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Abstract— We investigate the scalability of a morpholog-
ically flexible self-assembling robotic system by measuring
task execution performance. We use a scenario consisting of
three subtasks — gap crossing, bridge traversal and object
pushing. Each subtask can only be solved by a dedicated
self-assembled morphology. To successfully complete the sce-
nario, individual robots must autonomously assemble and
disassemble to form morphologies appropriate to the subtask
at hand. Environmental cues tell the robots when they have
encountered a particular task. Parallel execution of tasks
is possible when there is a sufficient number of robots.
With simulated robots, we perform a series of experiments
demonstrating the feasibility and the scalability of our system.
We implement our distributed control using the scripting lan-
guage SWARMORPH-script that has been used in previous
studies to form morphologies with up to nine real robots.

I. INTRODUCTION

Self-assembling robotic systems are composed of multi-

ple autonomous agents that can physically connect to each

other to form larger composite robotic entities. Two of the

key potential benefits of self-assembling robotic systems

are morphological flexibility and parallelism. Morphologi-

cal flexibility is important because any robotic entity must

have a morphology that is in some way appropriate to the

task it needs to perform. In theory, the ability to form a

wide range of different morphologies should allow future

self-assembling systems to tackle a wider range of tasks

than conventional monolithic robots. Such self-assembling

systems may well comprise thousands or even millions of

individual agents. In such large systems, parallelism will

be the key to efficiency—different self-assembled robotic

entities will be able to carry out different tasks at the same

time. A well-designed self-assembling system should thus

allow for massively parallel task execution.

In this study, we explore a scenario designed to investi-

gate morphological flexibility and large scale parallelism.

In our scenario, a series of subtasks must be completed.

Each subtask is solvable by a dedicated self-assembled

morphology, which is incapable of solving the other sub-

tasks. The robots start at one end of the arena and perform

phototaxis towards a light source at the other end of the

arena. As they proceed, environmental cues indicate the

presence of particular subtasks to be solved. When they

encounter a subtask, the robots must assemble into the

appropriate morphology for the subtask at hand. Once that

subtask is complete, the robots disassemble and continue

phototaxis. They are thus ready to assemble into another

morphology as soon as they encounter another subtask.

The nature of the subtasks allows for a degree of parallel

execution.

Anders Lyhne Christensen (anders.christensen@iscte.pt) is with
DCTI, Lisbon University Institute, Portugal. Rehan O’Grady (ro-
grady@ulb.ac.be) and Marco Dorigo (mdorigo@ulb.ac.be) are with
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In previous studies, we pioneered a distributed technique

for morphology control in self-assembling systems [5],

[17] using both real-robots and a dedicated simulation

environment. We developed a scripting language with

primitives that would allow robots to self-assemble into

particular shapes and to disassemble [6], [16]. However,

the sequence of morphologies formed was determined

in advance by the experimenter, and the self-assembled

entities did not carry out any tasks.

In this study, we extend our previous work to apply

particular self-assembled morphologies to specific tasks.

The self-assembled morphologies are now formed on de-

mand in response to environmental cues. We demonstrate

the feasibility of our enhanced system in a dedicated

simulation environment. Using our scenario, we explore

the behavior of our system under different configurations.

We investigate the negative influence of interference by

increasing the number of robots while keeping the size of

the arena and the number of tasks constant. We investigate

how the system scales by concurrently increasing the size

of the arena, the number of robots and the number of

tasks. The verisimilitude of the simulation environment

was verified in a previous study [17].

The paper is organized as follows: In Sect. II, we discuss

related work. In Sect. III, we present the swarm-bots

robotic platform on which this study is based and de-

scribe our simulation environment. In Sect. IV, we present

the three different tasks that the robots must accomplish

through self-assembly and disassembly in our experiments.

In Sect. V, we provide an overview of SWARMORPH-

script. In Sect. VI, we present the results of our experi-

ments. We discuss our results and conclude the paper in

Sect. VII.

II. RELATED WORK

There is a large body of scientific literature on the

distributed creation and control of robotic morpholo-

gies using inter-connectable components. The two prin-

ciple approaches are self-reconfigurable systems and self-

assembling systems. In self-reconfigurable systems [20],

the components tend to be incapable of independent mo-

tion. In self-assembling systems [11], the components are

themselves independent robots that can autonomously form

physical connections with one another. In the latter case,

the individual robots can be either externally propelled or

self-propelled. Several different hardware architectures and

control mechanisms have been proposed respectively for

self-reconfigurable robotics [3], [14], [15], [19] and for

self-assembling robotics [2], [7], [8], [10], [12].

The advantage of morphological flexibility is that it

potentially allows a robotic system to carry out a wider

range of tasks. Somewhat surprisingly, little work has
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Fig. 1: Left: The s-bot. Top right: The star morphology

formed with 9 real robots. Bottom right: The star

morphology formed in our simulation environment.

directly focused on using self-reconfigurable systems to

generate appropriate morphologies in response to task

requirements [1] (and almost no work in the field of self-

assembling systems). The advantage of self-assembling

systems is that, as well as morphological flexibility, they

offer the potential for parallel task execution. White et

al. [18] used mathematical and simulation based models

to analyze the scalability of their self-assembling system.

However, in common with other works that consider

scalable self-assembling systems with larger numbers of

robots [13], the focus is on the ability of the system to

self-assemble ever larger structures.

In this paper, our approach is different in that the robots

form specific morphologies to solve different tasks, and

that they carry out the tasks in parallel. We measure

scalability, not by an internal measure of self-assembling

efficiency, but rather by the external measure of task

completion efficiency.

III. ROBOTICS PLATFORM

We conduct our experiments using a simulated version

of the swarm-bots robotic platform. The platform consists

of a number of mobile autonomous robots called s-bots

(see Fig. 1) that are capable of forming physical con-

nections with each other. Each s-bot is equipped with an

XScale CPU running at 400 MHz, a number of sensors

including an infrared ground sensors, proximity sensors,

and light sensors. Physical connections between s-bots

are established by a gripper-based connection mechanism.

Each s-bot is surrounded by a semi-transparent ring that

can be grasped by other s-bots. S-bots can advertise their

location and/or internal state by means of eight sets of

RGB-colored LEDs distributed around the inside of their

semi-transparent ring.

The s-bots have an omni-directional camera that points

upwards at a hemispherical mirror mounted above the s-

bot’s turret in a transparent perspex tube. The camera

records the panoramic images reflected in the mirror.

Depending on light conditions, the camera can detect

illuminated LEDs on other s-bots up to 50 cm away. The

combination of the camera and the LEDs thus provides the

s-bots with local, situated communication capabilities.

The experiments in this study were conducted in a sim-

ulation environment consisting of a specialized software

simulator with a custom dynamics engine tailored to our

robotic platform [4]. All the sensors and actuators that

were used are simulated with reasonable accuracy by our

simulation environment. We developed a control interface

abstraction layer that allowed us to transfer our control

programs between the simulator and the real robots without

any modification. The control abstraction layer allowed

us to run and test the same SWARMORPH-based control

programs both in simulation and on real robots.

IV. TASKS AND MORPHOLOGIES

We have chosen three tasks: gap crossing, bridge traver-

sal, and object pushing. None of these tasks can be solved

by a single robot operating alone. Instead, the robots have

to self-assemble and cooperate in order to accomplish each

of the three tasks. Based on trial and error experimentation

with real robots, we have designed the three tasks so

that each task requires the robots to self-assemble into

a dedicated morphology. Each morphology can solve one

task and one task only, that is, the dedicated morphology

that succeeds in solving one of the tasks will fail to solve if

applied to either of the other two tasks. The tasks and their

associated morphologies are shown in Fig. 2 and described

in detail below.

A. The Gap Crossing Task

In this task, the robots must cross a 22 cm wide

rectangular hole that runs the width of the arena. An s-

bot can detect the gap based on readings from its infrared

ground sensors. Of the s-bot’s four ground sensors, one

points slightly forwards and one points slightly backwards.

This allows an s-bot to detect a gap before falling into it.

A gap of 22 cm was chosen because it is reliably passable

by four real s-bots connected in linear morphology, while a

three s-bot linear morphology will fail unless it is perfectly

aligned (any smaller morphology always fails).

B. The Bridge Traversal Task

In this task, the robots must use a bridge to cross a

50 cm wide rectangular hole that runs the width of the

arena. The bridge is made of two pipes spaced 17.5 cm

apart, each with a diameter of 8 cm. The curvature of

the pipes is sufficient that a moving s-bot cannot balance

on a single pipe. The two pipes are also sufficiently far

apart that the wheels of a single s-bot cannot make contact

with both pipes at the same time. Thus, a single s-bot

cannot traverse a bridge alone. However, a composite

robotic entity comprised of two physically connected s-

bots (appropriately oriented) can traverse a bridge, since

it can make contact with both pipes at the same time—

each s-bot touches one of the pipes. The curvature of the

pipes does not cause the constituent s-bots of such an entity

to topple, as the s-bots mutually support each other, see

Fig. 2 (middle).

The on-board computer vision software does not enable

the robots to estimate the width of a gap or to see

the bridge. We have therefore placed a special reflective

material before the bridged 50 cm gap to distinguish it

from the 22 cm gap. The reflective material can be detected

by an s-bot using its infrared ground sensors: readings
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Fig. 2: The three tasks and the appropriate morphology for each tasks. Left: The gap crossing task (line morphology).

Middle: The bridge traversal task (support morphology). Right: The object pushing task (shovel morphology).

are higher than for the normal arena floor. In order to

determine the position of the bridge, we have put a distinct

simple bar code in front of each pipe, see Fig. 2 (middle).

The bar code is made up of different materials that can be

detected by an s-bot’s ground sensors. Whenever a robot

detects a bar code, it can use the bar code information to

determine which pipe it is facing (left pipe or right pipe)

and build the morphology to cross the bridge accordingly.

We have also added reflective material on the far side of

the bridge to allow the robots to detect when they have

successfully crossed the bridge.

C. The Object Pushing Task

In this task, the robots have to perform cooperative

transport by pushing two or more objects 30 cm towards

the light source. The objects have a dimension and weight

that prevents a single s-bot from pushing them. In fact,

a shovel shape formed by four robots is necessary to

reliably shift an object, see Fig. 2 (right). We use objects

with a diameter of 20 cm positioned in front of a 30 cm

expanse of reflective material. The robots are programmed

so that when they have reached the end of the reflective

material, they disassemble and move back across the

reflective material to search for more objects. The objects

are wrapped in the same reflective material. An object that

should be shifted can thus be detected by an s-bot based

on proximity sensor readings—because of the reflective

material, the readings for the object are higher than those

for either other s-bots or for walls.

V. METHODOLOGY

We have developed a distributed control scheme that

allows s-bots to respond to the obstacles described in

Sect. IV and to self-assemble into specific morphologies1.

Each s-bot is autonomous and only local, situated, color-

based communication is used between the s-bots. When-

ever an s-bot detects the presence of a task that requires

a larger robotic entity to be self-assembled, it starts a

new self-assembly process by illuminating its LEDs in

a particular color configuration. The color configuration

indicates a point on the s-bot’s body where another non-

attached s-bot should grip and a corresponding orientation

which the gripping s-bot should assume. We term such a

color configuration a connection slot [5].

When an s-bot has gripped another s-bot, the two s-bots

initiate communication by changing the color configuration

of their LEDs. The communication system allows for the

transmission of strings. Through this communication, the

newly connected s-bot receives instructions on how to

extend the local structure. Following these instructions,

the newly connected s-bot in turn attracts other s-bots by

opening a new connection slot itself. When a subsequent

new s-bot attaches, it once again initiates communication,

and is told in turn how to extend the structure. As this

process repeats itself, the morphology grows accordingly.

A. The SWARMORPH-Script Language

We abstracted basic behaviors such as phototaxis, invite

connection, send rule ID, and disconnect, into a set of

control primitives. We used these control primitives to

build a morphology creation language (SWARMORPH-

script) that can be executed on real s-bots [6]. The language

allows for explicit high-level expression of distributed rules

for morphology growth. Below, we provide a summary of

some of the primitives available in SWARMORPH-script:

• Phototaxis: Perform phototaxis until an obstacle

has been encountered or overcome.

• OpenConnSlot: Invite a connection at a certain

location.

• Connect: Find and connect to an s-bot inviting a

connection.

• SendRuleID: Send the ID of a rule.

• ReceiveRuleID: Receive the ID of a rule.

• Notify: Notify a physically connected s-bot.

• Disconnect: Open the gripper to disconnect from

the morphology.

• Retreat: Retreat for a certain amount of time.

• if, then, end: Branch based on the type of

obstacle encountered or based on the rule ID received.

B. The Script

In this section, we describe the script that is used to solve

our three task scenario. We describe the overall functioning

of the script, and for illustrative purposes present a section

of the script, see Script 1. We show the global structure of

the script, and focus on the part of the script that builds the

1Note that the sensory equipment available on the s-bot platform is
not sufficiently sophisticated to allow for a truly adaptive morphological
response mechanism. Instead, as discussed in Sect. IV, we place cues
in the environment that are detectable by the s-bots. The cues uniquely
identify the different tasks, and trigger the formation of the appropriate
morphology.
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Script 1: Solve three subtasks in an unknown order.

Label: ”PhototaxisAndLookForTasks”
Phototaxis();
if right-bridge-cue-detected then

# Retreat off the reflective material
Retreat();
# Invite new connection from the left
OpenConnSlot(left);
# Send instructions to the connected s-bot
SendRuleID(1);
# Cross bridge
Phototaxis();
# Restart script
Jump(PhototaxisAndLookForTasks);

end
else if left-bridge-cue-detected then

# Retreat off the reflective material
Retreat();
# Invite new connection from the left
OpenConnSlot(right);
# Rest of the code is identical to code above
...

end
else if hole-detected then

# Start a line morphology
...

end
else if object-detected then

# Start a shovel morphology
...

end
else if conn-slot-detected then

# Connect to a connection slot
Connect();
# Receive instructions
ReceiveRuleID();
# If a bridge is ahead
if receivedruleid = 1 then

# Phototaxis across the bridge
Phototaxis();
# Disconnect from the seed
Disconnect();
# Restart script
Jump(PhototaxisAndLookForTasks);

end
# Logic for the other morphologies
...

end

— four s-bots are needed both to cross the narrow gap (line

morphology) and to push the object (shovel morphology).

In each experiment, we recorded the time it took the four

s-bots to navigate through the arena and to push both of

the two objects 30 cm.

At the start of each experiment, the s-bots were placed

in the starting zone and oriented to face the light source.

We let each experiment run for 6,000 simulated seconds

(= 100 minutes). The results are summarized in Tab. I. In

ninety-four of the experiments, the four s-bots succeeded

in navigating the arena and pushing both of the objects the

required distance.

We witnessed two types of failure that prevented one

or both of the objects from being pushed in six of the

experiments. Firstly, there are sometimes ‘robot casualties’

during task execution. We consider a robot to be a casualty

if it falls into one of the gaps. When one or more robots

fall into a gap before both objects have been pushed the

requisite distance, there are then insufficient remaining s-

bots to complete the scenario. Secondly, if the s-bots form

TABLE I: Results summary of experiment with 4 s-bots

in an 8 m x 2 m arena and two objects to push.

0 objects pushed 1 experiments

1 object was pushed 5 experiments

2 objects were pushed 94 experiments

Average time, 1st object 1,150 s (st.dev 310 s)

Average time, 2nd object 1,803 s (st.dev 332 s)

a slightly misaligned shovel morphology, the object can

slide off the side of the shovel before it has been shifted

30 cm. As a result, the object remains in the center of the

reflective band and can no longer be detected by the s-bots.

In one experiment, neither of the two objects were suc-

cessfully pushed. This occurred due to a misaligned shovel

morphology in both cases. In another five experiments,

only one of the two objects was pushed (see Tab. I). One of

these experiments failed due to robot casualties, and four

of these experiments failed due to misaligned morphology

growth.

B. Negative Influence of Interference

Both types of failure that we saw in the previous

section are caused by interference (for more details on

interference and its potential role in controller design,

see [9]). Interference occurs when a high local density of

robots results in collisions (although the robots perform

obstacle avoidance, this mechanism is overwhelmed when

the density is sufficiently high). Collisions lead to robot

casualties when one of the colliding robots is pushed into

a gap. Collisions lead to misalignment when a robot that is

inviting a connection is displaced or rotated by a collision

with another s-bot.

To determine the influence of interference on task com-

pletion performance, we ran an additional set of experi-

ments with a varying number of s-bots in the same 8 m x

2 m arena that we used in Subsect. VI-A (see Fig. 3(top

left)). In each experiment, the s-bots were initially placed

in the starting zone and oriented to face the light source.

The results are summarized in Fig. 4. For each experi-

mental setup with a given number of s-bots, we performed

100 replications. In each replication, we varied the initial

placements and initial seed for the random number genera-

tor. The results for each set of experiments are summarized

by two bars. The wide bars indicate the average task

completion time and standard deviation observed in 100

replications of the experimental setup. The narrow bars

denote the percentage of robot casualties.

As the results indicate, the average performance initially

increases as more s-bots are added. However, at a group

size of 18 s-bots, the average performance begins to

decrease. Furthermore, the percentage of robot casualties

(the narrow bars in Fig. 4) increases monotonically with the

robot density. In the four s-bots experiments, we observed

one robot casualty in a single experiment, yielding a robot

casualty percentage of 0.25%. When 30 s-bots are present

in the same arena, the robot casualty percentages is 20.90%

(≈ 6 s-bots/experiment on average).
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Fig. 4: Scenario completion times and robot casualties for

swarms of different sizes in an 8 m x 2 m arena

with pushable objects.

C. Scalability

In order to evaluate the scalability of our approach,

we ran a series of experiments with progressively larger

numbers of s-bots and correspondingly larger arenas. We

varied the size of the initial robot population from 100

robots to 1,000 robots in increments of 100. We performed

100 replications for each population size. Each experiment

was run for 1,500 simulated seconds (= 25 minutes).

For each population size, we set the width of the arena,

the number of bridges and the number of objects as a

function of the number of robots in the population. If n
is the number of s-bots in a given experimental setup,

the arena is 8 m long, w = n/5 meters wide, contains

b = n/10 bridges, and o = n/5 pushable objects. The

bridges and pushable objects are uniformly distributed

along two lines running the width of the arena. Note that

to obtain the arena that was used in the experiments of the

previous two sections, we would need an initial population

size of 10 robots (n = 10). An example of an arena

corresponding to an initial robot population of 50 s-bots

(n = 50) is shown in Fig. 5.

The results are summarized in Fig. 6. Each bar denotes

the average number of objects pushed by a swarm of a fixed

size over the 100 replications of the experiment. Each bar

is annotated with the standard deviation for the result set.

In Fig. 6, we have added a least squares fit line

(y = 0.117 · x). As the results show, the task execution

performance scales linearly with the number of s-bots.

Linear scalability should not come as a surprise: the

control is completely decentralized and each s-bot acts

based only on what it senses in its immediate vicinity.

We therefore expect that the linear scalability trend would

continue beyond swarms of 1,000 s-bots (however, given

the computational resources required, we have been unable

to confirm this).

VII. CONCLUSIONS

We have presented a scenario in which robots have to

solve three different tasks. In order to solve the different

tasks, the robots have to cooperate by self-assembling into

specific morphologies appropriate to each task.

Fig. 5: An example of an arena for scalability experiments

with 50 s-bots. The width w of the arena is 10m,

the number of bridges b is 5, and the number of

pushable objects o is 10.
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We conducted extensive simulation-based experiments

to investigate issues related to interference between robots.

We found that high robot densities resulted in a lower per-

formance and an increase in robot casualties. In another set

of experiments, we investigated scalability by increasing

the number of robots and tasks in the scenario. We found

that the task execution performance scales linearly with

the number of robots and number of tasks — at least up

to 1,000 robots. Given our decentralized control approach,

we expect this trend to continue for even larger swarms.

We are currently conducting experiments on real robotic

hardware using the same SWARMORPH-script based con-

trol program that we have used in the simulation-based

experiments presented in this study. Our ongoing research

concerns the cooperation between meta-entities, that is,

cooperation between two or more self-assembled robotic

entities.
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