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Abstract

This study identifies general postulates underlying the validity of
the financial ratio measurement. Then, new relationships are sug-
gested obeying the same postulates, which may replace the ratio form
in the case of non-proportionality. Where proportionality holds, these
relationships revert to the traditional ratio. The paper also reviews
the reasons for expecting non-proportional components in ratios and
presents application examples of the new relationships.
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Introduction

It is generally assumed that ratios remove the influence of firm size from
corporate financial indicators. However, the widespread use of ratios in
financial statement analysis has been criticised frequently in the accounting
literature. Lev & Sunder (1979) and Whittington (1980) argue that size is



only properly removed when the numerator and the denominator of the ratio
are proportional. These authors advocate a regression rather than a ratio
approach in order to remove size. Barnes (1982, 1986) and others, reinforce
these views. Horrigan (1983) and McDonald & Morris (1984, 1985, 1986)
dissent, arguing that proportionality in ratios is irrelevant in judging their
usefulness. This debate is summarised by Berry & Nix (1991).

Evidence on non-proportionality in UK industries is provided by Su-
darsanam & Taffler (1995). McLeay & Fieldsend (1987) and Fieldsend et
al. (1987) study proportionality in ratios in the presence of sector and size
effects, showing that departures from proportionality may be accounted for,
to some extent, by the interaction between these effects. Tippett (1990)
shows that plausibly generated ratio components lead to inherently non-
proportional ratios.

Only after understanding the reasons for the use of financial ratios can
the above-mentioned limitations be put into a proper perspective. Indeed,
given the peculiar characteristics of financial ratio components, any alter-
native form of financial indicator which is constructed from such variables
ought to be selected with great care. Accordingly, this study first examines
some general postulates underlying valid ratio analysis and then considers
the reasons for expecting non-proportional components in ratios. Based on
such postulates, new relationships are suggested which may replace the ratio
form in the case of non-proportionality. Where proportionality holds, these
relationships revert to the traditional ratio.

General Postulates of Ratio Analysis

In essence, ratios compare two observations, yielding the proportion by
which one differs from the other. However, ratios are not the most straight-
forward way of comparing observations. In many decision processes, the dif-
ference between two variables could be, and often is, used to the same effect.
Why then are ratios required in the case of financial measurements? The rea-
son is that, besides the interest in expressing results as proportions, the ratio
form is also required for removing multiplicative statistical influences!from
measurements. To be more precise, ratios provide the appropriate method
of controlling for firm size if it is present in ratio components in the form of
a multiplicative influence.

In fact, size is not removed by ratios when an additive influence is as-
sumed. For instance, where two observations, y and x, are under the same
additive statistical influence A (an expected value), then y and z are de-



scribed as
y = Adey

r = A+e,, (1)

ey and e, being residuals, i. e., random amounts of y and x unexplained by
A. In order to remove the influence of A, y and x should be subtracted.
If, instead of subtracting them, a ratio were formed, then A would not be
removed:

y Adey

—x=e€,—e€ whereas = = . 2
4 v r A+e, 2)
On the other hand, size is removed by the ratio when a multiplicative influ-
ence is assumed.?For instance, where two observations, y and z, are influ-
enced by the same S (an expected proportion), then y and = are described as

y = SF
r = St (3)

fy and f; being random proportions of § found in y and z. In order to
remove S, a ratio of y and x, not a subtraction, should be formed:

_fy
A
However, not all types of multiplicative influence are removed by ratios.
According to the Law of Proportionate Effect,3each realisation of a mul-
tiplicative variable v is the outcome of many accruals dv, each of them
proportional, on average, to values of v already attained. Therefore, in this

case, the statistical influence commanding the generation of v is described
by the percentage growth rate

|

y—x=28(fy— fz) whereas (4)

dv
ds = —
5= (5)

(which is independent of v), not by the accrual dv. Ratios of such variables
may fail to remove size because differences in their growth rates caused by
stochastic fluctuations may generate co-variance terms which, in turn, intro-
duce non-proportionality in the ratio form (Tippett, 1990). The adequacy
of ratios also requires that any such distortion be negligible but this will
happen only if observations are generated by nearly constant, similar ds.
In summary, two general postulates underpin the validity of the tradi-
tional ratio measurement, which may be described systematically as follows.



Given accounting variables y and x which are assumed to be strictly pro-
portional, with size present in the form of statistical influences ds, and ds,,
and which are generated according to (5), then the ratio

will remove size (so that P, an expected proportion between y and x and
firm-specific residuals f, /., are independent of y and ) if

(a) during the generation of individual observations the influence of firm
size is the same for both components of the ratio (ds, = ds,, i. e.,
though case-related, ds is variable-independent) and

(b) such common influence is approximately constant.*

The first of these postulates, that of similar ds, underlies (3) and the sim-
plified reasoning presented therein. It may be assumed that, when ratio
components are taken from the same financial statement, they are gener-
ated under the same size influence. Indeed, the widespread lognormality of
accounting variables (Trigueiros, 1995) suggests that the mechanism govern-
ing their distribution is general rather than particular to different financial
statement items. Thus, we may accept that, for ratios of items from the
same financial statement, ds; = ds,.

On the other hand, size will not be removed from the measurement
when ratio components are generated under two different influences. This
may be the case of ratios such as ROE or ROI for which it is frequent to
take the denominator from the previous year’s report. Whereas, in the above
ratios, the influence of size may be desirable (e. g., when measuring growth),
other cases exist where such influence will be spurious. EPS or PE ratios,
for example, may be correlated with size because the statistical influence
explaining the number of shares in issue is not necessarily the same as that
commanding the generation of earnings.

The second postulate, that of constant ds, is a consequence of ratios hav-
ing one degree of freedom only, enabling them to model just the expected
value of growth rates, not their spread nor their interaction. Constant ds
implies that v, in (5), grows according to a process of continuous com-
pounding (exponential growth). If, however, the growth rate of firms varies
widely, co-variance terms between ratio components may become significant.
Seasonality, for instance, is supposed to undermine the accuracy of the fi-
nancial measurement when the final value of a component fails to reflect



its real growth during the period. However, according to this postulate,
even in cases where it makes sense to assume that the magnitude of a ratio
component reflects the way its growth has taken place, seasonality or any
significant fluctuation might still distort the ratio measurement.

The Threshold Ratio

It may be asked whether it is possible to overcome some of the limitations of
ratios without departing from the two conditions for valid ratio measurement
outlined above. The Law of Proportionate Effect, for instance, acknowledges
that the accrual dv in (5) may be proportional, not to v itself, but to v — §
where ¢ is constant. In this case

dv

ds =
y v—20

(7)

instead of (5). Conditions leading to lognormal v in (5) generate, in (7), dis-
tributions known as three-parametric lognormal with threshold § (Aitchison
& Brown, 1957).

’ Figure 1, page 18 ‘

Three-parametric lognormality in accounting variables was reported in
Trigueiros (1995) and shown to be a plausible source of non-proportionality
in financial ratios, consisting of a displacement of the distribution of individ-
ual components (figure 1). The existence of fixed costs, for instance, leads
to a constant displacement in the distribution of total costs.

Adequate removal of size requires, in this case, one of the following ratios

—5

X

T — Oy

for, respectively, three-parametric lognormal numerators and denominators.
Thresholds are §, in (8) and d, in (9). The above ‘threshold ratios’ cope
with an elementary form of non-proportionality albeit obeying the same
postulates as traditional ratios. Where proportionality holds, then § = 0 and
they revert to the traditional ratio. If thresholds in the numerator and in
the denominator are both significant, a reinforcement of non-proportionality
occurs when ¢, and J, have different signs. In a singular case, P = §,/6,,
thresholds are cancelled out (functionally) but they still distort the analysis.



In addition to thresholds which are identical for a group of observations,
it may also be worth considering size-related thresholds. In this case, J is
similar to other accounting variables. Realisations of v will be larger than
expected for comparatively large d, (e. g., in cross-section, the case of large
firms) and the growth rate ds is no longer variable-independent. A simplified
view of processes which assume size-related thresholds might be given by

ds, = byds  with ds = d%) and b, = f(d,v) so that b, — 1 for § — 0.
(10)
Since ¢ is small for small ds and large for large ds, strictly size-related thresh-
olds cannot generate non-proportionality between components. Assuming,
for instance, that 5, an expected b for all realisations of v, exists, then ratios
based on (10) may take the form

Y
Y =Pl (1)

or similar. On a logarithmic scale,

logy — Blogx = p+ey/,- (12)

(12) is functionally identical to the relationship used by Fieldsend et al. (1987)
for studying sector effects. It is a regression rather than a threshold ratio.
The slope coefficient, 3, is approximate to the unit in the case of strict pro-
portionality. Slopes smaller than 1 are obtained for § < 0. In cross-section,
they bias large firm’s ratios downwards, mimicking scale effects such those
described by Whittington (1980).

In practice, the same accounting variable may have both constant (size-
independent) and size-related thresholds. In a time-series, for example, some
fixed costs will generate constant thresholds whereas others, which may
follow a step function, will be sensitive to changes in size.

Threshold Ratios vs. Regressions

Previous studies concerning the validity of ratios stress the fact that re-
gressions may add to financial measurement the possibility of modelling
non-proportional relationships. However, regressions add more than just
intercept terms: they also introduce, through the slope coefficient, an es-
timation of correlation between components. Such estimation, not present
in traditional ratio analysis, substantially changes the nature and scope of
financial measurement.



Figure 2, page 19

Since ratios are simple proportions, the estimation of ratio benchmarks
such as industry norms only requires the estimation of the expected values
of components. In contrast, in a regression, both the slope and the intercept
term are influenced by the variance and co-variance of components (figure 2).
The improvement offered by threshold ratios (8) and (9) over traditional
analysis is the possibility of modelling expected proportions irrespective of
correlation, thereby preserving the ratio’s characteristics, which appear to
be important to financial decision makers.

In the threshold ratio, for instance, non-proportionality is modelled as a
constant displacement in the distribution of one of the components whereas
the regression intercept term stems from the interaction between the two
variables. Only when the relationship between components is determinis-
tic (i. e., correlation is equal to 1) are the regression coefficients readily
interpretable in the same way as the usual ratio measurement.’

Functionally, ratio (9) is also different from regression in that its ‘in-
tercept term’, —d0,Pf,/,, is not constant. It depends not only on 4, and
P, but also on the residual f,/, in each case. The threshold in ratio (8),
0y, might be viewed as similar to a regression intercept as it introduces a
case-independent constant term. However, ratios (8) and (9) are essentially
similar. On a logarithmic scale, they become, in the same order,

log(y —dy) —logx = p+ey, (13)
logy —log(x —6,) = p+ey, (14)

with y = log P and e, ;, = log f, /.. On this scale, corrections introduced by
a similar § in numerators or in denominators have the same magnitude. On
the original scale, denominators correct for distortions limited by the range
{0, 1} whereas numerators correct for magnified distortions that are greater
than 1. The basic difference remains that the estimation of threshold ratio
parameters does not require consideration of the variance and co-variance
of components.

There are two other differences between threshold ratios and regressions.
First, like traditional ratios, threshold ratios may be treated as errors-in-
variables models where appropriate. In contrast, regressions require the
assumption that independent variables are deterministic, yet as Horrigan
(1983) pointed out ‘neither component [in ratios] is the exogenous, causal
variable, nor is one component necessarily stochastic while the other is de-
terministic’. Second, threshold ratios are consistent with the multiplicative



character of the components whereas the assumption underlying regressions
is that variables are additive.

Reasons for Expecting Non-Proportionality

A distinctive characteristic of multiplicative variables is that, when a ratio is
formed, the distortion introduced into the analysis by thresholds is likely to
be negligible in most instances. That is, due to their exponential growth, re-
alisations of v in (7) may attain values many times larger than the threshold
and, in such cases, v — § = v. Non-proportionality is significant only where
generative processes lead to realisations of v which are not much larger than
0 as, for example, in the case of a small growth rate ds.

As a consequence, comparatively large size-independent thresholds are
plausible in time-series analysis but unlikely in cross-section analysis. Ob-
servations, in a time-series, have their origin in the same object, e. g., one
firm or aggregate in different periods. Features which are constant inside
firms, such as fixed costs, emerge as size-independent in this context, be-
ing able to create comparatively large thresholds. In cross-section, as ob-
servations have their origin in different objects, size-independence requires
industry-wide ‘fixed costs’. Since these thresholds must allow for the sur-
vival of small firms, they must be comparatively small.®Therefore, where
ratios are used for normative purposes, corrections of distortions caused by
non-proportionality are likely to be required only when assessing deviations
of small firms from industry norms. On the other hand, a pervasive, signif-
icant distortion caused by a threshold is possible only in industries where
firms have similar sizes.

The existence of fixed costs is also likely to generate size-related thresh-
olds, i. e., costs which are fixed for one firm but variable across firms, large
firms having large fixed costs and small firms having small fixed costs (Lev
& Sunder, 1979; Whittington, 1980). In this case, the use of ‘slope ratios’
such as (12) may be appropriate.

In a time-series analysis, size-related thresholds are worth considering
only where large changes in size have taken place. This will not normally
occur when analysing a short period of time, where size-independent thresh-
olds dominate the analysis.

Table 1, page 20

Table 1 summarises this discussion.



Application Examples

This section suggests methods for estimating 6 and displays examples of
the application of threshold ratios. The first example uses items Fixed
Assets (FA) and Current Assets (CA) in a cross-section analysis.” The data
set (Electronics industry, 1986, UK firms only) is taken from the Micro-
EXSTAT database. Five models, as follows, are compared.

Model 1: The traditional ratio. This model has one degree of freedom,
the median of the ratio (1 on a logarithmic scale):
FA
C—Azl()“f or logFA =p+logCA+e (15)
Model 2: The slope ratio. This model has two degrees of freedom: pu
and f3, the slope. The estimated model, similar to (12), is

FA
= 10M
CAP f

(16)

Graphically, this model is a straight line on a logarithmic scale and
non-linear on an ordinary scale.

logFA = u+ Blog CA + e corresponding to the ratio

Model 3: Threshold ratio, jointly estimated parameters. The two de-
grees of freedom of this model correspond to p and §. Those are esti-
mated using

log FA = u+log(CA—4§)+e corresponding to the ratio

= 10" f

(17)
Graphically, this model is non-linear on a logarithmic scale and a
straight line on an ordinary scale.

FA
CA-9$

Model 4: Threshold ratio, independently estimated parameters. In
this model there is only one degree of freedom, . d, the threshold of
the distribution of CA, is known in advance. p is estimated using

FA
=10*f (18
Graphically, this model is non-linear and parallel with model 3 on a
logarithmic scale and a straight line on an ordinary scale. The model
converges with model 1, the traditional ratio, for medium-sized and
large firms.

log FA = p+log(CA—d)+e corresponding to



Model 5: Threshold ratio plus slope. This model has three degrees of
freedom, u, B and J, jointly estimated using

FA
log FA = pu+ Blog(CA — ) + e corresponding to m =104 f
(19)
Graphically, this model exhibits a mixture of the features of models 2

and 3.

Above, each model has been presented together with its logarithmic counter-
part, as multiplicative models require logarithmic scaling prior to coefficient
estimation. Figure 3 compares, on a logarithmic scale, model 1 (solid line)
with models 2 to 5. Figure 4 reproduces figure 3 on the original scale (only
the region near the origin).

’ Figure 3, page 21 ‘

’ Figure 4, page 22 ‘

The independent estimation of thresholds, as in model 4, can be carried
out using any technique available to detect three-parametric lognormality
in distributions. In this example we measured dc4 = —£320, 000, using a
modified version of the procedure suggested by Royston (1982, p. 123).8The
joint estimation of § and other parameters, as in models 3 and 5, requires it-
erative least-squares algorithms and logarithm-scaled models. Each of these
methods leads to a different interpretation of ratios and, in general, the
estimates obtained also differ.

’ Table 2, page 23 ‘

Table 2 relates § and p obtained in each model to R? (variability ex-
plained), skewness and kurtosis of e (residuals on a logarithmic scale). As
can be seen, by letting the slope 3 vary freely (model 2), the R? approaches
the variability explained by thresholds (models 3 and 4). Figure 3 also sug-
gests that the slope approaches the effect of the threshold. Moreover, once
J is accounted for, § returns to 1 (model 5). Fieldsend et al. (1987) notice
that slopes also tend towards the unit when sector effects are accounted for.

From the five models studied, the most attractive seems to be the thresh-
old ratio where 0 and p are independently estimated (model 4), as non-
proportional components are accounted for albeit also converging with the

10



traditional ratio for medium- and large-sized firms. Furthermore, the in-
troduction in this model of one extra parameter, J, is not likely to erode
significantly one of the strengths of the traditional ratio, robustness to ir-
regular data, as the estimation of thresholds is exposed to ill influences only
for a small portion of the sample.?This contrasts with the widened potential
for distortion introduced in estimates by slope coefficients.

When applying the traditional regression model (CA = a + b FA + ¢)
to the same data set, some highly influential cases were observed using
the procedure specified by Cook (1977). The intercept term, a, became
much smaller and non-significant after removing the largest firm from the
analysis. Weighted regression did not solve the problem completely, merely
transferring the influence from the largest to the smallest firms.'%Indeed,
when included in additive formulations such as regressions, multiplicative
variables lead to estimated coefficients which may be dominated by one or
two influential observations (Snedecor & Cochran, 1965, p. 290).

The second example illustrates an application of the threshold ratio
method to time series analysis where Operating Costs and Sales of a UK
retail firm (TESCO PLC) are examined for the period 1983-1987, following
Steele (1989), i. e.:

Year 1983 1984 1985 1986 1987

Operating Costs | £2,211m | £2,518m | £2,911m | £3,216m | £3,407m
Sales £2,276m | £2,594m | £3,000m | £3,355m | £3,593m
Ratio 97.15% 97.07% 97.03% 95.85% 94.84%

Typically, a regression where Sales is explained by Operating Costs would
be expected to yield an intercept term which approaches fixed costs for
that period. Table 3 shows the functional relationships used for estimation
and the results obtained when comparing the regression method with the
threshold ratio method.

Table 3, page 24 ‘

The relationship is, in this case, almost deterministic (R? = 99%). As
a consequence, the slope of the estimated regression, b, is similar to the
expected proportion, 10#, observed between the numerator and the denomi-
nator of the ratio. Should the correlation between sales and costs be smaller
than 1 (while considering the same expected proportion), then b would be
smaller than 10#. In the limit, for a correlation approaching zero, b would
also become zero and a would equal the expected value of the numerator.

11



The expected ratio, 10#, would not change. This reasoning illustrates clearly
the above mentioned differences between threshold ratios and regressions,
showing that, similarly to the traditional ratio, the threshold ratio explains
costs as a proportion of sales irrespective of correlation. In addition, in the
threshold ratio, fixed costs is explained as a constant displacement in the
distribution of costs.

Fixed costs (costs incurred which do not change with the amount of
product made) may, nevertheless, vary over time because of growth effects or
changes in money values. Both methods assume that fixed costs are stable.
However, when fixed costs are estimated as a displacement in the distribution
of costs, the accuracy of the estimation is undermined by fluctuations in fixed
costs only, whereas the estimation based on an intercept term is affected by
fluctuations in fixed costs, by fluctuations in the slope coefficient (e. g.,
changes in efficiency or in sales prices) and by the interaction between these
effects.

Discussion

The literature on the validity of ratios to date has uncovered two cases where
ratios may fail to remove size. First, components may be non-proportional
(Lev & Sunder, 1979; Whittington, 1980 and others). Second, even where
components are proportional, co-variance between them introduces non-
proportionality in the ratio form (Tippett, 1990). Practitioners, however,
albeit acting guardedly in cases where financial ratios also have the poten-
tial to bias the analysis, such as the existence of seasonality, seem little
concerned with non-proportionality. Indeed, empirical tests carried out so
far, though finding clear traces of non-proportionality in ratios, do not sup-
port the view that such distortion is overwhelming. It seems as though
non-proportionality has, in practice, little impact on the use of financial ra-
tios. A few authors go as far as to argue that the issue may be irrelevant
(Horrigan, 1983; McDonald & Morris, 1984).

This study has offered an alternative approach to the problem of non-
proportionality in financial analysis which, amongst other practical conse-
quences, explains the apparent contradiction outlined above. First, the pa-
per suggested that the ability of financial ratios to remove size stems from
firm size being present in both ratio components in the form of the same
multiplicative statistical influence. In addition, distortion introduced in the
measurement by co-variance terms is likely to be negligible where, during
the generation of components, the influence of size can be taken as nearly
constant.

12



In contrast with the usual statement that ratios are valid where propor-
tionality holds, the above two postulates provide a basis for discussing the
adequacy of ratios to specific tasks and, where necessary, for implement-
ing improvements consistent with financial decision making. The paper has
explored the most obvious of such improvements. Since size is present in
accounting variables in the form of a statistical influence, then the removal
of size only requires the modelling of proportionality between statistical
influences. The condition of strict proportionality between components is,
therefore, restrictive in excess. Earlier, it has been shown that, besides tradi-
tional ratios, other similar relationships exist which are capable of removing
size, specifically the threshold ratio.

The above two postulates also help to put into perspective the limitations
and strengths of traditional ratios, especially when compared with those of
alternative tools. Limitations, for instance, stem from simplicity: any model
with one degree of freedom only would display similar limitations and it
is easy to overcome those just by incorporating more degrees of freedom
into models. However, the more degrees of freedom models have, the less
intuitive the financial measurement will be, becoming sensitive to irregular
data or influenced by conditions, such as the variance and co-variance of
components, not necessarily required in the financial decision process.

The postulates also clarify circumstances in which non-proportionality
may be effective in distorting the analysis. Given the exponential generation
of accounting variables, reasons invoked for expecting significant distortions
apply to time-series analysis but are less plausible in cross-section. In the
latter, only small firms are affected. Threshold ratios may provide, in these
cases, more accurate analysis and statistical manipulation of data.

Finally, the fact that the additive formulation

Yo Ate (20)

x
has been used routinely to discuss the validity of ratios and their statistical
characteristics, may account for some of the recent academic criticism of
the ratio method. Given the imposing a-prior: assumptions of the additive
model, it is not surprising that ratios seem not to be up to the task.''It
may also be speculated that the adoption of relationship (20) was influen-
tial in viewing ratios as zero-intercept regressions (thence the interest in
adding the missing term) rather than as simple proportions. In addition to
calling attention to the initial judgement implied by (20) and to the con-
tradiction it entails, the paper has suggested a more reasonable alternative,
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the multiplicative form, in the light of which ratios agree with the statistical
characteristics of accounting data.

Notes

1.

For the sake of simplicity the paper uses the term influence when referring
to statistical effect. Multiplicative influences, known also as proportionate
(or exponential) effects, are well documented in text-books in statistics. See,
e. g., Snedecor & Cochran (1965, 97" edition, p. 290). Lev & Sunder (1979)
hint at the possibility of ratios being multiplicative models.

Authors tend to use additive forms such as (1) probably because these forms
relate to the Normal distribution. However, evidence suggests that account-
ing variables are lognormal rather than normal, denoting multiplicative in-
fluences. Lognormality in variables such as Sales, Earnings and Total Assets,
received a great deal of attention in texts on the theory of the growth of firms
(e. g., Jjiri & Simon, 1977). In the accounting literature, McLeay (1986) men-
tions lognormality in variables which are sums of similar transactions with
the same sign such as Stocks, Creditors or Current Assets. Recent empirical
evidence (Trigueiros, 1995) suggests that lognormality is widespread.

. The Law of Proportionate Effect is the mechanism explaining multiplicative

influences. See, e. g., Gibrat (1931, pp. 62-64); Aitchison & Brown (1957,
pp. 20-27). McLeay (1986) relates this mechanism to distributions found in
ratio components.

. The two postulates are not meant to offer insights into the characteristics

of individual financial statement items or particular ratios. Differences in
expected magnitudes observed in accounting variables and random deviations
from these magnitudes may have their origin in initial values (values of v at
the beginning of the generating process) or other conditions which uniquely
determine observations generated by (5).

. In this case, the slope is the proportion between average numerator and

denominator and the intercept term is their difference.

. For example, an industry-wide average cost of £3,852,000 for food manu-

facturers in the UK in 1987, would represent only 0.2% of United Biscuits
earnings, but it would equal the turnover of a small firm such as G. F. Lovell
ple. The volume of sales of United Biscuits was, in 1987, about 480 times
the volume of Lovell, a typically multiplicative proportion. Additive obser-
vations, such as the height of adults, do not exhibit such huge discrepancies.

These variables were chosen because dp 4 is non-significant and also because
accounting identities cannot distort the distribution of their ratio (Trigueiros,
1995).

14



8.

10.

11.

Royston uses trial and error to find out which § maximises W in the Shapiro
& Wilk’s test of normality. d estimated by the Royston method is too large in
most cases. To avoid over-estimation, § should be estimated as the smallest
d in z = log(v — d) able to render z = N(u, o).

. Even so, some loss of robustness is expected when using threshold ratios.

Three-parametric lognormality, for instance, might be less frequent than
that suggested by statistical tests as other anomalies impinging upon the
smallest values in a distribution also benefit from the introduction of the
three-parametric transformation in such tests. However, the fact that the
industrial grouping mostly determines whether samples are expected to be
non-proportional (McDonald & Morris, 1984; Fieldsend, Longford & McLeay,
1986; McLeay & Fieldsend, 1987; Trigueiros, 1995; Sudarsanam & Taffler,
1995) gravitates against viewing thresholds purely as ‘catch-all’ terms.

Weighted regression stabilises variance in proportion to the independent vari-
able. In multiplicative data, variance is proportional to the square of the
independent variable. Anyhow, the statistical characteristics of ratio com-
ponents clearly suggest the use of multiplicative forms (or, for estimation
purposes, their logarithmic counterparts), not weighted regressions. When
these characteristics are overlooked, influential cases, not just heteroscedas-
ticity, is what invalidates estimation. Therefore, the eventual robustness of
estimation in the presence of heteroscedasticity (Barnes, 1986) is not, in this
case, an important issue.

Tippett (1990, p. 80), in a time-series context, notices one example, amongst
others, where (20) is contradictory: when e/, is large enough, then ratios
may assume negative values, even where both components are, by definition,
positive.
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Probability Density

A

0 delta

Figure 1: The usual, two-parametric, lognormal distribution (solid line)
and the corresponding three-parametric distribution (dashed line) showing
a positive displacement, delta, known as the threshold.
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Numerator

A
Correlation = 0.7
E(ratio) = 1
Intercept = 1.6

6 Slope = 0.6

Numerator

A

Denominator
> 0

Correlation = 0.9
E(ratio) = 1
Intercept = 0.4
Slope =0.9 X

Denominator
-

-

Figure 2: The two variables (called Numerator and Denominator) displayed
on the left and on the right have the same expected values. Only the corre-
lation between them is different and so, therefore, are the regression coeffi-

clents.
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Log FA Log FA
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Figure 3: The traditional ratio (solid line) when compared, on a logarithmic
scale, with the slope ratio (Model 2), the threshold ratio (Models 3 and 4),
and the threshold plus slope ratio (Model 5).
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Model 3

CA CA
CA CA

Figure 4: The traditional ratio (solid line) when compared, on the original
scale, with the slope ratio (Model 2), the threshold ratio (Models 3 and 4),
and the threshold plus slope ratio (Model 5).
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Model No. I B8 ) R? | Skewness | Kurtosis
1 -0.46 2% 0.27 2.18
2 -0.21 | 0.94 76% 0.07 1.30
3 -0.49 -£528,000 | 78% -0.12 1.19
4 -0.46 -£320,000 | 76% -0.12 1.78
5 -0.40 | 0.99 | -£403,000 | 78% -0.12 1.19

Table 2: Parameters and statistics obtained with the five models of the first
example.
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