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Introduction

In this study we develop a new approach to the problem of extracting meaningful informa-

tion from samples of accounting reports. We show that Neural Network-like algorithms are

capable of implementing this approach. Such tools are able to automatically build optimal

structures similar to �nancial ratios.

Some results are presented. They suggest that this approach e�ectively avoids the

search of appropriate ratios by the analyst along with some other major drawbacks of the

multivariate statistical modelling techniques used in Accountancy. The organization of the

Neural Network models also outlines internal features of accounting data, providing new

insights into the relative importance of variables for modelling a particular relation.

Accounting statistical models: Accounting reports are an important source of infor-

mation for managers, investors and �nancial analysts. Statistical techniques have often been

used to extract information from databases where accounting reports and related outcomes

are gathered. The goal is to construct models suitable for prediction or for isolating the

main features of the �rm.

An early model is that of Beaver [5] who used ratios of accounting variables to predict

�nancial distress. Many other researchers followed him, mainly using more sophisticated

statistical tools (see [2]). Other examples of accounting models are the prediction of bond

ratings [16] and the relationship between market and accounting risk [6].

The procedures used to obtain these models are quite similar. The �rst stage consists of

forming a set of ratios from selected items on an accounting report. This selection is typically

made in accordance with the beliefs and expectations of researchers. Next, the normality

of these ratio variables is discussed and transformations are applied. Finally some linear

modelling technique is used to �nd optimal parameters in the Least Squares sense. Linear

Regressions and Fisher's Multiple Discriminant Analysis are the most popular algorithms.

However Logistic Regression can also be found in some studies. Foster [11] o�ers a review

of accounting modelling practice.
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All such models use ratios as predictors. The use of ratios as input variables in ac-

counting models seems to be an extrapolation of their normal use in �nancial analysis.

Ratios are supposed to capture in a simple and standard way interesting features of the

�rm. However, there are di�culties involved in using ratios. As M meaningful accounting

variables can generate up to M

2

�M ratios, some research seems to get lost in a proli�c

use of all sorts of combinations of variables. It is easy to �nd in the accounting literature

models with forty and more predictors. Moreover, the cross-sectional distribution of ratios

seems to exhibit a non-regular behaviour. Horrigan [15] (1965) is an early work on this

subject. He reports positive skewness on ratios, explaining it as a result of e�ective lower

limits of zero for these variables. Other studies followed, [21] considering skewness as an

accident and implicitly suggesting the pruning or winsorizing of distributions. Deakin [9]

(1976) reacted by showing that the positive skewness shouldn't be ignored and Buijink [8]

reported the persistency of this feature over a large period. Barnes [3] (1982) suggested that

skewness on ratios could be the result of deviations from strict proportionality between the

numerator and the denominator. Frecka [12] (1983) tried to achieve normality by pruning,

proposing such procedure as the standard way of dealing with the problem of deviations

from normality.

Following the literature on Ratio Analysis, accounting statistical models try to obtain

improvements in normality by empirically pruning out tails and imposing transformations

which are not always the most appropriate ones. The model after pruning, centering, scaling

and rotating becomes di�cult to interpret. The entire routine tends to a broad empiricism.

Contents: In the �rst chapter of this study we question the use of ratios as input variables

for statistical modelling in Accountancy. We show that �nancial ratios are a particular case

of more general descriptors. In chapter 2 we show that Neural Network optimization is

consistent with such descriptors: In section 2.2 we compare our method with the one typical

in accounting literature, using a well-known problem of classi�cation. The improvements

obtained in the interpretability of the resulting model by means of non-standard training

procedures are discussed in section 2.3.
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Chapter 1

The Statistical Characterization of

Accounting Data

So far ratios have been used as input variables for statistical modelling in Accountancy. In

this chapter we question their use. Ratios cannot account for non-proportional and non-

linear features. On the other hand, the lognormality observed in items suggests the use of

multiplicative or proportional models of which ratios are the simplest example.

In what extent is the lognormal nature of items compatible with non-proportional and

non-linear relations between them? The development of new models rely on the ability to

answer this question. Therefore, the �rst task we undertake in this chapter is the answering

of the above question as a necessary step towards the building of appropriate tools. We

�rst recall a known mechanism to generate the probability distribution observed in cross-

sections. Then we study the extent in which �nancial ratios and multi-variate relations

are consistent with such a mechanism. Finally we introduce on it conditions leading to

non-proportional and non-linear relations.

We show that there is no contradiction between proportional mechanisms and a class

of non-proportional relations. Financial ratios emerge as a particular case of more general

descriptors. They can be extended so as to include non-proportionality.

Empirical evidence: Observation suggests that cross-sectional samples of accounting

items are lognormal. McLeay [19] observed lognormality in large samples of accounting

items which are sums of similar transactions with the same sign like Sales, Creditors or

Current Assets. Along with the items already studied by McLeay, we found that lognor-

mality cannot be rejected also for stock variables like Fixed and Total Assets or Net Worth

and non-accounting items related to size like the number of employees. Positive values of
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Figure 1: The relation between Sales and Total Assets in log space. All groups together

1984. The dashed line is the axis y = x.

accounting items having both positive and negative cases, like Working Capital, Earnings,

Gross Funds from Operations and the absolute value of the negative cases of these items,

are lognormal as well.

We also gathered evidence on the lognormality of small, homogeneous, samples. We

examined 18 accounting items for a period of �ve years (1983-87) belonging to 14 industry

groups in the U.K. We concluded that lognormality | either two or three-parametric, see [1]

| is a general quality associated with the behaviour of the observed items.

Along with lognormality, it is easy to show that accounting items belonging to the same

report share most of its variability. In cross-section, they can be described as a unique,

common, process with some particular variability superimposed.

The results referred to here are presented and discussed in [30].

Empirical models to explain lognormality: The observed items are lognormal. How

far can we go in the building of appropriate models for accounting relations just by consid-

ering this empirical �nding?

The �rst consequence of our study is that, once we move into logarithmic space observa-

tions can be explained as the mean of the transformed variable plus a deviation from that

mean. That is, any lognormal item, x, is described in log space as an expected value, �

x

,

2



plus a residual, e

x

:

For the j

th

�rm in a sample, log x

j

= �

x

+ e

x

j

When we deate one item with the median of the same item for that industry the residuals

are Gaussian in log space. Lev and Sunder [18] discuss appropriate estimators for the central

trend of several possible distributions. Amongst others, the median is also analysed.

Since log x, the mean value of log x, is a good estimator of �

x

, exp(log x) will be a good

estimator of the median of x. Then,

for the j

th

�rm in a sample, the quotient

x

j

exp(log x)

= exp(e

x

j

) (1)

will reect the number of times the case x

j

is larger or smaller than the standard for its

industry. If x

j

is Sales of �rm j, such quotients would reect j

0

s relative position and

relative progress. In general these position quotients seem not to be especially useful in

accountancy. They measure size instead of controlling for it.

Financial ratios: Since our items are lognormal, �nancial ratios y=x can be written in

log space as a di�erence of two position quotients de�ned in (1):

For the j

th

�rm in a sample, log(y

j

)� log(x

j

) = (�

y

� �

x

) + (e

y

� e

x

)

j

(2)

This expression is obtained just by subtracting two log items. It is similar to

y

j

x

j

= R� f

j

with R = exp(�

y

� �

x

) and f

j

= exp(e

y

� e

x

)

j

:

Here, we arbitrarily used natural logarithms. R will be the expected proportion in which y

di�ers from x. A good estimator for R is exp(log y � log x), the median of the ratio | in

log space, the di�erence between two mean values |.

The ratio model: Discussion Ratios are proportions. Lognormal items become homo-

geneous in a proportional space and their di�erence is a proportion too. These facts seem

to match. But, is the ratio model adequate beyond this apparent matching?

The sole consideration of lognormality on accounting data is not enough to validate the

�nancial ratios themselves as appropriate models. Such an empirical basis cannot prevent

the ratio model from being questionable. Ratios are just the simplest relations allowed by

the lognormal nature of items. Are ratios able to model all the relations important for

�nancial analysis and knowledge acquisition?

3



Accounting research seems to give a negative answer to the above question. It is usual

to �nd in the literature a tone of pessimism about the usefulness of ratios. The existence

of non-proportional and non-linear relations between items are the main causes of concern.

Whittington [32] explains that

... in an empirical relationship between a pair of accounting variables, two

of the conditions necessary for proportionality are quite likely to be violated.

Firstly, there may be a constant term in a relationship (...). Secondly, the

functional form of the relationship may be non-linear.

The potential convenience of more elaborated models like regressions has also been stressed

by Barnes [3]. He showed that in any regression Y = A+BX the distribution of Y=X will

be skewed whenever A 6= 0. Ratio standards would be likely to misinform since no central

trend would exist.

1.1 Ratios and Lognormality

In this section we use the well known proportional e�ect as a basis for explaining ratios.

The usual �nancial ratio emerges as a simple consequence of a strong, common, e�ect.

The proportional e�ect has been quoted by McLeay [19] as a mechanism able to explain

the existence of lognormality in a few items. He suggests a qualitative distinction between

two kinds of items. The �rst kind would include items reecting size. The second one,

items which cannot \be treated as size measures [19]". In our study the proportional

e�ect explains size and deviations from size. No attempt is made to specify the particular

behaviour of any item. Items having negative cases are considered as a subtraction of two

positive ones and explained as such.

Constant and Proportional E�ects: The Gaussian distribution is often interpreted as

the result of many independent elementary perturbations. This approximation entails the

strong assumption of a constant e�ect. For example, the probability of getting odds, when

tossing a fair coin, is a constant value of 1=2 no matter the number of games or the size of

the coin. And the probability of getting particular proportions of odds when tossing a coin

in several sequences of games draws a Gaussian distribution. This constant probability of

1=2 governing the game referred to is what we call a constant e�ect. It leads to normality.

If, however, any random change dx su�ered by a variable x is proportional to the value of

x itself, the e�ect is no longer constant. It is a proportional e�ect and a Gaussian generative

process will not be able to explain it.

4



Gaussian variables spread their �nal realizations around an expected value. They are

bounded: It is most unlikely to �nd cases many orders of magnitude larger or smaller

than the expected. This is because the random changes leading to such realizations are

expected to be similar | a constant e�ect. Contrasting with such a mechanism, when

the random changes leading to any �nal realization are expected to be similar only when

taken as proportions of the momentary value of the variable, the e�ect is proportional. The

probability distribution of such variables is unbounded. It exhibits strong positive skewness.

The observed samples contain cases which are many orders of magnitude larger than the

expected ones.

The Gibrat Law: The lognormal probability distribution can be viewed as a result of a

generative proportional mechanism. This fact is known as the Gibrat law [13]. Let x be the

position of an accounting item. If dx, the random transactions a�ecting x, are expected to

be proportional to x itself,

the quotient

dx

x

will be expected to be independent of x.

So, if we can �nd a function

z = f(x) such that dz =

dx

x

(3)

then the new variable z will obey the assumption of a constant e�ect. In the case of dz

being many, independent, perturbations f(x) is the logarithmic function. Aitchison and

Brown [1] contain a detailed explanation of this reasoning. Singh and Whittington [25]

explore the growth of �rms as governed by the Gibrat law.

Notice that the logarithmic function emerges as a result of the Central Limit theorem.

The normality of the process governing dz is not required as an assumption, whenever the

dz are many, independent, changes.

The relative growth: Any elementary perturbation dz will produce a small change dx

which is expected to be a proportion of x. Therefore dz can be seen as an elementary

relative growth and z as an expected relative growth.

Gaussian �nal realizations z

j

= log x

j

are explained in the same way. Firstly, by a

central trend �

x

which is the expected one for the average relative growth a�ecting all cases

in the sample. And secondly, by each particular departure from �

x

, the e

x

j

, a�ecting only

�rm j. These e

x

j

are residual average relative growth: When back in multiplicative space,

the e

x

j

are the proportion in which the average relative growth of �rm j is above or below

the expected.

5



1.1.1 Financial Ratios

Now we study the joint variation of more than one item. The notion of �nancial ratio as a

descriptor stems from the assumption of an e�ect common to all items for the same �rm.

As we saw, dz = dx=x, the elementary relative changes of x, have the structure of a

relative growth. z is Gaussian as dz is commanded by a constant e�ect.

Modelling a common e�ect: We now assume that in the case of accounting data this

Gaussian relative growth is the sum of two components. A common and strong component,

�

j

, which accounts for random changes acting over the �rm j as a whole and therefore is the

same for all the 1; � � � ; i; � � � ;M items belonging to the same report. And a weak residual,

"

i

j

, particular to item i.

Let x and y be the position of two accounting items for �rm j. dx

�

and dy

�

are random

changes in x and y caused by �, a disturbance inuencing both. Considering the way such

common source of variability a�ects the relative growth which is about to generate x and

y we can say that

dy

�

y

�

=

dx

�

x

�

This basic mechanism yields �nal realizations of x and y obeying general expressions of this

kind:

log y

�

� C

y

= log x

�

� C

x

C are constants depending on the initial values of x and y. Here, the superscripts are used

for identifying corresponding items, not as exponents.

Since we de�ned "

x

= log x� log x

�

and "

y

= log y� log y

�

as the variability unexplained

by �,

we have: log(y)� "

y

� C

y

= log(x)� "

x

� C

x

If the cross-sectional distribution of the common e�ect is dictated by the Gibrat law it will

be lognormal. In this case, when we consider the whole sample of 1; � � � ; j; � � � ; N �rms, it is

easy to see that the statistical model describing the relation between y and x for �rm j is

log(y

j

)� log(x

j

) = (�

y

� �

x

) + ("

y

� "

x

)

j

(4)

a form similar to equation (2), the one based on empirical manipulation. �

y

and �

x

are

the expected values of log y and log x. Therefore ratios can be viewed as speci�c models

describing the common component of the variability of y and x when both x and y are

supposed to be �nal realizations of a unique proportional mechanism. The residuals are

independent of the common e�ect.

6



Notation: Equation (4) can be written in the form of a ratio:

y

j

x

j

= R� f

j

with R = exp(�

y

� �

x

) and f

j

= exp("

y

� "

x

)

j

.

To express the di�erences between expected values we use the notation �

y=x

= �

y

� �

x

or, for the ratio standards, R

y=x

and so on. We write the di�erences between residuals as

"

y=x

= ("

y

� "

x

). Superscripts are intended to avoid too many subscripts and should not be

taken as exponents. They are used only in the C

j

; "

j

, e

j

and f

j

.

A good estimator for �

y=x

is log y � log x, the di�erence between the mean values of y

and x in log space. It is, of course, coincident with the median of the ratio expressed in

logs. If an homogeneous sample of accounting reports is to be taken as a reference for the

building of standards, the value of R

y=x

, the ratio standard, should be calculated as

R

y=x

= exp ( log y � log x )

or directly as a median. And if we want to build a new variable from the residuals of the

�tted model we can calculate each "

y=x

as

"

y=x

j

= (log y

j

� log y) � (logx

j

� log x)

Notice that the "

y

or the "

x

are di�erent from the e

y

or the e

x

in 2, the empirical formulation.

However, ("

y

� "

x

)

j

= (e

y

� e

x

)

j

for any j.

Ratios as functional relations: As described here, ratios are functional relations. That

is, they are not intended to explain one item in terms of the other one. Ratios yield a

contrast between two items both a�ected by errors. Such a contrast measures how big

are the discrepancies between the ratio components. Therefore, the above description is

intended to assess deviations from standards, not to prediction.

The weak, particular, e�ect: "

y=x

, the di�erence between residuals, can be interpreted

as the weak e�ect particular to y when x is taken as a proxy for the common e�ect. Unless

we know �, we cannot determine exactly the real weak e�ects associated with individual

items. We know "

y=x

but we don't know each "

x

and "

y

, the components of such a residual

di�erence.

Conversely, it is impossible to determine the value that �, the common e�ect, assumes

for �rm j unless we know the components of the residual di�erence. Therefore, both the

common e�ect and the particular one are not directly measurable. Ratios reveal what is

di�erent in their components, by concealing what is common in them.

7



How to model the common e�ect: The Case-Average Model. Is it possible to

build a variate reecting only size and having no particular variability of its own? As we

saw, the common e�ect is not directly accessible. However, there is a way of isolating it by

building a model which performs the function inverse of ratios. If we build, for each case

in a sample, geometric means (in log space, averages) of items we can ideally self-smooth

their particular components so that the common e�ect emerges.

Considering a group of items x

1

; � � � ; x

i

; � � � ; x

M

selected as appropriate, and a common

e�ect, s, we explain their variability in log space as the result of an e�ect, � = log s, common

to them all, plus a residual, "

i

particular to each item. In the case of �rm j,

log(x

1j

+ �

1

) = �

j

+ "

1

j

log(x

2j

+ �

2

) = �

j

+ "

2

j

.

.

.

.

.

.

log(x

Mj

+ �

M

) = �

j

+ "

M

j

The �

i

are the base-lines eventually present in x

i

(see section 1.2.2 below). We now

average the 1; � � � ; i; � � � ;M items case by case. For �rm j,

�

j

=

1

M

M

X

i=1

log(x

ij

+ �

i

) +

1

M

( "

1

j

+ "

2

j

+ � � � + "

M

j

)

Since an average of independent random deviates tends to zero with 1=M , the number of

components, we would have for a large M

�

j

�

1

M

M

X

i=1

log(x

ij

+ �

i

)

or the equivalent, in ratio form,

s

j

�

M

Y

i=1

(x

ij

+ �

i

)

1

M

(5)

Once obtained, � = log s could be used as a proxy for size in statistical models. In [30] we

further discuss this topic.

Assumptions underlying ratios: An usual topic in accounting literature is to call the

attention for the assumption of strict proportionality underlying the use of ratios. Such a

statement is descriptive. We could now enumerate the assumptions attached to the ratio

model in a generative, rather than in a descriptive way:
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1. Accounting items are �nal realizations of elementary random changes. Such changes,

when expressed as proportions of the item they a�ect, are, in average, the same. This

is the Gibrat law.

2. The elementary random changes leading to �nal realizations of accounting items are,

when expressed as proportions of the item they a�ect, a sum of two components: One

which a�ects in the same way all the items in the same report and another which is

particular to each item.

The normality of the process governing dz is not required as an assumption.

The advantage of using a generative description is that we can now develop models other

then simple ratios which are also consistent with this basis. Here, ratios emerge as models

obeying to the statistical or expected proportionality of random e�ects. Proportionality at

the end of a growth process is just a particular consequence of a given generative mechanism.

Which other models are allowed by such a mechanism?

1.1.2 Ratios With More Than Two Items

In section 1.1.1 we noticed that the ratio model emerges when we consider the common

variability of two relative growth processes in a generative mechanism. By considering

more than two items an obvious extension of the usual ratio emerges.

Let x

1

; � � � ; x

i

; � � � ; x

M

be the position of M items for �rm j. dx

i�

are random changes

in x

i

caused by �, a common source of variability. Considering the way such common

disturbance a�ects the relative growth which is about to generate the set of x

i

we can say

that

dx

1�

x

1�

=

dx

2�

x

2�

= � � � =

dx

M�

x

M�

(6)

For example, we may want to consider two groups of items instead of two simple variables.

Given y

1

; � � � ; y

k

; � � � ; y

K

and x

1

; � � � ; x

l

; � � � ; x

L

and reasoning in the same way as in previous

section the mechanism described by 6 leads to the relation

"

1

K

K

X

k=1

log(y

k

)�

1

L

L

X

l=1

log(x

l

)

#

j

=

1

K

K

X

k=1

�

k

�

1

L

L

X

l=1

�

l

+

"

1

K

K

X

k=1

"

k

�

1

L

L

X

l=1

"

l

#

j

Despite its outlook, this model is very simple and can be seen just as an expansion

of equation 2. Here, instead of unique variables, expected values and residuals, we have

averages of items for every j.

In ratio form the model would be

Q

K

k=1

y

1=K

jk

Q

L

l=1

x

1=L

jl

= R� f

j
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that is, a ratio of geometric means of variables describes an e�ect common to them all in

the same way simple ratios do.

As the estimators for the � are the mean value of the corresponding log item, the above

expression is easily computed just by subtracting to each log item its mean value and then

averaging groups of items inside the same �rm.

Degrees of freedom involved: All the above explanatory models use only one degree of

freedom. They are simple translations in log space. One free parameter is enough to account

for a unique optimal value. Such an optimum is an estimator of a di�erence between two

central trends. This fact has important implications for the assessment of ratio standards

and the interpretation of departures from such standards.

The inclusion of more than one variable in each group will not account for more explained

variability. The number of used degrees of freedom remains equal to one. We are still

modelling a single parameter. However, more variables, if conveniently selected, can enhance

the accuracy of ratios by a self-smoothing process able to make particularities cancel out.

1.2 Extending the Notion of Financial Ratio

The ratios introduced in the last section, despite their unusual outlook, are obvious applica-

tions to more than two items of the same principle governing the usual ones. In this section

we extend the notion of �nancial ratio in two new directions allowed by the proportional

mechanism. First we introduce non-linear proportions consisting of applying the linear

model to the log space. Second, we model non-proportionality as part of the Gibrat law.

1.2.1 Non-Linear Proportionality

If we wish to model the joint behaviour of 1; � � � ; i; � � � ;M items after controlling for the

common e�ect we must be able to account for di�erences amongst them other than the

simple position or mean di�erences the usual ratios account for.

In order to do this we notice that the proportional mechanism is able to yield more

complex relations than those developed above. Expression 6 is just the simplest case.

Accordingly, we now develop similar models, but able, to some extent, to cope with the

variability of individual items.

The introduction of multi-variance in the generating mechanism can be done with dif-

ferent degrees of complexity. The simplest approach consists of using just one parameter,

b

i

, individualizing each proportion. This new parameter allows the description, using the
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same formulation and without loss of generality, of the two components of the variability of

each accounting item. A common e�ect would have b

i

= 1 for all variables.

Similarly to (6), there is a relative growth, �, for which

b

1

�

dx

1�

x

1�

= b

2

�

dx

2�

x

2�

= � � � b

M

�

dx

M�

x

M�

= d� (7)

In this mechanism, the b

i

are gain or attenuation factors expressing di�erent degrees of

linear correlation between the generative growth rates leading to these variables. Notice

that only M � 1 of these b

i

are independent.

In the simple case of b being similar across �rms the consideration of two items, y and

x, would yield general expressions like

log y

j

� b� log x

j

= (C

y

� C

x

)

j

+ ("

y

� "

x

)

j

� b� log b

or similar. Such free-slope ratios would look like this:

y

j

x

b

j

= exp(w

0

)� f

j

b and w

0

are now the two parameters of the model. w

0

is expressible in terms of b and the

initial values C

y

and C

x

.

And when considering two groups of items instead of two simple items we would have

1

K

K

X

k=1

b

k

� log(y

jk

)�

1

L

L

X

l=1

b

l

� log(x

jl

) = w

0

+

 

1

K

K

X

k=1

"

k

�

1

L

L

X

l=1

"

l

!

j

or similar. w

0

is a parameter expressible in terms of the b

i

and the initial values. In the

form of ratio,

Q

K

k=1

y

b

k

=K

jk

Q

L

l=1

x

b

l

=L

jl

= exp(w

0

)� f

j

We can simply say that any multi-variate descriptor of this kind has, for 1; � � � ; i; � � � ;M

items, a general form

M

X

i=1

w

i

� log(x

i

) = w

0

(8)

in which the residual is omitted. w

i

are parameters expressible in terms of the b

i

, M , and

the initial values. In ratio form,

M

Y

i=1

x

w

i

i

= exp(w

0

).
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We can write (8) as a linear relation in log space

M

X

i=1

w

i

� u

i

= w

0

where u

i

= log x

i

.

that is, in log space a simple inner product can account for linear correlations in the residual

behaviour of accounting variables.

Using free-slope ratios: There are cases in which the free-slope ratios discussed above

could be useful. For example, we might wish to introduce a second free parameter in the

model because our goal is the prediction of y using x as predictor, not the assessment of a

contrast between them. Functional relations describe mechanisms. Mechanisms should be

plausible. Free slopes in log space are not plausible to describe mechanisms of the �rm since

they imply the existence of a unique relative growth for the same item across many �rms.

Moreover, it would be inadequate to consider non-linear mechanisms as a rule. But when

the goal is to predict outcomes using items as predictors, there are no known objections to

the use of simple regressions in log space.

1.2.2 Non-Proportional Ratios

The relation dx=x = dz is a simplistic description of generative processes. The Gibrat

Law allows a more realistic basis by admitting that the random changes dx a�ecting x are

proportional, not to x itself, but to x+ x

0

.

We call this x

0

a base-line. Since the generative process leading to a particular realization

of x starts with a non-zero value for x = 0 the increments x receives at this point are in

average proportional to such base-line. Therefore,

instead of dz =

dx

x

we should write dz =

dx

x+ x

0

for describing the generation of a particular item x.

Such a process leads to a class of ratios which can have many di�erent characteristics

according to the magnitude, sign and position of their base-lines. In some cases, but not in

all, these base-line ratios will draw non-proportional relations between its components.

Notice that x

0

should not be taken as the initial value of x, that is, the value of x at

the beginning of the process leading to its �nal realization. Such initial values | which

in our notation are the C

x

| will not induce non-proportionality in the models describing

cross-sectional samples. As long as the process is strictly proportional, the outcome is

proportional as well. Non-proportionality emerges only when the random changes dx are

proportional to values which are not x.
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Next we briey describe some of the possible models resulting from base-lines.

An overall base-line in the denominator: In the simplest case, x

0

would be a constant

value a�ecting all realizations of x

j

for any j. That is, for a particular item all �rms in the

sample were expected to be a�ected by the same non-zero base-line.

One possible model resulting from a two-variate relation would be

log(y

j

)� log(x

j

+ x

0

) = �

y=x

+ "

y=x

j

when the base-line acts on the denominator but not in the numerator. In ratio form,

y

j

x

j

+ x

0

= R� f

j

Base-lines occur when any of the ratio components is three-parametric lognormal instead

of two-parametric. In the above expression and in all subsequent ones, the item a�ected

by the base-line | in this case it is x | receives a transformation similar to the one used

to achieve three-parametric lognormality (see Aitchison & Brown, 1958 [1]). Ratios of this

sort are a non-proportional relation:

y

j

= x

0

� R� f

j

+ x

j

� R� f

j

The above form is useful just to show that such a model is not a linear regression. The

non-proportional term x

0

� R � f

j

is not independent. It will introduce displacements

proportional to a residual value. Distortions will vary from case to case.

The distortions introduced by this kind of ratio will be small provide j�

x

j remains small.

The non-proportional term will be signi�cant only for values of x

j

near �

x

, that is, whenever

the generative process leads to �nal realizations of items which are near their base-line.

Cases far away from their base-lines exhibit proportionality since x

j

� x

0

�R� f

j

.

An overall base-line in the numerator: By considering a base-line, y

0

a�ecting y, the

numerator of the ratio, instead of x, we get non-proportional terms which can more easily

be signi�cant. The expression

log(y

j

+ y

0

)� log(x

j

) = �

y=x

+ "

y=x

j

means a ratio

y

j

+ y

0

x

j

= R� f

j

which can be written as

y

j

= x

j

�R� f

j

� y

0
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In this case the base-line acts as an intercept in a regression. It introduces a displace-

ment a�ecting all cases in the sample. Notice that this model is still not a regression.

The di�erence, however, is not functional. It stems from the multiplicative nature of the

residuals.

Base-lines both in the numerator and in the denominator: When considering y

0

and x

0

as both signi�cant, the amount of non-proportionality introduced results from their

interaction. A reinforcement of non-proportionality will occur when y

0

and x

0

have di�erent

signs. Apart from this, the overall e�ect will depend on R, the expected proportion.

In a very particular case, y

0

= x

0

� R, both base-lines cancel out. The remaining

non-proportionality is residual.

Multi-variate base-line ratios: The general multi-variate descriptor, involving free-

slopes and base-lines a�ecting all cases and present in several items would be written as

M

X

i=1

w

i

� log(x

i

+ x

0i

) = w

0

or, in ratio form,

M

Y

i=1

(x

i

+ x

0i

)

w

i

= exp(w

0

)

It is expected that multi-variate models of this sort will eventually generate strong depar-

tures from proportionality. The x

0i

can easily reinforce their e�ects creating important joint

displacements.

Proportional base-lines: The mechanism leading to the above descriptors requires an

overall displacement | a base-line acting upon the whole of the sample in the same way

|. Overall base-lines suppose the existence of overall costs or income.

We now consider the case of base-lines which are dependent of the size of the �rm.

Mechanisms internal to the �rm are likely to generate base-lines proportional to size. The

assumption of such internally generated base-lines being similar for the whole of the cross-

section would be di�cult to accept.

For 1; � � � ; j; � � � ;M �rms, x

0j

is now a particular base-line concerning the generative

process of each x

j

. This base-line will act as a new variable, not as a parameter of the

model. The model collapses into the no-base-line ones. In fact, if x

0j

is proportional to

the size of the �rm it is similar to any other accounting item. For instance we could write
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Figure 2: When Y = A + X is transformed, the fact that A 6= 0 introduces non-linearity

in the resulting relation. Such non-linearity a�ects only values of Y near A. On the left

several Y = A + X slopes with very small A. In the centre the same slopes in log space.

On the right, in ratio space.

x

0j

= x

j

�R

0j

� f

0j

and we would have a relative growth

dx

x� (R

0j

� f

0j

+ 1)

= dz

for the generating process of a particular realization of x.

And since R

0j

and f

0j

are not involved in the subsequent growth of x the resulting

model would be a version of the free-slope ratio we explored in section 1.2.1.

Base-lines proportional to the size of the �rm will not break proportionality. However,

they will induce di�erences in the way each item is a�ected by the common variability. In

order to account for such di�erences, mechanisms similar to free slopes are required.

The described model is interesting because it has been often used in the accounting

literature as an example of the plausibility of intercept terms in two-variate relations. It

was an awkward choice since, as we see, base-lines acting just as another item are not likely

to induce overall translations. We now analyze this subject in more detail.

Assessment of overall departures from proportionality: In order to assess the sig-

ni�cance of overall departures from proportionality it is important to gain insight into the

way the introduction of a constant term a�ects the linearity, in log or ratio space, of an
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otherwise proportional relation. By applying log or ratio transformations to both sides of

Y = A+X and observing the distortions resulting from increasing the value of A, we can

acquire a precise idea of the impact of deviations from strict proportionality.

Figure 2 on page 15 shows the results of applying logs (centre) or dividing by X (right)

in both sides of Y = A + X (left) for small values of A | thus obtaining relations which

are formally similar to the above non-proportional models. Those considered A are �1; 000,

�600 and �200. For large X , the e�ect of introducing such intercept terms is negligible.

The e�ect of A becomes signi�cant and visible whenever the order of magnitude of the X

is similar to the order of magnitude of A.

Accordingly, base-lines must be taken into account only when the �nal realization of a

growth process, x, is not far away from x

0

. This could happen when the growth is weak

(very small relative growth and very few random changes). The examination of two-variate

scatter-plots of accounting items in log space can detect departures from strict proportional-

ity when they are signi�cant. As seen above, the log and the ratio transformations produce

a trade-o� between non-proportionality and non-linearity so that even small departures

from proportionality result in departures from linearity.

1.2.3 Other Non-Linear Relations Between Items

Apart from the mechanisms described above, non-linearity could emerge in accounting

models due to other causes. Two of them seem plausible:

Higher order e�ects: It could occur, for example, when modelling �nancial risk. Lever-

aged and non-leveraged �rms can behave in opposite directions if they belong to some spe-

ci�c industries. In this case, the signi�cant interaction would emerge owing to the presence

of two groupings: Financial structure and industry. A statistical version of the \exclusive-

OR" problem, that is, a second-order e�ect, can arise when modelling an outcome for more

than one grouping. Such possibility is important when using linear techniques. Linear tools

wouldn't be able to separate e�ects other than �rst-order ones.

Non-proportional non-linear relations: Proportional non-linearity is just a particu-

lar class of non-linear relations between items. It would require the use of free-slope ratios

instead of the usual ones. However, many other kinds of departures from linearity are pos-

sible. Whittington [32] reports quadratic relations in pro�tability ratios. He suggests that

this could be explained by saturation e�ects. Saturation is the kind of distortion free-slope

ratios could broadly model since it a�ects mainly the largest �rms in the sample in a way

similar to free-slope ratios do for b < 1.
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However, non-linearity a�ecting, for example, the smallest cases in a sample, wouldn't

be modelled by free-slopes. Notice that base-lines represent linear displacements. They

only yield non-linearity in log or ratio space. And it is possible that, along with genuine

base-lines, other inuences a�ect small �rms.

Existing accounting statistical models seem not to be aware of potential sources of non-

linearity. Base-line and saturation e�ects are not very imposing and the second order e�ect

can be avoided by increasing the dimension of the input space, which accounting models

implicitly do.

1.3 Discussion and Conclusions

We described a generative mechanism for the probability distribution observed in accounting

data. The traditional notion of �nancial ratio stems from considering a common relative

growth impinging over the two items forming it.

Ratios can be extended in several ways consistent with such a mechanism. Firstly, they

can have more than two components. The sole requirement for the statistical validity of

such ratios is the use of multiplicative residuals. Ratios can also be viewed in log space as

a regression. Such free-slope ratios preserve proportionality. They introduce non-linearity

in the large �rms in the sample.

Finally, the existence of base-lines in the generation of items will eventually introduce

non-proportional relations between the components of a ratio.

Distortions in proportionality resulting from overall base-lines depend on several factors.

They are maximal for base-lines in the numerator of the ratio or when the signs of the base-

lines of the numerator and the denominator are di�erent.
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Chapter 2

Knowledge Acquisition Using the

Multi-Layer Perceptron

The Multi-Layer Perceptron [23], widely known as the MLP, is a supervised learning Neural

Network. Topologically it is a layered feed-forward con�guration: Nodes are arranged in

layers and each node's output is connected to next layer's inputs.

Amongst the algorithms intended to learn a relation input-outcome from a set of ex-

amples, the MLP is di�erent in that it approaches relations by stages. During the learning

process an MLP creates new sets of variables corresponding to di�erent stages of the mod-

elling of the desired relation. A particular stage uses the variables from the previous one as

input. Then, it makes an improvement towards the �nal modelling of the relation. Finally,

it outputs a new set of variables to be used as input for the next stage. The intermediate

variables generated by an MLP are often referred to as internal representations.

Contents: In this chapter we show that the ability to create internal representations along

with other characteristics of the MLP, make it able to automatically extract meaningful

knowledge from raw data directly available in accounting reports and the related outcomes

thus avoiding the need for searching appropriate ratios. Section 2.1 describes how accounting

items can be used as direct inputs for an MLP. Section 2.2 introduces a typical classi�cation

problem involving the prediction of the industrial group to which each �rm belongs, using

accounting data.

Using the above problem as a background example, section 2.3 explains the departures

from ordinary techniques we introduced in the training of the MLP. Two contributions

are outlined: The post-processing of MLP outputs so that they can be used as scores. The

random penalization of small weights for improving generalisation and obtaining meaningful
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internal representations.

Appendix A complements this chapter. It is a self-contained study of the performance

of the MLP when compared with traditional methods.

2.1 Ratios as Internal Representations

Simple ratios have been used for extracting useful experience contained in samples where

reports were gathered together with known outcomes. The problem of learning from exam-

ples using ratios can be formalized in this way: Let x and y be two items forming the ratio

y

j

=x

j

= r

j

in the case of �rm j. For learning we have a sample containing 1; � � � ; j; � � � ; N

examples of these two accounting observations plus t, the vector of the related outcomes.

If we assume the existence of a map W such that W : r 7! t then we learn it by �nding a

W which is optimal in some sense.

Relating features to outcomes: The functional relation existing in accounting items

| yielding ratios as seen in chapter 1 | is di�erent from the relation between accounting

features and outcomes we now study. The last one is the goal of statistical modelling. How-

ever, these two relations are not independent. Outcomes are dictated by internal features

of the �rm which we believe are reected by appropriate ratios.

In the accounting statistical models used so far, the former relation is embedded in the

choice of the input data | ratios. In the framework presented here we let the MLP form

both such relations. Appropriate ratios are discovered and used to approach the outcomes,

as part of a unique optimization process.

Ratios are size-adjusted variables. Since the size of the �rm is generally considered as

an important piece of information to model some relations, we also allow our framework to

model it | using equation (5) | as an internal representation of the MLP. In short, when

modelling a relation we allow ratios to be formed as the output of nodes in the �rst hidden

layer of an MLP, along with a proxy for size.

Forming ratios in the �rst hidden layer: We let the raw data be the input to an

MLP. Then, we set it to model the desired relation. As a �rst stage in this process ratios

are formed that approach the outcomes. Other stages follow. At the end, outputs are the

�nal stage. If ratios are the appropriate way of modelling such a relation, the internal

representations formed by the MLP in the �rst hidden layer are extended ratios.

As seen in section 1.1.1 a multi-variate relation able to account for both common and
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Figure 3: A node able to form a ratio in the �rst hidden layer of a MLP.

particular components of the variability of accounting data is

r =

M

Y

i=1

x

w

i

i

containing 1; � � � ; i; � � � ;M items as input. The residuals are omitted. In logarithmic space,

log r =

M

X

i=1

w

i

� log x

i

: (9)

Notice that this expression, an inner product, is the same as a Neural Network node's output.

Our approach consists of letting w

i

be the adjustable connections or weights linking the

inputs of an MLP with the nodes in the �rst hidden layer. The inputs are the logs of the

accounting items, x

i

, considered as interesting for modelling the desired relation. Thus we

create in each node of the �rst hidden layer an internal representation with the form of an

extended ratio. Next layers use such ratios to approach the outcomes.

By using an appropriate training scheme these extended ratios often assume a simple

and interpretable form. If the overall model discovered by the MLP is optimal in some

sense, it seems reasonable to expect that the discovered ratios represent an optimal choice

of combinations of variables as well. Therefore, the best ratios to be used are not imposed

by the analyst. Instead, they are discovered by the modelling algorithm. Our approach

solves the problem of �nding the appropriate set of ratios to model a particular relation.

Such problem clearly emerges when reviewing the published literature.

The transfer function: Figure 3 is a representation of a node intended to form ratios.

The logistic function

f(x) =

1

1 + exp(�x� �)

(10)
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Figure 4: The output of each node in the log MLP will be a concave function approaching

linearity for increasing values of the bias. On the left, a magni�ed view.

which is standard in Multilayer Perceptrons as a transfer function, will bring back the

extended ratios from logarithmic space and will also provide a controlled amount of non-

linearity for the lower values of r.

f(r) =

1

1 + exp(� log r� �)

=

r

r + exp(��)

� is the bias. Large negative values of � yield a linear relation between r and the output of

the node. Smaller values introduce a concavity a�ecting small r.

Figure 4 shows the way � controls the output of its node. For increasing bias the

node's response is linear. In general, the training of the bias is directed by the optimization

algorithm so that the output is linear. Therefore, the �rst hidden layer is not apportioning

non-linearity to the model. This can be done in next stages. However, there is a class of

non-linearity which is accounted for in this layer just by allowing smaller � (a notation also

used for � is w

0

).

The modelling of base-lines and other non-linearity: The back-propagation of er-

rors could also be used to discover and account for non-proportionality in individual inputs.

Appropriate base-lines could automatically be found for each input just by using the infor-

mation propagated backwards, in the same way the other free parameters are estimated.

In practice, such a propagation across the log function is not stable. The MLP simply

generates � which become more and more negative during the training. Therefore, at least

at the present stage of the research, we directly model the non-linearity introduced by
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Feature Ratio Tr. Feature Ratio Tr.

Operating NW Log Fixed Capital FA=TA Sqrt

Scale S Log Intensity S= Av. FA Log

Labour-Capital W=TA Sqrt Short Term D=CA None

Intensity V A= Av. TCE Sqrt Asset Intensity D=I Log

Pro�tability OPP=S Sqrt Asset Turnover DD None

EBIT=S Log S= Av. TA Log

OPP= Av. TCE Sqrt S=I Sqrt

EBIT= Av. TCE Sqrt

Net Trade D=C Sqrt Financial DEBT=NW Sqrt

Credit Leverage DEBT=TCE None

Table 1: Ratios used in the original study and their transformations.

base-lines instead of reproducing its underlying mechanism. This can be done since, as we

saw in section 1.2.2 the log space introduces a trade-o� between non-proportionality and

non-linearity (see �gure 2 on page 15) and the MLP can model such a non-linearity.

2.2 Learning to Discriminate Industrial Groups

In this section we apply our framework to a known accounting statistical problem, the test

of the separability of the components of a particular industry grouping. We compare our

procedure with the traditional one and we extract some conclusions.

All companies quoted on the London Stock Exchange are classi�ed into di�erent industry

groups according to the Stock Exchange Industrial Classi�cation (SEIC). We selected 14

manufacturing groups according to the SEIC criteria. After discarding some �rms (see

below) we got accounting information on 500 cases belonging to 1984 reports.

The data: The input variables received two di�erent types of processing. The �rst, usual

in �nance research, consisted of \forming 18 �nancial ratios chosen as to reect a broad

range of important characteristics relating to the economic, �nancial and trade structure of

industries (...) [29]" and extracting from them the eight principal components. These new

variables were then used as inputs for a Fisher's Multiple Discriminant Analysis (MDA).

A description of these ratios and the modelling procedure can be found in [29]. Table 1

reproduces them along with the transformations applied. DD is the ratio Debtors Days.

Appendix A is a self-contained study of the performance of the MLP compared with

traditional methods. There, a description of our reproduction of the method usual in �nance

research can be found along with the detailed MLP classi�cation results.

The new approach consisted of using eight accounting variables directly, not in the

form of ratios. The selected items were Fixed Assets, Inventory, Debtors, Creditors, Long
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Term Debt, Net Worth, Wages and Operating Expenses less Wages. All these variables

were present in the original 18 ratios, along with others like Earnings, Value Added, Total

Capital Employed and Total Assets which we didn't use in the new approach.

Criteria for selecting the input variables: The criteria used to select the new variables

was threefold. Firstly, they should have been present in the original set in order to allow the

comparing of results. No new information was to be introduced in the problem. Secondly,

we avoided items representing totals for reasons explained elsewhere [30]. Finally, the input

dimension should be eight or less. The number of common factors extracted from ratios in

the original study was eight. Eight items or less wouldn't allow a larger ow of information.

The choice of EX and Wages instead of Sales and Operating Pro�t stems from the

same reasoning. The discarding of Earnings stems from not being appropriate for the log

transformation. The information contained in EBIT could be introduced by Sales and

COGS but for this particular model the residual EBIT didn't seem important.

The selection of cases for the samples: A major methodological di�erence between

our approach and the usual one was the way �rms were selected. In general, one-variate

normality criteria is used to prune the original sample of ratios down to an acceptable

number of standard deviations. We followed a case-wise method for discarding undesirable

�rms. It was not based on distributional considerations. Only cases known as distressed

�rms, non-manufacturing representatives of foreign companies, merged or highly diversi�ed

ones were excluded.

Table 2 displays the proportions of cases in the sample. Notice how groups are dissimilar

in size, the smallest one having 16 �rms and the biggest 80. These proportions entail no

prior knowledge of any classi�cation.

2.3 Improving Generalisation and Interpretability

In this section we explain the characteristics which make our MLP di�erent from the stan-

dard algorithm. They can be summarized as:

� The use of two samples, one to learn and another one to assess the classi�cation

performance. This is commented in 2.3.1.

� The random penalization of small weights, explained in 2.3.2.

� The post-processing of outputs, outlined in 2.3.3.
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N. Group Code Group Name N. Cases Proportion

1 14 Building Materials 31 6.2%

2 32 Metallurgy 19 3.8%

3 54 Paper and Pack 46 9.2%

4 68 Chemicals 45 9.0%

5 19 Electrical 34 6.8%

6 22 Industrial Plants 17 3.4%

7 28 Machine Tools 21 4.2%

8 35 Electronics 79 15.7%

9 41 Motor Components 23 4.6%

10 59 Clothing 42 8.4%

11 61 Wool 19 3.8%

12 62 Miscellaneous Textiles 30 6.0%

13 64 Leather 16 3.2%

14 49 Food Manufacturers 80 15.9%

Table 2: Industrial groups and the proportion of each one in our sample.

� Learning rates particular to each weight as described in Silva and Almeida [24].

� Likelihood maximization instead of squared deviations minimization, as explained

in 2.3.3.

The �rst characteristic relates to improvements in the ability to generalise. It is a par-

ticular implementation of a known procedure, the Cross-Validation [27] [28]. The random

penalization of errors and the post-processing of outputs are speci�c contributions of this

study. They allow the use of the MLP for general-purpose statistical modelling and the

interpretability of results.

2.3.1 Generalisation: Using the Test Set

In order to obtain an estimate of the generalisation capacity of a model, the original samples

were divided randomly into two sub-samples of approximately equal size. All models were

constructed twice, �rst with one half of the sample and a check carried out with the other

half, and again reversing the roles of the two half data sets. Results were considered

conclusive if both models, when validated with the half-sample not used to build them,

produced consistent results.

All classi�cation results reported here concern the test set, not the training set. That is,

they were obtained by measuring the rate of correct classi�cation in the half-set not used

for learning. The classi�cation performance on the set used for learning depends solely on

the number of free parameters and can be increased simply by introducing more nodes on

the net. Therefore such results are uninteresting.
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The normal approach to test a model, by deleting a single observation and predicting

its value with the model estimated on the rest of the data set, and repeating this procedure

N times, is not feasible. This is because the training of a Neural Network is time consum-

ing. The procedure adopted will however, with a large enough data set, produce unbiased

estimates [10] [27].

The described procedure, combined with incomplete training, also allows improving the

generalisation of the MLP. This is a common practice. Next we describe incomplete training.

The role of incomplete training: Since the MLP seeks an optimum iteratively, we can

stop its training when an optimum is obtained in the test set rather than in the training

set. In doing so we prevent this powerful algorithm from over-�tting the data.

It is generally believed that the Back-Propagation algorithm seeks the modelling of

progressively smaller or less important features of the relation during the learning process.

Firstly, broad features are accounted for: The mean, a linear trend. Then, more detailed

ones are modelled. Hence, the e�ective degrees of freedom the MLP engages can be viewed

as increasing during learning [31].

Assuming that the topology of the net contains plenty of free parameters, the MLP will

be able to model, not only the desired features but also the undesirable random uniqueness of

a particular sample. We prevent it from doing this by stopping the process before �nishing.

The appropriate moment for stopping is when the results, as measured by the test set, are

optimal.

For a good topology, the fact that the learning stops before a minimum is reached in the

learning set clearly enhances the generalisation. The di�erence between the generalisation

performances achieved with analytic tools and the iterative ones stems from this ability to

stop. In our example, if we allow the training to proceed, the generalisation obtained with

the MLP is worse than the one obtained with analytic tools.

The role of an appropriate topology: We found that the generalisation was dependent

on the used topology. The number of nodes in a hidden layer seems to determine, not only

the dimension of the relation, but also the ability of the MLP to generalise.

2.3.2 Random Penalization of Small Weights

Another major goal of this study was to evaluate the power of Neural Networks in knowledge

acquisition. Multi-Layer Perceptrons are often considered as not ideal in applications where

self-explanatory power is required. However, in the case of accounting variables it seems

possible to interpret the way the relation has been modelled by looking into the weights

25



connecting input variables with the �rst hidden layer's nodes. These weights are the free

slopes of ratios.

In order to enhance interpretability we introduced during training a random penaliza-

tion of weights with small absolute values. A weight is inhibitory when its absolute value is

smaller than the unit. If the input variables were very di�erently scaled, inhibition values

in the input weights could just mean that the MLP was trying to scale down a particu-

lar variable. Since the log items used as input to the MLP are mean-adjusted and have

very similar spread the only reason for any such weights to remain smaller than the unit

throughout the learning is to try to diminish the importance of one variable in the output

of the node it belongs to.

In a Neural Network each node acts as a modelling unit with a certain amount of free

parameters. The same output can be obtained with very di�erent combinations of weights.

Inhibition weights connecting inputs with the �rst hidden layer appear when the node tries

to weaken the contribution of a variable. If we randomly introduce a small penalization of

such weights during the training, as the correction of weights is proportional to the input

variables, the weights smaller than the unit tend to remain small. In the same way, the

large weights tend to have their values strengthen.

The �nal result is a contrasted set of weights: The �rst layer now contains only very large

or very small weights. The information concerning the modelled relation is concentrated in a

few weights instead of distributed by all of them. If the relation to be modelled is consistent

with such a contrast, then there is no reason to expect that the described manipulation will

damage the performance of the model.

The algorithm: The procedure to achieve interpretability involves these steps:

� Let one node in the �rst hidden layer model the strong common e�ect and introduce

it in subsequent layers. Input variables not convenient for the modelling of size (Debt

is an example) have weights connecting to this node set to zero. The others have �xed

and equal weights.

� During training, and whenever a new presentation of the entire training set is to begin,

one of the remaining nodes of the �rst layer is randomly selected. Their weights are

examined and those with inhibitory weights are penalized by a small factor, typically

0:98.

� Before the end of training, all the weights connecting inputs to the �rst layer and

exhibiting very small values are set to zero and �xed.
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This procedure is applied only after discovering the topology yielding the best results. Just

by dedicating one node of the �rst hidden layer to the modelling of size we noticed an

improvement in speed of convergence and in the �nal generalisation. Adding the random

penalization of inhibitory weights both speed and generalisation received a further, sig-

ni�cant, improvement. When the topology is not the best this procedure can worsen the

generalisation.

Complementary remarks: The method described here was the one used for this par-

ticular experiment. In di�erent cases we found that the performance would not su�er if

all the weights below an inhibitory threshold were penalized at the beginning of each new

presentation. This threshold typically would begin in 0.1 with the training and then it

would be updated to larger values later on. Instead of �xing the weights just before the end

of the training we also introduced their �xing during training whenever they would become

small enough. By the end of the training the number of free parameters is much reduced.

We never tried this method with the usual, simple, Back-Propagation algorithm. Each

one of the weights in our MLP has its own increment, adjusted as described in Silva and

Almeida [24]. Other popular methods for pruning the MLP are the \Skeletonization" [20]

and \Optimal Brain Damage" [17]. The �rst one is intended to reduce the number of nodes,

not weights. The second one is too general for this task.

Results: When the training �nishes the number of variables to consider in each node is

small and characteristic. Looking at the non-zero weights it is possible to understand, in

accounting terms, what the free-slope ratios formed in each node are doing.

Table 3 shows the extended ratios formed in a net with 8 inputs, 6 nodes in one hidden

layer and 14 output nodes. The emerging organization reproduces the way an expert in ratio

analysis chooses variables. It is usual to build several ratios around one or two variables

judged as important to capture a relation. As an example, e�ciency is modelled around

capital turnover, stock turnover and so on. Analysts put together several points of view

around a few signi�cant variables. Extended ratios seem to be trying the same. The item

EX has been used in all hidden nodes to contrast others. It seems as if it were important

for this problem.

The ratios the MLP discovers are not always simple. Ratios like (C � FA)=(W � EX)

are not the most familiar ones to accountants. However, in general the combinations of

items which emerge as interesting are clearly visible when examining the organization of

the hidden nodes.
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Variable Node Number 2 3 4 5 6

Long Term Debt -6

Net Worth 8

Wages 1 -6

Inventory 8

Debtors 2 -2

Creditors 3

Fixed Assets -9 -4 6 -4

Operating Expenses less Wages -10 4 8 -2 3

Table 3: Approximate values of weights connecting input variables with nodes in the �rst

hidden layer after training with random penalization.

Testing the Performance of the Devised Ratios: Our interpretation of the ratios

formed in the hidden nodes is, according to table 3:
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We

tested the performance of such ratios when used as inputs for linear classi�ers in the de-

scribed problem. The �ve ratios plus the size e�ect actually classify the 14 industrial groups

with the same accuracy as the original 18 variables.

The gain in performance by using the MLP is, of course, much more visible. Apart from

its non-linear modelling capacity | which in this particular problem didn't seem to be very

important | such a gain is due to its superior generalisation. Analytic tools cannot control

the relative importance of parameters during training nor stop the optimization process

before its end, to avoid over-�tting.

2.3.3 Post - Processing of Outputs

Discrimination, when overlapping distributions are present, implies a probabilistic inter-

pretation of outputs. In accounting research, Bayesian considerations are in general inde-

pendent of the proportions observed in the sample. Neural Network application to other

sciences can be misleading. There, proportions observed in the sample are generally taken

as acceptable prior probabilities.
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Following suggestions like those of Baum and Wilczek [4] several authors advocate a

direct interpretation of outputs as probabilities [14] [26] and show how the usual squared

error criterion can be corrected to achieve likelihood maximization. In such case, the weights

are corrected in the gradient direction of the log-likelihood rather than on the gradient of

the squared error.

We found that node outputs, when interpreted as probabilities, produce a clear reduction

in accuracy. The result is a severe loss of ability to distinguish small groups. Thus, we

decided to interpret outputs of the MLP as a multi-dimensional measure of distance to

outcomes. If departures from normality are not severe, this interpretation can be carried

out by using conventional statistics like Chi-Square, Penrose or Mahalanobis distances. Such

measures can be regarded as scores and conditional probabilities can be deduced from them,

allowing further Bayesian corrections, independent of proportions observed in the sample.

Of course, a Bayesian correction could be done directly over the outputs interpreted as

probabilities. However, due to the observed lack of accuracy, a direct correction would lead

to a very bold classi�cation.

An experiment: Using the MLP with the 1984 data set and implementing learning

schemes described by Hop�eld [14] and Solla et al. [26] we tested the direct interpretation

of node outputs as probabilities comparing it with the usual correction of node outputs

based on the way linear discriminant analysis, for example, corrects scores. Results are

reported in �gure 5 when prior probabilities are taken as equal to the size of the group.

On the left we can see the result of using post-processing. On the right, the corresponding

result derived by directly interpreting node outputs as probabilities.

The post-processing gives detailed classi�cations. Direct interpretation ignores 9 of the

14 groups, the small ones, but �nally achieves a better global performance by classifying

the remaining 5 groups, which are the bigger ones, very well. Therefore, although for the

sake of e�ciency of convergence we adopted the likelihood cost function, node outputs were

post-processed as distances. A short description of this post-processing follows.

MLP outputs as multi-variate distances: For a training set with N cases, consider

o

jm

, the output produced in node m;m = 1;M by case j; j = 1; N . Compute K square

deviations, d

kjm

, between the m node's output and each one of the 1; � � � ; k; � � � ; K possible

outcomes: d

kjm

= (t

km

� o

jm

)

2

. The mean sum of squares in node m for the whole sample

will be: �

2

km

=

P

jk

d

kjm

=(N � 1) and the standardized distances between a node's output
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Figure 5: On the left, classi�cation results after post-processing (1984 sample and prior

probabilities proportional to the size of the group). On the right, the same with direct

interpretation.

and all possible outcomes can now be added over all nodes:

D

kj

=

M

X

m=1

d

kjm

�

2

km

The minimum of these distances would identify the outcome predicted by the MLP if no

Bayesian corrections were needed | that is, if the assumption of equal prior probabilities

is acceptable.

This distance has been compared with a more elaborated measure, the Mahalanobis

distance, and it was found that the latter would not achieve a more accurate performance.

In order to introduce Bayesian considerations, D

kj

ought to be computed as a Chi-Square

distance to outcomes. The signi�cance of this distance is the desired conditional probability.

2.4 Discussion and Conclusions

So far, expectations about Neural Networks are related to the modelling of di�cult relations

(pattern recognition) or the mimicking of brain functions. There has been little emphasis

in their potential explanatory power. Here we argue that some statistical problems requir-

ing self-explanatory power can take advantage from the existence of meaningful internal

representations.

Numerical, continuous-valued observations such as those found in stock returns, or data

organized in accounting reports, cannot be e�ciently used by actual expert systems as a

source of knowledge. Algorithms intended to automatic extraction of rules from examples,
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such as the ID3 [22] cannot perform e�ciently with non-symbolic, non-hierarchical data.

We explore this problem elsewhere [7].

Neural Networks can now be seen as an alternative self-explanatory tool. In our example,

hidden units were able to form more appropriate ratios than those commonly used. In other

cases the examination of such ratios could shed light in many important issues.

Self-explanatory models: The developments of this study are closer to Beaver's original

works than its successors. Beaver tried to discover the most appropriate ratios to model

a relation. The goal was not just an e�cient modelling. It was mainly the discovering of

simple tools for doing the job. After him, statistical modelling focuses on e�ciency. The

practice of using multi-variate techniques and a large amount of ratios as inputs | along

with the trimming, ad-hoc transforming and rotating of inputs | made impossible any

interpretation of results. Modelling became a blind automatism.

Improvements in performance: The emphasis on interpretation should not hide the

other �ndings of our study. The MLP proved able to outperform the classi�cation per-

formance of a traditional discriminant analysis approach. Neither method came close to

adequately classifying the testing sets, but there was a substantial improvement (29% to

38%) when the MLP was used.

The MLP achieved a better performance, with half the number of input variables and

within a much simpler framework. Namely, the need for devising appropriate ratios was

avoided as well as the blind pruning, and the extraction of a somehow arbitrary number of

factors. Several accounting variables used to form the 18 original ratios were not present in

our 8 variable set.

Topology: The principle of parsimony should also be born in mind. If there are too

many hidden nodes the MLP will fail to identify key features and will model the particular

randomness in the data set as well. Generalisation will then be lost.

However, Back-Propagation shows a useful ability to take advantage of the topology

of the net to improve generalisation. Even with a large number of free parameters, if the

number of nodes in a hidden layer is in resonance with some internal feature of the data,

high generalisation can arise.
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Appendix A

Classi�cation Results Using the

Multi-Layer Perceptron

In this appendix we gather information concerning the experiment described in section 2.2

about the Multi-Layer Perceptron (MLP) as a modelling tool for accounting relations.

But here we examine the MLP as a classi�er, intended to be used instead of Multiple

Discriminant Analysis (MDA). Therefore, we focus on the classi�cation performance rather

than on the acquisition of knowledge.

Each section of this appendix contains the description of a particular test. Firstly, the

technique usual in accounting research, involving 18 ratios as input variables, is described.

The results of using MDA are compared with those of using MLP. Next we apply the

framework developed in the �rst part of this study instead of the usual one, both with MDA

and MLP modelling. It uses eight log items as inputs. Finally, we show the classi�cation

obtained with the new ratios devised by the MLP when used as inputs for MDA.

This appendix is intended to show the importance of implementing our framework in a

particular, well known, problem. Also, the circumstances leading the MLP to outperform

the linear tools can be devised.

A.1 Results: The Usual Technique

In this section we describe the procedures and results obtained when applying to the clas-

si�cation problem the techniques which are usual in accounting research, that is,

� Input variables are ratios selected so as to reect desired features.

� Ratios su�er ad-hoc transformations. The goal is to achieve improvements in their
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Ratio Skewness Kurtosis Ratio Skewness Kurtosis

log NW 0.42 0.01 log S 0.38 0.09

DD 0.59 1.60 FA/TA 0.33 -0.15

S/FA 4.5 28.5 W/TA 1.09 2.17

VA/TCE 2.5 13.8 OPP/S 0.17 6.05

EBIT/S 0.53 5.95 OPP/TCE 1.85 34.8

EBIT/TCE 1.25 24.5 S/TA 2.01 6.85

S/I 2.94 12.1 D/CA 1.45 9.70

D/I 2.41 11.2 D/C 1.78 5.74

DEBT/NW 3.31 18.1 DEBT/TCE 3.31 18.1

Table 4: Skewness and kurtosis of ratios used in the replica of the traditional approach.

These values were obtained after applying transformations. DD is the Days Debtors ratio.

normality.

� Factor Analysis is used to extract a few variables from the set of transformed ratios.

� Multiple Discriminant Analysis uses such factors as input variables. In this case, the

industrial grouping according to the SEIC is the outcome.

Our study reproduces a reputed one, carried out in 1984 by Sudarsanam and Ta�er [29]

and quoted by Foster. The ratios used and their transformations are displayed elsewhere

(see page 22).

Normality of transformed ratios: We obtained a broad set of values for the skewness

and kurtosis of the ratios used in the replication of the study referred to. Such values are

displayed in table 4.

DEBT has a large number of zero cases corresponding to non-leveraged �rms. It will

not yield homogeneous distributions with any transformation. The factor extracted from

DEBT ratios exhibit a very strong two-modality.

Extraction of factors from ratios: After obtaining the transformed ratios we extract

the eight largest components of their variability. Next we display the di�erences between

our study and the original one concerning the a�nity of input variables with the resulting

factors.

1. Operating Scale: We obtained the same groups.

2. Fixed Capital Intensity, the same groups.

3. Labour Capital Intensity, the same groups.
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4. Pro�tability, the same groups.

5. Asset Turnover: This factor was formed with variability from S/TA and S/I mainly.

6. Short Term Asset Intensity, DD, D/C, D/CA and D/I.

7. Net Trade Credit, DD, D/C, D/CA and D/I.

8. Leverage, the same groups.

Therefore, our study found di�erences in the interpretation of the factors related to Short

Term. In our data the three factors representing short-term features have their variables

mixed up. The co-variance matrix was almost singular. The main correlations were observed

between

� logS and logNW (0.995),

�

p

OPP=S and log(EBIT=S) (0.971),

�

p

OPP=TCE and

p

EBIT=TCE (0.980),

�

p

FA=TA and log(S=TA) (0.970),

�

p

S=TA and log(S=I) (0.922) and �nally between

�

p

DEBT=NW and DEBT=TCE (0.970).

The eigenvalue sequence doesn't exhibit the smallest trace of a break in the rate of decay.

It decays smoothly in an exponential way. The factors are, more or less, replicating the

original variables. Hence, there is no clear distinction between the selected factors and the

rejected ones. There is no real commonality or real uniqueness and each factor contains a

good portion of the information others contain. Since the purpose is the reduction in the

number of dimensions, not the discovering of features, this is just as well.

A typical eigenvalue sequence have values like these: 20%, 19%, 15%, 15%, 13%, 9%,

8%, 6%. Typically, eight factors account for more than 90% of the variability.

Transformations: We must remark that the e�ect of using di�erent transformations

inside the same set of input variables introduces a non-negligible amount of non-linearity

in input space. If two linearly related variables are exposed to di�erent transformations,

say, one square root and the other logs, the resulting relation between them is no longer

linear. Afterwards, when factor analysis is used to extract new variables from these non-

linear ones, the clear result will be that most of the variability associated with the extreme
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N. SEIC Code Group Name N. Cases Correct N. Cases Correct

1 14 Building Materials 8 3 23 1

2 32 Metallurgy 11 1 8 2

3 54 Paper and Pack 25 5 21 1

4 68 Chemicals 22 4 23 7

5 19 Electrical 16 3 18 4

6 22 Industrial Plants 8 2 9 1

7 28 Machine Tools 11 2 10 1

8 35 Electronics 49 11 35 14

9 41 Motor Components 17 4 6 5

10 59 Clothing 19 10 23 9

11 61 Wool 7 1 12 1

12 62 Miscellaneous Textiles 11 1 19 1

13 64 Leather 8 1 8 3

14 49 Food Manufacturers 43 25 37 23

Table 5: Classi�cation results with MDA and 8 factors.

values | the ones which are most curled by the non-linearity | is attened away. Factor

analysis extract linear patterns. Hence, the �nal result of this interaction between arti�cial

non-linearity and linear factor analysis is that the extreme values of the distribution will be

pushed towards the centre of the distribution.

Multiple Discriminant Analysis: A diversion from the original study consisted of di-

viding the set of examples randomly in two approximately equal sized samples. The MDA

model was built with one of the samples but its performance was checked with the other

one. In general, the size of each group in one set and in the other are not very similar. This

fact introduces a distortion in the classi�cation results since the likelihood of each group in

the test set is di�erent from the likelihood in the training set. However, by imposing equal

prior probabilities across groups this distortion is minimized.

We are mainly interested in comparing the performance of MDA with that of the Multi-

Layer Perceptron. Provide the samples are the same and the prior assumptions coincide,

this comparison can be carried out.

Table 5 shows the classi�cation results. N. Cases displays the number of cases in a group

after split in two random samples. Correct shows the number of correct classi�cations when

that group was used to model and the other group was used to test.

The displayed results and all the other results reported were obtained under the suppo-

sition of equal prior likelihood of any �rm to belong to this group or the other. There is

no special reason why a prior knowledge about relative size of groups should be included in

this study.

For small groups the classi�cation is very poor. It increases dramatically with the size
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N. SEIC Code Group Name N. Cases Correct N. Cases Correct

1 14 Building Materials 8 3 23 0

2 32 Metallurgy 11 0 8 1

3 54 Paper and Packing 25 6 21 1

4 68 Chemicals 22 4 23 7

5 19 Electrical 16 4 18 6

6 22 Industrial Plants 8 2 9 0

7 28 Machine Tools 11 1 10 0

8 35 Electronics 44 12 35 16

9 41 Motor Components 17 3 6 5

10 59 Clothing 19 12 23 10

11 61 Wool 7 0 12 0

12 62 Miscellaneous Textiles 11 2 19 1

13 64 Leather 8 0 8 3

14 49 Food Manufacturers 43 28 37 24

Table 6: Classi�cation results with MLP and 8 factors.

of the group. An overall 29% of success in both cases is attained almost because of very

good classi�cation of groups like Food and Electronics.

A.2 MLP With 8 Factors as Input Variables

The same eight factors which were used as input variables for MDA were also tested as input

for an MLP. After several experiments we found that the best results would be achieved

with an MLP with one hidden layer and six nodes on it. Table 6 contains the number of

correct classi�cations in the test set, by group.

These results concern an MLP with six nodes in a unique hidden layer and 14 output

nodes (one per group). Outputs were post-processed as described in section 2.3.3, on page 28

but no random penalization of weights were applied. The criterion used for convergence

was the maximization of the likelihood input-outcomes.

The training was interrupted when the likelihood, measured in the training set, reached

a maximum. This procedure is therefore di�erent from the one referred to in section 2.3.1,

page 24. It allows a direct comparison with the results of the MDA modelling.

Under the displayed conditions, the MLP shows a performance which is similar to the

one of MDA (about 30% of correct classi�cations), a linear, analytic tool. We believe that

the improvements in performance achieved in later experiments stem from the interruption

of training before its completion and also from the more robust pre-processing of the input

data.
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N. SEIC Code Group Name N. Cases Correct N. Cases Correct

1 14 Building Materials 8 2 23 1

2 32 Metallurgy 11 2 8 2

3 54 Paper and Packing 25 5 21 6

4 68 Chemicals 22 4 23 7

5 19 Electrical 16 5 18 4

6 22 Industrial Plants 8 1 9 2

7 28 Machine Tools 11 2 10 2

8 35 Electronics 44 21 35 14

9 41 Motor Components 17 4 6 5

10 59 Clothing 19 10 23 9

11 61 Wool 7 1 12 4

12 62 Miscellaneous Textiles 11 2 19 4

13 64 Leather 8 1 8 1

14 49 Food Manufacturers 43 26 37 23

Table 7: Classi�cation results with MDA and 8 log items.

A.3 MLP and MDA With Eight Log Items

We now describe our procedure for modelling the relation between accounting information

and industry grouping.

We recall that the new approach consisted of using eight accounting items directly, not

in the form of ratios. A simple two-parameter log transformation and a mean-adjustment

was all the manipulation su�ered by these items before being used as input variables for

classi�cation. The log basis were the decimal one. Notice that there is a more subtle

di�erence between the MLP and the MDA procedures in what concerns the pre-processing

of data. The MDA standardizes the input variables one by one. The MLP uses all the

information contained in the di�erences of spread.

The selected items were Fixed Assets, Inventory, Debtors, Creditors, Long Term Debt,

Net Worth, Wages and Sales less Operating Expenses. All these variables were present in

the original 18 ratios, along with others like Earnings, Value Added, Total Capital Employed

and Total Assets which we didn't use in the new approach.

All the log items were mean-adjusted before being presented as input. The overall mean,

not the industry-speci�c one, was used for this. Therefore, the input variables are not just

log items but what we call relative positions (see equation 1 on page 3). No correction for

� was introduced.

When using the analytical tool for modelling with these eight positions we obtained

about 33-34% of correct classi�cations in the test set. The detailed results are gathered

in table 7. It seems clear that, just by avoiding all the entangling pre-processing of data

traditional in accounting research and using the log space instead, some improvements in
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N. SEIC Code Group Name N. Cases Correct N. Cases Correct

1 14 Building Materials 8 4 23 10

2 32 Metallurgy 11 1 8 1

3 54 Paper and Packing 25 5 21 2

4 68 Chemicals 22 4 23 9

5 19 Electrical 16 5 18 6

6 22 Industrial Plants 8 2 9 0

7 28 Machine Tools 11 5 10 1

8 35 Electronics 44 17 35 19

9 41 Motor Components 17 5 6 5

10 59 Clothing 19 10 23 11

11 61 Wool 7 2 12 0

12 62 Miscellaneous Textiles 11 2 19 2

13 64 Leather 8 1 8 3

14 49 Food Manufacturers 43 32 37 25

Table 8: The best classi�cation results with MLP and 8 log items.

performance can be observed.

Table 8 shows the best classi�cation results the MLP is able to achieve. The improve-

ment, from 33%-34% to 37%-38%, is due to the interruption of training in the optimum for

the test set rather than in the optimum for the training set. It is also a consequence of the

better generalisation introduced by forcing a reduction in the number of free parameters in

the net.

A.4 Using the Devised Set of Ratios With MDA

We now show the results obtained when using a devised set of ratios to model with analytic

tools. These ratios are a free interpretation of the best topology the MLP builds after

learning the relation. Table 9 shows the best generalisation achieved. It is around 29%.

Though the results are not impressive by themselves, we must remember that they

approach those obtained with 18 ratios.

A.5 Conclusions

Generalisation results show that under similar conditions little di�erence exists between the

MDA and the MLP results for the particular problem we studied. Clearly, the relation to

be modelled must be near linearity. This is a fortunate circumstance. It allows the strict

comparing of these tools in a problem for which the linear, analytical, procedure has not

been put in a position of disadvantage.

An interesting achievement is the ability displayed by the MLP to deal with simple,
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N. SEIC Code Group Name N. Cases Correct N. Cases Correct

1 14 Building Materials 8 2 23 6

2 32 Metallurgy 11 2 8 2

3 54 Paper and Packing 25 4 21 5

4 68 Chemicals 22 4 23 4

5 19 Electrical 16 5 18 2

6 22 Industrial Plants 8 1 9 0

7 28 Machine Tools 11 0 10 2

8 35 Electronics 44 14 35 14

9 41 Motor Components 17 3 6 1

10 59 Clothing 19 10 23 7

11 61 Wool 7 0 12 3

12 62 Miscellaneous Textiles 11 1 19 3

13 64 Leather 8 1 8 1

14 49 Food Manufacturers 43 25 37 19

Table 9: Classi�cation results with MDA and the �ve discovered ratios plus size.

linear, relations with no losses in generalisation. Algorithms like polynomial �tting would

perform badly if required to model a straight line. The MLP did it easily. Hence, the

Multi-layer Perceptron emerges as a general-purpose tool, to which we can trust the task

of modelling a broad class of relations, ranging from the simple, linear, ones to the most

complex ones.

When using 18 ratios and the procedures typical in accounting research | including

the extraction of eight factors | both the MDA and MLP generalisation results range from

29% to 30%. The use of eight log items instead of the eighteen transformed and rotated

ratios introduces an expected improvement in the generalisation achieved. Both the MLP

and the MDA now range from 33% to 34% of correct classi�cations in the test set. This

clearly shows the disadvantages of such techniques based on standard recipes.

By stopping the learning process in the optimal classi�cation for the test set rather

than for the learning one a considerable improvement is added to the experiment with eight

items. The generalisation is up to 37% - 38%. Naturally, analytic tools like the MDA cannot

replicate this experiment. The classi�cation results are summarized in next table.

INPUT MDA MLP

18 ratios 29% 30%

8 variables 34% 38%

Finally, the �ve ratios inspired by the ones formed inside the MLP plus the estimated

size, are able to achieve 28% - 29% of correct classi�cation in the test set, which is similar

to the performance of the original 18 ratios.
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