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Regression models

Consider two variables x and y
Main objective: establish a relationship between variables
Regression analysis is used to predict the value of one variable (the
dependent variable) on the basis of other variables (the independent
variables) (the e¤ect between variables it is considered causal)
If we are interested only in determining whether a relationship exists,
we employ correlation analysis
Pearson correlation coe¢ cient (measures the relative strength of
the linear relationship between two variables), �1 < R < 1

R = ∑T
t=1 (xt � x) (yt � y)q

∑T
t=1 (xt � x)2

q
∑T

t=1 (yt � y)2

If the correlation coe¢ cient is close to +1(�1) that means you have a
strong positive (negative) (linear) relationship.
If the correlation coe¢ cient is close to 0 that means you have no
correlation.
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Regression models

Correlation: scatter plot
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Regression models

Speci�c statistical methods for �nding the �line of best �t� for one
dependent numerical variable based on one or more independent
variables.
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Regression models

Steps to do in a regression model

Graphical analysis (scatter plot) of the sample points (x, y) , in order to
decide if exists a linear relation between (x, y)
Use the sample to estimate the unknown parameters
Check Residual properties (residual analysis)
Test Reliability and Validity of the model (statistical evaluation to asses
the "goodness of �t" of the model)
The validate model can be used for forecasting
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Linear regression

Simple linear regression model (1 dependent variable (we observe
this) y and 1 independent variable (we provide this) x)

y = β0 + β1x| {z }
deterministic

+ ε|{z}
random error

The y variable is assumed to be random or �stochastic� and the x
variables is assumed to have �xed (�non-stochastic�) values in
repeated samples.
Some alternative names for the y and x variables:

y : regressand, explained variable, e¤ect variable, endogenous variable
x : regressors, causal variables, explanatory variable, exogenous variable

β0 and β1 = regression coe¢ cients (parameters to be estimated)
β0 = intercept (\ with y), β1 = slope
ε = normal random variable (disturbance term), zero mean and
constant variance σ2, ε � N

�
0, σ2�
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Linear regression

The disturbance term ε can capture a number of features:

We always leave out some determinants of y
There may be errors in the measurement of y that cannot be modelled.
Random outside in�uences on y which we cannot model
non-linearity
random nature of human behavior
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Linear regression

Meaning of      and
> 0 [positive slope]                 < 0 [negative slope]

y

x

run

rise

=slope (=rise/run)

=yintercept

DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Forecasting Methods February 10, 2011 8 / 22



Linear regression

Basic idea of regression is to estimate the population parameters from
a sample (inference)

The population is the total collection of all objects or people to be
studied

A sample is a selection of just some items from the population

We also want to know how �good�our estimates of β̂0 and β̂1 are

In order to use ordinary least square method (the best), we need a
model which is linear in the parameters (β0 and β1). It does not
necessarily have to be linear in the variables (y and x).
Estimators are the formulae used to calculate the coe¢ cients and
estimates are the actual numerical values for the coe¢ cients.
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Linear regression

Which line has the best ��t� to the data?
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Linear regression

So how do we determine what β0 and β1 are the best (or best line to
�t the data)?
Choose β0 and β1 so that the (vertical) distances from the data
points to the �tted lines are minimized (so that the line �ts the data
as closely as possible): The most common method used to �t a line
to the data is known as OLS (ordinary least squares).
What we actually do is take each distance

yt � ŷt = ut = yt � bβ0 � bβ1xt

and square it and minimize the total sum of the squares (hence least
squares).

min (SSE) = min
T

∑
t=1

u2
t = min

T

∑
t=1

�
yt � bβ0 � bβ1xt

�2

| {z }
SSR=risk r
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Linear regression

we use the following notation:

yt and xt, t = 1, ..., T denote the actual data points (variables y and x)
ŷt t = 1, ..., T denote the �tted value from the regression line
β̂0 and β̂1 denote the estimated coe¢ cients
ut = yt � ŷt denote the regression residuals (estimate of the error term,
is the di¤erence between the �tted line and the sample point)
L (y,by) = (y� by) - loss function
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Linear regression

This lin
e m

inimizes th
e su

m of th
e squared differences

between the points a
nd the lin

e…

…but where did the line equatio
n come fro

m?

How did we get .9
34 for a 

yinterc
ept an

d 2.114 for slo
pe??

these differences are
called residuals or

errors

Note that the values of the residuals are not the same as the values of
the disturbance term. The diagram now shows the true unknown
relationship as well as the �tted line.
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Linear regression

Ordinary least square = Optimization problem
Purpose: estimate the coe¢ cients β0 and β1
First order conditions8>>>><>>>>:

∂r
∂ bβ0

= �2 ∑T
t=1

�
yt � bβ0 � bβ1xt

�
= 0

∂r
∂ bβ1

= �2 ∑T
t=1 xt

�
yt � bβ0 � bβ1xt

�
= 0

8>>><>>>:
bβ1 =

∑T
t=1 (xt � x̄) (yt � ȳ)

∑T
t=1 (xt � x̄)2

bβ0 = y� bβ1x

x̄ = ∑T
t=1 xt

T
, ȳ = ∑T

t=1 yt

T
(mean)

The slope estimate is the sample covariance between x and y
divided by the sample variance of x
If x and y are positively correlated, the slope will be positive
If x and y are negatively correlated, the slope will be negative
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Linear regression

Data

Statistics

Information

Data Points:
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Recall…

DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Forecasting Methods February 10, 2011 15 / 22



Linear regression
The Assumptions Underlying the Linear Regression Model (LRM)

We observe data for xt, but since yt also depends on ut (εt), we must
be speci�c about how the ut (εt) are generated.
We make the following set of assumptions about the ut�s (the
unobservable error terms) for the regression methods to be valid :

1 E(ut) = 0, The errors have zero mean
2 Var(ut) = σ2,8xt, The variance of the errors is constant and �nite
over all values of xt (homoscedasticity)

3 Cov(ui, uj) = 0 (E(ui, uj) = 0, (i 6= j)), The errors are statistically
independent of one another

4 Cov(ut, xt) = 0 (E(ut, xt) = 0), No relationship between the error and
corresponding x variable (alternative assumption: the xt�s are
non-stochastic or �xed in repeated samples.)

5 ut is normally distributed (u � N(0, σ2)) (this assumption is required
if we want to make inferences about the population parameters from
the sample parameters)
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Linear regression
The Assumptions Underlying the Linear Regression Model (LRM)

If assumptions 1. through 4. hold, then the estimators determined by
OLS are known as Best Linear Unbiased Estimators (BLUE).

�Estimator� - is an estimator of the true value of y.
�Linear� - is a linear estimator
�Unbiased� - On average, the actual value of the parameters will be
equal to the true values.
�Best� - means that the OLS estimator has minimum variance among
the class of linear unbiased estimators. The Gauss-Markov theorem
proves that the OLS estimator is best.
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Linear regression
The Assumptions Underlying the Linear Regression Model (LRM)

Consistent : The least squares estimators are consistent. That
is, the estimates will converge to their true values as the sample size
increases to in�nity (Need the assumptions 2 and 4 to prove this).

Unbiased: The least squares estimates are unbiased. That is
E
�bβ�� β = 0, thus on average the estimated value will be equal to

the true values (to prove this we need assumption 1). Unbiasedness is
a stronger condition than consistency.

E¢ ciency: An estimator of parameter β is said to be e¢ cient if
it is unbiased and no other unbiased estimator has a smaller variance,
i.e. Var

�bβ� < Var
�eβ�. If the estimator is e¢ cient, we are

minimizing the probability that it is a long way o¤ from the true value
of β.
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Linear regression
Assessing the Model

In addition to determining the coe¢ cients of the least squares line, we
need to assess it to see how well it ��ts� the data. They�re based on
the what is called sum of squares for errors (SSE).

SST =
T

∑
t=1
(yt � ȳ)2 (total sum of squares)

SSE =
T

∑
t=1
(ŷt � ȳ)2 (explained sum of squares)

SSR =
T

∑
t=1
(ut)

2 (residual sum of squares)
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Linear regression
Assessing the Model

Xi

Y i = b0
+ b1X i

Y

X

Y

SST = ∑(Yi  Y)2

SSE =∑(Yi  Yi )2
∧

SSR = ∑(Yi  Y)2
∧

∧

_
_

_

X
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Linear regression
Assessing the Model

How do we think about how well our sample regression line �ts our
sample data?
Compute the fraction of the total sum of squares (SST) that is
explained by the model, call this the R-squared of regression
(Coe¢ cient of Determination), to judge the adequacy of the
regression model

R2 =
SSE
SST

= 1� SSR
SST

0 � R2 � 1, represents the percent of the data that is the closest to
the line of best �t.
The higher the R2, the more useful the model.
For example, R2 = 0.850, means that 85% of the total variation in y
can be explained by the linear relationship between x and y (as
described by the regression equation). The other 15% of the total
variation in y remains unexplained.
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Linear regression
Assessing the Model

Another measure of how well the model �ts the data is the Standard
Error of the y estimate (measures the spread of the actual points
around the �tted line)
Since σ2 is best estimated by s2

s =

r
SSE
GL

=

s
∑T

t=1 (yt � byt)
2

T� 2
=
q

SSyy � bβ1SSxy

SSyy =
T

∑
t=1
(yt � y)2 =

T

∑
t=1

y2
t �

�
∑T

t=1 yt

�2

T

SSxy =
T

∑
t=1

xtyt �

�
∑T

t=1 xt

� �
∑T

t=1 yt

�
T

Standard error for the β1 and β2 estimates

sbβ1
=

s
s2

SSxx
; sbβ0

=

vuuts2

 
1
T
+

x2

SSxx

!
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