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Abstract Novelty search is a recent artificial evolution technique that challenges
traditional evolutionary approaches. In novelty search, solutions are rewarded
based on their novelty, rather than their quality with respect to a predefined
objective. The lack of a predefined objective precludes premature convergence
caused by a deceptive fitness function. In this paper, we apply novelty search com-
bined with NEAT to the evolution of neural controllers for homogeneous swarms
of robots. Our empirical study is conducted in simulation, and we use a common
swarm robotics task – aggregation, and a more challenging task – sharing of an
energy recharging station. Our results show that novelty search is unaffected by
deception, is notably effective in bootstrapping the evolution, can find solutions
with lower complexity than fitness-based evolution, and can find a broad diver-
sity of solutions for the same task. Even in non-deceptive setups, novelty search
achieves solution qualities similar to those obtained in traditional fitness-based
evolution. Our study also encompasses variants of novelty search that work in
concert with fitness-based evolution to combine the exploratory character of nov-
elty search with the exploitatory character of objective-based evolution. We show
that these variants can further improve the performance of novelty search. Overall,
our study shows that novelty search is a promising alternative for the evolution of
controllers for robotic swarms.
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1 Introduction

Motivations for the use of evolutionary techniques to design control systems for
robots are numerous (Harvey et al., 1993; Nelson et al., 2009). In the swarm
robotics domain in particular, the complexity stemming from the intricate dy-
namics required to produce self-organised behaviour complicates the hand-design
of control systems. Artificial evolution, on the contrary, has been shown capable of
exploiting the intricate dynamics and synthesise self-organised behaviours (see for
example Trianni, 2008; Sperati et al., 2008). However, evolutionary robotics tech-
niques have only been proven effective in relatively simple tasks (Sprong, 2011;
Doncieux et al., 2011; Brambilla et al., 2013). The lack of studies that report
successful evolution of behaviours for complex tasks can be ascribed to the dif-
ficulties in configuring the evolutionary process such that adequate solutions are
synthesised within a reasonable amount of time (Doncieux et al., 2011).

The most common approach in artificial evolution, and evolutionary robotics
in particular, is to guide the evolutionary process towards a fixed objective (Nelson
et al., 2009) (henceforth referred to as fitness-based evolution). The experimenter
defines a fitness function that estimates the quality of candidate solutions with
respect to a given task, and this fitness function is used to score the individuals
in the population. While search based on the task objective may intuitively seem
reasonable, it is associated with a number of issues of which deception is one of
the most prominent (Whitley, 1991; Jones and Forrest, 1995). Deception is a chal-
lenging issue in evolutionary computation which occurs when the fitness function
misguides the evolutionary process (Lehman and Stanley, 2011a), potentially caus-
ing evolution to converge to local optima. As the complexity of a task or a system
increases, it becomes more difficult to craft an appropriate fitness function, and
fitness-based evolution becomes more vulnerable to deception (Zaera et al., 1996).

Novelty search (Lehman and Stanley, 2011a) is a distinctive evolutionary ap-
proach which rewards solutions based solely on their behavioural novelty. In fitness-
based evolution, the objective is typically static, and the evaluations of individuals
are independent of one another. In novelty search, on the other hand, individuals
are evaluated by a dynamic measure that scores candidate solutions based on how
different they are from solutions evaluated so far, with respect to their behaviour.
Due to the absence of a static objective, novelty search is unaffected by premature
convergence. Mouret and Doncieux (2009) showed that the novelty-based paradigm
can also be effective in bootstrapping evolution. Novelty search has proven capable
of finding a broad diversity of solutions to a given problem (Lehman and Stanley,
2011b) and solutions with lower neural network complexity than fitness-based evo-
lution (Lehman and Stanley, 2011a). Novelty search has been successfully applied
to many domains, including non-collective evolutionary robotics (for examples, see
Krcah, 2010; Lehman and Stanley, 2011a; Mouret, 2011).

In this paper, we propose and study the application of novelty search to the
evolution of neural controllers for swarm robotics systems. Our motivation is the
high level of complexity associated with swarm robotics, which stems from the
intricate dynamics between many interacting units. The high level of complexity
has the tendency to generate deceptive fitness landscapes (Whitley, 1991), and
novelty search has been shown to be unaffected by deception (Lehman and Stan-
ley, 2011a). To evaluate novelty search in the swarm robotics domain, we conduct
several experiments. We use two different tasks in our study: (i) an aggregation
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task, and (ii) a resource sharing task. The former is a task commonly used in the
field of evolutionary swarm robotics. The latter is a more challenging task in which
the swarm must coordinate to ensure that each member has periodic and exclusive
access to a charging station. In all experiments, we establish comparisons between
novelty search and traditional fitness-based evolution. One of the key components
in novelty search is the novelty measure that quantifies the novelty of each solu-
tion. It is based on a behaviour characterisation (usually a real-valued vector) that
corresponds to an approximate representation of the individual’s actual behaviour.
The behaviour characterisation is typically domain-dependent and task-dependent.
We study different approaches to the definition of behaviour characterisations for
swarm robotics tasks. Our characterisations capture the macroscopic swarm-level
behaviour and thus are independent of the swarm size. In the aggregation task,
we evaluate characterisations composed of behavioural features sampled at regular
intervals. In the resource sharing task, we go on to show that simple characterisa-
tions that summarise an entire simulation are, in fact, sufficient for novelty search
to find good solutions.

One issue that can arise in novelty search is that a significant part of the
effort may be spent exploring novel but unfruitful regions of the behaviour space
(Lehman and Stanley, 2010a; Cuccu and Gomez, 2011). A number of methods that
combine the exploratory nature of novelty search with the exploitatory nature of
fitness-based evolution have been proposed to address this issue (Lehman and
Stanley, 2010a; Cuccu and Gomez, 2011; Mouret, 2011; Gomes et al., 2012). We
explore the potential of two such methods, namely progressive minimal criteria
novelty search (Gomes et al., 2012) and linear scalarization of novelty and fitness
objectives (Cuccu and Gomez, 2011).

The paper is organised as follows: in Section 2, we discuss related work, present
the current challenges in evolutionary robotics, and introduce the novelty search
algorithm. In Section 3, we use novelty search to evolve aggregation behaviours. We
experiment with three behaviour characterisations, and study how each one affects
the behavioural diversity and the performance of novelty search. In Section 4, we
experiment with a more challenging resource sharing task. We find that some
behaviour characterisations open the search space too much and thereby reduce
the effectiveness of novelty search. In Section 5, we show how the problem of vast
behaviour spaces can be mitigated by combining novelty search with fitness-based
evolution. We conclude in Section 6 with a summary of the contributions of the
paper and with a discussion of ongoing work.

2 Related Work

In this section, we first discuss swarm robotics and evolutionary robotics, and
the main challenges associated with these fields. We then present novelty search
and how it can overcome some of these challenges. We go on to review recently
proposed variants of novelty search. We conclude the section with a description of
NEAT, the neuroevolution method used in our experiments.
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2.1 Swarm Robotics

The field of swarm robotics, as well as the more general field of swarm intel-
ligence (Bonabeau et al., 1999), take inspiration from the observation of social
insects. In a swarm intelligence system, be it natural such as an ant colony, or
artificial such as a large-scale decentralised multirobot system, relatively simple
units rely on self-organisation to display collectively intelligent behaviour. As such,
swarm robotics is an auspicious approach to the decentralised coordination of large
numbers of robots (Şahin, 2005). An extensive survey of the modelling of swarm
robotics systems and the problems that have been addressed can be found in
(Brambilla et al., 2013; Bayindir and Şahin, 2007). Self-organisation in multirobot
systems has, however, proven difficult to design by hand. Manually designing the
control for the individual units of a swarm requires the decomposition of the macro-
scopic swarm behaviour into microscopic behavioural rules (Trianni, 2008). Such
decomposition includes discovering the relevant interactions between the individ-
ual robots, and between the robots and the environment, which will ultimately
lead to the emergence of global self-organised behaviour. Unfortunately, there is
no general method for decomposing a desired global behaviour into the rules that
govern each individual. System designers therefore typically take inspiration from
biological swarm systems or rely on manual trial and error.

2.2 Evolutionary Robotics

Evolutionary robotics is a field concerned with the application of evolutionary
computation to the synthesis of robotic systems. Evolutionary robotics is an alter-
native for the design of control for swarm robotics systems, because the application
of evolutionary computation eliminates the need for manual decomposition of the
desired macroscopic behaviour. Artificial evolution essentially performs an itera-
tive trial and error process in which candidate solutions are evaluated according to
their swarm-level behaviour. Macroscopic performance evaluation is thus used to
guide the evolutionary process towards the objective. Several swarm robotics tasks
have been solved with evolutionary approaches, such as coordinated motion (Bal-
dassarre et al., 2007), foraging (Liu et al., 2007), aggregation (Trianni et al., 2003),
hole avoidance (Trianni et al., 2006), aerial vehicles communication (Hauert et al.,
2009), categorisation (Ampatzis et al., 2008), group transport (Gross and Dorigo,
2008), and social learning (Pini and Tuci, 2008).

Traditional evolutionary approaches are, however, prone to suffer from a num-
ber of issues (Doncieux et al., 2011). Deception (Whitley, 1991; Jones and Forrest,
1995) is a challenging issue in evolutionary computation, because it can cause the
evolutionary process to converge prematurely to local optima. Deception occurs
when the fitness function creates a deceiving fitness gradient. This typically hap-
pens when the fitness function fails to adequately reward the intermediated steps
that are needed to achieve the global optimum. A related issue that can arise
when applying evolutionary computation to complex tasks is the bootstrap prob-
lem (Gomez and Mikkulainen, 1997; Mouret and Doncieux, 2009). This problem
occurs when the task is too demanding to exert significant selective pressure on the
population during the early stages of evolution, as all of the individuals perform
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equally poorly. As a consequence, there is no fitness gradient and the evolutionary
process starts to drift in an uninteresting region of the solution space.

One way to circumvent deception is through the use of techniques that main-
tain genotypic diversity in the population, such as fitness sharing (Goldberg and
Richardson, 1987), promotion of diversity based on the fitness score of the solu-
tions (Hu et al., 2005; Hutter and Legg, 2006), intermingling individuals of different
genetic ages (Hornby, 2006; Castelli et al., 2011), and minimisation of the age of
the genotypes (Schmidt and Lipson, 2011). However, the problem may ultimately
be in the fitness function itself, not in the particular search algorithm. If the fitness
function is actively misguiding the search, the evolutionary process may still fail,
regardless of the amount of genotypic diversity present in the population.

A distinct approach to address the issue of deception is through the use of co-
evolution. In competitive coevolution, individual fitness is evaluated through com-
petition with other individuals in the population, rather than through an absolute
fitness measure. Ideally, this creates an arms race that leads to increasingly better
solutions. This approach has been applied with success in some domains (e.g. Chel-
lapilla and Fogel (1999)), but it is also associated with a number of issues that stem
from the potentially counterproductive dynamics between the multiple co-evolving
species, such as convergence to mediocre stable states (Watson and Pollack, 2001).
Other techniques to overcome deception and to bootstrap evolution rely on the
decomposition of the objective into multiple sub-goals that each are easier to at-
tain. These techniques include incremental evolution (Gomez and Mikkulainen,
1997), fitness shaping (Uchibe et al., 2002), and multi-objectivisation (Deb, 2001;
Knowles et al., 2001). A common drawback of these approaches is that task de-
composition may not always be possible, and when it is, a significant amount of a
priori knowledge about the task is required to devise appropriate sub-tasks.

2.3 Novelty Search

While the methods discussed above for mitigating deception might help the evo-
lutionary process to avoid getting stuck in local optima, they leave the underlying
problem untreated, namely that the fitness function itself might be misdirecting
the search. With this issue in mind, a new evolutionary approach was recently pro-
posed — novelty search. In novelty search, the evolutionary process is based on the
promotion of phenotypic (i.e., behavioural) diversity and innovation, contrasting
with more common techniques that strive to maintain genotypic diversity. Lehman
and Stanley (2011a) used two deceptive robotics tasks to show how novelty search
was able to find good solutions faster and more consistently than fitness-based
evolution. Even though the objective was not directly pursued in any of their
experiments, a solution was found more consistently through the exploration of
the behaviour space. Successful applications of novelty search include the evolu-
tion of adaptive neural networks (Soltoggio and Jones, 2009); genetic programming
(Lehman and Stanley, 2010b); evolution strategies (Cuccu et al., 2011); body-brain
co-evolution (Krcah, 2010); biped robot control (Lehman and Stanley, 2011a); and
robot navigation in deceptive mazes (Lehman and Stanley, 2008; Mouret, 2011).

Implementing novelty search requires little change to any evolutionary algo-
rithm aside from replacing the fitness function with a domain-dependent novelty
metric. This metric quantifies how different an individual is from the other, previ-
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ously evaluated individuals with respect to behaviour. Previously seen behaviours
are stored in an archive. The archive is initially empty, and new behaviours are
added to it if they are significantly different from the ones already there, i.e., if
their novelty score is above some threshold.

A novelty metric characterises how far an individual is from other individuals
in the behaviour space. This metric depends on the sparseness at a given point
in the behaviour space. A simple measure of sparseness at a point is the average
distance to the k-nearest neighbours of that point, where k is a fixed parameter
empirically determined. The sparseness ρ at point x is given by:

ρ(x) =
1

k

k∑
i=1

dist(x, µi) , (1)

where µi is the ith-nearest neighbour of x with respect to the distance metric dist.
Note that the computational cost of the nearest-neighbours calculation increases
linearly with the size of the population and the size of the archive. However, it is
possible to limit the size of the archive (Lehman and Stanley, 2011a) and to use
data structures such as KD-trees to reduce this cost. The function dist is a measure
of behavioural difference between two individuals in the search space. Candidates
from sparse regions of the behaviour space thus tend to receive higher novelty
scores, which results in an evolutionary process that strives to uniformly explore
the behavioural space. Note that the novelty metric promotes behavioural diversity
within the population at all times and therefore helps to avoid convergence to a
single solution, which is common in fitness-based evolution.

The behaviour of each individual is typically characterised by a vector of real
numbers. The behavioural distance dist is then given by the distance between the
corresponding characterisation vectors (the Euclidean distance is typically used).
The experimenter should design the behaviour characterisation so that it cap-
tures behaviour aspects that are considered relevant to the problem or task. For
example, in a maze navigation task (Lehman and Stanley, 2011a) the behaviour
characterisation was the trajectory of the robot through the maze. The design of
the characterisation has direct implications on the effectiveness of novelty search.
An excessively detailed characterisation can open the search space too much, and
might cause the evolution to focus on regions of the behaviour space that are irrel-
evant for the task for which a solution is sought. On the other hand, an incomplete
or inadequate characterisation can originate counterproductive conflation. Confla-
tion occurs because the mapping between observable behaviours and behaviour
characterisations is typically not injective. As such, notably different behaviours
can have similar behaviour characterisations, which can potentially hinder the
evolution of novel solutions (Kistemaker and Whiteson, 2011).

Designing the behaviour characterisation often requires knowledge about which
behaviour features are relevant for solving a task. However, unlike fitness shaping
techniques, it is not necessary to understand exactly how these behaviour features
affect fitness, or in which order the features must be evolved. Novelty search does
not require a fitness gradient to guide evolution, which makes the approach ap-
plicable to some classes of problems that are difficult to solve using traditional
fitness-based evolution (Kistemaker and Whiteson, 2011).
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2.4 Novelty Search Variants

Several extensions of novelty search have been proposed to overcome the limita-
tion of novelty search with respect to guiding evolution towards good solutions
in vast behaviour spaces. These extensions are based on the combination of the
exploratory character of novelty search with the exploitatory character of fitness-
based evolution.

Lehman and Stanley (2010a) proposed minimal criteria novelty
search (MCNS), an extension of novelty search where individuals must meet some
domain-dependent minimal criteria to be selected for reproduction. In (Lehman
and Stanley, 2010a), the authors applied MCNS in two maze navigation tasks and
demonstrated that MCNS evolved solutions more consistently than both novelty
search and fitness-based evolution. Similar results were reported in (Kirkpatrick,
2012), using competitive coevolution and a different task. However, MCNS suffers
from a number of drawbacks (Lehman and Stanley, 2010a). First, the choice of
minimal criteria in a particular domain requires careful consideration and domain
knowledge, since it adds significant restrictions to the search space. Constraining
the search space too much can hinder the evolution of some types of solutions.
Second, if no individuals are found that meet the minimal criteria, search is
effectively random. In situations where an initial randomly generated population
is unlikely to contain such individuals, it may therefore be necessary to seed
MCNS with a genome specifically evolved to meet the criteria. And finally, if the
minimal criteria are too stringent, it might be difficult to mutate apt individuals
without violating the criteria, and thus many evaluations may be wasted.

In recent work (Gomes et al., 2012), we proposed an extension named progres-
sive minimal criteria novelty search (PMCNS), which overcomes the drawbacks
of MCNS. In PMCNS, the respective benefits of novelty search and fitness-based
evolution are combined by letting novelty search freely explore new regions of the
behaviour space, as long as solutions meet a progressively stricter fitness criterion.
PMCNS was found to outperform several other evolutionary algorithms, and to
evolve higher scoring individuals while still maintaining behavioural diversity.

Cuccu and Gomez (2011) proposed an alternative approach for combining nov-
elty and fitness, where the score of each individual is based on a linear scalarization
of the novelty score and the fitness score (henceforth referred to as linear scalariza-
tion). They applied the approach to a deceptive box-pushing task, and found that
linear scalarization outperformed both novelty search and fitness-based evolution.
Mouret (2011) proposed novelty-based multiobjectivisation, which is a Pareto-
based multi-objective evolutionary algorithm. A novelty objective is added to the
task objective in a multi-objective optimisation. The technique was applied to a
deceptive maze navigation problem. Compared with pure novelty search, the use
of multiobjectivisation only led to marginally better results. Other techniques for
sustaining behavioural diversity in evolutionary robotics are reviewed in (Mouret
and Doncieux, 2012).

2.5 NEAT

In our experiments, the controllers of the robots are time recurrent neural networks
evolved by NEAT (short for NeuroEvolution of Augmenting Topologies) (Stanley
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and Miikkulainen, 2002). NEAT is a widely used neuroevolution approach, and
one of the most successful approaches developed to date. NEAT simultaneously
optimises the weighting parameters and the structure of artificial neural networks.
It begins the evolution with a population of small, simple networks and complex-
ifies the network topology into diverse species over generations. This leads to the
evolution of increasingly sophisticated behaviour. A key feature in NEAT is its
distinctive approach to maintain a diversity of growing structures simultaneously.
Unique historical markings are assigned to each new structural component. Dur-
ing crossover, genes with the same historical markings are aligned, producing valid
offspring efficiently, without the need of complex topological comparisons. NEAT
uses speciation and fitness sharing to protect new structural innovations. This re-
duces competition between networks with distinct topologies, providing time for
the weights of new structures to be optimised. Networks are assigned to species
based on the extent to which they share historical markings. Complexification is
thus supported by both historical markings and speciation, allowing NEAT to es-
tablish high-level features early in evolution and then elaborate on them as the
evolutionary process progresses. In effect, NEAT searches for a compact, appro-
priate network topology by incrementally complexifying existing structures.

It is important to note that both novelty search and NEAT strive to maintain
diversity, but at different levels: whereas NEAT maintains genotypic diversity,
novelty search maintains phenotypic diversity. Novelty search and NEAT thus
complement one another and their combined use bears a number of advantages. In
particular, the complexification mechanism of NEAT can introduce order in the
exploration done by novelty search, with less complex behaviours being explored
before progressing to more complex ones (Lehman and Stanley, 2011a).

3 Evolution of Aggregation Behaviours with Novelty Search

In this section, we apply novelty search to the problem of swarm aggregation —
a commonly studied task in swarm robotics. In the aggregation task, a dispersed
robot swarm must form a single cluster. We conduct three sets of experiments
with novelty search, each with a distinct behaviour characterisation. We compare
the performance of novelty search to the performance of traditional fitness-based
evolution. We also include results from evolutionary runs with NEAT in which
random fitness scores are assigned to individuals. Random evolution serves as a
baseline for performance comparisons.

Aggregation is a task of fundamental importance in many biological systems. It
is the basis for the emergence of various forms of cooperation, and can be a consid-
ered a prerequisite for the accomplishment of many collective tasks (Trianni et al.,
2003). Several works describe the evolution of aggregation behaviours for swarms
of robots. Commonly, the parameters of neural networks with fixed topologies are
optimised by fitness-based evolutionary algorithms. Baldassarre et al. (2003) suc-
cessfully evolved controllers for a swarm of robots to aggregate and move towards
a light source in a clustered formation. Three classes of behaviours were evolved,
but each evolutionary run always converged to only one of the classes. Trianni
et al. (2003) studied the evolution of a swarm of simple robots to perform aggre-
gation in a square arena. Two different behaviours were evolved: static clustering
which leads to the formation of compact and stable clusters, and dynamic clus-
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tering which leads to loose but moving clusters. Bahgeçi and Şahin (2005) used
a similar experimental setup as (Trianni et al., 2003), and studied how some of
the parameters of the evolutionary algorithm affected the performance and the
scalability of the evolved behaviours.

In the previous studies discussed above, the robots used directional sound sens-
ing. Directional sensing allowed the robots to follow gradients towards groups of
other robots emitting sound signals. The use of sound and directional microphones
makes the aggregation task sufficiently easy for controllers based on reactive neural
networks without any hidden neurons to solve the task (Trianni et al., 2003; Bal-
dassarre et al., 2003; Bahgeçi and Şahin, 2005). In our work, the aggregation task
is more challenging: the robots do not use sound, the range of the sensors is signif-
icantly lower than in previous studies, and the arena is larger. These modifications
increase the difficulty of the task and may require radically different strategies for
aggregation (Soysal et al., 2007), since robots can only sense one another when
they are close.

3.1 Experimental Setup

Our experimental framework is based on the Simbad 3d Robot Simulator (Hugues
and Bredeche, 2006) for the robotic simulations, and on NEAT4J1 for the im-
plementation of NEAT. Simbad 3D simulates kinematics and implements simple
collision handling. The environment is a 3 m by 3 m square arena bounded by walls.
The swarm is homogeneous and composed of 7 robots. The robots are modelled
based on the e-puck educational robot (Mondada et al., 2009), but do not strictly
follow its specification. Each robot is circular with a diameter of 8 cm and can move
at speeds of up to 12 cm/s. Regarding sensors, each robot is equipped with 8 IR
sensors evenly distributed around its chassis for the detection of obstacles (walls
or other robots) within a range of 10 cm, and 8 sensors dedicated to the detection
of other robots within a range of 25 cm. Both types of sensors return the distance
of the object that is being sensed, or the maximum value if nothing is sensed. An
additional sensor (count sensor) returns the percentage of nearby robots (within
a radius of 25 cm), relative to the desired cluster size (the total swarm size in
our experiments). The simulated sensors are not based on any specific hardware.
Nevertheless, the obstacle sensors could be implemented with active IR sensors,
while the robot sensors and the robot count sensor could be implemented with
short-range communication (Correll and Martinoli, 2007; Gutiérrez et al., 2008).
The inputs of the neural network controller are the normalised readings from the
sensors mentioned above. The controller has three outputs: one to control the
speed of each motor, and one dedicated to completely stopping the robot if its
activation is above 0.5.

We evaluate each controller 10 times. In each simulation, we vary the initial
position and orientation of each robot. The initial positions are randomised in such
a way that the robots are placed at least 50 cm from one another, which ensures
that the robots always are reasonably well distributed at the beginning of the
simulation. Each simulation lasts for 2500 simulation steps, which corresponds to

1 NeuroEvolution for Augmenting Topologies for Java – http://neat4j.sourceforge.net
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250 s of simulated time. The best individual of each generation was post-evaluated
in 100 simulations, in order to obtain a more accurate fitness estimate.

3.2 Configuration of the Evolutionary Algorithms

Fitness-based evolution and random evolution use the default NEAT implementa-
tion provided by the NEAT4J library. In random evolution, random fitness scores
are assigned to each individual. Novelty search was implemented over NEAT, fol-
lowing the description and parameters in (Lehman and Stanley, 2011a). We used
a k value of 15 nearest neighbours and individuals are stochastically added to the
archive with a probability of 2%, as suggested in (Lehman and Stanley, 2010b).
The parameters for NEAT were the same in all experiments: recurrent links are al-
lowed, crossover rate – 25%, mutation rate – 10%, population size – 200, and each
evolutionary process was conducted for 250 generations. The remaining parameters
were assigned their default value according to the NEAT4J implementation.

The fitness function is based on the average distance to the centre of mass (also
used in (Trianni et al., 2003)). The fitness Fa of a simulation with T time steps
and N robots is defined as:

Fa =
N∑
i=1

1− dist(RT , ri,T )

N
, (2)

where RT is the centre of mass at the end of the simulation, and ri,T is the position
of robot i at the same instant. The distance values are normalised to [0, 1]. The
fitness scores obtained in each of the 10 simulations are combined to a single value
using the harmonic mean, as advocated in (Bahgeçi and Şahin, 2005).

The behaviour characterisations we use in novelty search are based on spa-
tial inter-robot relationships, measured at regular intervals of 5 s throughout the
simulation. We devised three characterisations:

bcm: The average distance to centre of mass of the swarm is sampled through-
out the simulation. Considering a simulation with N robots and τ temporal
samples, the behaviour characterisation bcm is given by:

bcm =
1

N

[
N∑
i=1

dist(R1, ri,1), · · · ,
N∑
i=1

dist(Rτ , ri,τ )

]
. (3)

bcl: The number of robot clusters is sampled at regular intervals throughout the
simulation, inspired by the metric used in (Bahgeçi and Şahin, 2005). Two
robots belong to the same cluster if the distance between them is less than
their sensor range (25 cm). The behaviour characterisation bcl is given by:

bcl =
1

N
[clustersCount(1), · · · , clustersCount(τ)] . (4)

bcmcl: The two characterisations bcm and bcl are concatenated to form a single
characterisation. Both bcm and bcl have the same length and each element of
the characterisation vectors ranges from 0 to 1. Thus both components of the
behaviour characterisation approximately have the same contribution to the
novelty metric. The new characterisation bcmcl is given by:

bcmcl = (bcm,bcl) . (5)
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We computed the spatial inter-robot relationships at every 5 s and the simula-
tion lasted for 250 s. This resulted in behaviour characterisation vectors of length
50 for bcm and bcl, and vectors of length 100 for bcmcl. As 10 simulations are
conducted to evaluate each controller, the corresponding final behaviour charac-
terisation vector is the element-wise mean of the vectors obtained in all 10 simu-
lations. In order to establish a basis for comparison, all the controllers evolved by
novelty search and by random evolution were also scored by the fitness function
Fa. It is important to note that the fitness scores did not have any influence on
the evolutionary process in the novelty search experiments.

3.3 Performance Comparison

The fitness trajectories for novelty search, fitness-based evolution, and random
evolution, are depicted in Figure 1(left). The data points plotted are the averages
of the highest fitness score found so far from the start of the evolutionary run
and until the current generation.2 Note that since novelty search does not follow a
fitness gradient, the best solutions are not necessarily found in the last generation.
As such, it is necessary to save the interesting solutions (for instance, the best
one found so far) throughout the evolutionary process. We continued the evolu-
tionary process beyond the 150th generation for all experiments, but there was
no significant change in the fitness scores after that point. Although the lowest
possible fitness score is ≈ 0.05, the highest fitness of an initial random population
is on average ≈ 0.55. The relatively high fitness of an initial random population
is explained by the fact that stochastically moving robots tend be significantly
closer to one another than in the worst case scenario where robots are located in
opposite corners of the arena.

Figure 1(right) shows box-plots of the highest fitness score for each method in
30 evolutionary runs. The results show that novelty search could consistently find
relatively high scoring solutions, with all the behaviour characterisations. There
was no significant differences between the highest fitness scores achieved with
fitness-based evolution and with novelty search with bcmcl (Mann–Whitney U
test, p-value < 0.05). With bcl, the highest fitness scores were significantly lower
than the highest scores found by novelty search with bcmcl and fitness-based
evolution. The capacity of novelty search to bootstrap the evolutionary process
should be noted. From around generation 5 to generation 40, all novelty search
variants achieve fitness scores significantly higher than fitness-based evolution (p-
value < 0.01).

Previous studies have shown that novelty search can perform better than
fitness-based evolution in deceptive tasks, but fails to match the performance
of fitness-based evolution when the task is non-deceptive (Lehman and Stanley,
2011a; Mouret, 2011). Our results reveal that in the aggregation task, the fitness-
function is not deceptive, as fitness-based evolution typically converges to the most

2 The values that are plotted are fitness scores measured by the fitness function Fa, and not
the actual scores used for selection in novelty search or in random evolution. Note that even
random evolution has an ascending fitness trajectory because the data points plotted are the
highest score achieved so far in the evolutionary process. The trajectory for random evolution
can thus increase from time to time when an individual, by chance, scores higher than any
previously evaluated individual.
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Fig. 1 Highest fitness scores achieved in the aggregation task with fitness-based evolution
(Fit), random evolution (Random), and novelty search with the three behaviour characteri-
sations (NS-cmcl, NS-cm, NS-cl). Left: average fitness value of the highest scoring individual
found so far at each generation. The values are averaged over 30 independent evolutionary
runs for each method. Right: box-plots of the highest fitness score found in each evolutionary
run, for each method. The whiskers extend to the lowest and the highest data point within 1.5
times the interquartile range. Outliers are indicated by circles.

effective strategy, achieving high fitness scores (except in a single run, see Figure 1).
Still, novelty search managed to achieve fitness scores that are comparable to the
scores achieved in fitness-based evolution.

3.4 Behavioural Diversity

The analysis of the explored behaviour space in novelty search and in fitness-based
evolution allows for a better understanding of the evolutionary dynamics. Since
each behaviour characterisation vector has either 50 or 100 dimensions, we applied
a dimensionality reduction method to facilitate visualisation of the explored re-
gions of the behaviour space. We used a Kohonen self-organising map (Kohonen,
1990). Kohonen maps are neural networks trained using unsupervised learning to
produce a two-dimensional discretisation of the input space of the training sam-
ples, while preserving the topological relations. We trained a Kohonen map with
the behaviour vectors found both by novelty search and by fitness-based evolution,
and then mapped each individual to the region whose vector is more similar to
the individual’s behaviour vector.

3.4.1 Centre of mass behaviour characterisation

The Kohonen maps corresponding to the explored behaviour space in fitness-based
evolution and novelty search with bcm can be seen in Figure 2. The results show
that fitness-based evolution focused the search on only a subset of the behaviour
regions. In contrast, novelty search explored the behaviour space much more uni-
formly. If we consider the behaviour regions associated with higher fitness scores
(regions c to g), important differences become apparent: fitness-based evolution
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Fig. 2 Kohonen maps representing the explored behaviour space in fitness-based evolution
(Fit) and in novelty search with bcm (NS-cm). Each circle is a neuron corresponding to the
vector depicted by the embedded plot (the average distance to the centre of mass over time).
Each behaviour vector is mapped to the neuron with the most similar vector. The darker the
background of a neuron is, the more behaviours were mapped to it. The regions associated
with higher fitness scores are indicated with a bold circle (regions c to g).

Table 1 The number of individuals mapped to each behaviour region a-g (see Figure 2),
relative to the total number of mapped individuals.

Behaviour region Fit exploration (%) NS-cm exploration (%)

a 18.17 3.80
b 22.18 6.39
c 10.27 1.82
d 4.57 1.54
e 1.23 2.75
f 0.15 1.90
g 0.14 3.50

avoids behaviour regions where the average distance to the centre of mass rises
beyond the initial value, such as the regions f and g (see Table 1). Instead, the
evolutionary process is much more focused on behaviours that lead to a monotonic
decrease in the average distance to the centre of mass. This bias is introduced by
the fitness function, as it favours a low average distance to centre of mass. Evolving
solutions where the average distance rises beyond the initial value might require
going against the fitness gradient. As such, these types of solutions are impeded in
the fitness-based evolutionary process. Novelty search, on the other hand, is not
subject to a static evolutionary pressure, and can therefore explore and discover a
wider range of solutions to the task.

The analysis of the behaviour patterns (see plots inside the neurons in Fig-
ure 2) reveals an interesting point: the regions explored by novelty search are
characterised by vectors that differ much less than uniformly sampled vectors of
length 50 would. This happens because the elements of a given behaviour vector
are inherently correlated. Robots cannot, for instance, travel instantly to any lo-
cation in the environment, and the difference between consecutive samples of the
average distance to the centre of mass is therefore limited by the speed of the
robots. As such, the reachable behaviour regions constitute only an (often small)
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subset of the total behaviour space. This explains why novelty search can consis-
tently find successful solutions to the task, even in a high-dimensional behaviour
space.

The results also show that fitness-based evolution spends a considerable
amount of time in behaviour regions where there are no aggregation dynamics
at all (regions a and b). These regions correspond to the initial best solutions,
where robots do not move or move randomly in the arena, in order to maintain
an average distance to the centre of mass that is at least as low as the average
distance at the start of the simulation. This class of behaviours constitutes a local
maximum. Novelty search does not spend as much time in such behaviour regions
(see Table 1), as the search moves towards regions with novel behaviours. Since
the initial average distance to the centre of mass is situated in the middle of the
spectrum, the novel behaviours can be aggregation behaviours as well as dispersion
behaviours. Typically, each novelty search evolutionary run explores both types
of behaviour simultaneously, maintaining a healthy diversity in the population.
This phenomenon can offer an explanation for the relatively good performance of
novelty search in the earlier stages of evolution: novelty search does not get stuck
in the early local maximum, and as such can explore and discover better solutions
faster.

To confirm the behavioural diversity evolved by each method, we resorted to
the visual inspection of the best solutions. In fitness-based evolution, the highest
scoring individuals tended to follow the same behaviour pattern (Figure 3, fit):

fit: The robots explore the environment in large circles, and form static clusters
when they encounter one another. If a cluster is small, the robots abandon it
after a while and recommence the circular exploration.

The fit behaviour pattern was also often found by novelty search. However,
novelty search commonly evolved a different type of solutions in which walls are
exploited to achieve aggregation. Examples of behaviour patterns that use the
walls are described below and depicted in Figure 3 (cm1 and cm2).

cm1: The robots go towards the walls while avoiding any other robots encoun-
tered. When they reach a wall, they follow the wall for a while and then depart
with a certain circular trajectory that causes them to pass through the centre
of the arena. Eventually, the robots end up forming a loose cluster close to the
centre.

cm2: The robots move in straight lines until they encounter a wall, and then,
depending on the approach angle, they either remain static for a while or start
to follow the wall. When two or more robots encounter one another, they stop
and form a cluster near the wall.

Visual inspection of the behaviours confirms that fitness-based evolution did
not explore some classes of solutions, and in particular, solutions where the robots
navigate near the walls. If all the robots initially move towards one of the walls
surrounding the arena, they will often end up far apart. Consequently, the centre of
mass of the robots will often be close to the centre of the arena, far from the robots,
which explains the initial high average distance to the centre of mass (regions e, f, g
in Figure 2). Learning to navigate near the walls potentially requires the evolution
of many solutions with very low fitness scores. Avoiding navigation close to walls,
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fit cm1 cm2

Fig. 3 The typical best solution evolved by fitness-based evolution (fit), and two examples of
solutions found by novelty search with bcm (cm1 and cm2). Each line represents the trajectory
of a single robot throughout the simulation. The circles depict the initial positions of the robots
and the squares depict their final positions. Videos of the behaviours are available as online
supplemental material.

on the other hand, results in higher fitness scores, because robots will, by chance, be
closer to one another, and therefore to the centre of mass. Given the opportunistic
nature of fitness-based evolution, the stepping stone of first navigating along walls
to later achieve aggregation, is thus unlikely to be found. In fact, we have been
unable to find reports in the literature on the evolution of aggregation behaviours
that exploit walls. Such behaviours have, however, proven successful in biological
systems, such as in self-organised aggregation of cockroaches (Jeanson et al., 2005).

3.4.2 Number of clusters behaviour characterisation

The difference between the fitness scores of the solutions achieved with bcm and
bcl was not significant. Nevertheless, we found that the different characterisations
affected the evolved behaviours. Many of the best solutions evolved with bcl were
similar to the solutions evolved by fitness-based evolution, namely the formation
and disbandment of small clusters. However, new behaviour patterns were also
found. The distinctive behaviours evolved by novelty search with bcl were focused
on the exploitation of inter-robot relations and of flocking in particular. For ex-
ample, the following two behaviour patterns were identified (see Figure 4):

cl1: The robots navigate in circles, and when two robots meet, one starts to follow
the other, which leads to flocking with circular trajectories. Eventually, a single
moving file is formed.

cl2: Similar to (a), but when a robot cluster reaches a reasonable size, the cluster
becomes static.

Overall, novelty search with bcl focused on different classes of behaviours than
novelty search with bcm. One of the main reasons for the difference in the evolved
behaviours is conflation. Conflation occurs when individuals with distinct observ-
able behaviours have very similar behaviour characterisation vectors (Lehman and
Stanley, 2011a). The consequence is that an individual with a distinct observable
behaviour might not be considered novel by the novelty measure, and may thus
disappear from the population. Conflation can represent both an advantage in
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cl1 cl2

Fig. 4 Examples of distinctive behaviours evolved by novelty search with bcl. Each line rep-
resents the trajectory of a single robot throughout the simulation. The circles depict the initial
positions of the robots and the squares depict their final positions. Videos of the behaviours
are available as online supplemental material.

terms of efficiency because it reduces the size of the search space, and a disadvan-
tage when it inhibits the discovery of successful solutions or important stepping
stones.

Two examples of behaviours that can be conflated are shown in Figure 5. For
the bcm characterisation, the degree of clustering of the robots is irrelevant; while
for the bcl characterisation, the distance between robots (and clusters) is irrele-
vant. The impact of conflation can be seen in the evolved behaviours: with the bcm

characterisation, there were more behaviours that exploited walls, because navi-
gating near them has a great impact on the novelty measure; while with bcl, the
behaviours focused on the interactions between the robots and clusters, including
following one another and disbanding clusters.

Fig. 5 An illustration of conflation for the centre of mass behaviour characterisation bcm

(left) and for the number of clusters behaviour characterisation bcl (right). In both cases, the
differences would not be reflected in the respective behaviour characterisations.

3.4.3 Combined behaviour characterisation

Novelty search with the composed behaviour characterisation bcmcl achieved on
average marginally higher fitness scores than bcm and bcl (Mann–Whitney U test,
p-value < 0.05), see Figure 1(right). The composed behaviour characterisation
considers both the average distance to centre of mass and the number of clusters
formed. As such, different behaviours are less likely to be conflated, which can
potentially lead to better solutions.
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It should, however, be noted that bcm and bcl are closely related with one
another. It is not possible, for instance, to have a low average distance to the
centre of mass and at the same time a large number of clusters. A large number
of clusters implies that the swarm is scattered, and as such, the robots will have
a high average distance to the centre of mass. Combining bcm and bcl reduces
conflation to some extent, but since the two characterisations are related to one
another, no additional effort is needed to explore the larger behaviour space. This
explains why the behaviour space with more dimensions (bcmcl) did not have a
negative impact in the effectiveness of novelty search in this case.

3.5 Neural Network Complexity

Previous work has shown that an advantage of novelty search, when used to-
gether with NEAT, is its ability to evolve solutions with lower genomic complex-
ity (Lehman and Stanley, 2011a). To determine if such advantage holds in the
aggregation task, we analysed the complexity (sum of the number of neurons and
number of connections) of the solutions found by fitness-based evolution and by
novelty search. The comparison is established by analysing the average complexity
(across the multiple evolutionary runs) of the least complex solution with a fitness
score above a certain threshold. The results are shown in Table 2. We only show
the results for the bcmcl characterisation because the results for the bcm and bcl

characterisations are similar.
The results show that on average, for the same fitness levels, novelty search

finds individuals with significantly less complex neural networks (Mann–Whitney
U test, p-value < 0.05). The difference is especially pronounced in the lower fit-
ness levels. Note that the networks in the initial populations (without any hidden
neurons) have a complexity of 71 (20 neurons and 51 links). The difference in the
network complexity can be ascribed to the convergent nature of fitness-based evo-
lution. If the best controllers in the earlier stages of evolution have more complex
neural networks, fitness-based evolution starts to converge to such complex struc-
tures. As novelty search does not converge, and has tendency to explore simple
solutions before moving on to more complex ones (Lehman and Stanley, 2011a),
it is capable of finding solutions with a lower network complexity.

Table 2 Comparison of the least complex solutions evolved by fitness-based evolution (Fit)
and novelty search with bcmcl (NS). The Complexity columns lists the network complexity
(sum of the number of neurons and the number of connections) of the least complex individual
with a fitness score above a certain Fitness level. The Generation column lists the average
generation in which the least complex individual was generated. The values are averages of 30
evolutionary runs for each method.

Generation Complexity

Fitness level Fit NS Fit NS

0.60 9 5 74.20 71.33
0.65 18 7 75.77 71.67
0.70 28 14 77.10 72.40
0.75 42 22 79.10 74.13
0.80 55 41 80.90 77.33
0.85 76 63 83.17 81.70
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4 Evolution of Resource Sharing Behaviours with Novelty Search

In this section, we study the application of novelty search to a more complex task
in which a swarm of robots share a single resource. The swarm must coordinate in
order to allow each member periodical access to a single battery charging station.
In the task, the robots should first find the charging station, and then effectively
share the station to ensure the survival of all the robots in the swarm. The charging
station can only hold one robot at the time.

The problem of autonomous charging and resource conflict management is
widely studied in the literature. Cao et al. (1997) identify resource conflicts as one
of the fundamental challenges in the design of cooperative behaviours in multi-
robot systems. Resource conflicts arise when a single indivisible resource (in our
task, the charging station) is requested by multiple robots at the same time. The
problem of sharing an energy charging station in particular is addressed in (Muñoz
Meléndez et al., 2002; Michaud and Robichaud, 2002; Kernbach and Kernbach,
2011).

4.1 Experimental Setup

We use a swarm composed of 5 homogeneous robots. The robots are identical
to the ones used in the aggregation experiments (see Section 3.1), except that
they are equipped with additional sensors. Each robot has (i) 8 IR sensors evenly
distributed around its chassis for the detection of obstacles (walls or other robots)
up to a range of 10 cm; (ii) 8 sensors dedicated to the detection of other robots
up to a range of 25 cm; (iii) a ring of 8 sensors for the detection of the charging
station up to a range of 1 m; (iv) a binary sensor that indicates whether or not the
robot is currently being recharged; and (v) a proprioceptive sensor that reads the
current energy level of the robot. The sensors (i), (ii) and (iii) return the distance
of the object that is being sensed. The experimental setup and the sensor ranges
are depicted on Figure 6. The environment is a 3 m by 3 m square arena bounded
by walls.

Each robot starts with full energy (1000 units), and the energy consumption
increases linearly with the speed of the motors: a robot spends 5 units per second
when motors are off, and 10 units of energy per second when both motors operate
at their maximum speed. The charging station has the same diameter as a robot,

Fig. 6 The resource sharing task experi-
mental setup. The grey circle in the centre
is the charging station. The black filled cir-
cles are the robots (starting positions vary
in each simulation). The solid circle around
the top left robot represents the range of
the obstacles sensor, the dashed circle rep-
resents the range of the robot sensor, and
the fine dashed circle represents the range
of the charging station sensor.
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and to recharge, the robots must remain static inside the charging station. The
charging station is located in the centre of the arena, and charges a robot at a
rate of 100 units of energy per second. Similarly to the aggregation experiments,
each controller is evaluated in 10 simulations with random starting positions for
the robots. Each simulation lasts for 2500 simulation steps. The highest scoring
individual of each generation was post-evaluated in 100 simulations.

4.2 Configuration of the Evolutionary Algorithms

We used the same parameter values for novelty search and the NEAT algorithm
as in the aggregation experiments (see Section 3.2). However, we continued each
evolutionary run until the 400th generation, since the resource sharing task proved
to be more challenging than the aggregation task.

The fitness function Fs used to evaluate the controllers is a linear combination
of the number of robots alive at the end of the simulation (henceforth referred to as
survivors) and the average energy of the robots throughout the entire simulation:

Fs = 0.9 · |aT |
N

+ 0.1 ·
T∑
t=1

N∑
i=1

ei,t
TNemax

, (6)

where |aT | is the number of survivors, T is the length of the simulation, N is the
number of robots in the swarm, ei,t is the energy of the robot i at time t, and
emax is the energy capacity of a robot. The second term of Fs concerning the
average energy was included to differentiate solutions where the same number of
robots survive. Without the second term, there would be no fitness gradient, since
it is unlikely that the initial population contains solutions where at least one robot
survives until the end.3

We experimented with behaviour characterisations of a different nature in the
resource sharing experiments, compared to the characterisations used in the aggre-
gation experiments. While in the aggregation task, we used spatial relationships
between the robots sampled every 5 s during the simulation, in the resource shar-
ing experiments, we use only quantities that characterise a simulation as a whole.
We evaluated two behaviour characterisations:

bsimple: The first characterisation is closely related to the fitness function, and it
is composed of two values (normalised to the interval [0, 1]): (i) the number of
robots that survive till the end of the simulation; and (ii) the average energy
of all alive robots throughout the simulation. bsimple is given by:

bsimple =

 |aT |
N

,
A∑
t=1

∑
i∈at

ei,t
A · |at| · emax

 , (7)

where A is the number of time steps in which there was at least one robot alive
and at is the set of robots alive at time t.

3 We empirically determined the probability of randomly generating a solution where at
least one robot survives until the end (in any of the 10 trials) to be approximately 1%.
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bextra: The second behaviour characterisation is an extension of bsimple. Two
more features, which are not directly related to the fitness function, were added
to the characterisation: (i) the average speed of the alive robots throughout the
simulation; and (ii) the average distance of the alive robots to the charging sta-
tion. The movement of a robot in a given instant is determined by the average
wheel speed at that instant. The two additional features are also normalised
to the interval [0, 1]. bextra is defined as:

bextra =

bsimple ,
A∑
t=1

∑
i∈at

si,t
A · |at| · smax

,
A∑
t=1

∑
i∈at

di,t
A · |at| · dmax

 , (8)

where si,t and di,t are the speed of the robot i and its distance to the charging
station, respectively, at time t. smax is the maximum speed of a robot, and
dmax is half the length of the diagonal of the arena.

4.3 Performance Comparison

Figure 7 depicts the highest fitness scores achieved by novelty search, fitness-based
evolution, and random evolution. Random evolution only achieves very low fitness
scores (< 0.2). In fitness-based evolution, the distribution of the highest fitness
scores achieved is characteristically wide. Fitness-based evolution achieved close
to the maximum fitness score in 10/30 of the evolutionary runs, but failed to evolve
any viable solution (where at least one robot consistently survives) in 10/30 of the
runs. Bootstrapping proved difficult in fitness-based evolution, as most runs got
stuck in low regions of the fitness landscape for a large number of generations.

Novelty search, on the other hand, did not get stuck in local maxima. The re-
sult indicates that novelty search was unaffected by deception, and was capable of
bootstrapping the evolutionary process. Novelty search with bsimple consistently
achieved high fitness scores, with 4–5 robots surviving in the best solutions. The
fitness scores achieved with bsimple are significantly higher than those achieved
by fitness-based evolution (Mann–Whitney U test, p-value < 0.01). With bextra,
novelty search failed to match the performance of bsimple, and the fitness scores
achieved are significantly lower (p-value < 0.01). Within 400 generations, NS-
simple could consistently achieve fitness scores close to the maximum value. How-
ever, it should be noted that NS-extra and Fit do not appear stable at that point,
and if more generations were allowed, they might still improve. The differences
between the behaviour characterisations and the evolved behaviours are discussed
below.

4.4 Behavioural Diversity

Through visual inspection of the solutions that achieved the highest fitness scores
(above 0.95), we found that all evolutionary methods produced solutions that
display similar behaviours. In the successful behaviours, the robots always start
by searching for the charging station. Depending on the solution, the robots move
in straight lines, in large circles, or in spirals, until the station has been located.
The second part of the successful behaviours concerns the coordination of access
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to the charging station. We observed three different coordination behaviours (see
Figure 8):

Charge and go away: If a robot in the charging station detects another robot
approaching, it leaves the station to let the approaching robot recharge. The
leaving robot performs what resembles a random walk in the arena and even-
tually returns to the station to recharge.

Charge and surround: If a robot in the charging station detects another robot
approaching, it leaves the station to let the approaching robot recharge. The
leaving robot begins to circle the charging station, and approaches the station
again when its energy level is below a solution-specific threshold.

Charge and wait: Once a robot is in the charging station, it continues to occupy
the station until its energy level is above a solution-specific threshold. When
the robot leaves, it moves only a short distance away from the station. Then,
the robot remains almost static until its energy level is below a solution-specific
threshold, at which point the robot tries to recharge again.

4.4.1 Fitness-based evolution

As mentioned above, fitness-based evolution did not consistently evolve solutions
with high fitness scores (see Figure 7). In fact, of the 30 runs conducted, 10 runs
never evolved solutions with a fitness score much higher than the initial randomly
generated population. We analysed the controllers evolved in the runs that only
achieved low fitness scores and identified two behaviour patterns:
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Fig. 7 Highest fitness scores achieved in the resource sharing task with novelty search with
bsimple and bextra (NS-simple, NS-extra), fitness-based evolution (Fit), and random evolu-
tion (Random). Left: average fitness value of the highest scoring individual found so far at each
generation. The values are averaged over 30 independent evolutionary runs for each method.
Right: box-plots of the highest fitness score found in each evolutionary run, for each method.
The whiskers extend to the lowest and the highest data point within 1.5 times the interquartile
range. Outliers are indicated by circles. The maximum fitness score in practice is about 0.98,
which corresponds to all robots surviving until the end of the experiment, while maintaining
high levels of energy.
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Charge and go away (1) Charge and surround (2) Charge and wait (3)

Fig. 8 The patterns of behaviour corresponding to the highest scoring solutions found by
novelty search and fitness-based evolution in the resource sharing task. Each line represents
the trajectory of the robot throughout the simulation. The circles indicate initial positions and
squares indicate final positions. Videos of the behaviours are available as online supplemental
material.

– The robots move slowly in small circles. When one of the robots detects the
charging station, it moves towards the station, and occupies it till the end of
the simulation. As a result, the rest of the swarm dies.

– All the robots remain almost static from the beginning of the simulation until
they run out of energy.

Both behaviours represent local maxima in the fitness landscape. In the first case,
evolution converges to solutions where only one robot survives at the expense of the
rest of the swarm. In the second case, the evolutionary process starts to converge
to controllers that reduce the wheel speed to conserve energy. Conserving energy
causes the robots to survive longer, thus slightly increasing the fitness score of
the controller. However, reducing the wheel speed also decreases the chance that
a robot will find the charging station. Once an evolutionary process starts to
converge to a local maximum based on energy conservation, it can take many
generations to escape from that maximum, or evolution may not escape at all.

4.4.2 Simple behaviour characterisation

The highest scoring solutions evolved by novelty search follow the same behaviour
patterns as the highest scoring solutions evolved by fitness-based evolution. How-
ever, an analysis of the explored behaviour space reveals that novelty search could
in fact evolve a greater diversity of solutions (see Figure 9). The greater diversity
comes from variations of the same behaviour patterns. For instance, if the coordi-
nation behaviours use different energy thresholds to trigger entering and leaving
the charging station, it will result in different average levels of energy. In such
cases, the behaviour patterns may appear similar through visual inspection, but
they have distinct behaviour characterisations.

4.4.3 Extra behaviour characterisation

We adapted the visualisation technique based on Kohonen maps to the 4-
dimensional behaviour space created by the bextra characterisation to analyse the
degree of exploration of different behaviour regions. The results in Figure 10 show
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Fig. 9 Behaviour space exploration with fitness-based evolution (Fit) and novelty search with
bsimple (NS-simple), in all evolutionary runs. The x-axis is the average energy level of the
robots still alive, the y-axis is the number of survivors. Each individual is mapped according
to its characterisation. Darker zones indicate that there were more individuals evolved with
the behaviour of that zone.
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Fig. 10 Kohonen map representing the ex-
plored behaviour space in novelty search
with bextra. Each circle represents a be-
haviour pattern, depicted by the 4 slices of
different colour. Each slice represents one
component of the behaviour characterisation
vector – the bigger the slice, the higher the
value of that component. The darker the
background of a circle, the more individ-
uals were evolved with the corresponding
behaviour.

how novelty search with the bextra characterisation explored the behaviour space
— a notable variety of combinations of average energy, movement, and distance
to the charging station. However, the behaviour dimension related to the number
of surviving robots was the least explored dimension of the behaviour space. In
almost all the explored regions, the number of surviving robots was either zero
or one. Only a single behaviour region included behaviours in which the whole
swarm often survives (highlighted in Figure 10), and that region was one of the
least explored.

The relatively low performance of novelty search is caused by the significantly
larger behaviour space and the lack of correlation between the behaviour fea-
tures. Novelty search can freely explore dimensions such as average movement and
distance to charging station without any robots surviving. Furthermore, both of
these dimensions are intuitively easier to explore than the dimension concerning
the number of surviving robots. As such, the opportunistic nature of evolution
causes the search to focus less on the surviving robots dimension, often inhibiting
the evolution from finding successful solutions to the task. This is in contrast with
the correlated features used in the bcmcl characterisation from the aggregation ex-



24 Jorge Gomes et al.

periments, in which novelty search performed well despite the enlarged behaviour
space (see Section 3.4.3).

The two-dimensional bsimple characterisation restricts novelty search to ex-
plore the two dimensions directly related to the fitness function. Similar solutions
in which robots move at different speeds are, for instance, conflated when the
bsimple characterisation is used, whereas they are considered different (and po-
tentially novel) when the bextra characterisation is used. As a consequence, novelty
search with the bsimple characterisation focused exploration on the dimensions di-
rectly related to the fitness function and had significantly more success in finding
solutions with high fitness scores. On the other hand, conflation can be prejudicial
to the diversity of solutions that is evolved. For instance, analysing the best so-
lutions evolved with each characterisation, we verified that the behaviour pattern
Charge and wait was less common with bsimple when compared to bextra. This be-
haviour is intuitively one of the most interesting solutions, since it takes advantage
of the variable energy spending to extend the life time of the robots. However, it
was conflated with bsimple, since this characterisation does not consider the speed
of the robots.

Our results suggest that caution must be displayed when behaviour characteri-
sations are defined. Dimensions that novelty search may opportunistically explore
at the cost of other dimensions that are more crucial for the task should not be in-
cluded. Alternatively, a number of methods have been proposed that aim to guide
exploration in novelty search towards high fitness solutions. In Section 5, we study
the application of two such methods to the resource sharing task.

4.5 Neural Network Complexity

The experiments with the aggregation task showed that novelty search found suc-
cessful solutions with less complex neural networks than fitness-based evolution.
To determine if the same is true for the resource sharing task, we analysed the
complexity of the solutions evolved for this task. Table 3 shows a comparison be-
tween the complexity of the solutions found by novelty search with bsimple and
fitness-based evolution. The results show that there was a considerable difference
between the complexity of the solutions evolved by the two methods. At fitness lev-
els above 0.2, the simpler solutions evolved by novelty search were of significantly
lower complexity than the solutions evolved by fitness-based evolution (Mann–
Whitney U test, p-value < 0.05). Note that the complexity of the networks in the
initial populations is 107 (29 neurons and 78 links).

5 Combining Novelty and Fitness

The results of the resource sharing experiments showed that although novelty
search finds a broad diversity of behaviours, regions with high-fitness behaviours
may never be explored. This issue has also been reported in other studies (Lehman
and Stanley, 2010a; Cuccu and Gomez, 2011), and a common solution is to com-
bine novelty search with fitness-based evolution (see Section 2.4). The combination
is promising, because while novelty search promotes exploration of the behaviour
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Table 3 Comparison of the least complex solutions evolved by fitness-based evolution (Fit)
and novelty search with bsimple (NS). The Complexity columns lists the network complexity
(sum of number of neurons and number of connections) of the least complex individual with a
fitness score above a certain Fitness level. The Generation column lists the average generation
in which the least complex individual was generated. The values are averages of 30 evolutionary
runs for each method.

Generation Complexity

Fitness level Fit NS Fit NS

0.20 65 21 114.90 110.50
0.40 150 69 127.30 118.40
0.60 192 135 134.20 125.90
0.80 213 192 136.90 132.40
0.90 268 239 145.70 133.90

space, fitness-based evolution exploits existing high fitness solutions. In this sec-
tion, we study the application of progressive minimal criteria novelty search (PM-
CNS) (Gomes et al., 2012) and linear scalarization (Cuccu and Gomez, 2011) to
the evolution of solutions for the resource sharing task. We compare the results
obtained with PMCNS and with linear scalarization to the results obtained with
pure novelty search and with fitness-based evolution.

5.1 Progressive Minimal Criteria Novelty Search

PMCNS (Gomes et al., 2012) is an extension of minimal criteria novelty search
(MCNS) (Lehman and Stanley, 2010a). In MCNS, the exploration of the behaviour
space is restricted by domain-dependent minimal criteria that evolved individuals
must meet in order to be selected for reproduction. The objective of PMCNS is
to take advantage of the restrictions on behaviour space exploration provided by
MCNS, but without having to define fixed, domain-dependent criteria a priori. In
PMCNS, a dynamic fitness threshold is used as the minimal criterion: individuals
with a fitness score above the threshold meet the criterion. The fitness threshold
is progressively increased during the evolutionary process. The idea behind the
increasing fitness criterion is to progressively restrict the search space to regions
of the behaviour space with higher fitness scores, and thereby avoid that novelty
search spends much or all effort on regions of the behaviour space with novel, but
low fitness behaviours.

The minimal criterion starts at the theoretical minimum of the fitness score
(typically zero), so all controllers initially meet the criterion. In each generation g,
the new criterion mcg is based on the fitness score vg of the P -th percentile of the
individuals in the current population, i.e., the fitness score below which P percent
of the individuals fall. The parameter P controls the exigency of the minimal
criterion (0 – all individuals meet the criterion, 1 – only the individual with the
highest fitness meets the criterion). Only increases in the minimal criterion are
allowed, and in order to smoothen the increase, the minimal criterion from the
previous generation is used to determine the criterion for the current generation
(Eq. 9). The score used for selection of each individual i in the population is then
calculated according to Eq. 10.
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mcg = mcg−1 + max(0, (vg −mcg−1) · S) (9)

score(i) =

{
novi if fiti ≥ mcg
0 otherwise

(10)

The variables novi and fiti are the novelty and fitness score of the individual
i, respectively. The smoothening parameter S controls the speed of the adaptation
of the minimal criterion.

5.2 Linear Scalarization of Novelty and Fitness Scores

Cuccu and Gomez (2011) proposed a linear scalarization of novelty and fitness
score, as an approach to sustain diversity while improving the performance of
traditional fitness-based evolution. Each individual i is evaluated to obtain both
fitness score, fit(i), and novelty score, nov(i), which after being normalised (Eq. 11)
are combined according to Eq. 12.

fit(i) =
fit(i)− fitmin
fitmax − fitmin

, nov(i) =
nov(i)− novmin
novmax − novmin

, (11)

score(i) = (1− ρ) · fit(i) + ρ · nov(i) . (12)

The parameter ρ controls the relative weight of fitness and novelty, and must be
specified by the experimenter (usually through trial and error). fitmin and novmin
are respectively the lowest fitness and novelty scores in the current population, and
fitmax and novmax are the corresponding highest scores.

5.3 Experimental Setup

We used the experimental setup of the resource sharing task (see Section 4.1) for
this set of experiments. The fitness function and the behaviour characterisations
are also the same as we used previous experiments (see Section 4.2).

For PMCNS, we chose a percentile value of P = 0.50 (values of 0.25, 0.50
and 0.75 were tested), which corresponds the median value of the fitness scores
in the population, and a smoothening parameter of S = 0.25, which corresponds
to relatively slow increases in the minimal criterion value. For linear scalarization,
the parameter ρ was set to ρ = 0.75 (values of 0.25, 0.50 and 0.75 were tested),
which means that the score of each individual is composed of 75% of the novelty
score and 25% of the fitness score. A discussion of the parameter values for lin-
ear scalarization and PMCNS can be found in (Cuccu and Gomez, 2011) and in
(Gomes et al., 2012), respectively.
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5.4 Results

We ran experiments with both behaviour characterisations bsimple and bextra to
evaluate the performance of PMCNS and linear scalarization in behaviour spaces of
different dimensionality. The resulting fitness trajectories are shown in Figure 11.

The results show that both PMCNS and linear scalarization are more ef-
fective than pure novelty search when using bextra (Mann–Whitney U test, p-
value < 0.01), and achieve similar fitness scores when using bsimple. With the
bextra characterisation, pure novelty search fails to reach high fitness scores, as
evolution tends to focus the exploration on behaviour dimensions that are not
directly relevant for solving the task. The results suggest that PMCNS and linear
scalarization can overcome this issue, and that the inclusion of a fitness component
in the selection criteria helps to guide the evolutionary process towards solutions
with high fitness. It should also be noted that PMCNS and linear scalarization do
not appear to be affected by the deceptiveness of the fitness function since they
could consistently achieve high fitness scores.
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Fig. 11 Highest fitness scores obtained in the resource sharing task with fitness-based evolu-
tion (Fit), and novelty-based evolutionary techniques with bsimple (PMCNS-s, Scalarization-
s, NS-s) and bextra (PMCNS-e, Scalarization-e, NS-e). Top: average fitness value of the
highest scoring individual found so far at each generation. The values are averaged over 30
independent evolutionary runs for each method. Bottom: box-plots of the highest fitness score
found in each evolutionary run, for each method. The whiskers extend to the lowest and the
highest data point within 1.5 times the interquartile range. Outliers are indicated by circles.
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Figure 12 and Figure 13 depict the behaviour space exploration with bsimple

and bextra, respectively. An analysis of the behaviour space exploration shows that
PMCNS and linear scalarization have a greater focus on regions associated with
high fitness scores compared to pure novelty search. The coverage of the behaviour
space was not negatively affected in PMCNS and linear scalarization. In fact, the
two methods found the same broad range of behaviours as pure novelty search.
The difference between pure novelty search and novelty search combined with
fitness-based search is the amount of exploration done in each behaviour region:
PMCNS and linear scalarization focused less on the low fitness behaviours (few
or no robots surviving till the end of the simulation) and more on the high-fitness
behaviours (high number of surviving robots). As a result, the PMCNS and linear
scalarization could achieve solutions with significantly higher fitness scores than
the best solutions evolved with pure novelty search.
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Fig. 12 Behaviour space exploration for each variant of novelty search, with the bsimple

characterisation, in all evolutionary runs. The x-axis is the average energy level of the robots
still alive, the y-axis is the number of survivors. Each individual is mapped according to its
behaviour. Darker zones indicate that there were more individuals evolved with the behaviour
of that zone.
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Fig. 13 Kohonen maps representing the explored behaviour space with each variant of novelty
search, with the bextra characterisation. Each circle represents a behaviour pattern, depicted
by the 4 slices of different colour. Each slice represents one component of the behaviour char-
acterisation – the bigger the slice, the greater the value of that component. The darker the
background of a circle is, the more individuals were evolved with the corresponding behaviour.
The behaviour patterns with higher fitness scores are indicated in the upper right corner of
each map.
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6 Conclusions

We studied the application of novelty search to the evolution of controllers for
swarms of robots. The study was based on two distinct swarm robotics tasks:
(i) an aggregation task, and (ii) a resource sharing task. The aggregation task was
non-deceptive, as fitness-based evolution consistently managed to find high fitness
solutions. Nevertheless, novelty search could achieve a similar performance in terms
of fitness scores. We also showed how novelty search found several alternative and
successful solutions to the task. Our analysis was based on Kohonen self-organising
maps that allowed for the visualisation of the degree of exploration conducted in
different regions of the behaviour space.

The resource sharing task was a deceptive setup in which fitness-based evolu-
tion often got stuck in local maxima. Novelty search was unaffected by deception
and displayed a significantly better performance than fitness-based evolution. In
both tasks, novelty search was distinctively able to bootstrap the evolutionary
process, it could consistently find behaviours with high fitness scores early in the
evolutionary process, and it was able to find successful solutions with lower neural
network complexity than the solutions evolved by fitness-based evolution.

To the best of our knowledge, our study is the first in which novelty search
has been applied to evolutionary swarm robotics. Since behaviour characterisa-
tions are domain-dependent and a fundamental component in novelty search, we
studied two different approaches to the design of characterisations: one based on
the spatial inter-robot relationships sampled at regular intervals, and one based on
two to four quantities that summarise the swarm behaviour throughout an entire
experiment. None of the characterisations depends on the swarm size and they are
thus scalable. In our experiments, we combined different behaviour characterisa-
tions and found that such combinations were only effective when the dimensions in
the characterisation were directly related to the task. The opportunistic nature of
artificial evolution will cause the search to first focus on the behaviour dimensions
that are easier to explore. If such dimensions are not related with the task, the
search will spend considerable effort in unfruitful regions of the behaviour space,
reducing the effectiveness of novelty search.

We discovered that novelty search may not always find high-fitness solutions,
especially when the behaviour space has dimensions that are unrelated or only
weakly related to the objective. To overcome this issue, we studied two variants
of novelty search, PMCNS and linear scalarization of novelty and fitness scores,
in which novelty search operates in concert with fitness-based evolution. Our ex-
perimental results showed that PMCNS and linear scalarization are effective in
guiding the exploration towards behavioural regions of higher fitness, without com-
promising the capacity of novelty search to find a broad diversity of solutions. The
diversity of evolved solutions was not negatively affected in PMCNS and linear
scalarization, when compared to pure novelty search.

Overall, our study shows that novelty search can be successfully applied to
swarm robotics systems. Novelty search has several advantages over fitness-based
evolution. One of the prominent advantages is that novelty search often produces
a broad diversity of successful behaviours based on self-organisation. In the swarm
robotics domain, diversity and self-organisation are particularly important because
of the difficulties of designing such behaviours by hand. Moreover, novelty search
is unaffected by deception, less prone to bootstrapping issues, and can evolve so-
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lutions with less complex neural networks. Novelty search is therefore a promising
alternative for the artificial evolution of controllers for swarm robotics systems.

6.1 Future work

Our results showed that care must be taken in the definition of macroscopic be-
haviour characterisations, especially when combining distinct behaviour features.
It is necessary to ensure that (i) each component of the characterisation is relevant
to the task, and (ii) that the components do not differ too much in terms of how
easy or hard it is for novelty search to explore the corresponding dimensions of
the behaviour space. It may be difficult to guarantee that macroscopic behaviour
characterisations always meet these criteria, and in ongoing work we are therefore
studying how individual weights can be assigned to components and modified dur-
ing evolution, either manually or automatically. Such weights could ensure that
particularly important dimensions are thoroughly explored.

While pure novelty search performed reasonably well in our tasks, our results
show that the inclusion of a fitness component can further increase the performance
of novelty search. As such, in future work we are going to elaborate on strategies for
combining novelty and fitness. For instance, we are studying if the use of dynamic
weights in linear scalarization can bring significant advantages. Such approach
could allow the search to focus more on exploitation or more on exploration at
different stages of the evolutionary process.

An alternative that we are currently studying is generic novelty measures for
swarm robotics. Doncieux and Mouret (2010) proposed a behaviour characterisa-
tion based on the mapping between the sensor input and the actuator output. We
are studying how such characterisations could be defined in the collective robotics
domain, and if they represent a viable alternative to domain-dependent novelty
measures. Such generic measures are typically used in combination with fitness-
based evolution, since the behaviour spaces created by generic measures tend to
be vast and only weakly related with the objective.

Acknowledgements

This research has been supported by Fundação para a Ciência e a Tecnologia
(FCT) grants PTDC/EEACRO/104658/2008, PEst-OE/EEI/LA0008/2011, and
SFRH/BD/89095/2012.

Supplemental Material

Videos of the behaviours are available as online supplemental material and at
the following URL: http://home.iscte-iul.pt/~alcen/si2013. The source code
of the software used in the experiments can be found at: https://github.com/
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L. Bayindir and E. Şahin. A review of studies in swarm robotics. Turkish Journal
of Electrical Engineering and Computer Sciences, 15(2):115–147, 2007.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York, NY, 1999.

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

Y. U. Cao, A. S. Fukunaga, and A. B. Kahng. Cooperative mobile robotics:
Antecedents and directions. Autonomous Robots, 4(1):7–27, 1997.

M. Castelli, L. Manzoni, and L. Vanneschi. A method to reuse old populations in
genetic algorithms. In Portuguese Conference on Artificial Intelligence (EPIA),
volume 7026 of LNCS, pages 138–152. Springer, Berlin, Germany, 2011.

K. Chellapilla and D. B. Fogel. Evolving neural networks to play checkers without
relying on expert knowledge. IEEE Transactions on Neural Networks, 10(6):
1382–1391, 1999.

N. Correll and A. Martinoli. Modeling self-organized aggregation in a swarm of
miniature robots. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 379–384. IEEE Press, New York, NY, 2007.

G. Cuccu and F. J. Gomez. When novelty is not enough. In European Conference
on the Applications of Evolutionary Computation (EvoApplications), volume
6624 of LNCS, pages 234–243. Springer, Berlin, Germany, 2011.

G. Cuccu, F. J. Gomez, and T. Glasmachers. Novelty-based restarts for evolution
strategies. In IEEE Congress on Evolutionary Computation (IEEE CEC), pages
158–163. IEEE Press, New York, NY, 2011.

K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley
& Sons, Hoboken, NJ, 2001.

S. Doncieux and J.-B. Mouret. Behavioral diversity measures for evolutionary
robotics. In IEEE Congress on Evolutionary Computation (IEEE CEC), pages
1–8. IEEE Press, New York, NY, 2010.

S. Doncieux, J.-B. Mouret, N. Bredeche, and V. Padois. Evolutionary robotics:
Exploring new horizons. In New Horizons in Evolutionary Robotics, volume 341
of Studies in Computational Intelligence, pages 3–25. Springer, Berlin, Germany,
2011.

D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for mul-
timodal function optimization. In Genetic Algorithms and their Applications:
Second International Conference on Genetic Algorithms, pages 41–49. Lawrence
Erlbaum, Mahwah, NJ, 1987.



32 Jorge Gomes et al.

J. Gomes, P. Urbano, and A. L. Christensen. Progressive minimal criteria novelty
search. In Ibero-American Conference on Artificial Intelligence (IBERAMIA),
volume 7637 of LNAI, pages 281–290. Springer, Berlin, Germany, 2012.

F. Gomez and R. Mikkulainen. Incremental evolution of complex general behavior.
Adaptative Behaviour, 5(3-4):317–342, 1997.

R. Gross and M. Dorigo. Evolution of Solitary and Group Transport Behaviors
for Autonomous Robots Capable of Self-Assembling. Adaptive Behavior, 16(5):
285–305, 2008.

A. Gutiérrez, A. Campo, M. Dorigo, D. Amor, L. Magdalena, and F. Monasterio-
Huelin. An open localization and local communication embodied sensor. Sen-
sors, 8(11):7545–7563, 2008.

I. Harvey, P. Husbands, and D. Cliff. Issues in evolutionary robotics. In Interna-
tional Conference on Simulation of Adaptive Behavior (SAB), pages 364–373.
MIT Press, Cambridge, MA, 1993.

S. Hauert, J.-C. Zufferey, and D. Floreano. Evolved swarming without positioning
information: an application in aerial communication relay. Autonomous Robots,
26(1):21–32, 2009.

G. Hornby. ALPS: the age-layered population structure for reducing the problem of
premature convergence. In Genetic and Evolutionary Computation Conference
(GECCO), pages 815–822. ACM Press, New York, NY, 2006.

J. Hu, E. D. Goodman, K. Seo, Z. Fan, and R. Rosenberg. The hierarchical fair
competition (HFC) framework for sustainable evolutionary algorithms. Evolu-
tionary Computation, 13(2):241–277, 2005.

L. Hugues and N. Bredeche. Simbad: An autonomous robot simulation package
for education and research. In International Conference on Simulation of Adap-
tive Behavior (SAB), volume 4095 of LNCS, pages 831–842. Springer, Berlin,
Germany, 2006.

M. Hutter and S. Legg. Fitness uniform optimization. IEEE Transactions on
Evolutionary Computation, 10(5):568–589, 2006.

R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost, and
G. Theraulaz. Self-organized aggregation in cockroaches. Animal Behaviour, 69
(1):169–180, 2005.

T. Jones and S. Forrest. Fitness distance correlation as a measure of problem diffi-
culty for genetic algorithms. In International Conference on Genetic Algorithms
(ICGA), pages 184–192. Morgan Kaufmann, San Mateo, CA, 1995.

S. Kernbach and O. Kernbach. Collective energy homeostasis in a large-scale mi-
crorobotic swarm. Robotics and Autonomous Systems, 59(12):1090–1101, 2011.

D. A. Kirkpatrick. Novelty search in competitive coevolution using normalized
compression distance, 2012. Master Thesis. College of Engineering, Florida
Institute of Technology.

S. Kistemaker and S. Whiteson. Critical factors in the performance of novelty
search. In Genetic and Evolutionary Computation Conference (GECCO), pages
965–972. ACM Press, New York, NY, 2011.

J. Knowles, R. Watson, and D. Corne. Reducing local optima in single-objective
problems by multi-objectivization. In Evolutionary Multi-Criterion Optimiza-
tion, volume 1993 of LNCS, pages 269–283. Springer, Berlin, Germany, 2001.

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480,
1990.



Evolution of Swarm Robotics Systems with Novelty Search 33

P. Krcah. Solving deceptive tasks in robot body-brain co-evolution by searching for
behavioral novelty. In International Conference on Intelligent Systems Design
and Applications (ISDA), pages 284–289. IEEE Press New York, NY, 2010.

J. Lehman and K. O. Stanley. Exploiting open-endedness to solve problems
through the search for novelty. In International Conference on the Synthesis
and Simulation of Living Systems (ALIFE), pages 329–336. MIT Press, Cam-
bridge, MA, 2008.

J. Lehman and K. O. Stanley. Revising the evolutionary computation abstrac-
tion: minimal criteria novelty search. In Genetic and Evolutionary Computation
Conference (GECCO), pages 103–110. ACM Press, New York, NY, 2010a.

J. Lehman and K. O. Stanley. Efficiently evolving programs through the search
for novelty. In Genetic and Evolutionary Computation Conference (GECCO),
pages 837–844. ACM Press, New York, NY, 2010b.

J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary Computation, 19(2):189–223, 2011a.

J. Lehman and K. O. Stanley. Evolving a diversity of virtual creatures through
novelty search and local competition. In Genetic and Evolutionary Computation
Conference (GECCO), pages 211–218. ACM Press, New York, NY, 2011b.

W. Liu, A. F. T. Winfield, and J. Sa. Modelling swarm robotic systems: A case
study in collective foraging. In Towards Autonomous Robotic Systems (TAROS),
pages 25–32, 2007.

F. Michaud and E. Robichaud. Sharing charging stations for long-term activity
of autonomous robots. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 3, pages 2746–2751. IEEE Press New York,
NY, 2002.

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a robot designed
for education in engineering. In 9th Conference on Autonomous Robot Systems
and Competitions (ROBOTICA), pages 59–65. IPCB, Castelo Branco, Portugal,
2009.

J.-B. Mouret. Novelty-based multiobjectivization. In New Horizons in Evolu-
tionary Robotics, volume 341 of Studies in Computational Intelligence, pages
139–154. Springer, Berlin, Germany, 2011.

J.-B. Mouret and S. Doncieux. Overcoming the bootstrap problem in evolutionary
robotics using behavioral diversity. In IEEE Congress on Evolutionary Compu-
tation (IEEE CEC), pages 1161–1168. IEEE Press New York, NY, 2009.

J.-B. Mouret and S. Doncieux. Encouraging behavioral diversity in evolutionary
robotics: An empirical study. Evolutionary Computation, 20(1):91–133, 2012.
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