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The Foundations of the Financial Ratio Measurement

Abstract

The paper proposes a theoretical foundation for the �nancial ratio measurement, show-

ing that the multiplicative character of ratio components is a necessary condition for valid

ratio usage, not just an assumption supported by evidence. Also, by assuming that �rm

size is a measurable statistical e�ect, the paper o�ers a better de�ned discussion of limi-

tations of ratios. Thus a well-known limitation, non-proportionality, is re-assessed and a

new, potentially serious limitation is described.

The paper has two parts, one where ratio components are viewed as deterministic vari-

ables and the other were they are random. Such approach allows an easier understanding

of the expected ratio before the generalisation to encompass randomness takes place. In

the second part, ratio components are compared to `random e�ects' models. It is shown

that, in this case, a speci�c type of exponential Brownian motion leads to ratios which will

not necessarily drift.



The Foundations of the Financial Ratio Measurement

Introduction

Accounting academics have often considered the widespread use of ratios in �nancial analysis

as a somehow intriguing practice. As early as 1965, Horrigan noticed that �nancial ratios were

referred to in text books in almost apologetic tones as though their expected utility were low.

He tried to dissipate such doubts by describing statistical characteristics of some widely used

ratios, concluding that they may be useful after all.

In response to Horrigan's optimistic view, the late sixties uncovered promising applications

of ratios. Beaver (1967) and Altman (1968), for example, showed that ratios have the poten-

tial to help predicting bankruptcy. A few years later, however, the negative tone returned as

authors such as Deakin (1976) noticed that statistical distributions found in ratios may vary

widely. This prompted Frecka & Hopwood (1983) and other authors to propose ad hoc tech-

niques (such as applying transformations and then trimming or winsorising outliers) to deal

with ratios. Those and similar suggestions re
ect the widespread belief that no general rules

are applicable to the ratio method.

Adding to this belief, Lev & Sunder (1979) questioned whether the use of ratios is motivated

by well founded considerations or just by tradition. These authors claimed that almost all of

the assumptions required for valid ratio analysis are likely to be violated in practice. A more

balanced critique followed (Whittington, 1980) uncovering cases where ratios seem not to be

up to the task but distinguishing between normative and predictive applications, considering

the former as acceptable.

Both Lev & Sunder (1979) and Whittington (1980) stressed the fact that valid measurement

using ratios requires proportionality between components. Since such assumption seems to be

too restrictive, these authors advocated a regression rather than a ratio approach. Barnes

(1982) went one step further, suggesting that di�culties caused by skewed distributions in

ratios also stem from non-proportionality. He showed that the use of regressions or similar

functional forms instead of ratios should, in this case, eliminate both the problem of non-

proportionality and that of skewness in distributions.

A striking feature of the above-mentioned research is the small impact it had, both in

�nancial analysts' practice and in the way empirical research is carried out. One reason may

be some lack of awareness of related developments in sciences such as Industrial Economics.

Authors seem to pre-suppose that accounting data is an especial case, too complex to allow

simple, unifying explanations. As a consequence, interpretation of empirical results is avoided

or, when attempted, assumptions are timid, leading to conclusions which are too general to

be useful.

For example, in spite of insisting that ratios are aimed at removing size, to date the liter-

ature on ratio analysis did not come out with a de�nition of what size may be. However, if
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ratios are indeed aimed at removing size, no progress can be made unless speci�c de�nitions

of �rm size are tested against the ratio method.

A major step towards a more focused research was taken by McLeay (1986a; 1986b) who

suggested that, rather than drawing inferences from trimmed means, data should be left un-

adjusted and appropriate models should be developed to �t characteristics of accounting data.

This author then presented a few such models, amongst them a multiplicative
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model. More

recently, Tippitt (1990) proposed an inductive methodology to study the distribution of ratios

where components are also assumed to be multiplicative and Trigueiros (1995) and Tippet &

Whittington (1995) provided empirical evidence on the multiplicative character of ratio com-

ponents. The former author also o�ered a simple explanation for anomalies observed in the

distribution of ratios.

Given the above, it seems as though the time is ripe to develop a theoretical foundation

for �nancial ratio measurement, in the light of which ratios may be viewed as simple tools

governed by simple rules. This paper, while proposing one such foundation, reinforces intuitions

of authors such as McLeay (1986a), Tippett (1990) and Trigueiros (1995), showing that the

multiplicative character of components is a condition for valid ratio usage, not just a reasonable

assumption supported by empirical observation.

Also, by assuming that �rm size is a measurable statistical e�ect the paper is able to

o�er a more distinct discussion of limitations of ratios. Thus a well-known limitation, non-

proportionality, is re-assessed and a new, potentially serious limitation is described. The study

also suggests methodologies which may lead to more accurate ratios.

The paper is organised in two parts, one where ratio components are viewed as deterministic

variables and the other were they are random. Such approach allows overall characteristics of

ratios to be easily understood before being generalised to encompass randomness. Also, since

determinism is the limiting case where volatility is negligible, the lower bound on complexity

thus obtained helps interpreting the theoretical developments presented.

Validity of Deterministic Ratios

Financial analysis is just one of the many task domains where ratios are routinely used. There

is a multitude of other cases where the usefulness of ratios is evident. Scales in maps and

reduced models, for example, are ratios measuring the number of times a model is smaller

than in reality. Speed, 
ow, or pressure are also ratios, measuring the average change in the

numerator per unit change in the denominator. Derivatives, i.e., rates of change, are also

ratios of two small changes.

Most of the ratios used in �nancial analysis are similar to scales: sales margin, for instance,

measures the number of times pro�ts is smaller than sales; interest cover is the number of

times earnings is bigger than interest; the liquidity ratio is the number of times current assets

exceeds current liabilities, and so on.

2
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Consider two variables Y and X and suppose that there is a function Y = f(X) describing Y

in terms of X (�gure 1). A change in X , say, from A to B, is X

B

�X

A

and the corresponding

change in Y is Y

B

� Y

A

. The ratio, r, is

r =

Y

B

� Y

A

X

B

�X

A

:

From the de�nition of derivative, or by expanding f(X) in Taylor series around a point between

A and B, it is clear that r is the linear approximation to f

0

(X), the derivative of f(X). Ratios,

in fact, are the simplest formulation aimed at measuring how much a variable changes when

changes in a related variable take place.

When, between A and B, f(X) is a straight line, then the ratio exactly equals f

0

(X). In

this case, the rate of change of Y with X is a constant value, not a variable, and it measures

the slope of the chord AB. When, between A and B, f(X) is not a straight line, r equals

the average f

0

(X). The more convex f(X) is, the worst r approximates f

0

(X). r is called

�rst order di�erence quotient. In practice derivatives are calculated using �rst order di�erence

quotients measured over small intervals.

Logarithms perform, using di�erences, a task similar to that of ratios, i.e., measurement on

a logarithmic scale is a rate of change. In logarithms, changes, say, from one million to two

millions or from one billion to two billions will have the same value whose meaning will be

twice. When considering ratio validity requisites, this a�nity between ratios and logarithms is

stretched even farther.

Lev & Sunder (1979), Whittington (1980) and others have remarked that ratios are valid

where the relationship between the numerator and the denominator is a straight line passing

through the origin of co-ordinates, i.e.,

Y

X

= Constant:

By stating that the expected ratio should remain constant no matter changes in components,

such `traditional' de�nition aims at ensuring the removal of size from measurement. However,

it may also be revealing to observe, not only the function f(X) required to remove size, but

also f

0

(X), i.e., how changes in Y relate to those in X . The above-mentioned equality between

constant ratios and derivatives may be written

Y

X

=

dY

dX

where dY , dX are related changes observed in Y and X . As a consequence,

dY

Y

=

dX

X

: (1)
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A

B

X axis

Y axis

Figure 0
When the slope goes through the origin, a ratio is a derivative

Figure 1: Derivatives measure the steepness of a slope. Ratios, as linear approximations to

derivatives, do the same when slopes are straight lines.
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Equality (1) suggests that conditions for ratio validity are more explicit than those conveyed

by the `traditional' de�nition. In the following, two such conditions, scale-invariance and ex-

ponential components, are separately analysed.

In the �rst place, (1) shows that, in order for ratios to be valid, expected percentage changes

leading to numbers in the same report must be similar. For instance, when comparing reports

of two �rms, a percentage di�erence of 200% in Current Assets (Current Assets in one �rm is

expected to be three times larger than in the other) should also be expected when comparing,

say, Current Liabilities for the same two �rms or, indeed, when comparing any other variable

potentially useful as component of a ratio. In a time-series context (1) implies that any variable

eligible as component of a ratio is expected to grow at the same rate. If, say, Sales grows 12%

in a given year, then Earnings and other variables should also grow 12% during that year.

It should not be surprising that validity of ratios is conditional on the equality of percentage

changes in variables. Since ratios are scales, they are valid only where scaling of data makes

sense and this implies scale-invariance as a property of such data. Figure 2 provides an intuitive

description of scale-invariance: triangle A

0

B

0

C

0

is twice as large as triangle ABC whereas their

angles are similar. Scaling, in such case, makes sense and, indeed, a simple ratio is enough to

express the change whereby triangle ABC becomes similar in size to A

0

B

0

C

0

. However, scaling

would not make sense when describing the change of triangle ABC into DEF because their

angles are di�erent.

Scale-invariant changes such as those leading to triangleA

0

B

0

C

0

require that vectors fX

A

; Y

A

g,

fX

B

; Y

B

g and fX

C

; Y

C

g, when evolving along the dotted lines in �gure 2, all obey the same

function. Furthermore, such function must generate, in each vector, changes which are similar

in percentage, as in (1). The change from A to D, for example, is �ve times the change from

B to E or C to F . Should the three changes be the same in percentage, then triangle DEF

would have been a scale-invariant replica of ABC.

The condition of an expected percentage rate for di�erent numbers requires the existence of

a common characteristic underlying such numbers. Size is the only characteristic which all

numbers in a report are expected to share. In fact, it is commonplace that reports of large

�rms exhibit numbers which are many orders of magnitude larger than those in small �rms'

reports.

3

Percentage changes in variables should thus be viewed as re
ecting di�erences in the

size of two �rms or, in a time-series context, as the growth rate of the �rm.

Figure 2 also provides an intuitive representation of how size determines the expected

magnitude of numbers in a report. Suppose that the X-axis measures size and the Y-axis is

allowed to represent di�erent variables. Speci�cally, let Sales be expected to be four times larger

than size (corresponding to slope BB

0

) and let Earnings be just 20% of size (slope AA

0

). Thus

each variable has its speci�c scale to size which, in this example is Y

B

=X

B

= Y

B

0

=X

B

0

= � � �= 4

for Sales and Y

A

=X

A

= Y

A

0

=X

A

0

= � � � = 0:2 for Earnings.
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B

A
C

A’

B’

C’
X axis

Y axis

Figure 1
An example of scale invariance (ABC:A’B’C’)

Figure 2: An example of scale-invariance (triangles ABC and A

0

B

0

C

0

) together with a case

where scale-invariance does not apply (triangle DEF ).
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The expected value of the ratio Earnings to Sales, 5%, stems from the division of the two

scales to size involved (20% and 4 times). It is because the same change in size (di�erently

scaled) is present in each component that its removal may take place.

The removal of size from the expected ratio is not enough to ensure validity. Size must also

be removed from any deviation observed in relation to such expectation. If, say, an increment

in 1% in ROE meant, for a small �rm, just a slight improvement in relation to the industry

whereas, for a large �rm, the same increment meant a great achievement, then the measurement

would be justly regarded as meaningless.

Such condition, not contemplated by the `traditional' approach, is ful�lled where absolute

changes in components of ratios are proportional to their actual values since, in such case,

a ratio which is expected to be size-independent will remain size-independent even when a

deviation from expectation occurs. If � is the variable which drives changes dY or dX observed

in component Y or X , then

dY

d�

= s

y

Y and

dX

d�

= s

x

X

where s

y

, s

x

must be strictly independent of Y , X respectively. Or,

dY

Y

= s

y

d� and

dX

X

= s

x

d�:

This condition is known as the `Law of Proportionate E�ect' or simply as the `Gibrat Law'. It

is in the origin of the `multiplicative' family of variables, of which the exponential function of

� e.g.,

Y = Y

0

e

s

y

�

and X = X

0

e

s

x

�

: (2)

is the simplest instance. Y

0

, X

0

are arbitrary constant magnitudes. When � is the same for

both components of ratios, then scale-invariance is veri�ed where s

y

= s

x

.

In summary, validity of ratios requires percentage changes in components to be, not only

similar for di�erent components, but also independent of their actual values. Whereas the �rst

condition, scale-invariance, demands a speci�c type of relationship between components, this

second condition is a constraint which is imposed on the behaviour of individual components.

Notice that (2) refers to continuous rates of change s

y

and s

x

whereas (1) equates two

e�ective

4

rates. In fact, Y and X evolve similarly to amounts Y

0

, X

0

earning, during � , contin-

uous compound interest s

y

, s

x

.

When Y and X are random or when dY and dX are not in�nitesimal,

5

the distinction

between continuous and e�ective rates must be taken into account. A robust formulation of

scale-invariance should equate continuous rather than e�ective rates, i.e.,

E

�

log

y + dy

y

�

= E

�

log

x+ dx

x

�
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(where E denotes expectation) or, abridged,

d(log Y ) = d(logX): (3)

In fact, (3) encompasses (1) but retains its meaning under broader circumstances. Equality

(3) is also interesting in that, contrarily to (1), it may lead to constant expected ratios when

components are stochastic variables.

In a time-series context, the interpretation of (2) is straightforward. � is a clock measuring

a time-sequence starting when Y = Y

0

, X = X

0

. These initial values should be viewed as

measuring the actual size of the �rm, di�erently scaled according to `scales to size' speci�c to

each variable. s

y

, s

x

are real growth rates observed in Y or in X . These growth rates may vary

widely with time but they are expected to be similar for di�erent variables since they mostly

re
ect percentage changes in the size of the �rm. Deviations observed in s

y

or s

x

in relation

to the growth rate of the �rm, s, may be expressed as a di�erence n

y

= s� s

y

or n

x

= s� s

x

.

Supposing that, in a given year, Sales is $1,000 and Earnings is $100, then pro�tability

is 10%. If Sales grows s (the same as the �rm) but Earnings grows only s � n, then, in the

following year,

Earnings = 100 e

(s�n)�

= 100 e

s�

e

�n�

and Sales = 1; 000 e

s�

and the ratio decreases by e

�n�

irrespective of s. However small or large growth may be during

a given year, ratios remain comparable for di�erent years.

In a cross-section context � should ideally measure standardised size relative to industry

expectation. In practice, � measures the number of standard deviations separating each re-

alisation of Y or X from the corresponding industry expectation Y

0

, X

0

. As for s

y

, s

x

, they

should also be similar for di�erent variables, denoting the dispersion of sizes. Industries where

�rms range from the very small to the very large exhibit large s whereas those where size is

more regular exhibit small s.

For example, in a given industry the median Sales is $1,000 and Earnings is $100 whereas,

for report j, both Sales and Earnings are �

j

standard deviations above or below these `normal'

values, i.e.,

Earnings

j

= 100 e

s�

j

and Sales

j

= 1; 000 e

s�

j

:

Now consider k, another report re
ecting a more pro�table situation, where the same volume

of Sales generates Earnings n standard deviations above �

j

, i.e.,

Earnings

k

= 100 e

s(�

j

+n)

= Earnings

j

e

sn

and Sales

k

= Sales

j

:

The percentage di�erence in pro�tability between j and k, e

+sn

, is independent of �

j

. Thus, in

(2) or in similar functions, however small or large �rms are, di�erences in ratios are comparable

across �rms.
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Size

Earnings

B’

B

Size

Earnings

A

A’

Size

Earnings

A

-A

Size-independence is
inconsistent with the facts

Negative size
is impossible

Two ratios (A and -A)
are required

Figure 3: The modelling of the relationship between Earnings and size requires two ratios

(slopes A and �A) for positive and negative numbers respectively.

Moreover, the increment experienced by the ratio is also independent of Y

0

, X

0

. Inde-

pendence from industry norms, initial values, targets, benchmarks and so on, should not be

regarded as a minor condition for the validity of ratios as practitioners make decisions based

on measurement of deviation from these.

Non-exponential components lead to size- or norms-dependent ratios. Variables propor-

tional to size, (e.g., Earnings = 4 s� and Sales = 40 s�), satisfy the two `traditional' validity

requisites, linearity and convergence. Moreover, apparently, they also obey (1), at least if � is

not allowed to approach zero. However, deviations in ratios are in
uenced by norms and by

size. Where a gain d� = n is observed in Earnings, the ratio would increase by 10%n= s� . A

value of n = 1 means 5% extra pro�tability for the second �rm in a rank whereas, for the 10th

�rm it would mean just 1%. It may also be worth noticing that any variable that becomes

zero when � is zero, is inadequate to describe growth since an `amount' of zero money units

cannot grow.

A �nal issue worth addressing is the way negative components of ratios should be manipulated.

In the case of random components, for instance, it may be asked whether ratios should be

viewed as one distribution, or rather as a juxtaposition of two distributions, one for positive

and the other for negative realisations. Practitioners, when assessing industry norms, put aside

negative numbers. However, in other cases e.g., in the building of Z-scores, the use of a unique

ratio seems more appealing.

Figure 3 shows that, when using a unique ratio, the assumption implicitly accepted is
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that, either �rm size is allowed to be negative (which is impossible) or else, if size must be

positive, then variables such as Earnings or Working Capital where negative numbers occur

must be independent of size. In fact, the only line in �gure 3 where size is always positive

is BB

0

denoting size-independence. Since realisations of accounting variables, either positive

or negative, are indeed size-dependent (otherwise ratios would not be necessary anyway), line

BB

0

contradicts facts.

As a consequence, although the consideration of a unique ratio or distribution may bear

some appeal, when choosing to use one ratio solely practitioners should be aware that such

ratio will not remove size.

Limitations of Deterministic Ratios

Limitations of ratios may better be discussed by studying how characteristics of accounting data

may restrict (1) and (2) in practice. Limitations stemming from non-exponential behaviour of

variables (which lead to size- and norm-dependence), are better understood in a more speci�c

context and they will be studied elsewhere.

Probably the two most obvious characteristics of accounting data which may limit the feasi-

bility of (1) are (a) the presence of additive (i.e., independent of size) terms and (b) di�erences

in liquidity or other mechanisms able to prevent accounting variables from growing at similar

percentage rates. Other, less pervasive causes may be (c) the existence of `economies of scale'

leading to non-linear changes (Whittington, 1980) and (d) the use of components belonging to

di�erent reports.

The presence, in components of ratios, of additive (`intercept') terms is a well-known limitation,

generally presented as the main challenge to their valid use. Sales, for example, grows at a

di�erent rate from that of Earnings most likely because items such as Fixed Costs, Depreciation

or Interest, all terms of Earnings, may not necessarily evolve as strict proportions of size.

Distortion introduced by additive terms is likely to be negligible in most instances. Due to

their exponential character, accounting variables may easily attain values many times larger

than their additive terms (which are size-independent). For example, where the denominator

of a ratio is a�ected by an additive term �

x

then it evolve over time as

X = X

0

e

s�

+ �

x

instead of as in (2). Clearly, X tends to become much larger than �

x

. Moreover, as �gure 4

depicts, this distortion is local, i.e., it is signi�cant only where variables are not much larger

than their additive terms, asymptotically decaying for large sizes.

In a cross-section context, since observations belong to di�erent �rms, additivity requires

industry-wide `�xed costs'. Such overall costs must allow for the survival of small �rms.

6

There-

fore, where ratios are used for normative purposes, corrections of distortions caused by non-

proportionality are likely to be required only when assessing deviations of small �rms from
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Size

Ratio (y/x)

a > 0,  y/x = b + a/x

a = 0,  y/x = b

Figure 4

The local effect of an intercept term.

Figure 4: Ratio vs. size for di�erent additive terms (A to D and no additive term (E).
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industry norms. An industry-wide, signi�cant distortion would be possible only in industries

where �rms have similar sizes.

In a time-series context, since observations belong to the same �rm, additive terms such

as Fixed Costs may be large comparative to ratio components and signi�cant distortion is

plausible.

Additive terms may be corrected, when measurable and stable, by introducing them back

in (1). For example, Fixed Costs may be accounted for by writing

Change in Operating Pro�ts

Operating Pro�ts + Fixed Costs

=

Change in Sales

Sales

which is similar to using the ratio

Operating Pro�ts + Fixed Costs

Sales

for measuring Sales Margin.

Di�erences in liquidity (or any other causes having the potential to delay or accelerate the

growth of speci�c variables) create size-dependence in ratios. Requirements in Working Capital,

for example, often grow faster than available Liquid Funds. When the denominator of a ratio

grows faster than the numerator, large numbers form ratios which are smaller than expected.

Conversely, when the numerator grows faster than the denominator, large numbers have their

ratios distorted upwards.

As �gure 5 depicts, this limitation may lead to serious distortion in measurement. Since

the drift (per time- or size-unit) is proportional to the di�erence between rates of change in

components, even a small di�erence introduces in ratios an exponential correlation with size,

not just a disturbance with local e�ects only as in the case of additive terms.

This limitation is di�cult to correct. Contrarily to additive terms, distortion is correlated

with measurement, thus making it impossible to separate one from the other using the ratio

solely. Although drifts in ratios are easily accounted for, there is the danger of mistakenly

`account for' features of the �rm, such as a sustained extra e�ciency.

Small drifts may be approximately accounted for by introducing in one of the terms of (1)

a factor slightly larger or smaller than the unit whose e�ect is to diminish the correlation of the

ratio with size. The current ratio, for instance, may become stable, even during fast growth,

if one of its components is corrected, e.g.,

Change in Current Assets

Current Assets

= b

Change in Current Liabilities

Current Liabilities

which leads to the ratio

Current Assets

(Current Liabilities)

b

:

This heuristic method has the advantage of allowing easy parameter estimation and also of

correcting `economies of scale' a�ecting large sizes. However, it is unsatisfactory in that the

12



Size

Ratio

B

C

A

Figure 5

Size-dependence in ratios where the proportionate growth in the
denominator is (A) smaller, (B) larger, or (C) the same

as in the numerator.

Figure 5: Ratio vs. size when the percentage growth of the denominator is (A) smaller, (B)

larger or (C) similar to that of the numerator.
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expected ratio becomes di�erent from that without correction, thus precluding comparison

with other �rms or industry norms.

Finally, the removal of size from measurement takes place only when the same size is present

in both components. Valid candidates to components of ratios should thus belong to the same

report. Ratios such as ROE or ROI, for which it is frequent to take the denominator from the

previous year's report, will be correlated with size. Speci�cally, each case will exhibit a drift

(relative to the ratio's expectation) proportional to the �rm's actual rate of growth.

During periods of stable growth, ratios using lagged denominators may be �tted for time-

series analysis as, in this case, the expected ratio is constant. The presence of size in the

measurement may even be desired, e.g., when monitoring growth. However, other cases exist

where such presence may be spurious. EPS or PE ratios, for example, may be correlated with

size because the number of shares in issue does not necessarily re
ect the same size as that of

Earnings.

Figure 6 summarises the above discussion. The intuitive representation introduced in �gure

2 is used to illustrate limitations outlined above. Plot I shows scale-invariance. Sales is four

times size (slope BB

0

B

00

) and Earnings is 20% of size (slope AA

0

A

00

). A small additive term

subtracted from Earnings leads to plot II. Where Sales grows faster than Earnings the ratio

decreases with size (plot III). Finally, ratios with lagged denominators are stable provided

that growth is also stable (plot IV) but the expected ratio su�ers o constant displacement in

proportion to such growth.

It is clear from �gure 6 that linearity and convergence (the `traditional' de�nition) are

necessary but not su�cient conditions for the validity of ratios. Where chords AB, A

0

B

0

or

A

00

B

00

are also parallel with each other, then the ratio is constant but it may not necessarily

remove size; where chords are also perpendicular to the X-axis, then components refer to the

same size and the measurement is size-independent.

It is also clear that the removal of size requisite is di�erent from that of constant expected

measurement. Ratios may be constant but size-dependent (e.g., for lagged denominators plus

stable growth) or they may remove size but failing to remain constant (as for some stochastic

processes which may be considered to describe components).

Validity of Random Ratios

When studying random characteristics of ratios, most authors have assumed that di�culties

posed by their atypical behaviour are caused by distortions of normality. This is natural since

the Normal distribution has dominated statistical practice. Most random events are nearly

Normal or may be described as distortions of the Normal distribution. Indeed, any variable

whose realisation stems from the additive contribution of many small in
uences tends to be

normally distributed.
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Figure 6: Scale-invariance (I), additive terms (II), di�erences in percentage growth (III) and

lagged denominators (IV).
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However, accounting variables, as well as other events in Economics and Finance (such

as individual income and wealth, stock prices, size or assets of �rms) cannot be described as

resulting from additive contributions. Any such realisation is generated under a multiplicative

rather than an additive law of probabilities. For instance, each transaction leading to the

total amount of Sales or each new investment in Fixed Assets is itself a random event and

it contributes to the realisation, not by acting as an in
uence able to increase or decrease its

likelihood, but by accumulation.

7

Multiplicative variables tend to be lognormally rather than normally distributed (i.e., their

logarithms are nearly Normal

8

). They cannot be treated as distortions of normality as no

distorting mechanism would be able to create, in additive events, the wide range of values

generally found in multiplicative variables. It is frequent, for instance, that large cases in

a lognormal sample be �ve hundred times larger than small cases. Such proportion has no

counterpart in proportions observed, for example, between tall and short adults, a typically

additive variable.

When the multiplicative character of accounting data is ignored, features which would

otherwise be considered as commonplace (such as extreme positive skewness and outliers) risk

to be taken as oddities. This is literally what has happened with some previous research.

For example, most of the outliers often mentioned in relation to ratios probably are just a

consequence of multiplicative skewness.

Most of the realisations of lognormal distributions concentrate in a small region while only

a few extreme values spread out over a wide range (�gure 7 on the right hand side). In the

light of this, trimming, as advocated by authors such as Frecka & Hopwood (1983), is a cavalier

practice. Moreover, since the mechanism commanding the emergence of in
uential cases holds

in di�erent scales and trimming is, in some aspects, equivalent to a reduction in scale, where

in
uential values are excluded, new such cases tend to emerge.

9

As for those accounting variables which may take on negative numbers, �gure 8 shows how

their distributions may look like so that both positive and negative numbers are proportional to

size. Such distributions should be viewed as a juxtaposition of two multiplicative distributions.

Accordingly, in order to remove size, two separated ratios should be formed with positive and

negative denominators (corresponding to slopes A and �A).

Another reason why it is important to assume the correct type of statistical behaviour (additive

or multiplicative) of random variables is the fact that formulations adequate to describe inter-

relationships amongst variables are distinctly di�erent for each type. Additive formulations

implicitly assume that distributions are preserved when variables are added or subtracted,

which is not the case of multiplicative data where distributions are preserved when variables

are multiplied or divided.

For example, the simplest additive formulation is x

j

= � + e

j

, where x

j

is explained as
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Figure 7: Two stylised representations of bivariate distributions. On the left, a typically

additive distribution; on the right, the corresponding multiplicative distribution.
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Figure 8: Stylised representation of multiplicative bivariate distribution where one of the

variables may take on negative values.

an expected value, �, plus a random deviation, e

j

, speci�c to j. The multiplicative equivalent

would be x

j

= x

0

f

j

, where realisation j of x is explained as an expected magnitude, x

0

, the

same for all cases, times a random proportion of x

0

, f

j

, speci�c to j.

Where additive variable x is explained, not only as an expected value �, but also by d, an

expected deviation from � modelling the e�ect of an extra component of the variance of x,

then the above formulation becomes x

j

= �+d+e

j

. If d is a component of the variance of two

variables, y and x, it is possible to remove it frommeasurement by assessing y and x in the same

subject and then subtracting these two values. For instance, when medical observations are

assessed twice in the same patient, e.g., before, (y), and after, (x), a treatment, the di�erence

y�x, which measures the e�ect of the treatment, is free from spurious in
uences such as those

of sex or age because these, being present in both observations, cancel out when subtracted.

The ratio method is the multiplicative equivalent to the above formulation. In the case

of accounting data, �rm size (the `spurious' in
uence to be removed) is a component of the

variance of both the numerator, y, and the denominator, x of the ratio. For report j, y and x

are described as

y

j

= y

0

e

s�

j

f

yj

and x

j

= x

0

e

s�

j

f

xj

where, similarly to (2), y

0

, x

0

are expected magnitudes of y, x, e

s�

j

(the same for both variables)

is the number of times numbers from report j are expected to be larger or smaller than their

expected magnitudes and f

y

, f

x

are unexplained random proportions.

In the above `random e�ects' model,

10

y

0

, x

0

are speci�c to variables (they are independent

of the report considered) whereas e

s�

j

measures the relative position of report j irrespective
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of the variable considered. Since y and x are assessed in the same subject, i.e., in the same

report, their ratio will remove e

s�

j

, the component of the variance of y and x denoting the

e�ect of report j, thus making reports comparable.

It may be asked whether the two above-mentioned conditions for ratio validity are veri�ed

when variables are random. In the following the issue is studied using generative processes

obeying the Markov property.

11

Accounting numbers are viewed as the outcome of exponential

growth similar to (2) where, according to the random e�ects model, the continuous rate of

growth s

j

= s�

j

, re
ects the in
uence of �rm size upon the generation of report j irrespective

of the variable considered and x

0

; y

0

are speci�c to each variable, re
ecting expected scaled

size.

Consider y and x, two random variables which are respectively the numerator and the

denominator of a ratio. Suppose that, for report j, observed realisations of y and x are

generated by exponential di�usion processes

d(log y

j

) = s

j

dt+ �

y

dz

yj

and d(log x

j

) = s

j

dt+ �

x

dz

xj

; (4)

where continuous rates of change d(log y

j

) and d(logx

j

) stem from a deterministic term, s

j

dt

(the same for both variables and assumed to be constant during generation) plus a random

term, �dz

j

with dz

j

= z

j

p

dt, speci�c to each variable. z

yj

and z

xj

are time-independent

standard Normal random variables. The summation of all dt, t, re
ects the time during which

the generation of report j takes place, typically one year.

By exponentiation, (4) leads to

12

dy

j

y

j

= (s

j

+

�

2

y

2

) dt+ �

y

dz

yj

and

dx

j

x

j

= (s

j

+

�

2

x

2

) dt+ �

x

dz

xj

:

Ratios of variables generated as above are expected to be constant, evolving as

y

j

x

j

=

y

0

x

0

e

Z

j

;

removing s

j

, the `random e�ect' of size, from measurement. Z

j

is a Wiener process

13

with

variance (�

2

y

+ �

2

x

� 2 � �

y

�

x

) t (� measures correlation between z

y

and z

x

).

Notice that (4) obeys (3), the robust formulation of scale-invariance. In fact, when mod-

elling continuous-time processes, it is the continuous (s) rather than the e�ective (i) rate of

change which is expected to be similar in both components.

The literature on Financial Economics seldom distinguishes between continuous and e�ec-

tive rates because such distinction would be irrelevant given the context. However, when the

issue of interest is the existence or not of ratios exhibiting constant expectation, the distinction

cannot be overlooked. For instance, if the two processes above were assumed to equate e�ective

rates they should be described as

dy

j

y

j

= i

j

dt+ �

y

dz

yj

and

dx

j

x

j

= i

j

dt+ �

x

dz

xj

: (5)

19



Even where the deterministic term i

j

dt is the same in both components, ratios whose com-

ponents evolve according to (5) drift exponentially (Tippett, 1990) by �

2

x

=2��

2

y

=2 per time unit.

Limitations of deterministic ratios are applicable to the case of random components by assessing

their impact on expectation. For example, additive terms �

y

or �

x

in the numerator or in the

denominator respectively, are corrected by ratios

y

j

� �

y

x

j

or

y

j

x

j

� �

x

In addition to such limitations and to those stemming from non-exponential components, the

fact that, as seen above, the variance of stochastic ratios is expected to increase with time,

should also be considered as a limitation whereby the second condition for ratio validity is

contradicted. This issue will be studied elsewhere.

Final Comments

Developments presented in the paper suggest the following: (a) rather than just linearity and

convergence, valid ratios require exponential scale-invariance of changes in components; (b)

�rm size may be viewed as a statistical random e�ect speci�c to each report; (c) expected

magnitudes of variables may be viewed as size which has been scaled, ratio expectation stem-

ming from such underlying scales; (d) generative processes equating (expected) continuous

growth rates proportional to the actual size of the �rm lead to ratios which will not necessarily

drift.

The paper requires empirical research able to ascertain, namely, the extent to which scale-

invariance holds for di�erent ratios and, for individual components, the relative importance

of size comparative to other statistical e�ects. Notice that, since lognormality implies the

exponential character of components, the second condition for ratio validity seems to be already

well supported by empirical evidence.

14

A question the paper did not pursue is the extent to

which deviations from strict lognormality make the measurement dependent on norms or size.

The generative mechanism used in the paper should not be regarded as an attempt to

explain how accounting variables are formed in reality.

15

Rather, it is aimed at showing how

stochastic components obeying a multiplicative `random e�ects' model may lead to ratios

exhibiting constant expectation. Drifts, therefore, should no longer be viewed as intrinsic to

ratios and valid measurement using ratios is attainable, at least in theory. As a consequence,

it makes sense to assess deviations from such valid measurement, or to try to improve ratios

so as to bring them closer to such benchmark.

A question the paper may have contributed to answer is whether the use of ratios is mo-

tivated by tradition or by well founded considerations. It is now clear that a set of explicit

conditions is required for the validity of the ratio method. Moreover, such conditions agree

with, and require, the type of data found in accounting reports. Given this, it may then be
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asked why some authors were led to recommend ad hoc approaches to deal with ratios. Reasons

seem to be two fold: �rst, they assumed that �nancial variables are additive; second, they also

avoided discussing the way �rm size in
uences ratio components. Since �rm size remained a

rather abstract concept, the same applied to the question of whether ratios remove size or not.

Moreover, it seems as though lack of familiarity with numerical methods may have led

some authors to make mistakes or, in other cases, to misleading conclusions based on verbatim

interpretation of formul�.

As for mistakes, it is worth exposing the pitfall, coined by Eisenbeis (1977), that `log-

transformed variables give less weight to equal percentage changes in a variable where the

values are large than when they are smaller' (p. 877). The pitfall consists of calculating

percentages of a log-transformed measurement as this is equivalent to calculating percentages

of percentages. Undoubtedly, Eisenbeis' unjust ban on logarithms, later propagated by authors

such as Barnes (1982), may have scared away early attempts to �t adequate models to the

distribution of ratios while fuelling the use of ad hoc techniques such as those proposed by

Frecka & Hopwood (1983).

An example of verbatim interpretation of formul� is the often-quoted statement that al-

most all of the assumptions required for valid ratio analysis are likely to be violated in practice

(Lev & Sunder, 1979). The statement is formally correct, of course, and it might as well be

applied to Newton's Laws of Gravity and to many other models considered as good enough ap-

proximations in normal circumstances. The statement is misleading because assumptions may

be violated without invalidating a methodology. In fact, (a) distortion, in spite of its presence

in mathematical models, may be small in speci�c cases (e.g., the case of non-proportionality);

and (b) when weighing accuracy against intuitive interpretation, it may happen that such

trade-o� is favourable to a less accurate methodology.

In the ratio method this seems to be the case. Ratios, having one degree of freedom only, are

able to measure deviations from expected proportions between components. The condition of

scale-invariance is a consequence of this: one unique parameter can only deal with the common

growth of components. However, by allowing the measurement of percentage deviations from

such expectation, ratios go to the point as that is exactly what practitioners need to know in

order to make decisions.

Therefore, rather than simply expand the complexity of models so as to cope with limi-

tations of ratios, research on the �nancial ratio measurement should focus on correcting lim-

itations without changing the speci�c characteristics of the measurement, a more demanding

task.

Notes

1. `Multiplicative', `proportionate', `exponential' or `logarithmic' are terms variously used in the literature

on the growth of �rms to designate a family of skewed distributions related to proportionate growth.
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2. In scales, original units of measurement are no longer present. A margin of 16%, for example, is a

percentage with no units attached. Ratios are scales when components are measured in the same unit,

money in this case. When the unit in which the numerator of a ratio is measured is di�erent from that

of the denominator, ratios may retain both units as in the case of Earnings per Share, or just one unit,

as for Debtors Days.

3. If variables such as Earnings were not related to size, then pro�tability and dividend yield would be

diluted by any increase in size and �rms would carefully avoid growing.

4. The relationship between an e�ective (i) and the underlying continuous (s) rate of change is s = log(i+1).

Continuous rates are also called `force' of interest, which underlines the continuous character of the

in
uence they model.

5. In�nitesimal changes are those which may be made so small that they approach zero as a limit.

6. For example, an industry-wide average cost of $3,850,000 for food manufacturers in the UK in 1987

would represent only 0.2% of United Biscuits earnings but it would equal or surpass the turnover of 5%

of the �rms in the same industry.

7. Accumulations of random events tend to be multiplicative, as opposed to additive, because the likelihood

of realisations is conditional on the occurrence of a chain of several previous events. Such likelihood thus

stems from multiplying, rather than adding probabilities.

8. Lognormality in variables such as Sales, Earnings and Assets, received a great deal of attention in texts on

the theory of the growth of �rms. In the accounting literature, McLeay (1986a) mentions lognormality in

variables which are sums of similar transactions with the same sign such as Stocks, Creditors or Current

Assets. Recent empirical evidence (Trigueiros, 1995) suggests that lognormality is widespread.

9. A regression where Sales explains Earnings (using data from the UK Electronics industry, 1986) illustrates

the above. When the Cook Distance (Cook, 1977) is used to identify in
uential cases, two �rms (G.E.

and STC) are singled out as outliers. After trimming these two �rms, three new �rms (SUNLEIGH,

ENGLISH ELECTRIC and BROTHER INTERNAT) become in
uential. After also excluding the three

�rms, SYNAPSE COMPUTER emerges with a new Cook Distance of 80, a value which indicates extreme

in
uence.

10. An e�ect models the impact of strati�cation or co-variance on expectation. In
uences such as the two

possible sexes are named `�xed e�ects' because such strati�cation is deterministic. Where the strati�-

cation is itself a random variable, e�ects are called random. See, e.g., Snedecor & Cochran (1965, 9

th:

edition, p. 237).

11. The Markov property is veri�ed in those variables where only the most recent realisation contains infor-

mation useful to predict future realisations. Process (5) or others of the same type are extensively used

to model earnings or stock prices as, without the Markov property, investors would be able to avoid risk

(Ball & Watts, 1972, pp. 665{666). In the literature on ratios, Lev (1969) is an early example of their

use. More recently, Tippett (1990) also used them to induce the behaviour of ratios.

12. Rules of calculus do not apply to stochastic variables. Readers interested in these matters (but with

limited mathematical training) may probably do better with texts on Financial Economics (e.g., Dixit &

Pindyck, 1994, pp. 59{82) than with those on stochastic processes.

13. Wiener processes (Brownian motion) are continuous-time, obey the Markov condition, have independent

increments and are Normal (with zero mean and variance proportional to time).

14. Such evidence is based on those, mostly quoted �rms, whose accounts are collected into �les such as

EXTEL (in the UK). Samples including smaller �rms may be not strictly lognormal (Hall, 1987).

22



15. In the case of variables such as Fixed Assets, Net Worth and the stock underlying Sales, the generative

mechanism used in the paper may approach reality or, at least, it is the simplest instance able to do so.

However, t in (4) should refer to the birth of the �rm, not to the beginning of the year and s

j

should not

be viewed as constant.
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