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Multiple regression

Suppose we have: Y = β0 + β1X+ ε

Problems:
Even if straight line relationship were true, we would never get all
points on an XY-plot lying precisely on it due to measurement error
True relationship probably more complicated, straight line may just be
an approximation
Important variables which a¤ect Y may be omitted.

Solutions:
Multiple regression (same as simple regression except many
independent (explanatory) variables)
Nonlinear models (quadratic, log-log, lin-log,...)

Example

Sales-advertising equation can be extended to include variables such as
consumers income, price and the price and advertising of competitors�
products
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Multiple regression

General case: express a k variable regression model as a series of
equations (k equations condensed into a matrix form)

yi = β0 + β1x1(i) + β2x2(i) + ...+ βkxk(i) + εi, i = 1, ..., n

β0 is still the intercept
β1 to βk all called slope parameters (partial regression slope
coe¢ cients)
εi is the error term (or disturbance), with zero mean and constant
variance
The levels of these variables for the ith case are labeled
x1(i), x2(i), ..., xk(i)

Total variability in dependent variable Y = Variability explained by
the explanatory variables (Xi) in the regression + Variability that
cannot be explained and is left as an error (ε).
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Multiple regression

The dependent variable y has n random observations and can be
written as a system of linear equations:8>>><>>>:

y1 = β0 + β1x1(1) + β2x2(1) + ...+ βkxk(1) + ε1

y2 = β0 + β1x1(2) + β2x2(2) + ...+ βkxk(2) + ε2
...

yn = β0 + β1x1(n) + β2x2(n) + ...+ βkxk(n) + εn

DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Forecasting Methods March 17, 2011 4 / 40



Multiple regression

Or, in matrix notation

Y(n�1) = X(n�(k+1))β((k+1)�1) + ε(n�1)

Y(n�1) =

264 y1
...

yn

375 , X(n�(k+1)) =

26664
1 x1(1) ... xk(1)
1 x1(2) ... xk(2)
...

...
. . .

...
1 x1(n) ... xk(n)

37775

β((k+1)�1) =

26664
β0
β1
...

βk

37775 , ε(n�1) =

26664
ε1
ε2
...

εn

37775
DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Forecasting Methods March 17, 2011 5 / 40



Multiple regression

where

Y� is the column vector (type (n� 1)) of observations for dependent
(response) variable

X� matrix that portrays the n observations on k independent
variables x1, ..., xk, and the �rst column of 1�s represents the intercept
term (type n� (k+ 1)) (each column represents an independent
variable)

β� column vector of unknown parameters (type k+ 1)
ε column vector of error terms (type (n� 1)
The sum of the squared residuals is given by

SSE = UTU, where U = Y� bY
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Multiple regression

Multiple Regression analysis uses data (x1, ..., xk and y ) to make a
guess or estimate of what β0, ..., βk are.

β̂i is the marginal e¤ect of xi on y. It is a measure of how much the
explanatory variable xi in�uences the dependent variable (measure of
how much y tends to change when xi is changed by one unit)

In order to obtain the estimates β̂i we need to di¤erentiate

SSE = UTU =
n

∑
i=1

�
yi � β̂0 � β̂1x1(i) � β̂2x2(i) � ...� β̂kxk(i)

�2

with respect to the unknowns βi. Yields k+ 1 simultaneous equations
in k+ 1 unknowns (Normal Equations) (OLS), that is

∂ (SSE)
∂βj

= 0, j = 0, ..., k or XTXβ = XTY
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Multiple regression

If matrix X has rank (k+ 1), then XTX is invertible, and the system
has a unique solution. This solution corresponds to the estimates of
β̂i and it is given by bβ = �XTX

��1
XTY

Computer packages will calculate OLS estimates.
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Multiple regression

The standard errors (SE) of the estimated coe¢ cients are:

σ2 ! s2 =
SSE
GL

=
ETE

n� (k+ 1)

and the variance of bβi are given by the diagonal elements of the
variance-covariance matrix, that is,

s2
�

XTX
��1
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Multiple regression

Example

For k = 2 and 15 observation:

y = β0 + β1x1 + β2x2 + ε

we obtain the following normal system

�
XTX

��1
=

24 2.0 3.5 �1.0
3.5 1.0 6.5
�1.0 6.5 4.3

35 ,
�

XTY
�
=

24 �3.0
2.2
0.6

35 ,

SSE = ETE = 10.96
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Multiple regression

the β coe¢ cients are then given by:

�
XTX

��1 �
XTY

�
=

24 2.0 3.5 �1.0
3.5 1.0 6.5
�1.0 6.5 4.3

3524 �3.0
2.2
0.6

35 =
24 1.1
�4.4
19.88

35
and the standard errors are

s2 =
SSE

n� (p+ 1)
=

10.96
15� 3

= 0.91

Variance-covariance matrix

s2
�

XTX
��1

= 0.91
�

XTX
��1

=

24 1.83 3.20 �0.91
3.20 0.91 5.94
�0.91 5.94 3.93

35 ,
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Multiple regression

Var
�bβ0

�
= 1.83 ! SE

�bβ0

�
= 1.35

Var
�bβ1

�
= 0.91 ! SE

�bβ1

�
= 0.96

Var
�bβ2

�
= 3.93 ! SE

�bβ2

�
= 1.98

Finally we have the model

y = 1.10
(1.35)

� 4.40
(0.96)

x1(i) + 19.88
(1.98)

x2(i)
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Multiple regression

Some particular cases:

k independent variables (regression model of order k)

y = β0 + β1x1 + β2x2 + ...+ βkxk| {z }
k indep. var

+ ε

1 independent variable x with several powers

y = β0 + β1x+ β2x2 + ...+ βkxk + ε

Interaction models

y = β0 + β1x1 + β2x2 + β3x1x2 + β4x2
1 + β5x2

2 + ε

DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Forecasting Methods March 17, 2011 13 / 40



Multiple regression

Example: �rst order model

y = β0 + β1x1 + β2x2 + ε

E (y) = β0 + β1x1 + β2x2

where

β0 is the intersection with the yy� axis (the value of E (y) when
x1 = x2 = 0)
β1 : change in E (y) when x1 increase with 1 unit and x2 is �xed
β2 : change in E (y) when x2 increase with 1 unit and x1 is �xed
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Multiple regression

Example

Explaining House Prices: Data on N = 546 houses sold in Windsor,
Canada. Dependent variable, y , is the sales price of the house in
Canadian dollars. Four explanatory variables:

x1= the lot size of the property (in square feet)

x2 = the number of bedrooms

x3 = the number of bathrooms

x4 = the number of storeys (excluding the basement).
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Multiple regression

Statistical Aspects of Multiple Regression
Largely the same as for simple regression (the same residual
assumptions, the same output interpretation).

New hypothesis test (from R2) (F-test for the Overall Model)

H0 : β1 = β2 = ... = βk = 0 versus

H1 : at least one β is not zero

It is a global test in order to conclude about the model utility (used
to test whether any of the independent variables are linearly
associated with y)
The test statistics (F-statistics) is given by

Test statistic: F =
SSyy�SSE

k
SSE

n�(k+1)

=
R2

k
1�R2

n�(k+1)

=
mean square (model)
mean square (error)
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Multiple regression

If the p�value is less that the signi�cance level, reject the null
If we reject the null, that means that the chosen model it is adequate
and can be applied to our purpose. Does not imply that the model is
the best model.

Conclusion: the Test F permits to conclude that some of the
independent variables are important for the regression model (but we
don�t know exactly which ones)

The Test t permits to select the signi�cant independent variables.
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Multiple regression

Plots

plot of εi (ui) vs ŷi Can be used to check for linear relation, constant
variance

If relation is nonlinear, U-shaped pattern appears
If error variance is non constant, funnel shaped pattern appears
If assumptions are met, random cloud of points appears

Plot of εi (ui) vs xj(i) for each j. Can be used to check for linear
relation with respect to xj

If relation is nonlinear, U-shaped pattern appears
If assumptions are met, random cloud of points appears
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Multiple regression

Plot of εi (ui) vs i. Can be used to check for independence when
collected over time

If errors are dependent, smooth pattern will appear
If errors are independent, random cloud of points appears

Histogram of εi (ui)

If distribution is normal, histogram of residuals will be mound-shaped,
around 0

DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Forecasting Methods March 17, 2011 19 / 40



Multiple regression

Omitted Variable Bias: �Omitted variable bias�is a statistical term
for the following issues.

IF We exclude explanatory variables that should be present in the
regression,

AND these omitted variables are correlated with the included
explanatory variables,

THEN the OLS estimates of the coe¢ cients on the included
explanatory variables will be biased.
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Multiple regression

Practical Advice for Selecting Independent Variables

Include (insofar as possible) all independent variables which you think
might possibly explain your dependent variable. This will reduce the
risk of omitted variable bias.
However, including irrelevant explanatory variables reduces accuracy of
estimation and increases con�dence intervals.
Do t-tests (or other hypothesis tests) to decide whether variables are
signi�cant. Run a new regression omitting the explanatory variables
which are not signi�cant.
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Multiple regression

Multicollinearity
Intuition: if two variables are highly correlated they contain roughly
the same information. The OLS estimator has trouble estimating two
separate marginal e¤ects for two such highly correlated variables.
Symptom: Individual coe¢ cients may look insigni�cant, but
regression as a whole may look signi�cant (e.g. R2 big, F-stat big,
but t-stats on individual coe¢ cients small).
Common way to investigate if multicollinearity is a problem: Looking
at a correlation matrix for indep variables can be helpful in revealing
extent and source of multicollinearity problem.
Note: high correlation means that correlations between your indep.
variables > 0.9 (then you probably have a multicollinearity problem).
Solutions to multicollinearity problem

Get more data (often not possible).
Drop out one of the highly correlated variables.
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Multiple regression

Example

A regression relating to the e¤ect of studying on student performance.

y = student grade on test
x1 = family income

x2 = hours studies per day

x3 = hours studied per week.

But x3 = 7x2 �an exact linear relationship between two explanatory
variables (they are perfectly correlated). This is a care of perfect
multicollinearity.
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Multiple regression

In practice you will never get perfect multicollinearity, unless you do
something that does not make sense (like put in two explanatory
variables which measure the exact same thing).

Example

Macroeconomic regression involving the interest rate.

x1 = interest rate set by Bank of England

x2 = interest rate charged by banks on mortgages.

x1 and x2 will not be exactly the same, but will be very highly
correlated (e.g. R = 0.99).
If you include both x1 and x2 you will run into a multicollinearity
problem. So include one or the other (not both).
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Multiple regression - Dummy Variables

Dummy variables are variables that are created to allow for qualitative
e¤ects in a regression model.

A dummy variable will take the value 1 or 0 according to whether or
not the condition is present or absent for a particular observation.

If the variable has m levels, we include m� 1 dummy variables
Model with no interaction (same slope)

Model with interaction (allows the slope of y with respect to x to be
di¤erent for the two groups with respect to the categorical variable)
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Multiple regression

Example: (no interaction) suppose we are investigating the
relationship between the wage (Y) and the number of years of
experience (X) of workers in a particular industry. Our initial model is

y = β0 + β1x+ ε

De�ne d = 1 for male workers and d = 0 for female workers. The
overall equation becomes

y = β0 + β1x+ δ0d+ ε

where δ0 will measure the di¤erential between male and female
workers, having taken account of di¤erences in experience.
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Multiple regression

We can run a normal multiple regression with x and d as indep
variables. Assuming that δ0 is positive it means that the regression
line for male workers lies above that for female workers

δ0 measures the extent of the upward shift.

If d = 0, then y = β0 + β1x+ ε
If d = 1, then y =

�
β0 + δ0

�
+ β1x+ ε
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Multiple regression

y

{
}β0

y = (β0 + δ0) + β1x

y = β0 + β1x

slope = β1

d = 0

d = 1
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Regression multiple

Example: interaction between the dummy variable and the indep.
variable x

y = β0 + δ0d+ β1x+ δ1dx+ ε

If d = 0, then y = β0 + β1x+ ε

If d = 1, then y = (β0 + δ0) + (β1 + δ1) x+ ε
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Multiple regression

y

x

y = β0 + β1x

y = (β0 + δ0) + (β1 + δ1) x
d = 1

d = 0
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Multiple regression - Nonlinear models

OLS can be used for relationships that are not strictly linear in x and y
by using nonlinear functions of x and y (still linear in the parameters)
For example:

Can take the natural log of x, y or both
Can use quadratic, cubic, or inverse forms of x
Can use interactions of x variables

How to decide which nonlinear form?
It can be hard to decide which nonlinear form is appropriate. Here are
a few pieces of advice.

Sometimes economic theory suggests a particular functional form.
Experiment with di¤erent functional forms and use hypothesis testing
procedures or R2 to decide between them.
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Multiple regression

Example

Is there a quadratic pattern? Run OLS regressions on two models (linear):

yi = β0 + β1X1(i) + εi

and (non-linear)
yi = β0 + β1X1(i) + β2x2

1(i) + εi

and choose the quadratic model if its R2 is higher than the linear model
(In order to use it for choosing a model, all models must have the same Y).

Warning: you can only use R2 to compare models involving nonlinear
transformations of the independent variables.
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Multiple regression

Three cases, di¤ering in whether y and/or x is transformed by taking
logarithms

(1) linear-log yi = β0 + β1 log(xi) + εi
(2) log-linear log(yi) = β0 + β1xi + εi
(3) log-log log(yi) = β0 + β1 log(xi) + εi

After creating the new variable(s) log(y) and/or log(x), the
regression is linear in the new variables and the coe¢ cients can be
estimated by OLS.

In model (1), β1 is approximately the change in y for a 100 percent
change in x
In model (2), β1 is approximately the percentage change in y given a
1 unit change in x
In model (3), β1 is the elasticity of y with respect to x
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Multiple regression

y = 983,86Ln(x) + 390,44
R2 = 0,9936
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Multiple regression

Log models are invariant to the scale of the variables since measuring
percent changes

They give a direct estimate of elasticity

For models with y > 0, the conditional distribution is often
heteroskedastic or skewed, while log(y) is much less so
The distribution of log(y) is more narrow, limiting the e¤ect of
outliers

What types of variables are often used in log form?

Dollar amounts that must be positive
Very large variables, such as population

What types of variables are often used in level form?

Variables measured in years
Variables that are a proportion or percent
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Multiple regression - Weighted Least Squares

While it is intuitive to see why performing OLS on a transformed
equation is appropriate, it can be tedious to do the transformation

Weighted least squares is a way of getting the same thing, without
the transformation

Sometimes multiply/dividing all your indep. variables by some
variable (xi) is enough to �x the problem (heteroskedasticity).

Idea is to minimize the weighted sum of squares (weighted by 1/xi) in
order to obtain the parameter estimates
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Multiple regression - Modelling strategies

�The three golden rules of econometrics are test, test and test.�
David F. Hendry (1980)
Begin with a general model which nests the restricted model and so
allows any restrictions to be tested
These restrictions may be suggested either by theory �or by empirical
results
TEST 1: First ensure that the general model does not su¤er from
any diagnostic problems. Examine the residuals in the general model
to ensure that they possess acceptable properties (test for problems of
autocorrelation, heteroskedasticity, non-normality, incorrect functional
form etc.)
TEST 2: Now test the restrictions implied by the speci�c model
against the general model � either by exclusion tests or other tests of
linear restrictions.
TEST 3: If the restricted model is accepted, test its residuals to
ensure that this more speci�c model is still acceptable on diagnostic
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Multiple regression

Frequently (and recently) asked questions!

�Should I include all the variables in the database in my model?�
�How many explanatory variables do I need in my model?�
�How many models do I need to estimate?�
�What functional form should I be using?�
�Do I need to include lagged variables?�
�What are interactive dummies �do I need them?�
�Which regression model will work best and how do I arrive at it?�
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Multiple regression

Typical cross-section model

Maybe several hundred observations
Maybe 10-12 potential explanatory variables, some of which will be
dummy variables.
So plenty of degrees of freedom but still lots of potential models to try,
especially if you consider alternative functional forms, interactive
dummies
Maybe problems of multicollinearity, heteroskedasticity and
non-normality
Model selection is not just a matter of maximizing R̄2 over all possible
models (or some other criterion)
Use economic theory and past studies to identify �core� variables
Test exclusion restrictions from a general model but balanced against
misspeci�cation tests. �Informed� searches.
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Multiple regression

Typical time series model

Maybe only around a hundred observations
Maybe four or �ve potential explanatory variables, some of which may
be dummy variables.
Relatively few degrees of freedom but still lots of potential models to
try, especially if you consider alternative functional forms, lagged
variables and interactive dummies
As well as problems of multicollinearity, heteroskedasticity and
non-normality there may be issues of autocorrelation and
non-stationarity
Model selection is not just a matter of maximizing R̄2 over all possible
models
Use economic theory and past studies to identify �core�variables and if
possible functional form
Test exclusion and other restrictions from a general model but balanced
against misspeci�cation tests. �Informed� searches.
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