
 
1

Proportionate growth and 

the theoretical foundations of financial ratios 

Stuart McLeay and Duarte Trigueiros 

 
ABSTRACT: The article proposes a theoretical framework for understanding financial 
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into two parts, one where ratio components are viewed as deterministic variables and 

the other where they are random. Such an approach allows the characteristics of ratios 

to be more easily understood before generalizing the relationship between ratio 

components to encompass randomness. In the second part. when variability introduced 
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Introduction 

 
Accounting academics have often considered the widespread use of ratios in financial 

analysis as somewhat intriguing. Indeed, in one of the earliest contributions to this topic 

in the accounting research literature, Horrigan (1965) remarked that financial ratios 

were referred to in textbooks in almost apologetic tones as though their expected utility 

were extremely low. Horrigan's response to this situation, however, was to seek to 

dissipate such doubts by describing the statistical characteristics of some widely used 

ratios to demonstrate that they may be useful after all. 

Following Horrigan's optimistic review, subsequent empirical research revealed some 

promising applications of financial ratio analysis (for example: Beaver,1966; Altman, 

1968). A few years later, however, the scepticism returned, with authors such as Deakin 

(1976) noticing that the empirical frequency distributions of financial ratios appear to 

vary widely and, as a result, questioning the validity of analytical methods that assume 

the normality of ratio data. This prompted Frecka and Hopwood (1983) and others to 

propose ad hoc techniques such as transformation and the trimming or winsorising of 

outliers to deal with the unduly influential values present in samples of financial ratios, 

techniques which reflected the apparently widespread belief that there are no general 

rules underpinning the ratio method. 

Adding to the growing doubt concerning the validity of financial ratio analysis, Lev 

and Sunder (1979) raised some fundamental questions as to whether the use of ratios is 

motivated by well-founded considerations or whether, in contrast, it is merely a routine. 

They claimed that almost all the assumptions required for valid ratio analysis are likely 

to be violated in practice. In a more specific critique, Whittington (1980) discussed in 

detail how ratios may not be up to the task. Both Lev and Sunder (1979) and 

Whittington (1980) stressed that valid measurement using ratios requires 

proportionality between the components (i.e., 𝑌 = 𝑏𝑋). Since such an assumption 

seems to be too restrictive, these authors advocated a two-parameter regression model 

(𝑌 = 𝑎 + 𝑏𝑋), or similar functional form, rather than the single parameter ratio model. 

Barnes (1982) went further, suggesting that nonproportionality is also the source of the 

excessive skewness often found in the frequency distributions of ratios, and that the use 

of regressions instead of ratios should eliminate both the problem of nonproportionality 
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and that of skewness in distributions. The prevailing scepticism about the usefulness of 

ratios deepened further when Tippett (1990) claimed that ratios used as norms or 

benchmarks for interfirm comparison are intrinsically unstable, drifting upwards or 

downwards over time.  

A striking feature of the above-mentioned research is the small impact it has had, both 

on the practice of financial analysis and in the way empirical research is carried out. 

One reason for this may be that researchers pre-suppose that accounting data used in 

the computation of financial ratios is a special case, too complex for simple, unifying 

explanations. Consequently, empirical research concerning financial ratios lacks the 

level of definition that is required to make the specific assumptions that are needed to 

draw appropriate inferences. For example, despite the insistence that financial ratios 

fail to remove the effect of firm size from the financial measurement, to date the 

literature on ratio analysis has not produced a definition of ‘size’ itself.  

In an earlier attempt to base ratio models on broader assumptions, it was demonstrated 

that a fuller understanding of financial ratios can be achieved by taking account of the 

behaviour of the two variables from which a financial ratio is constructed, particularly 

where firm size plays an important part, and some limiting case theoretical ratio models 

that allow for exponential growth in accounting variables were identified (McLeay, 

1986a and 1986b). Further attempts at normalising observed ratios through 

transformation led to the conclusion that better defined ratio models are required 

(Ezzamel and Mar-Molinero, 1990). Subsequently, Trigueiros (1995) offered a simple 

explanation for the diversity of distributions found in ratios. While providing empirical 

evidence that the accounting variables used to calculate financial ratios follow a 

multiplicative rather than an additive law of probabilities, Trigueiros pointed out that 

such behaviour suggests the existence of a statistical effect that is common to all the 

figures reported in a particular set of accounts, but which varies both through time and 

across firms.  

In the present paper, it is shown that the multiplicative behaviour of ratio components 

is not just a reasonable assumption supported by empirical observation but is a 

prerequisite of valid ratio usage. Furthermore, by also assuming that firm size is a 

measurable statistical effect, the paper can offer a more focused discussion of the 
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limitations of financial ratios, thus adding to our understanding of financial ratios and 

their potential use. 

The Validity of Ratios 

Financial analysis is just one of many tasks where ratios are used. There are numerous 

applications where the usefulness of ratios is evident, such as maps and scaled models 

that are governed by a ratio or scale that measures the number of times the 

representation is smaller than reality. Many of the ratios used in financial analysis are 

similar to scales: Interest Cover, for instance, is the number of times Earnings is larger 

than Interest; the Liquidity Ratio is the number of times Liquid Assets exceeds Current 

Liabilities; the Sales Margin expresses Earnings, the numerator, as a fraction of Sales, 

the denominator; and so on.  

The similarity with scales may also help to understand why financial ratios may be 

invalid. Scales are arbitrary proportions, chosen before the actual drawing of a scaled 

representation such as a map takes place. As such, they are neither valid nor invalid. 

Financial ratios, by contrast, are supposed to represent some pre-existing reality, 

namely the natural relationship between the numerator and the denominator of the ratio. 

To the extent that ratios are models of an underlying reality, they may be invalid if the 

natural relationship between the numerator and the denominator, although pre-

supposed to be a simple scale, actually cannot be so.  

The traditional approach is to question the validity of financial ratios on these grounds, 

i.e., that a scaling factor between the numerator and the denominator of the ratio may 

not exist. Unfortunately, rather than investigating just the existence or not of scaling 

factors, most of the extant literature has adopted the more stringent stance of evaluating 

models in which the scaling factor is also an expected ratio. This additional requirement 

is unduly restrictive and is implicit for example when financial ratios are described 

using statistical models of the additive type.1 In order to circumvent the drawbacks 

associated with the a priori use of particular models, this section first derives the natural 

form of proportionality, from which it is possible to obtain a better understanding of 

the scaling factor. Then, the nature of firm size is discussed, and it is shown how size 

 
1 Additive statistical models, which are by far the most frequently used models, add together effects 
such as the expectation, co-variances and a random term that is assumed to be normally distributed.  
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is removed from the financial measurement. Finally, it is also shown that ratios are valid 

only where size evolves exponentially. 

Scale invariance  

When a ratio is used for the purposes of scaling, the implicit assumption is that the 

relationship between the numerator and the denominator should remain constant no 

matter what changes are observed in the ratio components, i.e.   

𝑌

𝑋
= constant 

For instance, the once popular benchmark of 2:1 for the Current Ratio is deemed to 

hold whether the figures involved for Current Assets and Current Liabilities are as large 

as $2bn:$1bn or as small as $200:$100. It is this that prompted authors such as Lev and 

Sunder (1979) and Whittington (1980) to state that the most basic requirement of ratio 

validity is proportionality between Y and X and to examine the two characteristics of 

the proportional relationship, namely linearity and a zero intercept.2 

As we show below, however, these characteristics do not provide the most general 

description of proportionality. In particular, it may be noticed that the above emphasises 

the relationship between Y and X but not the way in which changes in Y should relate 

to changes in X so that the ratio remains constant. Yet a thorough understanding of 

ratios requires this dynamic approach. It is obvious that, when Y is proportional to X, 

the rate of change of Y with respect to X remains constant and similar to the ratio itself. 

For ratios to be valid, therefore, the following relationship must hold:  

𝑌

𝑋
=

𝑑𝑌

𝑑𝑋
 

where dY, dX are any related changes observed in Y and X. This is the differential 

equivalent to 𝑌/𝑋 = Constant. It fully encompasses the traditional definition of ratio 

 
2 It is worth emphasising that our concern is with ratios, where scaling takes place. Some financial 
indicators can be viewed as fundamental magnitudes in their own right. For instance, Return on Assets 
may proxy the Internal Rate of Return. In such cases an expectation may be modelled in a manner other 
than the financial ratio, the issue of the validity of the ratio method not applying in such circumstances. 
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validity and has the important advantage of making explicit the general requirement of 

proportionality. In fact, by rearranging terms, the above becomes  

𝑑𝑌

𝑌
=

𝑑𝑋

𝑋
.                                                              (1) 

Equality (1) shows that the general condition of proportionality is scale invariance, 

whereby the relative change in Y should be equal to the relative change in X. It will be 

seen below that, besides scale invariance, the validity of ratios also requires that each 

of the variables Y and X follows a multiplicative process, i.e. one of exponential change. 

From these new conditions, which are discussed in greater detail below, it is possible 

to infer the role of firm size in financial ratios. 

Scale invariance and firm size 

In the first place, (1) shows that ratios are valid only if the relative changes in the 

numerator and denominator are expected to be similar. For instance, when comparing 

firms in cross section, if the Current Assets figure is expected to be many times larger 

in one firm than in another then this should also apply to Current Liabilities or any other 

variable that is potentially useful as a component of a ratio. Similarly, in a time series 

analysis, (1) implies that variables eligible as the components of a ratio are predicted to 

grow at the same rate. If, say, Sales is predicted to grow by 12% in a given year, then 

scale invariance requires that Earnings should also grow by 12% during the year. It is 

important to note that (1) describes a mechanism, not observed values. So long as the 

mechanism underlying reported numbers predicts that dY/Y and dX/X are similar, 

proportionality is verified irrespective of the actual changes in Y and X. Indeed, without 

pre-supposing scale invariance, it would be impossible to arrive at any reliable 

conclusion about the financial characteristics of firms using ratio analysis. For example, 

unless it is postulated that relative changes are the same for Current Assets and Current 

Liabilities across firms of different sizes, it would not be possible to infer whether a 

Current Ratio above the norm in a large firm is attributable to the liquidity of that 

particular firm or is just a characteristic of large firms.  

It should not be surprising that the validity of ratios is conditional on the equality of 

relative changes in variables. Since ratios are scales, they are valid only where the 

scaling of data makes sense, and this implies scale invariance as a data property.  
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Scale invariance implies that each of the different items reported in a set of accounts 

will be influenced jointly by the same effect, and firm size is the most obvious such 

effect that all of the items reported by a firm at a particular point in time will have in 

common.3 Thus, it is reasonable to suppose that relative changes in these variables will 

reflect, inter alia, differences in the size of firms or, in a time series context, the growth 

rate of the firm.  

 
Figure 1 

Scale to size for Earnings (AA ) and Sales (BB ) 
 
 

Figure 1 shows how differences in firm size relate to the magnitude of ratio components 

under the condition of scale invariance. Suppose that the X-axis measures firm size, and 

the Y-axis is allowed to represent Sales and Earnings. Each accounting variable is 

modelled as a specific scale to size that is characteristic of the variable (which, in this 

example, is 𝑌 /𝑋 = 𝑌 /𝑋 = 4 for Sales and  𝑌 /𝑋 = 𝑌 /𝑋 = 0.2 for 

Earnings), multiplied by the common effect of size. That is, 

Earnings = 0.2 ∗ 𝑆𝑖𝑧𝑒               and               Sales = 4 ∗ 𝑆𝑖𝑧𝑒 

The natural scale between Earnings and Sales (5%) is given by the division of the two 

scales to size involved, i.e., 0.2÷4. This value of 5% is thus the ratio norm, which is 

used to benchmark comparisons across firms or through time. It is because the same 

 
3 Not only is it an empirical fact that the financial statements of large firms contain reported numbers 
that are many orders of magnitude larger than those in the accounts of small firms, but there are also 
compelling economic reasons to support the conviction that each firm's actual size greatly influences 
the overall magnitude of numbers reported in its accounts. Indeed, if variables such as Sales or 
Earnings were not closely related to size, then profitability and dividend yield would be diluted by any 
increase in size and firms would carefully avoid growing. 
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size multiplier is present in both components of the ratio, although differently scaled, 

that removal of the size effect may take place. 

It may be concluded that proportionality leads directly to the modelling of accounting 

variables used in ratios, not as an addition of effects, but as the product of a constant 

scale by a size factor. Moreover, proportionality is verified no matter the actual 

behaviour of this size factor. This suggests the need to consider another condition of 

valid ratio analysis, not just proportionality but also the way in which firm size changes. 

Multiplicative processes 

The way a change in a variable relates to its level is an important consideration. This is 

because any increase or decrease must occur in such a way that relative changes in the 

variable remain constant, otherwise such changes would be size dependent, and this 

would render ratios incomparable across firms of different sizes. Specifically, for a 

given financial indicator, the likelihood of observing a discrepancy of, say, 1% in 

relation to the norm, must be the same for all firms, whether small or large. A second 

condition of valid ratio analysis is therefore homoscedasticity: the distribution of the 

ratio must be independent of size. 

To illustrate the practical consequences of this new condition, it is necessary to model 

not just changes in accounting variables but their joint evolution under the influence of 

firm size. To this effect, a suitable variable  is now introduced, and the mechanism that 

drives relative changes in Y and X is written as 

𝑑𝑌

𝑌
  =   𝑠 𝑑𝜏 and 

𝑑𝑋

𝑋
  =   𝑠 𝑑𝜏 

where sy, sx must be strictly independent of Y, X respectively so that the second 

condition, that of homoscedasticity, is satisfied. This is better known as the ‘Law of 

Proportionate Effect’ or ‘Gibrat's Law’, the source of the family of multiplicative 

processes mentioned earlier where relative changes observed in Y and X must be 

homogeneous (Gibrat, 1957). Variables evolving exponentially with , such as 

𝑌  =   𝑌 𝑒         and        𝑋  =   𝑋 𝑒                                    (2) 

are the simplest instance, Y0, X0 being arbitrary constant magnitudes in this case. 
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 Furthermore, the condition of scale invariance is satisfied where sy = sx.4 Table 1 

compares the case where size is an exponential function of  with the alternative where 

changes in size are linear. 

Table 1. Linear and exponential growth in ratio components 
 

Panel 1. Linear changes in size (the ratio Y/X is a constant 5% but the relative 
changes in X and Y are correlated with size) 

 
 Size Earnings (Y) 

= 0.2 x Size 
Sales (X) 

= 4 x Size  
Y/X dY/Y dX/X 

0 100 20.0 400 5%   
1 101 20.2 404 5% 0.0100 0.0100 
2 102 20.4 408 5% 0.0099 0.0099 
..       
32 132 26.4 528 5% 0.0076 0.0076 
33 133 26.6 532 5% 0.0075 0.0075 

 
Panel 2. Exponential changes in size (the ratio Y/X is a constant 5% but the 

relative changes in X and Y are independent of size) 
 

 Size Earnings (Y) 
= 0.2 x Size 

Sales (X) 
= 4 x Size  

Y/X dY/Y dX/X 

0 100.00 20.000 400.00 5%   
1 101.00 20.201 404.02 5% 0.0100 0.0100 
2 102.02 20.404 408.08 5% 0.0100 0.0100 
..       
32 137.71 27.543 550.85 5% 0.0100 0.0100 
33 139.09 27.819 556.38 5% 0.0100 0.0100 

Once again, Sales is four times size and Earnings is one fifth of size, the natural scale 

between Earnings and Sales being 5%. The table shows how ratios that are proportional 

may nevertheless exhibit relative changes in Y and X that are correlated with size. When 

changes in size are linear (see Panel 1), the smallest firm illustrated maintains its level 

of profitability whilst increasing its Sales and Earnings by 1%, whereas this increase is 

only 0.75% in the case of the largest firm. On the other hand, any firm keeping its sales 

margin at a constant level of 5% whilst Sales and Earnings grow steadily by 1% (see 

Panel 2) would, ipso facto, exhibit exponential growth not linear growth. Whilst in both 

cases the relationship between the numerator and the denominator of the ratio is exactly 

the same straight line with a zero intercept, it is only when the changes in Y and X are 

governed by a multiplicative process that the ratio may be interpreted independently of 

firm size. 

 
4 Notice that whereas (1) equates the two effective rates of change dY/Y and dX/X, (3) is based on esy 
and esx which are continuous rates. The relationship between an effective rate of change, r, and the 
underlying continuous rate of change s is 𝑠 = log(𝑟 + 1). 
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Whereas the first of the conditions introduced in this paper (scale invariance) 

demands a specific type of relationship between components, i.e. that relative changes 

in the ratio components will be the same for the numerator Y and denominator X, the 

second condition (the law of proportionate effect) is a constraint that is placed 

separately on the individual ratio components whereby a relative change in Y will be 

independent of the actual value of Y and a relative change in X will be independent of 

the actual value of X. Since ratios are used in two clearly distinct modes of analysis 

(time series and cross section), the interpretation of (2) will vary accordingly. Its 

application in these different contexts (i.e., trend analysis or interfirm comparison) is 

illustrated below. 

A time series example 

In a time series context, the interpretation of processes such as (2) is straightforward,  

representing a time sequence starting when Y = Y0, X = X0. These initial values should 

be viewed as reflecting the initial size of the firm, each variable being scaled differently 

to size. Furthermore, sy, sx are real growth rates observed in Y, X. Although these growth 

rates may vary with time, by fluctuating randomly around a constant mean for example, 

they are expected at any one moment in time to be equal for different variables (i.e., sy 

= sx = s) since they reflect proportionate changes in the size of the firm.  

Deviations observed in sy or sx in relation to the growth rate s may be expressed as a 

difference 𝑛 = 𝑠 − 𝑠  or 𝑛 = 𝑠 − 𝑠 . Suppose that, in a given year, the Sales figure 

is reported as $1,000 and Earnings as $100, then profitability is 10%. If Sales grows by 

s (the same as the firm) but Earnings grows by only s-n, then, in the following year,  

Earnings = 100𝑒( ) = 100𝑒 𝑒       and       Sales  =  1000𝑒  

and the ratio decreases by e-n. Not only is the ratio insensitive to the magnitudes of 

Sales and Earnings in the previous year, it is also insensitive to the growth rate s.5 The 

second condition of the valid ratio method is thus satisfied since the sales margin 

remains comparable however low or high the growth of the firm may be. 

 
5 Under sustained conditions, the ratio decreases by e-n over one year, by e-2n over two years, and so on. 
Since this effect accrues over time, comparisons using periods of different lengths are possible. 
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A cross sectional example 

In cross sectional analysis, an intuitive meaning may also be given to s and . In this 

case, τ measures the dispersion of size. Industries where firms range from the very 

small to the very large exhibit high  whereas those where size is homogeneous exhibit 

low . Accordingly, sy and sx are the distance between the realisation Y or X and the 

corresponding median Y0 or X0. As in the previous example, observed sy and sx may 

differ but they should be viewed as realisations of a common, underlying s so that the 

condition of scale invariance is satisfied.6  

The ratio of the medians Y0/X0 is the natural scaling factor between Y and X. If, for 

example, the median Sales in a given industry is $1,000 and for Earnings it is $100, 

whereas, for firm A, Sales and Earnings are s standard deviations from the norm, then 

Earnings = 100𝑒            and            Sales   =  1000𝑒  

Now consider firm B, which is more profitable, the same volume of Sales generating 

Earnings n standard deviations above the norm, i.e.  

Earnings =  100𝑒( )   =  Earnings 𝑒         and       Sales   =  Sales  

The difference in profitability between B and A, which is shown above to be en, is 

independent of s.7 With multiplicative processes such as (2) governing accounting 

variables, ratios are comparable across firms however small or large they may be.8 Not 

only is the ratio independent from the magnitudes of its components, differences in 

profitability are also size independent as required by the second condition. 

 
6 In fact, the role of s is similar in both cross section and time series analysis, allowing for comparison 
between cases where the time period or the dispersion are not the same. 
7 The increment in the ratio, esn, is also independent of the industry norms, Y0, X0. Indeed, from the 
practical viewpoint, independence from industry norms, initial values, targets, benchmarks and so on, 
should be regarded as an important condition of ratio validity, as practitioners make decisions based on 
measurement of deviation from these norms.  
8 The consideration of non-multiplicative processes would have led, not only to size-dependent ratios 
but also to norm-dependent ratios. Where realisations are proportional to size (e.g., Earnings = 4s and 
Sales = 40s), such processes will satisfy the two ‘traditional’ conditions of ratio validity, linearity and 
a zero intercept, as shown in Table 1. Moreover, they will also obey (1), at least if  is not allowed to 
approach zero. However, deviations in the ratio will be influenced not only by the size s but also by 
the natural scale of 10% (i.e., 4s /40s), a gain d = n in Earnings, for instance, increasing the ratio by 
10%n / s. 
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Negative values 

A further issue that should be addressed at this point concerns the way in which negative 

values should be treated. In the case discussed earlier, where two multiplicative 

variables Y and X form the ratio Y/X, the ratio itself will take positive values only. This 

is the situation with the Current Ratio, for instance. Yet it is obvious that certain other 

ratios, such as Return on Sales, permit negative as well as positive values. 

The problem of negative values in ratios may, in general, be avoided by transforming 

Y/X. Indeed, as most accounting variables are governed by relatively simple accounting 

identities, many financial ratios can be expressed by rearranging Y and X. For instance, 

as Earnings may be represented as X-Y, where Y represents Sales and X represents Total 

Costs, then the ratio r (Return on Sales, in this case) is equivalent to (X - Y)/X, or 1 - 

Y/X. Similarly, where Total Assets is identical to the sum of Equity Capital and Total 

Liabilities, the Liability Ratio would be defined as r = X / (Y+X), or 𝑋/𝑌 − 1. Table 2 

shows how the meaningful rearrangement of Y and X leads to a set of ratios 

encompassing the classes most commonly observed in practice, each a function of Y/X. 

Table 2. Classes of financial ratio and transformations that can be applied 

Ratio r Transformation Boundaries Examples 

𝑌

𝑋
 𝑟 0,  Current Ratio 

Current Assets 
Current Liabilities 

𝑋 − 𝑌

𝑋
 𝟏 − 𝒓 -, 1 Sales Margin 

Sales - Costs 
Sales 

𝑌 − 𝑋

𝑋
 𝟏 + 𝒓 -1,  

Change in 
Capital 

Employed 

Closing Capital - Opening Capital 
Opening Capital 

𝑌 + 𝑋

𝑋
 𝒓 − 𝟏 1,  

Interest 
Cover 

Earnings + Interest Paid 
Earnings 

𝑋

𝑌 + 𝑋
 

1

𝑟
− 1 0, 1 

Liabilities 
Ratio 

Liabilities 
Equity + Liabilities 

𝑋

𝑌 − 𝑋
 

1

𝑟
+ 1 0,  

Financial 
Leverage 

Ratio 

Liabilities 
Total Capital - Liabilities 

Some limitations 

It has been argued above that linearity and a zero intercept are not sufficient to ensure 

valid ratios, but that a scale invariant, homogeneous process governing changes in ratio 

components is also required. In this context, it would seem that the most obvious 
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characteristics of accounting data that may limit the use of ratios as valid measures of 

financial interrelationships are: 

(i) the presence of a constant term such as any fixed costs that are borne at the same 

level by each firm in an industry, creating nonproportionality between the components 

of ratios, thus invalidating (1). This is a well-known limitation, generally presented as 

the main challenge to the valid use of financial ratios. In figure 2, the proportionality 

between Earnings and Sales shown in Plot I can be compared with the effect of 

deducting a small constant term from Earnings in Plot II. This is a local distortion 

having a significant effect only on those values in the region of the constant.  

(ii) the presence of factors which prevent accounting variables from changing at 

similar rates, thus leading to ratio nonlinearities. Plot III of figure 2 shows the effect of 

factors that have a differential impact on the two components of a ratio. In this example, 

Sales now grows faster than Earnings - or, in the cross-sectional context, increases 

disproportionately from one firm to another in the face of the diseconomies of scale 

discussed in Whittington (1980) - and the ratio decreases with size. This is potentially 

far more serious than the effect of a constant term. Even small differences between rates 

of change can introduce into the ratio an exponential correlation with size.  

(iii) the use of lagged ratio components, where the numerator and denominator are 

not taken from the accounts for the same period and, therefore, where the effect of size 

is not removed because the same measure of size is not present in both components of 

the ratio. Specifically, each case will exhibit a displacement relative to the natural scale 

and proportional to the firm's actual rate of growth. Plot IV of figure 2 depicts the 

influence of a lagged denominator, where the ratio of Earnings to Capital (a ratio for 

which it is usual to take the denominator from the previous year's financial report) is 

stable if growth is also stable, with the ratio suffering a constant displacement in 

proportion to such growth. 

Figure 2 provides yet another reason for considering that linearity and a zero intercept 

are not sufficient conditions for valid ratios. Where, given these two conditions, the 

chords AB, A'B' and A"B" are parallel with each other, then the ratio is constant. 

However, as shown by comparing plot IV with plot I, this does not necessarily remove 

the effect of size. Only where the chords are perpendicular to the X-axis are the ratio 
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components scaled to the same measure of size, and only then can the ratio 

measurement be described as size independent. 

 

Figure 2  
Limitations on valid ratios: I. Scale invariance; II. Constant terms; III. 
Differences in proportionate growth; and IV. Lagged denominators. 

 

Ratios of Random Variables 

When considering the statistical properties of financial ratios, most authors have 

assumed that the difficulties posed by their atypical behaviour are caused by distortions 

of normality. However, financial ratios cannot be described as resulting from the kind 

of additive stochastic process that underlies normal variables. Indeed, the same can be 

said for the accounting variables from which financial ratios are constructed, given the 

nature of the double entry bookkeeping system that is based on aggregation of like 

transactions. As with many other economic phenomena such as wealth and the size of 

firms, the amount that is reported for a financial statement item is generated by a 

multiplicative rather than an additive law of probabilities. That is, whilst each 

transaction adding to the amount reported as, say, Total Sales can be modelled as a 

random event, the transaction contributes to the reported aggregate not in a manner that 
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could lead to either an increase or decrease in Total Sales, but by accumulation only. 

Such accumulations of random events are described as multiplicative, as opposed to 

additive, because their likelihood is conditional on the occurrence of a chain of prior 

events and stems therefore from the product rather than the sum of the probabilities.9 

Characteristics of multiplicative variables 

Multiplicative variables tend to be lognormally rather than normally distributed. Thus, 

they cannot be treated as distortions of normality. No distorting mechanism would be 

able to create, from additive events, the wide range of values generally found in 

multiplicative variables. For instance, the larger values observed in a lognormal sample 

are likely to be many hundreds of times greater than the smaller ones. Such extreme 

proportions have no counterpart in additive variables where the likelihood of 

observations two or three standard deviations above or below the mean is very small.10 

When the multiplicative character of accounting data is ignored, features of the data 

that would otherwise be considered as commonplace (such as positive skewness and 

extreme values) are likely to be seen as extraordinary. In fact, the presence of so-called 

outliers in empirical ratio frequencies is most likely to be a consequence of 

multiplicative skewness in ratio components.11 Given that such observations are not 

unusual in financial ratio samples, the technique of trimming or outlier deletion 

advocated by authors such as Frecka and Hopwood (1983) is a questionable practice. 

In fact, since the mechanism commanding the emergence of extreme values holds when 

the scale differs, and as trimming is in some respects equivalent to a reduction in scale, 

 
9 The same issues arise in modelling count data, where the transition from one state to the next may be 
described as a multiplicative process. Statistical models based on counting processes, including several 
applications of the multiplicative intensity model, are discussed in Andersen et al (1993) 
10 Details concerning the density of the bivariate lognormal distribution can be found in Johnson 
(1988).  Lognormality in variables such as Sales, Earnings and Assets, received a great deal of attention 
in texts on the theory of the growth of firms. In the accounting literature, McLeay (1986a) assumes 
lognormality in variables that are sums of similar transactions with the same sign such as Stocks, 
Creditors or Current Assets and McLeay (1997) considers this further, showing that two lognormal 
variables forming the ratio X/(Y+X) have a logistic distribution which is found to give a good fit to 
observed frequencies of financial ratios of this form. Other empirical evidence (Trigueiros, 1994, 1995; 
Sudarsanam and Taffler, 1995) suggests that lognormality of the accounting variables used in 
calculating financial ratios is widespread. 
11 Not all the outliers found in ratios are caused by multiplicative skewness. After removing such 
skewness, e.g., by using the logarithmic transformation, the distribution of ratios often turns out to be 
leptokurtic. Fat tails also create outliers, though on a smaller scale. 
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it will be found that the exclusion of one extreme value merely leads to its replacement 

by another extreme value on the reduced scale.12  

The random effect of size  

 A further reason why it is important to assume the correct type of statistical behaviour 

is that adequate descriptions of the inter-relationships amongst variables differ between 

additive and multiplicative variables. For additive data, it is assumed implicitly that 

distributions are preserved when variables are added or subtracted. This is not the case 

for multiplicative data where distributions are preserved when variables are multiplied 

or divided. For example, the simplest additive formulation is x = µ + z, where x is equal 

to an expected value, µ, plus a random deviation, z. The multiplicative equivalent would 

be x = x0 f, where a realisation of x is explained by the pre-specified level, x0, multiplied 

by a random factor f specific to each case. 

When an additive variable x is explained not only by an expected value, µ, but also by 

dj, an extra component of the variance of x, then xj = µ + dj + z, where dj is the expected 

deviation from µ introduced by the jth level of d. If the same dj is present in two 

variables, y and x, it is possible to remove it from measurement by subtracting variables. 

For instance, when a medical trial is carried out in the same group of patients both 

before and after treatment, the difference between observations y and x measure the 

effect of the treatment and is free from spurious influences such as those of the sex of 

the patient because such factors, being present in both observations, cancel out when 

subtracted. The ratio method may be viewed as the multiplicative equivalent of the 

above example, where firm size is the ‘spurious’ influence to be removed from the ratio 

components y, x. In fact, the simplest generalisation of the deterministic processes in 

(2) to allow for randomness would lead to the definition of accounting variables y, x, as 

reported in the jth financial statement, as  

𝑦   =   𝑦 𝑒 𝑓         and           𝑥   =   𝑥 𝑒 𝑓   (3) 

 
12 A regression where Sales explains Earnings using data from the UK Electronics industry can 
illustrate this. When the Cook Distance (Cook, 1977) is used to identify influential cases for 1988 for 
example, two firms (GE and STC) are singled out as outliers. After trimming these two firms, three 
new firms (Sunleigh, English Electric and Brother International) become influential. After also 
excluding these three firms, one more firm (Synapse Computers) emerges with a new Cook Distance of 
80, a value that indicates extreme influence. 
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where y0, x0 are arbitrary constant levels of y and x,13 and the common term es j plays 

the same role as dj above: it is the component of the variance of y and x present in all 

observations in the jth financial statement. fy, fx are random proportions of y, x 

unexplained by the model. 

In the above random effects models14, y0, x0 are specific to variables y, x (they are 

independent of the financial statement under analysis), whereas es j (the number of 

times any item in the jth financial statement is likely to be larger or smaller than the 

constant level) scales all items in the financial statement irrespective of changes in the 

particular variables of interest. Like (2), this separation between effects ensures that the 

ratio y/x removes es j, the effect attributable to the jth financial statement, thus making 

company accounts comparable either through time or across firms. 

Stochastic scale invariance  

It may be asked whether the conditions of ratio validity leading to (1) are feasible when, 

as in the above model, variables are random. Scale invariance as defined by equality 

(1) applies to deterministic changes where the rules of classical differential calculus 

apply but not to continuous time processes where stochastic calculus would apply 

instead of differential calculus.15 However, it should not be concluded that it is 

impossible to observe scale invariance in the relationship between stochastic variables. 

The reason why (1) fails to encompass such variables is that it equates two effective 

rates of change whereas an equality between two continuous rates is now required. A 

formulation of the scale invariance condition that is robust regarding the nature of the 

variable (i.e., deterministic, or stochastic, continuous, or discrete) is obtained by 

equating expected continuous rates of change, as follows: 

 
13 In cross sectional analysis, the median provides an appropriate ‘constant’ reference level. In a time 
series context, y0, x0 can be initial values or previous period observations, depending on the process.  
14 Effects model differences in relation to the expectation, where such differences are introduced by 
components of the variance. Influences such as the two possible sexes are referred to as fixed effects 
because the component introduced by the difference in sex is deterministic. Where the component is 
itself a random variable, the effects are called random effects. Size is therefore a random effect. The 
different financial statements present in a sample represent the levels of an effect. In statistical terms, 
the accounting numbers in the same financial statement are said to belong to the same level. 
15 A useful introduction to stochastic processes in the context of Financial Economics is available in 
Dixit and Pindyck (1994, pp.59-82) and Campbell, Lo and MacKinley (1997, pp.339-349). 
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𝐸 log
𝑦 + 𝑑𝑦

𝑦
= 𝐸 log

𝑥 + 𝑑𝑥

𝑥
 

which may be abridged as  

𝑑 log 𝑦 = 𝑑 log 𝑥                                                (4) 

Suppose that the two components of a ratio y and x are generated by the stochastic 

differential equations 

𝑑 log 𝑦 = 𝑠 𝑑𝑡 + 𝜎 𝑑𝑧  and 𝑑 log 𝑥 = 𝑠 𝑑𝑡 + 𝜎 𝑑𝑧              (5) 

where continuously compounding rates of change 𝑑log𝑦  and 𝑑log𝑥  stem from a 

deterministic term sjdt,16 which is the same for both variables and constant throughout 

the process thus satisfying the conditions of ratio validity, plus a random term dzyj or 

dzxj specific to y or x with standard deviation y or x respectively.17  The summation of 

all dt, t, reflects the length of the accounting period during which the generation of the 

jth financial statement takes place, typically one year.  

Now, by exponentiation, (5) leads to 

𝑑𝑦

𝑦
= 𝑠 +

𝜎

2
𝑑𝑡 + 𝜎 𝑑𝑧  and 

𝑑𝑥

𝑥
= 𝑠 +

𝜎

2
𝑑𝑡 + 𝜎 𝑑𝑧  

which, after integration, yields the stochastic equivalent to (2) or (3), i.e.  

𝑦 = 𝑦 𝑒 𝑒      and      𝑥 = 𝑥 𝑒 𝑒   

 
16 Like (3), the continuous rate of growth sj = sj is the same for all items in the jth financial statement, 
modelling the random effect of size upon financial statement j irrespective of the variable considered. 
Firms larger than the industry norm exhibit positive sj whereas those smaller firms have negative sj. 
17 The random terms dzy, dzx are limits of increments of Wiener processes as the time interval 
approaches the infinitesimal dt. Wiener processes are continuous time Markov processes with 
independent, normally distributed increments with zero mean, the variance of a Wiener process being 
proportional to time. Markov processes are used extensively as plausible approximations to the way 
variables such as stock prices or earnings are generated (see Ball and Watts, 1972, pp. 665-666). In the 
literature on financial ratios, Lev (1969) is an early example of the use of Markov processes. 
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where yj, xj are observed y and x, y0, x0 are arbitrary constant levels,18 and zy, zx are 

standard normal random variables. Ratios of variables generated as geometric 

Brownian motions, as above, evolve as 

𝑦

𝑥
=

𝑦

𝑥
𝑒                                                                         (6) 

thus removing sj, the effect of the jth financial statement, from measurement. Variance 

of z is σ + σ − 2ρ σ σ 𝑡 with  being the correlation coefficient between zy 

and zx.  

The ratio components yj and xj in (6) obey the robust formulation of scale invariance 

(4), and the ratio does not necessarily drift upwards or downwards as previously 

thought.19  Nevertheless, the time dependence in the variance of z generates time 

dependence in the ratio because, as the magnitude of z increases, negative and positive 

realisations are differently treated by the exponentiation, spanning the intervals {0,1} 

and {1,} respectively. This asymmetry, however, is no longer specific to ratios and a 

simple logarithmic transformation removes it. 

Final Comments 

The above discussion may be summarised as follows:  

 ratio validity requires not only linearity and an intercept equal to zero in the 

relationship between the numerator and denominator, but also that proportionate 

changes in ratio components should be independent of size, i.e., the relative 

change in the numerator should be equal to the relative change in the 

denominator;  

 
18 In this type of time series, y0, x0 are observations from the previous period, not initial values. 
19 If the process was assumed to equate effective rates on average, they would be described as 
 

𝑑𝑦

𝑦
= 𝜇 𝑑𝑡 + 𝜎 𝑑𝑧  and 

𝑑𝑥

𝑥
= 𝜇 𝑑𝑡 + 𝜎 𝑑𝑧  

 
This is the first and most basic process considered by Tippett (1990), and tested indirectly by Tippett 
and Whittington (1995) for the presence of a drift term in the ratio, where yj/xj is held to be an 
exponential function of µy - µx + 2

y +2
x + yxyx. The present paper, however, shows that 

continuous processes such as (5) which obey the robust formulation of scale invariance led to (6). 
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 under such conditions, firm size may be modelled as a common effect specific 

to each set of financial statements, with each variable being scaled to size and 

the ratio norm arising from such scaling;  

 the statistical properties of certain financial ratios that are thought of as 

undesirable can be attributed to the aggregation of like transactions under 

double entry bookkeeping but, as described in Table 2, simple transformations 

can lead to statistically well behaved ratios; 

 mechanisms equating continuously compounding growth rates proportionate to 

the size of the firm may lead to valid ratios even in the case of random 

components, and ratios of Markov processes will not necessarily drift.20 

In setting out these insights into the theoretical foundations of the ratio method, we have 

addressed the question as to whether the use of financial ratios is motivated more by 

tradition than by well-founded considerations. It is our conclusion that, despite their 

simplicity, financial ratios are governed by an explicit set of conditions and, moreover, 

they require data of the type that has been shown to characterise the figures reported in 

company accounts.  

Given these conclusions, one may ask why some previous contributions to the literature 

on financial ratios have led to such a pessimistic view of ratio analysis. Two reasons 

may be given. First, it is often assumed that accounting variables are, like many random 

variables, statistically additive. They are not. The statistical foundations of ratio 

analysis should be based on the understanding that accounting variables are 

multiplicative, being governed by proportionate or exponential growth. Second, the 

way in which firm size influences financial variables has also been misunderstood, 

leading to much uncertainty as to whether ratios remove size or not. 

In this context, we return to the often-quoted statement attributed to Lev and Sunder 

(1979), that almost all of the assumptions required for valid ratio analysis are likely to 

be violated in practice. The statement is formally correct, of course, but it might as well 

 
20 The paper also leaves a few details unexplored. Firstly, other diffusion processes should be tested 
against the ratio model. Secondly, the extent to which scale invariance holds for different ratios and the 
relative importance of size compared to other statistical effects are each in need of clarification. 
Finally, the extent to which deviations from strict lognormality and a variance which increases with 
time make the measurement dependent on norms or size is an open question. 
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be applied to Newton's Laws of Motion and to many other models considered as good 

enough approximations in normal circumstances. Nevertheless, the statement by Lev 

and Sunder is misleading. Distortion, despite its presence in mathematical models, may 

be small in specific cases such as in the case of nonproportionality. Moreover, when 

weighing inaccuracy against the ability to provide an intuitive interpretation with a 

parsimonious model, the trade-off could prove to be largely favourable to the less 

accurate methodology. 

The kind of trade-off referred to above is particularly relevant to the ratio method. 

Ratios, having just one degree of freedom, can measure deviations from the norm. The 

condition of constant proportionate growth (or scale invariance) is a direct consequence 

of this: one unique parameter can deal with scale invariant changes, i.e., the modelling 

of the common growth of both components. By providing deviations from the norm, 

ratios can provide in a succinct form the information that financial analysts seek. 

Conversely, analysts would find it more difficult to use models where the relevant 

information is contained in several parameter values, and the more complex such 

models are, the more sensitive they become to irregular data or to influences not 

necessary in the financial decision process. 

Thus, to conclude, the challenge facing research into financial ratio analysis is not how 

to increase the complexity of models. Rather, it is how to take account of the limitations 

of the parsimonious ratio model without changing the specific characteristics of the 

measurement.  
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