
Swarm-bots to the Rescue

R. O’Grady1, C. Pinciroli1, R. Groß2, A. L. Christensen3, F. Mondada2,
M. Bonani2, and M. Dorigo1

1 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
2 LSRO, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

3 DCTI, Lisbon University Institute, Lisbon, Portugal

Abstract. We explore the problem of resource allocation in a system
made up of autonomous agents that can either carry out tasks indi-
vidually or, when necessary, cooperate by forming physical connections
with each other. We consider a group transport scenario that involves
transporting broken robots to a repair zone. Some broken robots can be
transported by an individual ‘rescue’ robot, whereas other broken robots
are heavier and therefore require the rescue robots to self-assemble into a
larger and stronger composite entity. We present a distributed controller
that solves this task while efficiently allocating resources. We conduct a
series of real-world experiments to show that our system can i) transport
separate broken robots in parallel, ii) trigger self-assembly into compos-
ite entities when necessary to overcome the physical limitations of indi-
vidual agents, iii) efficiently allocate resources and iv) resolve deadlock
situations.

keywords: self-assembly, task allocation, swarm intelligence, search and res-
cue, cooperation, group transport, autonomous robots, multi-robot systems,
swarm robotics

1 Introduction

Self-assembling robotic systems are made up of autonomous agents that are
able to physically connect to one another to form larger composite entities.
Self-assembling systems in which the individual agents are themselves simple
independent mobile robots potentially share the benefits both of distributed
multi-agent robotic systems and of more conventional monolithic robots. In com-
mon with distributed multi-agent systems, such self-assembling systems are well
suited to parallel task execution, and tend to be relatively inexpensive, robust
and scalable. However, by connecting to each other and working together, such
systems can also overcome the individual physical limitations of the system’s
constituent agents and thus carry out tasks that in the past might have required
a larger traditional monolithic robot.

However, there is an intrinsic problem of resource allocation that must be
solved before self-assembling systems can achieve this kind of flexibility and
realise their potential. In particular, a self-assembling system must be able to



determine when parallel or collective behaviour is more appropriate, and then
be able to distribute resources to reflect this analysis. This problem of resource
allocation has been largely ignored in the self-assembly literature. There is a
large body of literature on task allocation in non-self-assembling multi-robot
systems. However, little of this work is directly applicable to self-assembling
systems, where the parameters of the task must determine the nature and extent
of physical cooperation at the expense of parallel execution.

In this paper, we explore the problem of resource allocation using a real
world group transport scenario. In our scenario, dedicated ‘rescue’ robots must
find broken, immobile robots and transport them to a designated repair zone.
The broken down robots can either be single agents or pre-assembled composite
robotic entities. A single broken down agent can be transported by a single
rescuing agent, whereas a broken down composite entity is sufficiently heavy
that multiple rescue robots must self-assemble in order to effect the rescue. The
system has no a priori knowledge either of the number of rescue robots or of the
number and size of the broken entities.

We present a distributed controller that solves the above task while effi-
ciently allocating resources. Each rescue robot tries to move any broken robots
that it finds, and independently determines whether or not the object is success-
fully being moved. Based on this determination, the rescuing robot uses local
communication to either attract or repel other rescue robots. We present a se-
ries of experiments with real robots using our controller. The contributions of
this study are as follows. Firstly, we demonstrate a new use of self-assembly as
a response mechanism. Secondly, we demonstrate a distributed task allocation
mechanism based on local attraction and repulsion that is applicable to groups
of mobile self-assembling agents. Finally, we demonstrate a group transport con-
trol mechanism that improves on previous implementations in both efficiency
and flexibility.

2 Related Work

Kube and Zhang [5, 6] conducted a series of experiments in which a group of
physical robots was transporting a heavy object. They observed that the robots
could end up pushing the same object in opposing directions. As a result of this,
the transport object could become stuck. To resolve this problem, they integrated
into their control policy a recovery mechanism that was inspired by the group
transport of the ant species Pheidole crassinoda [9]. In this species, ants were
reported both to undergo changes in their group transport arrangements and
to recruit nest mates if an object resisted motion (Kube and Zhang’s robots
mimicked the group transport rearrangement behaviour).

In simulation, Perez-Uribe et al. [8] investigated a system in which a group
of robots is required to find and transport multiple objects of two sizes: small
and large. The allocation of robots to the objects was irreversible, thus creating
a deadlock potential in the case of an immovable object.



�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Hemispherical mirror

Camera

Gripper

Proximity sensors

LED ring

Repair Zone

1.15 meters

2
.1

 m
et

er
s

Starting Positions − Broken Robots

Starting Positions − Rescuing S−bots

Fig. 1. Left: The s-bot. Centre: S-bot LEDs off and on. Right: The arena.

Ijspeert et al. [4] studied a system of physical robots in which two physically
cooperating robots could pull long sticks out of the ground (the sticks could not
be removed by a single robot). When a single robot tried to remove a stick, it
would wait for another robot to arrive. The optimal waiting time was computed
as a function of the environmental parameters.

Groß and Dorigo [1–3] used computer simulations to study the transport
of heavy objects by groups of self-assembling robots. The control policies were
designed by evolutionary algorithms. In [2, 3], it was assumed that only a single
transportable object was present. The system in [1] could in principle cope with
multiple objects, however, each robot would always attempt to transport the
closest object within its perceptual field. The allocation of robots was irreversible
and did not depend on the objects’ resistance to motion.

Tuci et al. [10] conducted an experiment with physical robots that could self-
assemble and transport a heavy object. The transporters were programmed to
suspend their transport whenever they perceived an unconnected robot (allowing
the latter to join the group). Thus, if a robot permanently failed to join the
pulling structure, a deadlock occurred.

3 Platform and Experimental Setup

The platform we use is the swarm-bot robotic platform [7]. The swarm-bots
platform consist of a number of autonomous robots called s-bots, see Fig. 1
(left). The s-bot is 12 cm high without its camera turret, and has a diameter of
12 cm. Each s-bot is equipped with a gripper that enables physical connections
between s-bots. The turret holding the gripper can rotate independently of the
chassis, that contains a differential drive system composed of combined tracks
and wheels. This allows an s-bot to exert force in any direction when grasping
another s-bot or object.



Each s-bot is equipped with torque sensors on the tracks motors that let the
robot determine whether it is successfully moving a gripped object that it is
trying to transport. If the s-bot is moving the object, the s-bot’s tracks will be
rotating and the motor torque will be low. If, however, the object is not moving
(for example, because it is too heavy) the rescue robot’s tracks will be blocked
and the torque will be high.

The s-bot camera records panoramic images reflected in a hemispherical mir-
ror mounted above the s-bot chassis in a transparent perspex tube. Each s-bot
has a semi-transparent ring housing eight sets of RGB coloured LEDs. Depend-
ing on light conditions, the camera can detect illuminated LEDs on other s-bots
up to 50 cm away. A strong external light source can be seen up to 4 m away.

Our experimental setup requires ‘rescue’ s-bots to search the arena shown
in Fig. 1 (right), to find broken robots and then to transport them to the desig-
nated repair zone (darker floor). A light source is located two meters outside of
the arena beyond the repair zone (not shown in Fig. 1). Transporting s-bots per-
form phototaxis to ensure that they transport the broken robots in the correct
direction towards the repair zone.

All of our experiments involve either one or two rescuing robots and either
one or two broken robots. We use two types of broken robot. We refer to a single
broken s-bot as a 1-s-bot broken robot (a single rescuing s-bot is able to transport
a 1-s-bot broken robot). We refer to a broken robot that is a composite entity
made up of two physically connected s-bots as a 2-s-bot broken robot (the rescuing
s-bots must team up in order to collectively transport a 2-s-bot broken robot).
We consider broken robots to be immobile. However, we make the simplifying
assumption that broken robots are still able to use their LEDs to signal that
they require assistance.

4 Controller

The desired behaviour of our multi-agent system is for the rescue s-bots to
locate and transport the broken robots to the repair zone. Ideally, based on
the properties of the broken robots (size, weight), only the minimum required
number of rescue s-bots should be allocated to transport each broken robot, thus
leaving as many rescue s-bots as possible idle or available for other tasks.

We designed our distributed controller to use only local sensing and commu-
nication. The control logic executed independently by each rescue s-bot is shown
in Fig. 2. A rescue s-bot searches for any broken robots by performing a random
walk with its blue LEDs illuminated (Random Walk). Broken robots signal that
they need help by illuminating their red LEDs. When a rescue s-bot detects red
LEDs without any nearby green LEDs, it assumes that it has seen a broken robot
that is not currently being rescued and heads towards the red LEDs (Goto Red
Entity). If more than one red entity is seen, the rescuing s-bot picks one of the
red entities at random. It then grips the broken robot (Grip Red Entity) and
tries to pull the broken robot to the repair zone by heading towards the light
source (Pull Towards Light) with its green LEDs illuminated.



Detach

(blue)

Avoid

Random Walk

(blue)

Arena Edge Detected

See Blue Aheador

Green Near Red

Wait For Help
(red)

(blue)
Goto Red Entity See Red Close

See Close Green

High Track Torque

Gripped

No Green Near Red
andSee Red

(green)

Grip Red Entity

Pull Towards Light

(blue)

Timeout
Probabilistic

Gripping Blue

No Red Seen
Gripping Blue
or

or

Fig. 2. Control logic that each rescue s-bot executes independently.

As long as a rescue s-bot is successfully pulling a broken robot (low track
torque), it stays green. This tells other rescue s-bots within camera range not
to go towards the broken robot it is pulling. However, if the rescue s-bot fails to
move the broken robot (high track torque measured consistently for 5 seconds),
the rescue s-bot stops pulling and illuminates its red LEDs (Wait For Help). At
this point, the rescue s-bot is indistinguishable from the broken robot that it is
still gripping. Thus, other rescue s-bots will approach and grip either the broken
robot or any rescue s-bots that are attached to the broken robot and are in
state Wait For Help. When a new rescue s-bot attaches, it will turn green as it
attempts to pull the broken robot. Any attached s-bots in state Wait For Help
are prompted by the sight of green LEDs to try to pull again. If the new larger
number of attached rescue s-bots is now sufficient to move the broken robots, all
of the rescue s-bots will stay green and thus prevent any further rescue s-bots
from approaching. Otherwise, after 5 seconds of high torque, they will realise that
the broken robot is still not movable, and will switch to state Wait For Help.
This process repeats itself, with progressively more rescue s-bots attaching to
the broken robot until there are enough rescue s-bots to move the broken robot.
In this way, the system automatically finds the minimum group size capable of
moving a broken robot.

If there are several large composite broken robots present, and a small number
of rescue s-bots, it is possible that the individual rescue s-bots might randomly
distribute themselves among the broken robots in such a way that none of the
large broken robots can be moved. To prevent this type of deadlock situation,
a rescue s-bot in state Wait For Help has a low probability of detaching. A
detached robot returns to state Random Walk and thus turns blue, which signals
to any s-bot that might be gripping the detached robot that it should in turn
detach. Rescuing robots also detach if they no longer detect any red LEDs—
in our experiments, the broken robots detect arrival in the repair zone using
ground sensors, and switch off their red LEDs. Together, these two detachment
mechanisms ensure that as long as there are enough rescue s-bots present in the
environment to move any given broken robot, the rescue s-bots will eventually
combine forces to move the broken robot.

5 Results

We carried out four sets of real-world experiments. Each set of experiments is
defined by the number of rescuing s-bots, the number of broken robots and the



size of the broken robotic entities. The rescuing robots have no a priori knowledge
of the experiment configuration. Videos of the experiments can be found on the
web at: http://iridia.ulb.ac.be/supp/IridiaSupp2009-011.

Rescuing Broken Robots in Parallel
We conducted 5 trials of an experiment with two rescue s-bots and two 1-s-
bot broken robots (photos A1-A4 are of a single trial). In each experiment, the
system successfully allocated a single rescue robot to each of the broken robots
and the broken robots were transported in parallel to the repair zone.
A1 A2 A3 A4

This experiment shows that when possible the system correctly ‘chooses’
parallel execution (the incorrect choice would be for two rescue s-bots to assemble
to the same broken robot).

Physical Cooperation to Rescue a Broken Robot
We conducted 5 trials of an experiment with two rescue s-bots and a single 2-s-
bot broken robot (photos B1-B4 are of a single trial). In each trial, one rescue
s-bot found the broken robot, then tried and failed to move the broken robot
alone. The attached rescue s-bot waited for help, and after the other rescue s-bot
attached, together the two rescue s-bots succeeded in transporting the broken
robot to the repair zone.
B1 B2 B3 B4

In one of the trials, the initial attachment configuration of the rescue s-bots
failed to move the broken robot. One of the rescue s-bots detached based on the
probabilistic time out twice, but reattached both times. In the final configuration
the rescue s-bots succeeded in transporting the broken robot to the repair zone.

This experiment shows that the system correctly allows the rescue s-bots
to physically coordinate in order to solve a task that is beyond the physical
capacities of a single s-bot.

Efficiency Gains Through Group Size Regulation
We conducted 5 trials of an experiment with two rescue s-bots and a single 1-
s-bot broken robot (photos C1-C4 are of a single trial). In each trial, a single
rescue s-bot connected to the broken robot, and successfully transported it to the
repair zone. The other s-bot continued to explore the arena without attempting
to attach to the moving broken robot.



C1 C2 C3 C4

This experiment shows that the system correctly allocates the minimum num-
ber of rescue s-bots (in this case 1 s-bot) to a task, and leaves other rescue s-bots
free to potentially carry out other tasks.

Reallocation of Resources in a Deadlock Situation
We conducted 5 trials of an experiment with a single rescue s-bot and two broken
robots: one 1-s-bot broken robot and one 2-s-bot broken robot (photos D1-D4
are of a single trial). In this experiment, we initially ‘break’ the 2-s-bot broken
robot (i.e., illuminate its red LEDs). We allow the rescuing s-bot to find and
attach to the heavy broken robot before we ‘break’ the 1-s-bot broken robot.
D1 D2 D3 D4

In four out of the five trials, the rescue s-bot probabilistically timed out,
explored the arena, found and attached to the 1-s-bot broken robot and success-
fully transported it to the repair zone (in one of these successful trials the rescue
s-bot first re-attached to the 2-s-bot broken robot and timed out again). In a
single trial, the rescue s-bot failed to detach correctly due to a hardware failure.

This experiment shows that the system correctly resolves a deadlock situation
where a rescue s-bot is attempting an impossible task, and manages to reallocate
resources (the rescue s-bot) to another task that is feasible.

6 Conclusion

In this study, we presented a distributed controller that for the first time tack-
les the problem of resource allocation in a self-assembling robotic system. We
conducted real world experiments in a group transport rescue scenario which
showed that our distributed control logic displays several important properties.
In particular, our system was able to maximise parallel execution (and hence ef-
ficiency) by allocating the minimum number of agents required to solve tasks of
varying magnitudes. In addition, the system included a reset mechanism which
allowed it to resolve potential deadlock situations (situations in which a given
distribution of agents at a particular moment in time results in all attempted
tasks being impossible to carry out). Interestingly, we discovered that this mech-
anism also allowed for potentially beneficial random reconfiguration of spatial
arrangements within a single transport rescue group.



We are currently working on testing the scalability of the system with larger
numbers of robots in simulation, and on abstracting the fundamental dynamics
of our system so as to apply them to other self-assembly scenarios.

7 Acknowledgements

This work was supported by the Sixth Framework Programme of the European Com-

mission in the form of the IST FET project SWARMANOID (contract IST-022888),

of the Marie Curie Early Stage Research Training Site COMP2SYS (contract MEST-

CT-2004-505079), and of a Marie Curie Intra-European Fellowship (contract MEIF-

CT-2006-040312). Marco Dorigo acknowledges support from the F.R.S.–FNRS of the

Belgian French Community, of which he is a research director, via the VIRTUAL

SWARMANOID project. The information provided is the sole responsibility of the

authors and does not reflect the European Commission’s opinion. The European Com-

mission is not responsible for any use that might be made of data appearing in this

publication.

References

1. R. Groß and M. Dorigo. Group transport of an object to a target that only
some group members may sense. In Parallel Problem Solving from Nature – 8th
Int. Conf. (PPSN VIII), volume 3242 of LNCS, pages 852–861. Springer Verlag,
Berlin, Germany, 2004.

2. R. Groß and M. Dorigo. Evolution of solitary and group transport behaviors for
autonomous robots capable of self-assembling. Adapt. Behav., 16(5):285–305, 2008.

3. R. Groß and M. Dorigo. Towards group transport by swarms of robots. Int. J. of
Bio-Inspired Computation, 1(1–2):1–13, 2009.

4. A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella. Collaboration
through the exploitation of local interactions in autonomous collective robotics:
The stick pulling experiment. Autonomous Robots, 11(2):149–171, 2001.

5. C. R. Kube and H. Zhang. Stagnation recovery behaviours for collective robotics.
In Proc. of the 1994 IEEE/RSJ/GI Int. Conf. on Intell. Rob. and Sys., volume 3,
pages 1883–1890. IEEE Computer Society Press, Los Alamitos, CA, 1994.

6. C. R. Kube and H. Zhang. Task modelling in collective robotics. Autonomous
Robots, 4(1):53–72, 1997.

7. F. Mondada, G. C. Pettinaro, A. Guignard, I. V. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo. SWARM-BOT: A new
distributed robotic concept. Auton. Robots, 17(2–3):193–221, 2004.

8. A. Perez-Uribe, D. Floreano, and L. Keller. Effects of group composition and level
of selection in the evolution of cooperation in artificial ants. In Proc. of the 7th
European Conf. on Artificial Life, volume 2801 of Lect. Notes Artif. Int., pages
128–137. Springer Verlag, Berlin, Germany, 2003.

9. J. H. Sudd. The transport of prey by an ant, Pheidole crassinoda Em. Behaviour,
16:295–308, 1960.

10. E. Tuci, R. Groß, V. Trianni, F. Mondada, M. Bonani, and M. Dorigo. Cooperation
through self-assembly in multi-robot systems. ACM Trans. Auton. Adapt. Syst.,
1(2):115–150, 2006.


