurons, 10 hidden neurons, and 3 output
neurons. The inputs were connected to the 4 infrared proximity
sensors and the 2 light sensors. At the beginning of each trial,
the robot was placed at the start of the double T-maze and
had to navigate to the correct branch based on the activations
of the lights that were placed on the first corridor. The fitness
was awarded based on f2, where the robot’s destination was its
teammate. The maximum number of cycles for this sub-task
was 1000 cycles (100 seconds). The sample was terminated
if the robot collided into a wall or if it navigated to a wrong
branch of the maze.



The evolution process lasted until the 1000th generation,
and a total of 10 evolutionary runs were performed. The
controllers achieved an average solve rate of 93%, with a
solve rate of 99.5% for the highest performing controller. The
controllers were post-evaluated in a total of 400 samples, 100
samples for each light configuration.

3) Return to Room Sub-task: The final sub-task consisted
of the robot guiding its teammate back to the initial room. For
this sub-task, we reused the behavior primitives previously
evolved for maze navigation (“follow wall”, “turn left” and
“turn right”) and we evolved a new behavior arbitrator. The
behavior arbitrator network was trained in the double T-maze
with the robot starting in one of the four branches of the
maze (chosen at random in the beginning of each trial). The
behavior arbitrator had 4 input neurons, 10 hidden neurons,
and 3 output neurons. The input neurons were connected to
the robot’s infrared proximity sensors and the output neurons
selected which sub-controller should be active.

Since this was a task in which the robot had to navigate
correctly through the maze, we used the same fitness function
(f2) as in the solve double T-maze sub-task described in the
previous section. The only difference was the objective: the
robot was evaluated based on its distance to the entrance of
the maze, not the distance to the teammate.

We conducted a total of 10 evolutionary runs until the 500th
generation for the “return to room” behavior. The controllers
achieved an average solve rate of 75%, with a solve rate of
100% for the highest performing controller.

B. Evolving the main controller

For the composed task, we evolved a behavior arbitrator
with the controllers for the exit room, the solve maze, and the
return to room tasks as sub-controllers. The robot had to first
find the entrance to the double T-maze, then navigate the maze
in order to find its teammate, and finally guide the teammate
back to the room. The behavior arbitrator for the complete
rescue task had 5 input neurons, 10 hidden neurons, and 3
output neurons. The inputs were connected to the 4 infrared
proximity sensors and to a boolean “near robot” sensor, which
indicated if there was a teammate within 15 cm (based on
readings from the range & bearing board).

We evolved the controller with a derived fitness function f3
that rewards the selection of the right behaviors for the current
sub-task. The controller was awarded a fitness value between
0 and 1 for each sub-task (for a maximum of 3 for all sub-
tasks), depending on the amount of time that it selected the
correct behavior according to the robot’s location and whether
it had located the teammate or not. f3 is defined as follows:

f3 =

N∑
s=1

ts
Ts

where the sum is over all the sub-tasks (in this study, N =
3 sub-tasks), Ts is the number of simulation cycles that the
controller has spent in sub-task s, and ts is the number of

cycles in which the controller chose the correct sub-controller
for sub-task s.

We ran 10 evolutionary runs until the 1000th generation for
the composed task controller. The fitness of each genome was
sampled 20 times and the average fitness was computed. Each
sample lasted a maximum of 2000 control cycles (equivalent to
200 seconds). The 10 resulting controller achieved an average
solve rate for the composed task of 85% (based on a post-
evaluation with 400 samples, 100 for each light configuration).

We analyzed how the main controller managed to solve
each part of the composed task. On the “exit room” task,
all 10 controllers averaged a solve rate of 91%. This means
that all the controllers successfully learned that they should
activate the exit room behavior primitive in the first part of
the composed task.

After exiting the room, the controller should activate the
“solve maze” behavior in order to find the robot’s teammate.
It is important to note that once the controller selects this
behavior, it should not switch to another one until it reaches the
end of the maze: switching resets the state of the selected sub-
controller, meaning that the “solve maze” behavior arbitrator
would forget which light flashes it previously sensed. The
average solve rate dropped from 91% to 88%.

Upon finding the teammate, the robot should return to the
starting point, completing the composed task. Ideally, this
should be done by activating the return behavior at the end
of the maze. The controllers achieved an average solve rate of
85%, with 93% for the highest performing controller.

C. Transfer to the real robot
After evaluating all the different evolutionary runs, the best

performing controller from the simulation was tested on a
real e-puck. The robot had to solve the composed task. For
the experiments in which we collected performance data, the
teammate remained static to avoid that interference between
the teammate and the robot executing the evolved controller
would affect the results.

We used a room with a size of 120 cm × 100 cm for our real
robot experiments. Three identical obstacles with side lengths
of 17.5 cm and 11 cm were placed in the room as shown in
Figure 1. In the real maze, the flashing lights were controlled
by a Lego Mindstorms NXT brick. The brick was connected
to four ultrasonic sensors that detected when the robot passed
by and controlled the state of the lights using two motors.

We sampled the controller 6 times for each light combi-
nation, for a total of 24 samples. The controller solved the
composed task on the real robot in 22 out of 24 samples
(a solve rate of 92%). The controller consistently chose the
correct sub-network at each point of the task, and only failed
in the return to room behavior twice. Videos of the experi-
ments, in which the teammate follows the robot to the room,
can be seen at http://home.iscte-iul.pt/˜alcen/
epirob2012/.

VI. CONCLUSIONS

In this study, we demonstrated how controllers can be
composed in a hierarchical fashion to allow for the evolution



of behavioral control for a complex task. We started by decom-
posing the goal task into sub-tasks until a controller for each
sub-task could easily be evolved. When we combined the sub-
controllers, we used a derived fitness function that rewarded
controllers for activating the sub-controller corresponding to
the current sub-task rather than for solving the global task. We
evaluated the evolved behavior on a real e-puck performing a
rescue task. The real robot managed to solve the task in 22
out of 24 experiments (solve rate of 92%), which is similar
to the robot’s performance in simulation (solve rate of 93%
based on a post-evaluation with 400 samples).

Our approach overcomes a number of fundamental issues in
evolutionary robots. Often the experimenter has to go through
a tedious trial and error process in order to design a suitable
fitness function for the task at hand. In our approach, we
recursively divide tasks into sub-tasks until a simple fitness
function can easily be specified. We, for instance, tried to
evolve a single ANN-based controller for the solve maze sub-
task [6], but since bootstrapping proved difficult, we divided
the solve maze task into sub-tasks (follow wall, turn left, and
turn right). For each of these simple tasks, fitness functions
that allowed evolution to bootstrap were straightforward to
specify.

During the composition of sub-behaviors, we use a fitness
function directly derived from the immediate decomposition,
that is, a fitness function that rewards a controller for activating
an appropriate sub-controller given the current situational
context: after we had obtained controllers for each of the
three sub-tasks, exit room, solve maze, and return to room,
we combined them in an additional evolutionary step. During
evolution, an arbitrator (an ANN) was rewarded for (i) acti-
vating the exit room sub-controller while the robot was in the
room, (ii) the solve sub-controllers while the robot was in the
maze, and (iii) the return to room behavior after the teammate
had been located. In this way, we avoid that the complexity
of the fitness function increases with the task complexity as
sub-behaviors are combined.

The transfer of behavioral control from simulation to a real
robot is usually a hit or miss because a controller for the
goal task is completely evolved in simulation before it is
tested on real hardware. In our approach, the transfer from
simulation to real robotic hardware can be conducted in an
incremental manner as behavior primitives and sub-controllers
are evolved. This allows the designer to address issues related
to transferability immediately and locally in the controller
hierarchy.

The applicability of our approach depends on if the task
for which a controller is sought can be broken down into
reasonably independent sub-tasks. For highly integrated tasks
where it is unclear if or how the goal task can be divided into
sub-tasks [9], our approach may not be directly applicable.
However, in cases where a controller for an indivisible sub-task
cannot be evolved, either because a good fitness function can-
not be found or because evolved solutions do not transfer well,
the evolved control may be combined with preprogrammed
behaviors [6].

Our long-term goal is to combine the benefits of manual
design of behavioral control with the benefits of automatic
synthesis though evolutionary computation to obtain capable,
efficient, and robust controllers for real robots.

ACKNOWLEDGEMENTS

This work was partly supported by FCT-Foundation of Science and
Technology under the grant SFRH/BD/76438/2011 and ISCTE-IUL.

REFERENCES

[1] D. Floreano and L. Keller, “Evolution of adaptive behaviour in robots
by means of Darwinian selection,” PLoS Biology, vol. 8, pp. 1–8, 2010.

[2] J. Kam-Chuen, C. Giles, and B. Horne, “An analysis of noise in recurrent
neural networks: convergence and generalization,” IEEE Transactions on
Neural Networks, vol. 7, pp. 1424–1438, 1996.

[3] S. Nolfi and D. Floreano, Evolutionary robotics: The biology, intel-
ligence, and technology of self-organizing machines. MIT Press,
Cambridge, MA, 2000.

[4] A. L. Nelson, G. J. Barlow, and L. Doitsidis, “Fitness functions in
evolutionary robotics: A survey and analysis,” Robotics and Autonomous
Systems, vol. 57, no. 4, pp. 345–370, 2009.

[5] J. Blynel and D. Floreano, “Exploring the t-maze: Evolving learning-
like robot behaviors using CTRNNs,” in Applications of Evolutionary
Computing. Springer, Berlin, Germany, 2003, pp. 593–604.

[6] M. Duarte, S. Oliveira, and A. L. Christensen, “Automatic synthesis of
controllers for real robots based on preprogrammed behaviors,” in Pro-
ceedings of the 12th International Conference on Adaptive Behaviour.
Springer, Berlin, Germany, 2012, pp. 249–258.

[7] J.-A. Meyer, P. Husbands, and I. Harvey, “Evolutionary robotics: A
survey of applications and problems,” in EvoRobots, 1998, pp. 1–21.

[8] F. Gomez and R. Miikkulainen, “Incremental evolution of complex
general behavior,” Adaptive Behavior, no. 5, pp. 317–342, 1997.

[9] A. L. Christensen and M. Dorigo, “Evolving an integrated phototaxis
and hole avoidance behavior for a swarm-bot,” in Proceedings of Tenth
International Conference on the Simulation and Synthesis of Living
Systems (ALIFEX). MIT Press, Cambridge, MA, pp. 248–254.

[10] I. Harvey, P. Husbands, and D. Cliff, “Seeing the light: artificial evolu-
tion, real vision,” in Proceedings of the Third International Conference
on Simulation of Adaptive Behavior: From Animals to Animats 3. MIT
Press, Cambridge, MA, 1994, pp. 392–401.

[11] R. de Nardi, J. Togelius, O. E. Holland, and S. M. Lucas, “Evolution
of neural networks for helicopter control: Why modularity matters,” in
Proceedings of IEEE Congress on Evolutionary Computation (CEC’06).
IEEE Press, Piscataway, NJ, 2006, pp. 1799–1806.

[12] R. Moioli, P. Vargas, F. Von Zuben, and P. Husbands, “Towards the
evolution of an artificial homeostatic system,” in Evolutionary Com-
putation, 2008. CEC 2008. (IEEE World Congress on Computational
Intelligence). IEEE, 2008, pp. 4023–4030.

[13] S. Nolfi and D. Parisi, “Evolving non-trivial behaviors on real robots: an
autonomous robot that picks up objects,” in Robotics and Autonomous
Systems. Springer Verlag, 1995, pp. 187–198.

[14] W.-P. Lee, “Evolving complex robot behaviors,” Information Sciences,
vol. 121, no. 1-2, pp. 1–25, 1999.

[15] R. D. Beer and J. C. Gallagher, “Evolving dynamical neural networks
for adaptive behavior,” Adaptive Behavior, vol. 1, pp. 91–122, 1992.

[16] T. Larsen and S. Hansen, “Evolving composite robot behaviour - a
modular architecture,” in Robot Motion and Control, 2005. RoMoCo ’05.
Proceedings of the Fifth International Workshop on, 2005, pp. 271–276.

[17] N. Jakobi, “Evolutionary robotics and the radical envelope-of-noise
hypothesis,” Adaptive Behavior, vol. 6, pp. 325–368, 1997.

[18] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a robot designed for education in engineering,” in In Proceedings
of the 9th Conference on Autonomous Robot Systems and Competitions.
Instituto Politecnico de Castelo Branco, Castelo Branco, Portugal, 2009,
pp. 59–65.

[19] A. Gutierrez, A. Campo, M. Dorigo, D. Amor, L. Magdalena, and
F. Monasterio-Huelin, “An open localization and local communication
embodied sensor,” Sensors, vol. 8, no. 11, pp. 7545–7563, 2008.

[20] O. Miglino, H. H. Lund, and S. Nolfi, “Evolving mobile robots in
simulated and real environments,” Artificial Life, vol. 2, pp. 417–434,
1996.


