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Linear regression
The Assumptions Underlying the Linear Regression Model (LRM)

We observe data for xt, but since yt also depends on ut (εt), we must
be speci�c about how the ut (εt) are generated.
We make the following set of assumptions about the ut�s for the
regression methods to be valid :

1 E(ut) = 0, The errors have zero mean
2 Var(ut) = σ2,8xt, The variance of the errors is constant and �nite
over all values of xt (homoscedasticity)

3 Cov(ui, uj) = 0 (E(ui, uj) = 0, (i 6= j)), The errors are statistically
independent of one another

4 Cov(ut, xt) = 0 (E(ut, xt) = 0), No relationship between the error and
corresponding x variable (alternative assumption: the xt�s are
non-stochastic or �xed in repeated samples.)

5 ut is normally distributed (u � N(0, σ2)) (this assumption is required
if we want to make inferences about the population parameters from
the sample parameters)
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Linear regression
The Assumptions Underlying the Linear Regression Model (LRM)

If assumptions 1. through 4. hold, then the estimators (β̂0, β̂1)
determined by OLS are known as Best Linear Unbiased Estimators
(BLUE).

�Estimator� - β̂ is an estimator of the true value of β.
�Linear� - β̂ is a linear estimator
�Unbiased� - On average, the actual value of β̂ will be equal to the
true values.
�Best� - means that the OLS estimator β̂ has minimum variance
among the class of linear unbiased estimators. The Gauss-Markov
theorem proves that the OLS estimator is best.
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Linear regression
The Assumptions Underlying the Linear Regression Model (LRM)

Consistent : The least squares estimators β̂ are consistent.
That is, the estimates will converge to their true values as the sample
size increases to in�nity (Need the assumptions 2 and 4 to prove this).

Unbiased: The least squares estimates are unbiased. That is
E
�bβ�� β = 0, thus on average the estimated value will be equal to

the true values (to prove this we need assumption 1). Unbiasedness is
a stronger condition than consistency.

E¢ ciency: An estimator of parameter β is said to be e¢ cient if
it is unbiased and no other unbiased estimator has a smaller variance,
i.e. Var

�bβ� < Var
�eβ�. If the estimator is e¢ cient, we are

minimizing the probability that it is a long way o¤ from the true value
of β.
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Linear regression
Assessing the Model (Precision and Standard Errors)

In addition to determining the coe¢ cients of the least squares line, we
need to assess it to see how well it ��ts� the data. They�re based on
the sum of squares for errors (SSE).

SST = SSyy =
T

∑
t=1
(yt � ȳ)2 (total sum of squares, measure the

deviation of the observations from their mean)

SSR =
T

∑
t=1
(ŷt � ȳ)2 (explained sum of squares, measure the

deviation of predicted values from the mean)

SSE =
T

∑
t=1
(ut)

2 =
T

∑
t=1
(yt � byt)

2 (residual sum of squares)
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Linear regression
Assessing the Model (Precision and Standard Errors)

Xi
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+ b1X i
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Linear regression
Assessing the Model (Precision and Standard Errors)

How do we think about how well our sample regression line �ts our
sample data?

Compute the fraction of the total sum of squares (SST) that is
explained by the model, call this the R-squared of regression
(Coe¢ cient of Determination), to judge the adequacy of the
regression model

R2 =
SSR
SST

= 1� SSE
SST

0 � R2 � 1, represents the percent of the data that is the closest to
the line of best �t.

The higher the R2, the more useful the model.
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Linear regression
Assessing the Model (Precision and Standard Errors)

For example, R2 = 0.850, means that 85% of the total variation in y
can be explained by the linear relationship between x and y (as
described by the regression equation). The other 15% of the total
variation in y remains unexplained.
If x contributes lots of information about y then SSE is very small.
Interpretation: R2 tells us how much better we do by using the
regression equation rather than just ȳ to predict y
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Linear regression
Assessing the Model (Precision and Standard Errors)

Another measure of how well the model �ts the data is the Standard
Error of the β̂ estimate (measures the spread of the actual points
around the �tted line)
Since σ2 (population variance) is best estimated by s2 (sample
variance) we have that

s =

s
SSE
df

=

s
∑T

t=1 (yt � byt)
2

T� 2
=
q

SSyy � bβ1SSxy where

SSyy =
T

∑
t=1
(yt � y)2 =

T

∑
t=1

y2
t �

�
∑T

t=1 yt

�2

T
;

SSxx =
T

∑
t=1

x2
t �

�
∑T

t=1 xt

�2

T
, SSxy =

T

∑
t=1

xtyt �

�
∑T

t=1 xt

� �
∑T

t=1 yt

�
T

;

df degrees of freedom
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Linear regression
Assessing the Model (Precision and Standard Errors)

Standard errors (measure the precision (reliability) of the estimate)
for the β1 and β2 estimates are given by

sbβ1
=

s
s2

SSxx
; sbβ0

=

vuuts2

 
1
T
+

x2

SSxx

!
since

E
�bβ1

�
= β1, Var

�bβ1

�
=

σ2

SSxx
=

σ2

∑ (xt � x)2

bβ1 � N

 
β1,

σ2

∑ (xt � x)2

!
; E
�bβ0

�
= β0,

Var
�bβ0

�
= σ2

"
1
T
+

x2

∑ (xt � x)2

#
; bβ0 � N

�
β0, Var

�bβ0

��
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Linear regression
Assessing the Model (Precision and Standard Errors)

sbβ0
and sbβ1

depend on s2. The greater the variance s2, then the more
dispersed the errors are about their mean value and therefore the
more dispersed y will be about its mean value.
The larger the SSxx (sum of squares of x), the smaller the coe¢ cient
variances.

The larger the sample size, T, the smaller will be the coe¢ cient
variances.
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Linear regression
Assessing the Model (Hypothesis Testing)

We can use the information in the sample to make inferences about
the population.

We will always have two hypotheses that go together, the null
hypothesis (denoted H0) and the alternative hypothesis (denoted
H1).

The null hypothesis is the statement or the statistical hypothesis that
is actually being tested. The alternative hypothesis represents the
remaining outcomes of interest.
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Linear regression
Assessing the Model (Hypothesis Testing)

For example: we are interested in the hypothesis that the true value
of β1 is in fact 0.5. We would use the notation

H0 : β1 = 0.5
H1 : β1 6= 0.5

This is known as a two sided test.

There are two ways to conduct a hypothesis test: via the test of
signi�cance approach or via the con�dence interval approach.
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Linear regression
Hypothesis Testing - The Test of Signi�cance Approach

The steps involved in doing a test of signi�cance are:

Estimate β̂0, β̂1, and sbβ0
, sbβ1

, in the usual way

Calculate the test statistic. This is given by the formula

test statistic =
β̂� β

0

sbβ
where β� is the value of β under the null hypothesis H0 : β̂ = β

0

Since σ2 is unknown, we will use the t� Student statistics (instead of
normal statistics), that is

bβ0 � β00
scβ0

� tT�2,
bβ1 � β01

scβ1

� tT�2
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Linear regression
Hypothesis Testing - The Test of Signi�cance Approach

We need some tabulated distribution with which to compare the
estimated test statistics (t� Student distribution with T� 2 degrees
of freedom).

We need to choose a �signi�cance level�, often denoted α (the size of
the test and it determines the region where we will reject or not reject
the null hypothesis that we are testing). It is conventional to use a
signi�cance level of 5% (10% and 1% are also commonly used).

Given a signi�cance level, we can determine a rejection region and
non-rejection region.

Use the t-tables to obtain a critical value or values with which to
compare the test statistic.

Finally perform the test. If the test statistic lies in the rejection region
then reject the null hypothesis (H0), else do not reject H0.
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Linear regression
Hypothesis Testing - The Test of Signi�cance Approach

Two-sided and one-sided (upper tail) test of signi�cance

f(x)

95% nonrejection
region

2.5%
rejection region

2.5%
rejection region

f(x)

95% nonrejection
region 5% rejection region
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Linear regression
Hypothesis Testing - The Test of Signi�cance Approach

For simple linear regression, we must test if y depends or not on x (x
cause y)

H0 : β1 = 0 versus H1 : β1 6= 0

test statistic t =
bβ1

scβ1

=
bβ1

s/
p

SSxx
� tn�2 (t-ratio test)

rejection region : tcalc < �tα/2 or tcalc > tα/2 (α signi�cance level)

p� value (prob) : p = P (jtn�2j > jtcalcj)

Variables that are not signi�cant (not reject H0) are usually removed
from regression model
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Linear regression
Hypothesis Testing - The Test of Signi�cance Approach

For simple linear regression, we also have to test if the intercept is
zero:

H0 : β0 = 0 versus H1 : β0 6= 0

test statistic t =
bβ0

scβ0

� tn�2 (sob H0)
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Linear regression
Hypothesis Testing - The Con�dence Interval Approach

Estimate β̂0, β̂1, and sbβ0
, sbβ1

, in the usual way

Choose a signi�cance level, α, (again the convention is 5%). This is
equivalent to choosing a (1� α)� 100% con�dence interval, i.e.

5% signi�cance level = 95% con�dence interval

Use the t-tables to �nd the appropriate critical value, which will again
have T� 2 degrees of freedom.
The con�dence interval is given by

CI100(1�α)% =
ibβ� tcrit sbβ, bβ+ tcrit sbβ

h
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Linear regression
Hypothesis Testing - The Con�dence Interval Approach

Perform the test: If the hypothesized value of β (β0) lies outside the
con�dence interval, then reject the null hypothesis that β = β0,
otherwise do not reject the null.

Note that the Test of Signi�cance and Con�dence Interval approaches
always give the same answer.

If we reject the null hypothesis at the 5% level, we say that the result
of the test is statistically signi�cant
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Linear regression
Hypothesis Testing - Example

Example

Consider the following regression results

ŷt = β̂0 + β̂1xt = 20.3
(14.38)

+ 0.5091
(0.2561)

xt, T = 22

Using both the test of signi�cance and con�dence interval approaches, test
the hypothesis that β1 = 1 against a two-sided alternative, that is

H0 : β1 = 1
H1 : β1 6= 1
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Linear regression
Hypothesis Testing - Example

The �rst step is to obtain the critical value. We want tcrit = t20;5%

Test of signi�cance approach

test stat =
bβ1 � β01

scβ1

=
0.5091� 1

0.2561
= �1.917

Do not reject H0 since test stat lies within

non-rejection region (tcrit are� 2.086)

Con�dence interval approachi bβ1 � tcrit scβ1
, bβ1 + tcrit scβ1

h
= ]0.509� 2.086� 0.256, 0.509+ 2.086� 0.256[

= ]�0.0251, 1.0433[
since 1 lies within the con�dence interval,

do not reject H0
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Linear regression
Hypothesis Testing - Example

2.086 +2.086

2.5% rejection region2.5% rejection region

f(x)
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Linear regression
Hypothesis Testing

We usually reject H0 if the test statistic is statistically signi�cant at a
chosen signi�cance level.

There are two possible errors we could make:

Rejecting H0 when it was really true. This is called a type I error.
Not rejecting H0 when it was in fact false. This is called a type II error

Reality

H0 is true H0 is false

Result Signi�cant (reject H0) Type I error (α) OK

of test Insigni�cant (not reject H0) OK Type II error
(β)
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Linear regression
Hypothesis Testing

The probability of a type I error is just α, the signi�cance level or size
of test we chose.

What happens if we reduce the size of the test (e.g. from a 5% test
to a 1% test)?

reduce size of test ! more strict criterion for rejection!
! reject null hypothesis less often !

! less likely to falsely reject
more likely to incorrectly not reject

So there is always a trade o¤ between type I and type II errors when
choosing a signi�cance level. The only way we can reduce the
chances of both is to increase the sample size.
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Linear regression
Hypothesis Testing

The p-value is the probability of obtaining a test statistic at least as
extreme as the one that was actually observed, assuming that the null
hypothesis is true. The lower the p-value, the less likely the result is if
the null hypothesis is true, and consequently the more "signi�cant"
the result is, in the sense of statistical signi�cance.
This is equivalent to choosing an in�nite number of critical t-values
from tables. It gives us the marginal signi�cance level where we would
be indi¤erent between rejecting and not rejecting the null hypothesis.
We reject the null hypothesis when the p-value is less than 0.05 or
0.01(signi�cance level)

reject H0 if p-value � α

Once a model has been estimated (and carefully validated using
economic and statistical tests) it can be used for prediction or
forecasting.
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Linear regression

Main steps in regression:

Plot the data (scatter plot)

Basic descriptive statistics (data)

Model selection (parameter estimation)

Evaluation of Assumptions (residuals)

Model validation (assessment of the goodness of �t)

Forecasting
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Linear regression
Example

A shop is doing an experience over 5 months to determine the e¤ects
of advertising on sales. Data are presented in the next table

Month advertising costs�100e sale revenue�1000e
1 1 1
2 2 1
3 3 2
4 4 2
5 5 4

x y
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Linear regression
Example

scatter plot

1 0 1 2 3 4 5 6
1

0

1

2

3

4

5

6

x

y
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Linear regression
Example

We assume that the (linear) relationship between the revenue y and
the costs of advertising x is

y = β0 + β1x+ ε

Parameters estimation by the method of least squares (OLS)

SSxy = ∑ xiyi �
∑ xi ∑ yi

n
= 7 and SSxx = ∑ x2

i �
(∑ xi)

2

n
= 10

bβ1 =
SSxy

SSxx
=

7
10
= 0.7 and

bβ0 = y� bβ1x = ∑ yi

5
� bβ1

∑ xi

5
= �0.1

then, the regression line is given byby = bβ0 +
bβ0x = �0.1+ 0.7x
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Linear regression
Example

Estimation of SSE

SSE =
5

∑
i=1

�
yi � bβ0 � bβ1xi

�2
= (1+ 0.1� 0.7)2 + ...

...+ (4+ 0.1� 0.7� 5)2 = 1.10

Estimation of the population variance σ2

s2 =
SSE

n� 2
=

1.10
3
= 0.367 ) s = 0.61

therefore the majority of observations (data) belong to the interval of
amplitude 2s = 1.22 (around the regression line, no outliers)
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Linear regression
Example

0 1 2 3 4 5 6
1

0

1

2

3

4

5

6

x

y

recta de regressão
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Linear regression
Example

Hypothesis test: we consider the following null hypothesis

H0 : β1 = 0
H1 : β1 6= 0

and we choose α = 0.05 and since T = 5 we have 5� 2 = 3 degrees
of freedom. Then the rejection region (for the two-sided test) is
t < t0.025 = �3.182 or t > t0.025 = 3.182
Since

t =
bβ1

s/
p

SSxx
= 3.7 > t0.025

we reject H0, and we have that β1 6= 0, which means that x
contributes with information for the prediction of y in the regression
model.
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Linear regression
Example

Con�dence interval: 95%

bβ1 � t0.025sbβ1
= 0.7� 3.182

�
sp

SSxx

�
= 0.7� 0.61

so, with 95% con�dence we can say that the parameter β1 belongs to
the interval [0.09, 1.31] (The average revenue for each 100 euro spent
on advertising is between 90 and 1310 euro)
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Eviews
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Introduction to Eviews

Open the program by doubleclicking on the EViews icon

You will be confronted by the following view (Command Window)

The main menu options are shown at the top (File Edit Objects View
. . . ). If you click on any of these words a drop-down menu will appear
with further options.
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Introduction to Eviews

The �rst step in a project is to read the data into an EViews work�le.
EViews can import data from an Excel spreadsheet

File -> New -> Work�le
Work�le Range -> Work�le frequency -> Start date - End date

save the Work�le: File -> Save As
EViews describes data the following way: year (e.g. 1981);
year:quarter (e.g. 1992:1); year:month. (e.g. 1990:11);
month:day:year (e.g. 8:10:97). Cross-sectional data is stored as
undated or irregular.
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Introduction to Eviews
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Introduction to Eviews
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Introduction to Eviews
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Introduction to Eviews

DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Forecasting Methods February 17, 2011 41 / 50



Introduction to Eviews

Importing data: Proc -> Import -> Read Text-Lotus-Excel (from
the work�le window)
Importing data: File -> Import -> Read Text-Lotus-Excel (from
the command window)
Enter the names of the series that you wish to read into the edit box
(alternatively, if the names that you wish to use for your series are
contained in the �le, you can simply provide the number of series to
be read)
If the data are organized by row and the starting cell is B2, then the
names must be in column A, beginning at cell A2.
If the data are organized by column beginning in B2, then the names
must be in row 1, starting in cell B1.
The name of the uploaded series will appear in the Command
Window (joining c and resid)
Save the work�le
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Introduction to Eviews
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Introduction to Eviews

DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Forecasting Methods February 17, 2011 44 / 50



Introduction to Eviews

Double-click on the variable and View -> Graph (variable window)
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Introduction to Eviews

Descriptive statistics: View -> Descriptive Statistics -> Stats
Table (variable window))
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Introduction to Eviews

Open a group of variables:
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Introduction to Eviews

Important operators
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Introduction to Eviews

Transform, de�ne a new variable: Quick -> Generate Series.

Example: Genr -> y=dlog(x)

Exporting table of results:

Save table using Freeze/Name
Open table, select all, then copy and choose �formatted�, thus paste in
word �le.
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Regression with Eviews

Graphical representation of data

View -> Graphs -> Line (one or several variables)
View -> Graph -> Scatter (a group of variables)

Estimate the regression model

Quick -> Estimate Equation (main Eviews Window).
equation speci�cation: dependent variable, c, independent variable(s);
estimation setting: LS - Least squares

Saving equation: using Name Option

Interpret the output
Test: Click View->Coe¢ cient Tests->Wald-Coe¢ cient
Restrictions
View results in the equation window: Regression output: click View,
then Estimation output
Residuals: click View, then Actual, Fitted residual
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