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NON-PROPORTIONALITY IN RATIOS: 
AN ALTERNATIVE APPROACH 

DUARTE TRIGUEIROS 
ISCTE, University of Lisbon 

This study identifies general postulates underlying the validity of the financial ratio 
measurement. Then, new relationships are suggested obeying the same postulates, 
which may replace the ratio form in the case of non-proportionality. Where pro­
portionality holds, these relationships revert to the traditional ratio. The paper also 
reviews the reasons for expecting non-proportional components in ratios and presents 
application examples of the new relationships. © 1997 Academic Press Limited 

INTRODUCTION 

It is generally assumed that ratios remove the influence of firm size from 
corporate financial indicators. Ho~ever, the widespread use of ratios in fin­
ancial statement analysis has been criticized frequently in the accounting 
literature. Lev & Sunder (1979) and Whittington (1980) argue that size is 
only properly removed when the numerator and the denominator of the ratio 
are proportionaL These authors advocate a regression rather than a ratio 
approach in order to remove size. Barnes (1982, 1986) and others reinforce 
these views. Horrigan (1983) and McDonald & Morris (1984, 1985, 1986) 
dissent, arguing that proportionality in ratios is irrelevant in judging their 
usefulness. This debate is summarized by Berry & Nix (I 991). 

Evidence on non-proportionality in UK industries is provided by Su­
darsanam & Taffier (1995). McLeay & Fieldsend (1987) and Fieldsend et al. 
( 1987) study proportionality in ratios in the presence of sector and size effects, 
showing that departures from proportionality may be accounted for, to some 
extent, by the interaction between these effects. Tippett (1990) shows that 
plausibly generated ratio components lead to inherently non-proportional 
ratios. 

Only after understanding the reasons for the use of financial ratios can the 
above-mentioned limitations be put into a proper perspective. Indeed, given 
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the peculiarchamcteristics of financial ratio components, any alternative form 
of financial indicator which is constructed from such variables ought to be 
selected with great care. Accordingly, this study first examines some general 
postulates underlying valid ratio analysis, and then considers the reasons for 
expecting non-proponional components in ratios. Based on such postulates, 
new relationships are suggested which may replace the ratio form in the case 
of non-proponionality. Where proportionality holds, these relationships rev en 
to the traditional ratio. 

GENERAL POSTUlATES OF RATIO ANALYSIS 

In essence, ratios compare two observations, yielding the proponion by which 
one differs from the other. However, ratios are not the most straightforward 
way of comparing observations. In many decision processes, the difference 
between two variables could be, and often is, used to the same effect. Why, 
then, are ratios required in the case of financial measurements? The reason is 
that, besides the interest in expressing results as proponions, the ratio form is 
also required for removing multiplicative statistical influences 1 from meas­
urements. To be more precise, ratios provide the appropriate method of con­
trolling for firm size if it is present in ratio components in the form of a 
multiplicative influence. 

In fact, size is not removed by ratios when an additive influence is assumed. 
For instance, where two observations, y and x, are under the same additive 
statistical influence A (an expected value), theny and x are described as 

(1) 

ey and ex being residuals (i.e. random amounts ofy and x unexplained by A). 
In order to remove the influence ofA,y and x should be subtracted. If, instead 
of subtracting them, a ratio were formed, then A would not be removed: 

y A+ey 
y-x=e -e whereas -=--

Y x X A+ex (2) 

On the other hand, size is removed by the ratio when a multiplicative influence 
is assumed. 2 For instance, where two observations, y and x, are influenced by 
the same S (an expected proportion), theny and x are described as 

y=S/y 

x=Sfx 
(3) 
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/y and fx being random proportions of S found in y and x. In order to remove 
S, a ratio ofy and x, not a subtraction, should be formed: 

y-x=S(./y-fx) whereas ~=f./,2 
X X 

(4) 

However, not all types of multiplicative influence are removed by ratios. Ac­
cording to the Law ofProportionate Effect, 3 each realization of a multiplicative 
variable vis the outcome of many accruals dv, each of them proportional, on 
average, to values of v already attained. Therefore, in this case, the statistical 
influence commanding the generation of v is described by the percentage 
growth rate 

dv 
ds=­

v 
(5) 

(which is independent of v), not by the accrual dv. Ratios of such variables 
may fail to remove size, because differences in their growth rates caused by 
stochastic fluctuations may generflte co-variance terms which, in turn, in­
troduce non-proportionality in the ratio form (Tippett, 1990). The adequacy 
of ratios also requires that any such distortion be negligible, but this will 
happen only if observations are generated by nearly constant, similar ds. 

In summary, two general postulates underpin the validity of the traditional 
ratio measurement, which may be described systematically as follows. Given 
accounting variables y and x, which are assumed to be strictly proportional, 
with size present in the form of statistical influences dsx and dsy, and which are 
generated according to (5), then the ratio 

y 
-=P/ylx 
X 

(6) 

will remove size (so that P, an expected proportion betweeny and x and firm­
specific residuals/y1x, are independent ofy and x) if: 

(a) during the generation of individual observations the influence offirm size 
is the same for both components of the ratio (dsx = dsy, i.e. although case­
related, ds is variable-independent); and 

(b) such common influence is approximately constant.4 

The first of these postulates, that of similar ds, underlies (3) and the simplified 
reasoning presented therein. It may be assumed that, when ratio components 
are taken from the same financial statement, they are generated under the same 
size influence. Indeed, the widespread lognormality of accounting variables 
(Trigueiros, 1995) suggests that the mechanism governing their distribution 
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is general rather than particular to different financial statement items. Thus, 
we may accept that, for ratios of items from the same financial statement, 
dsx=dsy. 

On the other hand, size will not be removed from the measurement when 
ratio components are generated under two different influences. This may be 
the case of ratios such as Return on Equity (ROE) or Return on Investment 
(RO I), for which it is frequent to take the denominator from the previous year's 
report. Whereas, in the above ratios, the influence of size may be desirable 
(e.g. when measuring growth), other cases exist where such influence will be 
spurious. Earnings per Share (EPS) or Price/Earnings (PE) ratios, for example, 
may be correlated with size, because the statistical influence explaining the 
number of shares in issue is not necessarily the same as that commanding the 
generation of earnings. 

The second postulate, that of constant ds, is a consequence of ratios having 
one degree of freedom only, enabling them to model just the expected value 
of growth rates, not their spread or their interaction. Constant ds implies that 
v, in (5), grows according to a process of compounding (exponential growth). 
If, however, the growth rate of firms varies widely, co-variance terms between 
ratio components may become significant. Seasonality, for instance, is sup­
posed to undermine the accuracy of the financial measurement when the final 
value of a component fails to reflect its real growth during the period. However, 
according to this postulate, even in cases where it makes sense to assume that 
the magnitude of a ratio component reflects the way its growth has taken 
place, seasonality or any significant fluctuation might still distort the ratio 
measurement. 

THE THRESHOLD RATIO 

It may be asked whether it is possible to overcome some of the limitations of 
ratios without departing from the two conditions for valid ratio measurement 
outlined above. The Law of Proportionate Effect, for instance, acknowledges 
that the accrual dv in (5) may be proportional, not to v itself, but to v- fJ where 
b is constant. In this case 

ds= dv 
v-b 

(7) 

instead of (5). Conditions leading to lognormal v in (5) generate, in (7), 
distributions known as three-parametric lognormal with threshold b (Aitch­
ison & Brown, 1957). 

Three-parametric lognormality in accounting variables was reported in Tri­
gueiros ( 1995) and shown to be a plausible source of non-proportionality in 
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Figure 1. The usual, two-parametric, lognormal distribution (solid line) and the corresponding 
three-parametric distribution (dashed line) showing a positive displacement, 6, known as 
the threshold. 

financial ratios, consisting of a displacement of the distribution of individual 
components (Figure 1). The existence of fixed costs, for instance, leads to a 
constant displacement in the distribution of total costs. · 

Adequate removal of size requires, in this case, one of the following ratios: 

y-by=P+ )ylx 
X 

y 
--J; =PJ;,;x 
x-u X 

(8) 

(9) 

for, respectively, three-parametric lognormal numerators and denominators. 
Thresholds are by in (8) and bx in (9). The above 'threshold ratios' cope with 
an elementary form of non-proportionality, albeit obeying the same postulates 
as traditional ratios. Where proportionality holds, then b = 0 and they revert 
to the traditional ratio. If thresholds in the numerator and in the denominator 
are both significant, a reinforcement of non-proportionality occurs when by 
and t5x have different signs. In a singular case, P= t5)t5x, thresholds are cancelled 
out (functionally) but they still distort the analysis. 

In addition to thresholds which are identical for a group of observations, it 
may also be worth considering size-related thresholds. In this case, t5 is similar 
to other accounting variables. Realizations of v will be larger than expected 
for comparatively large t5 (e.g. in cross-section, the case oflarge firms), and 
the growth rate ds is no longer variable-independent. A simplified view of 
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processes which assume size-related thresholds might be given by 

Since () is small for small ds and large for large ds, strictly size-related thresholds 
cannot generate non-proportionality between components. Assuming, for 
instance, that [J, an expected b for all realizations of v, exists, ratios based on 
( 1 0) may take the form 

(11) 

or similar. On a logarithmic scale, 

logy- fJ log x = J.l + eytx (12) 

(12) is functionally identical to the relationship used by Fieldsend et al. (1987) 
for studying sector effects. It is a regression rather than a threshold ratio. The 
slope coefficient, [3, is approximate to the unit in the case of strict pro­
portionality. Slopes smaller than 1 are obtained for ()<O. In cross-section, they 
bias a large firm's ratios downwards, mimicking scale effects such as those 
described by Whittington (1980). 

In practice, the same accounting variable may have both constant (size­
independent) and size-related thresholds. In a time-series, for example, some 
fixed costs will generate constant thresholds, whereas others, which may follow 
a step function, will be sensitive to changes in size. 

THRESHOLD RATIOS VS REGRESSIONS 

Previous studies concerning the validity of ratios stress the fact that regressions 
may add to financial measurement the possibility of modelling non-pro­
portional relationships. However, regressions add more than just intercept 
terms: they also introduce, through the slope coefficient, an estimation 
of correlation between components. Such estimation, not present in trad­
itional ratio analysis, substantially changes the nature and scope of financial 
measurement. 

Since ratios are simple proportions, the estimation of ratio benchmarks 
such as industry norms only requires the estimation of the expected values of 
components. In contrast, in a regression, both the slope and the intercept term 
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Figure 2. The two variables (called numerator and denominator), displayed on the left and 
on the right, have the same expected values. Only the correlation between them is different 
and so, therefore, are the regression coefficients. (a) Correlation= 0·7; E (ratio)= I; in­
tercept=l·6; slope=0·6. (b) Correlation=0·9; E(ratio)=I; intercept=0·4; slope=0·9. 

are influenced by the variance and co-variance of components (Figure 2). The 
improvement offered by threshold ratios (8) and (9) over traditional analysis 
is the possibility of modelling expected proportions irrespective of correlation, 
thereby preserving the ratio's characteristics, which appear to be important to 
financial decision makers. 

In the threshold ratio, for instance, non-proportionality is modelled as a 
constant displacement in the distribution of one of the components, whereas 
the regression intercept term stems from the interaction between the two 
variables. Only when the relationship between components is deterministic 
(i.e. correlation is equal to 1) are the regression coefficients readily in­
terpretable in the same way as the usual ratio measurement. 5 

Functionally, ratio (9) is also different from regression in that its 'intercept 
term' - (jxPhtx' is not constant. It depends not only on (jx and P, but also on 
the residual/y;x in each case. The threshold in ratio (8), (jY, might be viewed as 
similar to a regression intercept as it introduces a case-independent constant 
term. However, ratios (8) and (9) are essentially similar. On a logarithmic 
scale, they become, in the same order, 

log(y- (jy) -log x= J.l + eytx (13) 

logy-log(x- (jx) = J.l + eytx (14) 

with J.l =log P and ey1x = 1og_{y1x. On this scale, corrections introduced by a sim­
ilar (j in numerators or in denominators have the same magnitude. On the 
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original scale, denominators correct for distortions limited by the range 
{ 0, 1}, whereas numerators correct for magnified distortions that are greater 
than 1. The basic difference remains that the estimation of threshold ratio 
parameters does not require consideration of the variance and co-variance of 
components. 

There are two other differences between threshold ratios and regressions. 
First, like traditional ratios, threshold ratios may be treated as errors-in-vari­
ables models, where appropriate. In contrast, regressions require the as­
sumption that independent variables are deterministic, yet, as Horrigan 
(1983) pointed out, 'neither component [in ratios] is the exogenous, causal 
variable, nor is one component necessarily stochastic while the other is de­
terministic'. Second, threshold ratios are consistent with the multiplicative 
character of the components, whereas the assumption underlying regressions 
is that variables are additive. 

REASONS FOR EXPECTING NON-PROPORTIONALITY 

A distinctive characteristic of multiplicative variables is that, when a ratio is 
formed, the distortion introduced into the analysis by thresholds is likely to 
be negligible in most instances. That is, owing to their exponential growth, 
realizations of v in (7) may attain values many times larger than the threshold 
and, in such cases, v- c5::::: v. Non-proportionality is significant only where 
generative processes lead to realizations of v which are not much larger than 
c5 as, for example, in the case of a small growth rate ds. 

As a consequence, comparatively large size-independent thresholds are 
plausible in time-series analysis, but unlikely in cross-section analysis. Ob­
servations in a time-series have their origin in the same object (e.g. one firm 
or aggregate in diffe.rent periods). Features which are constant inside firms, 
such as fixed costs, emerge as size-independent in this context, being able to 
create comparatively large thresholds. In cross-section, as observations have 
their origin in different objects, size-independence requires industry-wide 
'fixed costs'. Since these thresholds must allow for the survival of small firms, 
they must be comparatively small. 6 Therefore, where ratios are used for norm­
ative purposes, corrections of distortions caused by non-proportionality are 
likely to be required only when assessing deviations of small firms from industry 
norms. On the other hand, a pervasive, significant distortion caused by a 
threshold is possible only in industries where firms have similar sizes. 

The existence of fixed costs is also likely to generate size-related thresholds 
[i.e. costs which are fixed for one firm but variable across firms, large firms 
having large fixed costs and small firms having small fixed costs (Lev & Sunder, 
1979; Whittington, 1980)]. In this case, the use of 'slope ratios' such as (12) 
may be appropriate. 

In a time-series analysis, size-related thresholds are worth considering only 
where large changes in size have taken place. This will not normally occur 
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TABLE I 

Plausibility and effectiveness of thresholds in creating rton-propomonality 

Thresholds 

Analysis Constant (size-independent) Size-related 

Cross-section Plausible only if small. Effective in Plausible but not effective. May 
distorting deviations of small firms cause false scale effects. 
from industry norms. 

Time-series Plausible: any constant value inside Plausible but dominated by size-
firms. Effective. independent thresholds. 

when analysing a short period of time, where size-independent thresholds 
dominate the analysis. 

Table 1 summarizes this discussion. 

APPLICATION EXAMPLES 

This section suggests methods for estimating 6 and displays examples of the 
application of threshold ratios. The first example uses items Fixed Assets (FA) 
and Current Assets (CA) in a cross-section analysis. 7 The data set (Electronics 
industry, 1986, UK firms only) is taken from the Micro-EXSTAT database. 
Five models are compared below. 

Model 1: The Traditional Ratio 

This model has o'ne degree of freedom, the median of the ratio (jl on a log­
arithmic scale): 

FA 
CA = 10Jljor logFA=J.l+logCA+e (15) 

Model2: The Slope Ratio 

This model has two degrees of freedom: J.l and {3, the slope. The estimated 
model, similar to (12), is 

log FA= J.l + f31og CA + e corresponding to the ratio ~~fl = 1 01'/ ( 16) 

Graphically, this model is a straight line on a logarithmic scale and non-linear 
on an ordinary scale. 
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Model 3: The Threshold Ratio with Jointly Estimated Parameters 

The two degrees of freedom of this model correspond to Jl and fJ. Those are 
estimated using 

log FA= Jl +log(CA-fJ) +e corresponding to the ratio 

FA 
CA-fJ 

10"/ (17) 

Graphically, this model is non-linear on a logarithmic scale and a straight line 
on an ordinary scale. 

Model 4: The Threshold Ratio with Independently Estimated Parameters 

In this model there is only one degree of freedom, Jl. d, the threshold of the 
distribution of CA, is known in advance. Jl is estimated using 

log FA= .u +log(CA-d) +e corresponding to C~~d= 10''/ (18) 

Graphically, this model is non-linear and parallel with Model 3 on a log­
arithmic scale and a straight line on an ordinary scale. The model converges 
with Modell, the traditional ratio, for medium-sized and large firms. 

Model 5: The Threshold Ratio Plus Slope 

This model has three degrees of freedom, ,u, P and fJ, jointly estimated using 

log FA= ,u + p log(CA- <5) + e corresponding to 

FA -10"/ 
(CA-£5)P- (19) 

Graphically, this model exhibits a mixture of the features of Models 2 and 3. 

Above, each model has been presented together with its logarithmic coun­
terpart, as multiplicative models require logarithmic scalingpriorto coefficient 
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Figure 3. The traditional ratio (solid line) when compared, on a logarithmic scale, with the 
slope ratio (Model 2), the threshold ratio (Models 3 and 4), and the threshold plus slope 
ratio (Model 5). 

estimation. Figure 3 compares, on a logarithmic scale, Model 1 (solid line) 
with Models 2-5. Figure 4 reproduces Figure 3 on the original scale (only the 
region near the origin). 

The independent estimation of thresholds, as in Model 4, can be carried 
out using any technique available to detect three-parametric lognormality in 
distributions. In this example we measured t5CA = -£320,000, using a modi­
fied version of the procedure suggested by Royston (1982, p. 123).8 The joint 
estimation of t5 and other parameters, as in Models 3 and 5, requires iterative 
least-squares algorithms and logarithm-scaled models. Each of these methods 
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Figure 4. The traditional ratio (solid line) when compared, on the original scale, with the 
slope ratio (Model 2), the threshold ratio (Models 3 and 4), and the threshold plus slope 
ratio (Model 5). 

leads to a different interpretation of ratios and, in general, the estimates ob­
tained also differ. 

Table 2 relates {J and J.L obtained in each model to R2 (variability explained), 
skewness and kurtosis of e (residuals on a logarithmic scale). As can be seen, 
by letting the slope f3 vary freely (Model2), the R2 approaches the variability 
explained by thresholds (Models 3 and 4). Figure 3 also suggests that the slope 
approaches the effect of the threshold. Moreover, once {J is accounted for, f3 
returns to 1 (Model 5). Fieldsend et al. (1987) notice that slopes also tend 
towards the unit when sector effects are accounted for. 
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TABLE 2 

Parameters and statistics obtained with the five models of the first example 

Model No. Jl p 0 R_2 Skewness Kurtosis 

1 -0·46 72% 0·27 2·18 
2 -0·21 0·94 76% 0·07 1·30 
3 -0·49 -£528,000 78% -0·12 1·19 
4 -0·46 -£320,000 76% -0·12 1·78 
5 -0·40 0·99 -£403,000 78% -0·12 1·19 

From the five models studied, the most attractive seems to be the threshold 
ratio where b and 11 are independently estimated (Model 4), as non-pro­
portional components are accounted for, albeit also converging with the tra­
ditional ratio for medium- and large-sized firms. Furthermore, the 
introduction in this model of one extra parameter, £5, is not likely to significantly 
erode one of the strengths of the tradjtional ratio, robustness to irregular data, 
as the estimation of thresholds is exposed to ill influences only for a small 
portion of the sample. 9 This contrasts with the widened potential for distortion 
introduced in estimates by slope coefficients. 

When applying the traditional regression model (CA=a+bFA+e) to the 
same data set, some highly influential cases were observed using the procedure 
specified by Cook (1977). The intercept term, a, became much smaller and 
non-significant after removing the largest firm from the analysis. Weighted 
regression did not solve the problem completely, merely transferring the in­
fluence from the largest to the smallest firms. 10 Indeed, when included in 
additive formulations such as regressions, multiplicative variables lead to es­
timated coefficients which may be dominated by one or two influential ob­
servations (Snedecor & Cochran, 1965, p. 290). 

The second example illustrates an application of the threshold ratio method 
to time-series analysis, where Operating Costs and Sales of a UK retail firm 
(TESCO PLC) are examined for the period 1983-1987, following Steele 
(1989), i.e.: 

Year 1983 1984 1985 1986 1987 

Operating £2,21lm £2,518m £2,911m £3,216m £3,407m 
costs 

Sales £2,276m £2,594m £3,000m £3,355m £3,593m 
Ratio 97·15% 97·07% 97·03% 95·85% 94·84% 

Typically, a regression where Sales is explained by Operating Costs would 
be expected to yield an intercept term which approaches fixed costs for that 
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TABLE 3 

Comparing a regression with the threshold ratio in estimating fixed costs 

TESCO PLC 1983-1987 

Model used for estimating 
coefficients: 

Estimated coefficients: 

Functional form obtained: 

Regression 

Costs =a+b Sales +e 

a=£149m, b=0·91 
(R2 =99%) 

Costs-£149m 
0

.
91 

Sales 

Results 

Threshold ratio 

log Sales= 
J.l+log(Costs-b) +e 

J.l=0·036, b=£125m 
(R2=99%) 

Costs- £125m 
0·92 

Sales 

period. Table 3 shows the functional relationships used for estimation, and 
the results obtained when comparing the regression method with the threshold 
ratio method. 

The relationship is, in this case, almost deterministic (R2 = 99%). As a 
consequence, the slope of the estimated regression, b, is similar to the expected 
proportion, 1 0~', observed betwee:p tl:te numerator and the denominator of the 
ratio. Should the correlation between sales and costs be smaller than 1 (while 
considering the same expected proportion), then b would be smaller than 1 0~'. 
In the limit, for a correlation approaching zero, b would also become zero and 
a would equal the expected value of the numerator. The expected ratio, 1 01', 

would not change. This reasoning illustrates clearly the above-mentioned 
differences between threshold ratios and regressions, showing that, similarly 
to the traditional ratio, the threshold ratio explains costs as a proportion of 
sales irrespective of correlation. In addition, in the threshold ratio, fixed costs 
are explained as a constant displacement in the distribution of costs. 

Fixed costs (costs incurred which do not change with the amount of product 
made) may, nevertheless, vary over time because of growth effects or changes 
in money values. Both methods assume that fixed costs are stable. However, 
when fixed costs are estimated as a displacement in the distribution of costs, 
the accuracy of the estimation is undermined by fluctuations in fixed costs only, 
whereas the estimation based on an interceptterm is affected by fluctuations in 
fixed costs, by fluctuations in the slope coefficient (e.g. changes in efficiency 
or in sales prices) and by the interaction between these effects. 

DISCUSSION 

The literature on the validity of ratios to date has uncovered two cases 
where ratios may fail to remove size. First, components may be non­
proportional (Lev & Sunder, 1979; Whittington, 1980 and others). Second, 
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even where components are proportional, co-variance between them in­
troduces non-proportionality in the ratio form (Tippett, 1990). Practitioners, 
however, albeit acting guardedly in cases where financial ratios also have 
the potential to bias the analysis, such as the existence of seasonality, seem 
little concerned with non-proportionality. Indeed, empirical tests carried 
out so far, though finding clear traces of non-proportionality in ratios, do 
not support the view that such distortion is overwhelming. It seems as 
though non-proportionality has, in practice, little impact on the use of 
financial ratios. A few authors go as far as to argue that the issue may be 
irrelevant (Horrigan, 1983; McDonald & Morris, 1984). 

This study has offered an alternative approach to the problem of non­
proportionality in financial analysis which, amongst other practical con­
sequences, explains the apparent contradiction outlined above. First, the 
paper suggested that the ability of financial ratios to remove size stems from 
firm size being present in both ratio components in the form of the same 
multiplicative statistical influence. In addition, distortion introduced in the 
measurement by co-variance terms is likely to be negligible where, during 
the generation of components, the influence of size can be taken as nearly 
constant. 

In contrast with the usual statement that ratios are valid where pro­
portionality holds, the above t\vo.postulates provide a basis for discussing the 
adequacy of ratios to specific tasks and, where necessary, for implementing 
improvements consistent with financial decision-making. The paper has 
explored the most obvious of such improvements. Since size is present in 
accounting variables in the form of a statistical influence, the removal 
of size only requires the modelling of proportionality between statistical 
influences. The condition of strict proportionality between components is, 
therefore, restrictive in excess. Earlier, it has been shown that, besides 
traditional ratios, other similar relationships exist which are capable of 
removing size, specifically the threshold ratio. 

The above two postulates also help to put into perspective the limitations 
and strengths of traditional ratios, especially when compared with those of 
alternative tools. Limitations, for instance, stem from simplicity: any model 
with only one degree of freedom would display similar limitations, and it is 
easy to overcome those just by incorporating more degrees of freedom into 
models. However, the more degrees of freedom models have, the less 
intuitive the financial measurement will be, becoming sensitive to irregular 
data or influenced by conditions, such as the variance and co-variance of 
components, not necessarily required in the financial decision process. 

The postulates also clarify circumstances in which non-proportionality 
may be effective in distorting the analysis. Given the exponential generation 
of accounting variables, reasons invoked for expecting significant distortions 
apply to time-series analysis, but are less plausible in cross-section. In the 
latter, only small firms are affected. Threshold ratios may provide, in these 
cases, more accurate analysis and statistical manipulation of data. 

P.l27 
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Finally, the fact that the additive formulation 

y 
-=A+e 
X 

(20) 

has been used routinely to discuss the validity of ratios and their statistical 
characteristics, may account for some of the recent academic criticism of 
the ratio method. Given the imposing a priori assumptions of the additive 
model, it is not surprising that ratios seem not to be up to the task. 11 It may 
also be speculated that the adoption of relationship (20) was influential in 
viewing ratios as zero-intercept regressions (thence the interest in adding 
the missing term), rather than as simple proportions. In addition to calling 
attention to the initial judgement implied by (20) and to the contradiction 
it entails, the paper has suggested a more reasonable alternative, the mul­
tiplicative form, in the light of which ratios agree with the statistical 
characteristics of accounting data. 

NOTES 

I. For the sake of simplicity, the paper uses the term influence when referring to statistical 
effect. Multiplicative influences, known also as proportionate (or exponential) effects, 
are well documented in text-books in statistics. See, for example, Snedecor & Cochran 
(1965, 9th edition, p. 290). Lev & Sunder (1979) hint at the possibility of ratios being 
multiplicative models. 

2. Authors tend to use additive forms such as (1), probably because these forms relate to 
the Normal distribution. However, evidence suggests that accounting variables are 
lognormal rather than normal, denoting multiplicative influences. Lognormality in 
variables such as Sales, Earnings and Total Assets, received a great deal of attention in 
texts on the theory of the growth of firms (e.g. Ijiri & Simon, 1977). In the accounting 
literature, McLeay (1986) mentions lognormality in variables which are sums of similar 
transactions with the same sign such as Stocks, Creditors or Current Assets. Recent 
empirical evidence (Trigueiros, 1995) suggests that lognormality is widespread. 

3. The Law of Proportionate Effect is the mechanism explaining multiplicative influences. 
See, for example, Gibrat (1931, pp. 62-64); Aitchison & Brown (1957, pp. 20-27). 
McLeay (1986) relates this mechanism to distributions found in ratio components. 

4. The two postulates are not meant to offer insights into the characteristics of individual 
financial statement items or particular ratios. Differences in expected magnitudes ob­
served in accounting variables and random deviations from these magnitudes may have 
their origin in initial values (values of v at the beginning of the generating process) or 
other conditions which uniquely determine observations generated by (5). 

5. In this case, the slope is the proportion between average numerator and denominator 
and the intercept term is their difference. 

6. For example, an industry-wide average cost of £3,852,000 for food manufacturers in 
the UK in 1987 would represent only 0·2% of United Biscuits earnings, but it would 
equal the turnover of a small firm such as G. F. Lovell pic. The volume of sales of 
United Biscuits was, in 1987, about 480 times the volume of Lovell, a typically 
multiplicative proportion. Additive observations, such as the height of adults, do not 
exhibit such huge discrepancies. 
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7. These variables were chosen because i5t-ii is non-significant, and also because accounting 
identities cannot distort the distribution of their ratio (Trigueiros, 1995). 

8. Royston uses trial and error to find out which i5 maximizes Win the Shapiro & Wilk 
test of normality. i5 estimated by the Royston method is too large in most cases. To 
avoid overestimation, i5 should be estimated as the smallest din z=log(v-d) able to 
render z=N(J1, o). 

9. Even so, some loss of robustness is expected when using threshold ratios. Three­
parametric lognormality, for instance, might be less frequent than that suggested by 
statistical tests, as other anomalies impinging upon the smallest values in a distribution 
also benefit from the introduction of the three-parametric transformation in such tests. 
However, the fact that the industrial grouping mostly determines whether samples are 
expected to be non-proportional (McDonald & Morris, 1984; Fieldsend et al., 1986; 
McLeay & Fieldsend, 1987; Sudarsanam & Taffler, 1995; Trigueiros, 1995), gravitates 
against viewing thresholds purely as 'catch-all' terms. 

10. Weighted regression stabilizes variance in proportion to the independent variable. In 
multiplicative data, variance is proportional to the square of the independent variable. 
Anyhow, the statistical characteristics of ratio components clearly suggest the use of 
multiplicative forms (or, for estimation purposes, their logarithmic counterparts), not 
weighted regressions. When these characteristics are overlooked, influential cases, not 
just heteroscedasticity, is what invalidates estimation. Therefore, the eventual robustness 
of estimation in the presence of heteroscedasticity (Barnes, 1986) is not, in this case, 
an important issue. 

11. Tippett (1990, p. 80), in a time-series context, notices one example, amongst others, 
where (20) is contradictory: when e. is large enough, then ratios may assume negative 
values, even where both components are, by definition, positive. 
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