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Abstract. We propose progressive minimal criteria novelty search (PM-
CNS), which is an extension of minimal criteria novelty search. In PM-
CNS, we combine the respective benefits of novelty search and fitness-
based evolution by letting novelty search freely explore new regions of
behaviour space as long as the solutions meet a progressively stricter
fitness criterion. We evaluate the performance of our approach in the
evolution of neurocontrollers for a swarm of robots in a coordination
task where robots must share a single charging station. The robots can
only survive by periodically recharging their batteries. We compare the
performance of PMCNS with (i) minimal criteria novelty search, (ii) pure
novelty search, (iii) pure fitness-based evolution, and (iv) with evolution-
ary search based on a linear blend of novelty and fitness. Our results show
that PMCNS outperforms all four approaches. Finally, we analyse how
different parameter setting in PMCNS influence the exploration of the
behaviour space.
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1 Introduction

Deception is one of the biggest challenges in evolutionary robotics (ER). Because
of deception, some fitness functions misguide the search towards local optima,
ultimately resulting in poor solutions to the problem. The more complex the
goal task is, the harder it may be to define a non-deceptive fitness function. The
interactions between a robot and its environment are often complex, even in
simple tasks. Fitness functions in ER are therefore prone to be deceptive. The
problem is exacerbated in multirobot systems in which numerous, distributed
local interactions can result in distinct self-organised global behaviours.

Recently, Lehman and Stanley [5] proposed a radically different evolutionary
approach called novelty search (NS). NS searches for novel behaviours regardless
of their fitness quality, and thus overcomes deception by ignoring the objective.
In NS, behaviours are scored based on how different they are from previously
evaluated behaviours. The approach has been successfully applied to many differ-
ent domains, including evolutionary robotics [6,8,2,10]. Besides avoiding getting
stuck in local optima, it was demonstrated that NS is able to find more diverse
and less complex solutions, when compared to objective-based evolution [5].
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As NS is guided by behavioural innovation alone, its performance can be
greatly affected when searching through vast behaviour spaces [4,1], since it may
spend most of its time exploring behaviours that are irrelevant for the goal task.
To address this problem, Lehman and Stanley [4] proposed minimal criteria nov-
elty search (MCNS). MCNS is an extension of NS where individuals must meet
some domain-dependent minimal criteria to be selected for reproduction. In [4],
the authors applied MCNS in two maze navigation tasks and demonstrated that
MCNS evolved solutions more consistently than both novelty and fitness-based
search. However, MCNS suffers from two major drawbacks: domain knowledge is
required to define suitable minimal criteria; and it may be necessary to bootstrap
the search with a genome specifically evolved to satisfy the criteria.

To address the problem of vast behaviour spaces, Cuccu and Gomez [1] pro-
posed to base selection on a linear blend of novelty and fitness (henceforth
referred to as linear blend). They have applied the approach to the decep-
tive Tartarus problem, and found that linear blend outperformed both novelty
and fitness-based search. Mouret [8] proposed novelty-based multiobjectivisa-
tion, which is a Pareto-based multi-objective evolutionary algorithm. A novelty
objective is added to the task objective in a multi-objective optimisation. The
technique was applied to a deceptive maze navigation problem. Compared with
pure novelty search, the multiobjectivization obtained only slightly better re-
sults. Other evolutionary techniques that combine behavioural diversity with
fitness-guided evolution are presented and compared in [9].

In recent work [2], we successfully applied NS to evolutionary swarm robotics.
In this paper, we extend our study by applying variants of NS that combine nov-
elty and fitness, and by studying a different task. We also introduce progressive
minimal criteria novelty search (PMCNS), which extends MCNS in two ways:
(1) PMCNS uses a fitness threshold as the minimal criteria, avoiding the neces-
sity of specifying criteria by hand; (2) starting from the lowest possible fitness
score, the criterion is increased dynamically, thereby limiting novelty search to
regions of the behaviour space with an increasingly higher fitness. The criterion’s
monotonous increase depends on the fitness profile of the current population.

We compare the performance of PMCNS against four related methods: NS;
fitness-based evolution; linear blend; and MCNS. We use a swarm robotics task
in which multiple robots must share a single battery charging station in order to
survive. The charging station only has room for one robot and the robots must
therefore evolve effective coordination strategies. We use NEAT to evolve the
neurocontrollers for the robots in the swarm. NEAT uses speciation to maintain
genetic diversity and evolves both the neural network topology and synaptic
weights, allowing solutions to become gradually more complex.

2 Background

2.1 Novelty Search

Implementing novelty search [5] requires little change to any evolutionary algo-
rithm aside from replacing the fitness function with a domain dependent novelty
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metric. The novelty metric measures how different an individual is from other
individuals with respect to behaviour. In NS, there is a constant evolutionary
pressure towards behavioural innovation. The novelty of an individual is com-
puted with respect to the behaviours of an archive of past novel individuals and
to the current population. The archive is initially empty, and new behaviours
are added to it if they are significantly different from the ones already there, i.e.,
if their novelty is above a dynamically computed threshold.

The novelty metric characterises how far the new individual is from the rest of
the population and its predecessors in behaviour space, based on the sparseness
at the respective point in the behaviour space. A simple measure of sparseness
at a point is the average distance to the k-nearest neighbours at that point,
where k is a constant empirically determined. Intuitively, if the average distance
to a given point’s nearest neighbours is large then it is in a sparse area; it is
in a dense region if the average distance is small. The sparseness at each point
is given by Eq. 1, where µi the ith-nearest neighbour of x with respect to the
behaviour distance metric dist, which typically is the Euclidean distance between
domain-dependent behaviour characterisation vectors.

ρ(x) =
1

k

k∑
i=1

dist(x, µi) . (1)

Candidates from more sparse regions of this behavioural search space then re-
ceive higher novelty scores, thus guiding the search towards what is new, with
no other explicit objective.

2.2 Minimal Criteria Novelty Search

Minimal criteria novelty search [4] is an extension of NS that relies on a task-
dependent minimal criteria. In MCNS, if an individual satisfies minimal criteria,
it is assigned its normal novelty score, as described above. If an individual does
not satisfy the minimal criteria, it is assigned a score of zero and is only con-
sidered for reproduction if there are no other individuals in the population that
meet the criteria. That implies that until an individual is found that satisfies the
criteria, search will be random. Therefore, it may be necessary to seed MCNS
with a genome specifically evolved to meet the criteria, in case it is unlikely to
generate individuals satisfying them in the initial population.

2.3 Linear Blend of Novelty and Fitness

Cuccu and Gomez [1] proposed a linear blend of novelty and fitness score, as a
form of sustaining diversity and improving the performance of standard objective
search. Their approach constrains and directs the search in the behaviour space.
Each individual i is evaluated to measure both fitness, fit(i), and novelty, nov(i),
which after being normalised (Eq. 2) are combined according to Eq. 3.

fit(i) =
fit(i)− fitmin

fitmax − fitmin
, nov(i) =

nov(i)− novmin

novmax − novmin
, (2)
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score(i) = (1− ρ) · fit(i) + ρ · nov(i) . (3)

The parameter ρ controls the relative weight of fitness and novelty, and must
be specified by the experimenter through trial and error. fitmin and novmin are
the lowest fitness and novelty scores in the current population, and fitmax and
novmax are the corresponding highest scores. The linear blend was applied to the
deceptive Tartarus problem, with a large behaviour space, and performance was
compared for different values of ρ. The best results were produced with values
of ρ between 0.4 and 0.9.

3 Progressive Minimal Criteria Novelty Search

We propose an extension to Minimal Criteria Novelty Search. The objective is to
take advantage of the behaviour space restriction provided by MCNS, without
having to pre-define domain dependent minimal criteria. In our algorithm, the
minimal criterion is a dynamic fitness threshold – individuals with a fitness score
greater than the threshold meet the criterion.

Note that although in NS the fitness score does not influence the evolution,
typically a fitness function must be specified anyway, in order to be able to iden-
tify the best controllers found by NS. In this way, our algorithm does not require
the definition of task-specific minimal criteria or any other additional measures.
As pre-defining a fixed fitness threshold would raise the same issues as in MCNS
(choosing the criteria and bootstrapping the search), we progressively increase
the minimal criterion (fitness threshold) during the evolutionary process. The
idea behind the increasing fitness criterion is to progressively restrict the search
space, to avoid spending much time on the least fit behaviours.

The minimal criterion starts at the theoretical minimum of the fitness score
(typically zero), so all controllers initially meet the criterion. In each generation,
the new criterion is found by determining the value of the P -th percentile of
the fitness scores in the current population, i.e., the fitness score below which P
percent of the individuals fall. The P -th percentile (0 ≤ P < 100) of N ordered
values is obtained by first calculating the ordinal rank n:

n =
P

100
×N +

1

2
, (4)

rounding the result to the nearest integer, and then taking the value vn that
corresponds to the rank n. Only increases in the minimal criterion are allowed,
and in order to smooth out the changes, the minimal criterion from the previous
generation is used to compute the criterion for the current generation:

mcg = mcg−1 + max(0, (vn −mcg−1) · S) , (5)

where mc is the minimal criterion, and S is the smoothing parameter. The score
of each individual in the population is then calculated according to:

score(i) =

{
novi if fiti ≥ mcg
0 otherwise

, (6)
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where novi and fiti is the novelty score and the fitness score of the individual
i, respectively. The parameter P controls the exigency of the minimal criterion
(0 – all individuals meet the criterion, 1 – only the individual with the highest
fitness meets the criterion). The smoothing parameter S controls the speed of
the adaptation of the minimal criterion (0 – no changes at all, 1 – the value from
the previous generation is not considered).

The operation of the novelty archive was not modified, and works as in NS [5].
Even individuals that do not meet the minimal criterion are still added to the
repository if their behaviour is sufficiently novel.

4 Experiments

4.1 Setup

The experiments used a resource sharing task, where a swarm of 5 homogeneous
robots must coordinate in order to allow each member periodical access to a
single battery charging station. The charging station only has room for one
robot. To survive, each robot will have to possess several competencies: navigate
and avoid walls, find and position itself on the charging station to recharge, and
effectively share the common resource with the other robots.

The simulated environment is modelled in a customised version of the Simbad
3d Robot Simulator [3]. The environment is a 4 m by 4 m square arena bounded
by walls. The charging station is placed in the centre of the arena. The robots
are based on the physical characteristics of the the e-puck educational robot [7],
but do not strictly follow its specification. Each simulated robot has 8 IR sensors
evenly distributed around its chassis for the detection of obstacles (walls or other
robots) up to a range of 10 cm, and 8 sensors dedicated to the detection of other
robots up to a 25 cm range.

Each robot starts with full energy (1500 units) and lose energy over time.
In order to charge, the robots must remain still (maintain the same position)
inside the charging station, which has the same diameter as a robot. Each robot is
additionally equipped with (1) a ring of 8 sensors for the detection of the charging
station up to a range of 1 m; (2) a boolean sensor that indicates whether the
robot is inside the charging station or not; (3) an internal sensor that reads the
current energy level of the robot. If a robot runs out of energy, it stops working,
and remains immobile until the end of the simulation.

We test each controller 10 times in varying initial conditions. The set of
possible initial positions only includes those from where a robot cannot sense
the charging station. Each simulation lasts for 400 s of simulated time.

The controllers of the robots are time recurrent neural networks. The imple-
mentation of NEAT used in the evolution is the Java-based NEAT4J (version
1.0).1 NS was implemented over NEAT following the description and parameters
in [5], with a k value of 15 and a dynamic archive threshold [4]. This dynamic
threshold ensures a reasonable flow of individuals to the archive (an average

1 http://neat4j.sourceforge.net/

http://neat4j.sourceforge.net/
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rate of 3 individuals per generation). The NEAT parameters are the same for
all evolutionary methods: the crossover rate is 25%, the mutation rate 10%, the
population size 200, the compatibility threshold is dynamic, targeting 10 species,
and each evolution runs for 250 generations. The remaining parameters are set
to their default values in the NEAT4J implementation.

We used two slightly different setups in our experiments. In setup A, the
robots lose a fixed 10 units of energy per second. In setup B, the robots lose
energy proportionally to the power used by their motors, at a rate between 5
and 10 units of energy per second. In both setups, the charging station charges
a robot at a rate of 100 units of energy per second.

The fitness function F used to evaluate the controllers is a linear combination
of the number of robots alive at the end of the simulation and the average energy
of the robots throughout the entire simulation:

F = 0.9 · |aT |
N

+ 0.1 ·
T∑

t=1

N∑
i=1

eit
TNemax

, (7)

where |aT | is the number of robots alive in the end of the simulation, T is the
length of the simulation, N is the number of robots in the swarm, eit is the
energy of the robot i at instant t, and emax is the maximum energy of a robot.

The behaviour characterisation, that is used to compute the behavioural
difference in NS and its variants, is closely related to the fitness function. It is
composed by just two measures: (1) the number of robots alive at the end of
the simulation; and (2) the average energy of the alive robots throughout the
simulation. The behaviour characterisation is defined by:

b =

(
|aT |
N

,

A∑
t=1

∑
i∈at

eit
A · |at| · emax

)
, (8)

where A is the number of time steps in which there was at least one robot alive
and at is the set of alive robots at instant t.

4.2 Results

Fitness performance To study how PMCNS and the four related evolutionary
methods are influenced by the deceptiveness of the problem, we evaluated and
compared their performance in two different setups. Despite being intuitively
similar, the setup B leads to deception, while the setup A does not. In setup
B, where energy consumption depends on wheel speed, the fitness function is
deceptive. It often leads the fitness-based evolution to a very poor local maxima
where all the robots remain static, in order to conserve energy and survive more
time. Naturally, no one charges and none of the robots reach the end of simulation
alive, resulting in a low fitness score. The results can be seen in Figure 1.

In both setups, PMCNS significantly outperforms both fitness-based evolu-
tion and NS. PMCNS is also significantly better than linear blend in setup A,



7

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generations

F
itn
es
s

PMCNS
Blend
Novelty
Fitness

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generations

F
itn
es
s

PMCNS
Blend
Novelty
Fitness

Non-variable energy (A) Variable energy (B)

Fig. 1. Average fitness score of the best individual found so far in each generation, with
each method. The values are averaged over 10 evolutionary runs for each experiment.
Linear blend has ρ = 0.75 and PMCNS has P = 0.5. Other parameter values were
tested but these ones gave the best results.

and can on average achieve high fitness scores sooner than linear blend in setup
B. Statistical significance was verified with Student’s t-test with p < 0.05.

The original MCNS was also tested by defining a fixed fitness threshold as
the minimal criterion. Values of 0.03, 0.07, 0.10 and 0.20 were tested for the
fitness threshold. Evolution was only able to bootstrap with a fitness threshold
of 0.03. In this case, the fitness trajectory was slightly worse than pure NS. With
greater fitness thresholds, the evolution could not find individuals with a fitness
score that surpassed the threshold, and thus MCNS effectively acted as a random
evolution, achieving on average a best fitness of 0.065.

Behaviour space exploration The behaviour space exploration (Figure 2)
is similar in PMCNS and linear blend. However, PMCNS clearly has a greater
focus in the behaviours with higher fitness scores. It finds behavioural diversity
where it is most relevant – in the zones of successful behaviours. It is interesting
to note that although PMCNS might be viewed as technique to restrict the
search space, it was actually able to find a broader behavioural diversity than
NS alone, with respect to the novelty measure used. The explanation for this
is that the growing minimal criterion creates a pressure to explore behaviour
zones associated with higher fitness – which, in a complex task, are typically
the hardest ones to reach. The analysis of the space explored by fitness-based
evolution confirms its poor performance. It gets stuck in local maxima with low
fitness.

PMCNS could find a broad diversity of successful behaviours (where every
robot survives), as it can be seen in Figure 2. There are successful behaviours
with average energy ranging from 800 to 1150 units. Observing some of these
behaviours confirms this diversity: (1) The robots go towards the charging station
and stay there, when another one arrives, the first moves away from the station
and returns after a period of time; (2) similar to (1), but they never go farther
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Fig. 2. Behaviour space exploration in setup B. The x-axis is the average energy level
of the robots still alive, the y-axis is the number of robots alive at the end of the
simulation. Each individual evolved is mapped according to its behaviour. Darker zones
mean that there were more individuals evolved with the behaviour of that zone.

than the station sensor range (1 m); (3) the robots go towards the station, circle
around it at a very close distance and when their energy level reaches 1000 units,
they enter the station to charge and leave when they are full; (4) similar to (3),
but they start charging with an energy level below 400 units and only charge
until their energy level reaches 1000 units.

Algorithm parameters P is the most important parameter in the PMCNS
algorithm. It determines the exigency of the minimal criterion, and consequently,
the percentage of population individuals that receive a non-zero score. Three
values of P were tested: 25%, 50% and 75%. Figure 3 shows how this parameter
affects the fitness trajectory, the progression of the minimal criterion, and the
number of individuals that are above the minimal criterion in each generation.

The results show that a high value of P (75%) is prejudicial to the evolution-
ary process, because the minimal criterion is too strict. Lower values of P are
preferred, where only a smaller percentage of the population does not meet the
minimal criterion. Analysing the behaviour space explored for each parameter
setting, we found that with P = 50%, the search had a greater focus on the high
fitness behaviour zones, when compared to the variant with P = 25%. With
P = 75%, the search covered a very narrow zone of the behaviour space, and
actually explored the high-fitness zones less. A possible explanation for this is
that the search got stuck in low-fitness behaviour zones, probably due to the
high level of elitism associated with a strict minimal criterion.
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Fig. 3. Left: how the P parameter of PMCNS affects the fitness trajectory. Middle:
the progression of the minimal criteria value over the generations. Right: the average
number of individuals above the minimal criterion in each generation. Results are from
the experiments with setup B.

The smoothing parameter S was set to 0.5 in all experiments. Variations of
this parameter within reasonable limits (0.25 – 0.75) did not have a profound
impact on the performance of PMCNS.

5 Conclusion

We presented a new method, progressive minimal criteria novelty search, for
combining fitness and novelty in evolutionary search. We extended minimal cri-
teria novelty search by using a dynamic fitness threshold as the minimal criteria,
pushing exploration of behaviour space towards zones of higher fitness. We ex-
perimented with a swarm robotics task where robots must share a resource in
order to survive. We compared the new algorithm with MCNS with a fixed fit-
ness threshold as minimal criteria, novelty search alone, fitness-based evolution,
and a linear blend of novelty and fitness scores.

PMCNS could effectively overcome the drawbacks of MCNS while achieving a
better performance. The fitness score was successfully used as minimal criterion.
It was clearly advantageous to use a progressive minimal criterion, compared to
a fixed minimal criterion in MCNS. The bootstrap problem was also overcome,
as the minimal criterion starts from the minimum fitness score and only grows
if the fitness profile of the current population also increases.

Both PMCNS and linear blend performed significantly better than pure NS
and fitness-based evolution in the deceptive setup. In the non-deceptive setup,
they were at least as good. Our experiments showed that the fitness performance
of NS can be further improved by using the fitness function – even when this
fitness function is deceptive. In both PMCNS and linear blend, the behaviour
space exploration was greater and more uniform than in NS alone. This result
suggests that the fitness function can actually help NS to explore the behaviour
space, by creating an additional pressure to explore zones associated with higher
fitness, which typically are more difficult to reach in complex tasks.
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In terms of fitness trajectory, PMCNS was significantly better than linear
blend. PMCNS also explored more the behaviour zones associated with higher
fitness scores. This is relevant because it suggests that PMCNS creates a pressure
to evolve a diversity of successful individuals. As opposed to the linear blend,
where the fitness function is always influencing the score of the individuals, PM-
CNS only imposes a minimal criterion for selection, and so the fitness function
does not have any influence on the score of the individuals, which is based only
on the novelty measure.

Novelty search alone displayed a performance similar to the fitness-based
evolution in the non-deceptive setup, confirming our previous results [2]. In the
deceptive setup, novelty search was clearly superior. It confirms that NS can
be used to overcome deception in the swarm robotics domain, even when using
relatively simple novelty measures.
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