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Abstract

This article describes the influence of accounting identities on the
statistical distribution of financial ratios. First, it recalls that where
raw numbers are lognormally distributed, then ratios are expected to
be positively skewed. Accordingly, the fact requiring an explanation
is why some ratios are symmetrical or even negatively skewed, not
why the distribution of ratios is positively skewed. Then, the article
shows that apparently symmetrical ratios occur because accounting
identities act as external boundaries, constraining the long tail of their
otherwise skewed distribution to become much smaller. Ratios that are
symmetrical or negatively skewed simply reflect the existence of these
boundaries. They revert to positive skewness after being inverted, thus
making it difficult to accept the hypothesis that the skewness of ra-
tios stems from non-proportionality. Since bounded ratios may induce
misleading results when used for calculating confidence intervals or P
values, a procedure is suggested to avoid constraints where necessary.
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Introduction

Accounting reports are an important source of information for managers,
investors and financial analysts. Ratios are the usual instruments for ex-
tracting this information. However, statistical characteristics of ratios pose
particular difficulties when used because their distributions vary widely:
most ratios are positively skewed but some are symmetrical and others are
negatively skewed. Despite the widespread use of ratios in a multitude of
contexts, available evidence probably conveys the belief that the distribu-
tion of ratios is unpredictable. In fact, researchers and practitioners alike
still rely on ad-hoc transformations and outlier deletion in order to adjust
the distribution of ratios to approximate normality.

The purpose of this paper is to explain the existence of symmetrical and
negatively skewed ratios. Our findings offer guidelines for achieving higher
precision when using ratios in a statistical context. The paper is supported
by evidence on cross-section distributions of raw numbers and ratios, using
data extracted from accounting reports of UK industrial firms. Table 1
shows the accounting identities and the abbreviations used in this paper.

Table 1, page 17

The statistical distribution of ratios has been the object of considerable
study. Horrigan (1965), in an early work on this subject, reported positive
skewness in some ratios and explained it as a result of effective lower limits
of zero. O’Connor (1973) and Bird & McHugh (1977) also found skewness in
ratios. Deakin (1976) showed that, in most ratios, positive skewness could
not be ignored but also noticed that the ratio TD/TA was near normality.
Bougen & Drury (1980) reported skewness, either negative or positive, and
extreme outliers. Frecka & Hopwood (1983) extended Deakin’s study and
reported similar findings. These authors proposed applying transformations
and then trimming or winsorising outliers as a means of reaching normality.
Ezzamel, Mar-Molinero & Beecher (1987) noticed positive skewness and out-
liers except for ratios TD/TA and NW/TA and found improvements with
square root and logarithmic transformations. So (1987) also found positive
skewness except in ratios TD/TA, NW/TA and CA/TA, the latter being
negatively skewed. Watson (1990) and Karels & Prakash (1987) studied
the multivariate normality of ratios and the advantage of removing multi-
variate outliers. They noticed that ratios TD/TA and NW/TA were near
normality. The same was observed by Ezzamel & Mar-Molinero (1990) who
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suggested that the trimming of ‘obvious’ outliers should come first, instead
of transforming and then trimming, as proposed by Frecka & Hopwood.

McLeay (1986a; 1986b) questioned the use by some researchers of such
ad-hoc procedures as transformation and trimming of remaining outliers
as a means of achieving normality in ratios. He suggested that the data
should be left unadjusted and better-fitting models should be used. Tippett
(1990) and Rhys & Tippett (1993) developed stochastic processes aimed at
identifying the distributional characteristics of ratios.

The paper is organized as follows. The following section lays down the
theoretical foundation upon which the paper is based. In summary, we pos-
tulate lognormality as the distribution to be found in raw numbers and then
we show how ratio components that are perfectly lognormal can produce
symmetrical ratios. The next two sections provide the evidence to support
the above hypothesis.

The Effect of External Constraints on Skewness

This section first recalls that where raw numbers are lognormally distributed,
then the skewness of ratios, as well as the existence of outliers, may be just
a general property of multiplicative data. Indeed, the fact requiring an
explanation is why some ratios are symmetrical, not why the distribution
of ratios is skewed and has outliers. It is proposed that symmetrical or
negatively skewed ratios occur because accounting identities act as external
boundaries, constraining the long tail of their distributions to become much
smaller. Since bounded ratios may induce misleading results when used for
calculating confidence intervals or P values, a procedure is offered at the
end of this section to avoid constraints.

Theoretical Foundation and Notation

Authors mentioning cross-section lognormality in raw numbers explain it
as the outcome of multiplicative processes such as the geometric brownian
motion (Tippett, 1990). These processes are considered plausible where
raw numbers are accumulations, that is, where they are sums of similar
transactions with the same sign (McLeay, 1986a).

This study is based upon similar assumptions. However, there is a differ-
ence in emphasis. While the authors mentioned above stress the importance
of generative mechanisms underlying every item, we focus on the overall ef-
fect of size. Instead of assuming that only accumulations such as Sales
and Stocks are lognormal, we accept that Sales, Stocks and other items
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are expected to be lognormal because the growth of the firm as a whole is
a stochastic accumulation. Since the effect of size in raw numbers cannot
be discarded on a-priori grounds, we are inclined to see lognormality as the
rule rather than as the exception. The evidence presented later in this paper
supports this view.

Where accounting numbers are lognormally distributed, then the loga-
rithm of an observation xj from financial report j is explained as the ex-
pected value of the transformed variable, µ, plus a deviation or residual, ej .
An estimated µ is log x, the mean of log x. Ratios y/x can be written as a
difference of logarithms:

log yj−log xj = (µy−µx)+(ey−ex)j corresponding to
yj
xj

= R×fj (1)

where R is an expected proportion and an estimated R is given by exp(log y−
log x), the median of the ratio. Therefore, fj is, for report j, the percent
deviation from the median of the ratio1. On a logarithmic scale, this devia-

tion is a difference, (ey − ex)j which we refer to in this paper as ε
y/x
j . The

distribution of the ratio y/x is the same as the distribution of f = exp εy/x.
Given that f is an exponentiation of εy/x, then ratios are expected to be
lognormal (Lev & Sunder, 1979; McLeay, 1986a).

The peculiar characteristics of lognormal variables and the consequences
ensuing from their use must be borne in mind in any context involving
the statistical manipulation of ratios. Lognormality cannot be treated as
a simple distortion of normality, lognormal variables stem from multiplica-
tive processes while Normal variables are created by additive processes. Of
particular interest is the fact that lognormal distributions are very skewed,
exhibiting long tails towards positive values. For coefficients of variation2

beyond 0.25, most of the observations concentrate in a small region with
only a few extreme values spreading out over a wide range. It is easy to in-
terpret these extreme values as outliers (Snedecor & Cochran, 1965, p. 281;
McLeay, 1986b, p. 209; Ezzamel & Mar-Molinero, 1990, p. 13). In fact, out-
liers often mentioned in relation to ratios are probably just a consequence
of multiplicative skewness.

The Distribution of Bounded Ratios

If components of ratios are lognormal, then ratios should be positively
skewed. Although most ratios exhibit positive skewness, several authors also
mention ratios which are symmetrical or even negatively skewed. As men-
tioned above, TD/TA and NW/TA have been reported as being Normal
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and CA/TA has been found to be negatively skewed. How is this possi-
ble? The reason seems to be straightforward. Accounting identities make
it impossible for some ratios to take on all the values a skewed distribution
allows. This constraint is clearly observable when plotting, on a logarithmic
scale, the two components of a ratio against each other. Figure 1 compares
a constrained ratio with an unconstrained one. The figure shows, on the
left, the effect of a boundary imposed by Total Assets on the spread of Net
Worth (where the observed values are scattered below the 45o bisecting line)
and, on the right, an unconstrained relationship.

Figure 1, page 18

There is a constraint if, due to an accounting identity or other external
cause, the ratio relationship yj/xj = R×fj is bounded by one of the following
inequalities:

for any j, xj > yj or yj > xj

The inequality on the left can be found in ratios in which the numerator is
bounded by the denominator such as Current Assets to Total Assets. The
inequality on the right arises in ratios in which the denominator is bounded
by the numerator (it is possible to create the latter by taking the inverse or
reciprocal of the former).

Figure 2, page 19

Figure 2 illustrates the two types of constraint. Where the constraint is
xj > yj , ratios cannot be larger than 1. The effect of this constraint on the
distribution of ratios is that it inhibits the spread of its otherwise positively
skewed distribution. Instead of the large, lognormal-like tail to the right,
such ratios exhibit a smaller one. Where the constraint is yj > xj , ratio
values cannot be lower than 1. The large, lognormal-like tail is unaffected,
but the left hand tail is truncated, thus increasing even more the positive
skewness of the ratio. In both cases, the bisecting line x = y (or log x =
log y) acts as a boundary. Accordingly, positive skewness would emerge after
inverting one of the apparently Normal ratios.

It should be possible to broadly predict the decrease in skewness in-
troduced by a given boundary. Where the constraint is xj > yj , then

log y − log x < 0 and ε
y/x
j < −(log y − log x) for any j. That is, large

positive deviations from the expected value are not allowed. Where the con-

straint is yj > xj , then log y − log x > 0 and ε
y/x
j > −(log y − log x) for
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any j. That is, large negative deviations from the expected value are not
allowed. Since, in both cases, a constraint prevents εy/x from being larger
than log y − log x, then the nearer log x is to log y, the stronger the con-
straint. Thus the difference log y − log x can be used to estimate the extent
to which constraints affect the symmetry of the distribution of εy/x. Taking
the spread of εy/x into account we obtain the normalized difference

ζ =
log y − log x√
VAR(εy/x)

. (2)

In standard deviation units, |ζ| is the distance separating the constraining
boundary from the expected value of the log-ratio. For |ζ| > 2, the con-
straint is small (less than 2.5% of firms are expected to have their ratios
constrained). Thus the lognormal tail or skewness is almost unaffected. For
2 > |ζ| > 1, the constraint becomes significant, causing symmetrical or even
negatively skewed ratios, as more than 16% of firms are expected to have
their ratios constrained.

Besides accounting identities, there are other external factors which may
affect the distribution of ratios. However, instead of defining boundaries
which are impossible to cross, they bring about a decrease in the density
of observations. For example, as firms are likely to avoid negative Working
Capital, the inequality CA > CL will influence the density of the distribu-
tion of the Current ratio.

Avoiding Constraints

Where the numerator of a ratio is bounded by the denominator, then a sim-
ple transformation can take into account the underlying inequality, yielding
a new, unbounded ratio. In fact, for any proportion written as xi∑

xi
it is

possible to calculate the corresponding ‘odds ratio’, defined as xi

(
∑

xi)−xi
.

For example, the odds ratio corresponding to FA/TA is the ratio FA/CA
as CA = TA − FA. The information contained in both ratios is the same.
The difference between odds-like ratios and the corresponding proportion-
like ones is just functional. It is therefore possible to avoid ratios affected
by constraints by using the corresponding odds ratios instead.

Evidence on Lognormality of Raw Numbers

This section presents an exploratory data analysis supporting the hypoth-
esis upon which the paper is based, providing extensive evidence on the
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lognormality of raw numbers. Lognormality in items such as Sales, Earn-
ings and Total Assets has received a great deal of attention in texts on the
theory of the growth of firms3. Since those texts were not oriented towards
the analysis of financial statements, they omitted items which are frequently
employed as components of ratios, thus failing to supply the kind of evidence
required for building the statistical basis of ratio analysis.

McLeay (1986a), in one of the few studies contemplating distributions
of items as opposed to ratios, argues that items such as Sales, Stocks, Cred-
itors or Current Assets are expected to exhibit cross-section lognormality.
Our empirical work confirms this and suggests that the phenomenon of log-
normality is much more widespread. Many other positive-valued items have
cross-section distributions that are lognormal. Furthermore, where items
can take on positive and negative values, then lognormality can be observed
in the subset of positive values and also in the absolute values of the negative
subset. Size-related non-financial variables such as the number of employees
are also lognormal. Our empirical work has also uncovered cases of three-
parametric lognormality. This finding may be important for elucidating the
origins of non-proportionality in the relationship between the numerator and
the denominator of a financial ratio.

Methodology and Data Set

In this study, the lognormality of items was tested by applying two- or
three-parametric logarithmic transformations where appropriate. While the
Normal distribution is completely specified by the mean and standard devia-
tion, the lognormal distribution may require one extra parameter in order to
account for overall displacement of the distribution. Where a displacement
of item x (say x− δ), and not x itself, is Normal after a logarithmic trans-
formation, the distribution of x is known as Three-Parametric Lognormal.
The range of x is thus δ < x < ∞. The usual, Two-Parametric, lognormal
distribution is a special case for which δ = 0. Since δ is a lower bound
for x, it is known as the threshold of the distribution (Aitchison & Brown,
1957). The normality of the transformed observations was assessed using
an improved version of the Shapiro-Wilk test (Royston, 1982)4. This test
can cope with large or small sample sizes and is recommended as a superior
omnibus test. Notice that the subtraction of δ from x is not similar to the
practice of adding a constant value to observations for avoiding negative val-
ues (Ezzamel & Mar-Molinero, 1990) as the subtraction of δ never changes
the sign of observations.

The data set used in this study was taken from the Micro-EXSTAT
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database for five consecutive years (1983-1987). Following Sudarsanam &
Taffler (1985), we extracted 14 industries to be used as intra-industry sam-
ples (table 2) and we also pooled all the extracted firms into a single cross-
industry sample. Only UK firms were selected. Both intra-industry and
cross-industry groups were examined. The number of firms per industry
ranges from a minimum of 13 (Leather, 1983) to a maximum of 145 (Elec-
tronics, 1986). The number of firms in the cross-industry samples ranges
over the years from 550 to 702. Where a sample contained sufficient neg-
ative values, two separate tests of lognormality were performed by taking
the subset of positive values and then the absolute values of the negative
subset. This is because cross-sections of positive and negative values should
be analysed separately as they may be seen as different populations (Lev &
Sunder, 1979).

Table 2 also shows the accounting variables tested. These are frequently
employed as components of ratios. A further variable included in the analysis
is the number of employees (N) which allows the comparison with a non-
accounting variable exhibiting similar statistical characteristics.

Intra-Industry Results

In the examination of individual industries, 1,260 tests were carried out,
corresponding to 18 different items for each of the 14 selected industries,
during a period of 5 years. Lognormality could not be rejected in most of
these samples, as follows:

� two-parametric lognormality could not be rejected in 1104 tests (87.6%);

� three-parametric lognormality could not be rejected in 136 tests (10.8%);

� the hypothesis of lognormality was rejected in 20 tests (1.6%).

Table 2, page 20

Table 2 shows these results in more detail. It displays the number of years
in which two-parametric lognormality was rejected for each industry and
item. Numbers with asterisks indicate rejection of lognormality. Numbers
without asterisks indicate acceptance of three-parametric lognormality. For
instance, 2+1* in column ‘CL’ and row ‘Electronics’ indicate that Current
Liabilities in the Electronics industry was three-parametric lognormal in two
years of the period 1983-1987 and was not lognormal in one of the remaining
years.
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The results summarized in table 2 suggest that the industrial group-
ing mostly determines whether samples are expected to be two- or three-
parametric lognormal. Industries are more important than items in explain-
ing significant thresholds: 21% of the examined industries account for 65%
of cases of three-parametric lognormality. This table also shows that the
rejection of two-parametric lognormality is sporadic: only in one sample,
Wages in the Electronics industry, do rejections persist during five years.

The 20 tests rejecting lognormality (table 2) were closely observed. Ex-
treme outliers, clearly erratic, were found in 7 of them. The other 13 cases
belong to the Food Manufacturing and Electronics industries, exhibiting well
detached clusters of firms.

Only two industries (Electronics and Food Manufacturing) contained
enough negative values to allow the testing of the absolute values of the
negative subset. In contrast with the positive values, two-parametric log-
normality was prevalent.

Cross-Industry Results

The results of testing the pooled samples for lognormality are also displayed
in table 2 (below). Lognormality was not rejected for any item in any
year. Eleven items were found to be two-parametric lognormal during the
whole period 1983-1987. The remaining 7 items were either two- or three-
parametric depending on the year. Similar results were obtained for the
absolute values of the negative subset: EBIT and FL were, in one or two
years, three-parametric.

An additional finding that is worth reporting, and that applies to the
industry samples as well as the pooled cross-industry samples, concerns the
positive kurtosis observed in all cases after transformation. The skewness
and kurtosis of the raw data were extreme, as expected. After a logarithmic
transformation, the skewness vanished but all of the samples continued to
exhibit traces of leptokurtosis.

Testing Other Transformations

This study also tested the possibility of obtaining normality when using
transformations other than the logarithmic. The logarithmic transformation
can be viewed as a way of removing positive skewness. It makes sense to ask
whether the achieved reduction in skewness is appropriate. If less reduction
is required, a square root or another root should be used instead. If more
reduction is required, the Pareto distribution or another of its class should
be used.
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First, a scale of roots progressively approaching the effect of a logarith-
mic transformation was tested. We observed that there is progress towards
normality for roots of increasing exponent and that symmetry is maximal
when using logarithms. It may be noted that Ezzamel & Mar-Molinero
(1990) reported an unpredictable distribution of ratios after applying sim-
ilar transformations, which contrasts with the regularity observed in the
underlying accounting variables.

Figure 3, page 21

The Pareto transformation, a more powerful transformation than the
logarithmic in neutralizing positive skewness, was also tested. Pareto distri-
butions occur if the relationship between observations and their rank in the
sample is logarithmic. Where values are ranked from large to small, then
log-values and log-ranks should be linearly related for the Pareto to hold5.
However, a clear downward concavity of the distribution was observed in all
tests. In general, firms occupying the middle of the rank were found to be
about twice as large as that predicted by the Pareto distribution. Figure 3
shows an example of the relationship between logarithms of Creditors and
logarithms of their rank. Observations follow much more closely the log-
normal deviate (the dashed line) than a Pareto straight line. Ijiri & Simon
(1977) reported the same concavity for US data.

Comparing Bounded and Unbounded Ratios

This section compares bounded and unbounded ratios, stressing their dif-
ferent characteristics. Two sets of ratios are identified. In the first set, the
denominator is a boundary to the numerator. The skewness of these ratios
is smaller than expected in multiplicative data, suggesting that symmetrical
or negatively skewed ratios reflect the existence of boundaries. Moreover,
bounded ratios become skewed after being inverted, thus making it diffi-
cult to accept the hypothesis that the skewness of ratios stems from non-
proportionality. In the second set of ratios, the denominator is not likely to
bound the numerator. In this set, the estimates of skewness are in agree-
ment with values expected for multiplicative data, showing that its origin is
lognormal.

Besides classifying ratios as bounded or unbounded, the criterion adopted
for selecting ratios was twofold: ratios in both sets should share as many
items as possible and they should resemble those already tested by other
authors. Five years (1983-1987) were examined. Only positive values were
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included since, as mentioned above, cross-sections of positive and negative
values may be seen as different populations.

Bounded Ratios Are Near Symmetry

Positive skewness should decrease in proportion to the strength of con-
straints affecting ratios. The nearer the numerator of these ratios is to
the denominator, the farther should their distributions be from positive
skewness. In order to test this hypothesis, 14 ratios were selected in which
the numerator is bounded by the denominator. For each of them, |ζ| in
formula (2) was calculated.

Table 3, page 22

Table 3 displays the selected ratios, their skewness and the value of |ζ|.
The values observed for skewness agree with those reported by other authors.
As shown above, normalized distances below 2 denote significant constraints.
Ratios CA/TA and QA/CA should be the most affected, as their |ζ| is small.
In fact, these ratios exhibit negative skewness. Probably, this is because
they are so strongly constrained that their distributions become skewed in
the negative direction. Lognormal distributions are two-tailed. If the large
right hand tail almost vanishes, the small left hand tail introduces negative
skewness.

The values of |ζ| suggest that ratios like NW/TA or I/CA should be
significantly affected, though less than those mentioned above. In fact, these
ratios are almost symmetrical. This is probably because the large right hand
tail of their distributions is shortened to an extent where it is in balance with
the left hand tail. Next, FA/TA or I/TA are affected to a smaller degree.
Their skewness is positive but less than expected in multiplicative data.
Finally, given |ζ|, the constraint should be very small in ratios like C/TA or
DEBT/TA and almost non-existent for EBIT/S. In fact, this reasoning is
supported by the data as these ratios are very skewed.

Table 4, page 23

Unbounded Ratios Are Broadly Lognormal

The 15 ratios for which there is no obvious constraint, are listed in table 4,
with their reciprocal. Three facts emerge. First, these ratios are not far
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from lognormality. This can be ascertained by observing the strict rela-
tionship between their skewness and kurtosis, which is a typical feature of
multiplicative data (Aitchison & Brown, 1957, pp. 8-9).

Figure 4, page 24

Figure 4 is a graphical representation of table 4. It displays the regu-
lar curve that is formed by unconstrained ratios when skewness is plotted
against kurtosis. Each ratio is represented by a plus sign. This regularity
is close to the relationship expected in lognormal variables, as indicated by
the dashed line6. Ratios exhibiting larger skewness and kurtosis display a
small, systematic drift from the theoretical curve.

Second, the inference that profitability ratios such as EBIT/TA or
EBIT/NW are multiplicative would appear to contradict the findings of
some other authors. The literature on the distribution of ratios seems to
implicitly consider profits as additive, albeit non-normal (McLeay, 1986a;
1986b; Tippett, 1990; amongst others). Probably this is because, when
studying profitability ratios, negative values are included in samples. How-
ever, according to our assumptions, where raw numbers take on positive and
negative values across firms, then the distribution of negative values should
be a negative mirror-image of the lognormal distribution. In that case, the
overall distribution of items such as Earnings or Working Capital would be
a juxtaposition of two lognormals. Ratios formed with these combined dis-
tributions might be markedly two-tailed. Long-tailed distributions such as
Student’s t or Cauchy (McLeay, 1986b) could fit them closely.

A third fact about unbounded ratios is that none of them is exactly
lognormal, despite the strict lognormality of raw numbers. Lev & Sunder
(1979, p. 204) and McLeay (1986a), when noticing that ratios of lognormal
variables should also be lognormal, were referring to the theoretical case.
Ratios are near lognormality but their logarithms are leptokurtic. Log-
leptokurtosis is also observed in intra-industry ratios and in ratios formed
with non-accounting items such as the number of employees. The presence
of leptokurtosis in log-ratios explains why, for some ratios, no transformation
seems to suceed in approximating normality (Beaver, 1966; Ezzamel et al.,
1987; Ezzamel & Mar-Molinero, 1990).

Skewed Ratios and Non-Proportionality

The main reason for using ratios is to remove the influence of firm size from
accounting variables. In the course of their critiques of the practice of ratio
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analysis, Lev & Sunder (1979) and Whittington (1980) argued that size is
only properly removed where the numerator and the denominator of the ratio
are proportional. Accordingly, these authors advocated a regression rather
than a ratio approach to remove the effect of size. Barnes (1982), added that
non-proportionality probably also explained why the distribution of ratios is
skewed. These views were shared by Lee (1985), Ezzamel et al. (1987), So
(1987) and others. A continuing stream of research on the validity of ratios
routinely implies that non-proportionality may have a role in explaining
distributions of ratios.

However, since ratios are multiplicative and skewness is an expected
quality of multiplicative data, then non-proportionality is not required for
explaining skewness in ratios. In fact, if skewness were caused by non-
proportionality, then ratios which are symmetrical should also be propor-
tional. They should obviously remain proportional and symmetrical when
inverted. The constraining mechanism predicts the contrary: reciprocals of
symmetrical ratios should be very skewed.

Table 5 compares the skewness of CA/TA, NW/TA and FA/TA7 with
the skewness of their reciprocals. It can be seen that the reciprocals are
distinctly multiplicative while the original ratios are not far from normality.

Table 5, page 25

Concluding Remarks

This paper raises two important issues. First, the widespread lognormal-
ity of raw accounting numbers suggests that the mechanism governing their
cross-section distribution is general rather than particular to this or that
item. In order to explain lognormality in accounting numbers, it might be
sufficient to consider the growth of the firm as multiplicative with account-
ing variables reflecting, on average, a given proportion of firm size. Second,
functional relationships between two lognormal variables may describe an
expected proportionality of random effects, of which strict proportionality
is just the simplest formulation. Therefore, besides ratios, other functional
forms exist, capable of modelling the statistical characteristics of accounting
numbers while removing the effect of size. For example, three-parametric
lognormality suggests an obvious extension of ratios probably able to com-
prise non-proportionality.

It may be concluded that this paper removes one major difficulty in un-
derstanding the statistical distribution of ratios: the existence of symmetry
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and negative skewness is explained as the effect of external boundaries such
as accounting identities. The widespread lognormality of raw accounting
numbers provides a privileged viewpoint from which ratios can be studied.
First, it shows that ratios are expected to be multiplicative. Thus deviations
from positive skewness, not deviations from symmetry, should be the main
object of interest. Second, it unveils interesting features of ratios such as
log-leptokurtosis. The findings of this study show that, after all, there is
something regular and easy to understand in ratios.

Notes

1. Lev & Sunder (1979, p. 191) also mention multiplicative residuals.

2. The coefficient of variation is the standard deviation expressed as a fraction
of the expected value. It is preferable to the standard deviation or the vari-
ance for quantifying the spread of lognormal data, because the latter are not
constant.

3. See Ijiri & Simon (1977), for example.

4. For each test, δ was estimated by applying a modified version of the proce-
dure suggested by Royston (1982, p. 123). The Shapiro-Wilk test produces a
statistic, W , ranging from zero to one. Values of W approaching 1 mean in-
creasing normality. Royston uses trial and error to find out which δ maximizes
W . Using simulation, we noticed that the threshold should be estimated as
the smallest δ able to attain a non-significant W , not as the δ yielding the
largest W .

5. Where x is Pareto-distributed, then log x = logM − β × log r. r is the rank
of x. The largest x is assigned the rank 1. M and β are parameters of the
distribution.

6. The SPSS-X utility used in this study computes skewness and kurtosis in a
way that is different from the conventional definition. For details, see SPSS
Inc., (1983). SPSSx Statistical Algorithms, Chicago, Il.

7. The distribution of FA/TA is the mirror-image of CA/TA. This is because
the two ratios add to 1. The same can be observed in the pair I/CA and
QA/CA.
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TA Total Assets NW Net Worth
FA Fixed Assets DEBT Long Term Debt
D Debtors C Creditors
CA Current Assets CL Current Liabilities
I Inventory TC Total Capital Employed
WC Working Capital TD Total Debt
EX Operating Expenses less Wages S Sales
EBIT Earnings Before Interest and Tax W Wages
OPP Operating Profit QA Quick Assets
FL Gross Funds From Operations N Number of Employees

Table 1: List of abbreviations used in this study.
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Figure 1: Two scatterplots comparing constrained (left) with unconstrained
(right) bivariate distributions of raw numbers. Each dot is one firm. The
axes use logarithmic scaling. The constraining frontier is the bisecting line
log x = log y.
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Figure 2: The two kinds of constraints affecting bivariate distributions of
raw numbers. The axes use logarithmic scaling.
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Figure 3: Relationship between log-rank (X-axis) and log-value (Y-axis).
The dashed line is the lognormal deviate. Each point represents the Credi-
tors item reported by a firm in the Building Materials industry, 1987.
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Figure 4: The functional relationship between skewness and kurtosis in un-
constrained ratios. The dashed line is the theoretical relationship. Each
ratio is represented by a plus sign.
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