
1

Learning Rhetorical Structure Theory-based

descriptions of observed behaviour
Luís Botelho†1 Luís Nunes† Ricardo Ribeiro‡ Rui J. Lopes†

Luis.Botelho@iscte.pt Luis.Nunes@iscte.pt Ricardo.Ribeiro@iscte.pt Rui.Lopes@iscte.pt

† Instituto de Telecomunicações (IT-IUL), Departamento de Ciências e Tecnologias da

Informação do Instituto Universitário de Lisboa (ISCTE-IUL)

 Av. das Forças Armadas 1649-026, Lisboa, Portugal

‡ Instituto de Engenharia de Sistemas e Computadores (INESC-ID), Departamento de Ciências e

Tecnologias da Informação do Instituto Universitário de Lisboa (ISCTE-IUL)

 Av. das Forças Armadas 1649-026, Lisboa, Portugal

Abstract

In a previous paper, we have proposed a set of concepts, axiom schemata and algorithms

that can be used by agents to learn to describe their behaviour, goals, capabilities, and

environment. The current paper proposes a new set of concepts, axiom schemata and

algorithms that allow the agent to learn new descriptions of an observed behaviour (e.g.,

perplexing actions), of its actor (e.g., undesired propositions or actions), and of its

environment (e.g., incompatible propositions). Each learned description (e.g., a certain

action prevents another action from being performed in the future) is represented by a

relationship between entities (either propositions or actions) and is learned by the agent,

just by observation, using domain-independent axiom schemata and/or learning

algorithms. The relations used by agents to represent the descriptions they learn were

inspired on the Theory of Rhetorical Structure (RST). The main contribution of the paper

is the relation family Although, inspired on the RST relation Concession. The accurate

definition of the relations of the family Although involves a set of deontic concepts whose

definition and corresponding algorithms are presented. The relations of the family

Although, once extracted from the agent’s observations, express surprise at the observed

behaviour and, in certain circumstances, present a justification for it.

The paper shows results of the presented proposals in a demonstration scenario, using

implemented software.

1 Introduction

The capability of understanding or explaining behaviour and its actors is an important

feature of computer systems in a large variety of circumstances. In general, explainability,

i.e., the system’s ability to explain its behaviour, has been one of the most demanded and

sought for properties of intelligent systems ([van der Waa et al 2021][Miller

2019][Samek et al 2019]).

In interactive systems, mostly in the contexts of natural language processing and

interactive games, an agent may better adapt to its users if it understands their behaviour,

mainly their beliefs, motives and preferences (e.g., [Pinhanez et al 2021][Ramirez and

Bulitko 2014]).

1 Corresponding Author

2

Several researchers (e.g., [Köchling and Wehner 2020][Barocas et al 2017]) have

reported unacceptable strong biases, which may were not detected by their users,

especially in opaque machine learning systems, that would have been noticed if the

systems would explain their behaviour. For example, according to [Suresh and Guttag

2021], Northpointe’s COMPAS, a model that predicts the likelihood that a defendant will

re-offend, exhibited a significantly higher false positive rate for black defendants versus

white defendants. The bias would be immediately detected if COMPAS would explain

that a defendant had high risk of re-offending because they had a darker skin tone.

The purpose of our research is to improve the degree to which software agents understand

observed behaviour (either their own or that of some other agent), its actor and

environment. To achieve that, we defined a set of concepts through logical axiom

schemata and implemented a set of domain independent algorithms that allow an agent,

with no prior explicit understanding of what happens, to acquire such an understanding,

just by observation.

In [Botelho et al 2019], we show the way an agent with no prior explicit knowledge about

its goals, capabilities, the environment, and its interaction with the world may acquire

explicit knowledge of all these concepts. However, the discovered concepts may be

extended to enable even richer descriptions. In the present article, we extend the

previously proposed set of concepts the agent may discover, and we present concrete

results achieved by implemented software in a demonstration scenario.

We want to stress an important difference relative to [Botelho et al 2019]. In the previous

article, the main research goal was to empower an agent with the means to better

understand itself and the world. Here, we have adopted a more general perspective where

an agent observes some behaviour (its own or that of some other agent such as the user),

its actor, and the environment in which it unfolds. The set of concepts, algorithms and

axiom schemata used by the agent in [Botelho et al 2019] may readily be used by an

observing agent to describe observed behaviours, their actors and environment. This

article presents an extension of those concepts, algorithms and axiom schemata.

In addition to the mentioned change of perspective, the major contributions of the current

extension of our previous work comprise (i) the basis for a qualitative scale of

preferences towards propositions or actions; (ii) two types of incompatibility between

propositions and/or actions; (iii) perplexity; (iv) relation definition; and (v) the use of

background knowledge for inferring new knowledge. All these contributions mean that an

agent learns to better understand the observed behaviour, its actor and environment.

Qualitative scale of preferences. Just by observing some behaviour, the observing agent

learns some of the attitudes of the actor of the observed behaviour towards its actions and

world propositions: desired actions and propositions, undesired actions and propositions,

and neutral actions and propositions. Given that a desired action is better than a neutral

action, which in turn is better than an undesired action (and the same with respect to

propositions), this forms the basis for a qualitative scale of the preferences of the actor of

the observed behaviour (e.g., the user preferences).

Note that it is impossible to ensure that the attitudes the observing agent learns of the

actor of the observed behaviour actually correspond to first-person attitudes of the

observed actor. The observing agent just learns that, according to its own view, the

observed behaviour is consistent with its actor having the learned attitudes.

Incompatibility between propositions and/or actions. Just by observing some actor’s

behaviour, the agent learns pairs of incompatible propositions about the world (they

cannot be simultaneously true) and it also learns pairs of propositions where one of them

being true in a certain state of the world prevents the other from ever becoming true in the

future. The incompatibility between world propositions is used, for example, in classical

planning algorithms [Ghallab, Nau and Traverso 2004], for instance for detecting

incompatible sets of goals but, in some cases, it is expected that the agent developer

3

manually provides such knowledge. It is easy to accept that the knowledge that a

proposition prevents another from ever becoming true in the future could also be used in

planning the agent’s action. As it will be seen, incompatibility and prevention apply to

both two propositions, two actions, or a proposition and an action.

Perplexity2. Maybe, the most interesting innovation of this paper, certainly the most

sophisticated, is learning to detect perplexing actions just by the observation of

behaviour. In the present article, perplexity is formalized in deontic terms relying on the

rigorous definition of ideality principles. Perplexity, surprise and awe are epistemic

emotions in the sense that they motivate the agent to seek the new knowledge required to

understand the cause of the emotion (e.g., [Deckert and Koenig 2017] [de Cruz 2021]

[Vogl et al 2019][McPhetres 2019]). These emotions may thus be used in artificial agents

to trigger knowledge seeking or otherwise exploratory behaviours.

Another important note must be presented regarding perplexity. Since it is the observing

agent that is actively acquiring information about the observed behaviour and processing

it, it is the observing agent that becomes perplexed with particular actions of the actor of

the observed behaviour. However, the actor of the observed behaviour might have exactly

the same reasons to be perplexed about its own actions if it were aware of what it is

doing. Thus, this contribution of our work may apply both to an agent that is observing

some behaviour (possibly its own) or to the actor of the behaviour it is observing.

Relation definition. Just by observing a behaviour, either its own or another one’s, the

agent learns to define a proposition as a conjunction of other propositions. This

knowledge constitutes a deeper understanding of the observed behaviour.

The note we have just presented about perplexity also applies to proposition definition.

The observing agent learns the definition of a certain proposition. However, if the actor of

the observed behaviour is also aware of what happens in its own world, it may also have

learned the same definition.

Background knowledge. When an agent learns a certain proposition (possibly a relation

between actions and/or propositions), it may have needed its own background knowledge

in addition to its observations. If this is the case, the agent creates a fact of the relation

background, stating the previous knowledge that it used to infer the learned proposition.

Albeit none of the descriptions that the agent learns from the observed behaviour required

prior knowledge, we provide a formal inference rule that the agent could have used to

derive propositions of the background relation if it had needed prior knowledge. Being

aware that, to infer a certain knowledge, the agent requires prior knowledge constitutes a

profound understanding of its relation with its observations.

All the briefly presented contributions, which allow an agent to learn descriptions of

observed behaviours, their actors and environments, were inspired from an analysis of the

Rhetoric Structure Theory (RST) by Mann and Thompson (1987; 1988).

William Mann and Sandra Thompson [Mann and Thompson 1987] [Mann and Thompson

1988] proposed the Rhetorical Structure Theory (RST), which includes a set of relational

concepts that can be used to describe the rhetorical structure of discourse. RST has been

used in computational linguistics, for both language understanding [Marcu 2000] [Uzêda,

Pardo and Nunes 2010] and discourse generation [Mann 1984] [Kosseim and Lapalme

2000]. Given the proven power of the proposed RST concepts to describe discourse, we

have decided to evaluate the possibility of using them to describe behaviour, its actor and

relevant properties of its environment. Next section presents our analysis of the

Rhetorical Structure Theory for the purpose of capturing the agent’s understanding of

2 Not to be confused with perplexity as it is used in language models (i.e., analytic measure of

uncertainty derived from the branching factor) and in machine learning (e.g., prediction error,

model uncertainty)

4

observed behaviour. We conclude that several concepts proposed in [Botelho et al 2019]

may be equated with some of those of RST. Additionally, we have identified some other

RST concepts that are proposed in the current paper to extend the degree to which an

agent understands observed behaviour.

Section 3 describes our current proposal and presents results achieved by implemented

software in a demonstration scenario. All new concepts are rigorously defined. Deduction

axiom schemata and domain independent algorithms are described.

Section 4 relates our work with relevant literature. We conclude that a significant subset

of the concepts we propose (in [Botelho et al 2019] and in the current article) is also used

in related research.

Finally, section 5 presents conclusions and directions for future research.

2 Discussion of RST

This section discusses the usefulness of the relations proposed in the Rhetorical Structure

Theory (RST) for our research objectives, namely for improving the degree to which an

agent understands observed behaviours, their actors and environments. We conclude that

some of the RST relations were already addressed in a previous article presenting our

research [Botelho et al 2019]; and that some other RST relations, not previously

addressed in our research, will allow agents to develop a richer understanding of what

they observe.

2.1 RST Relations

RST relations are defined to hold between non-overlapping text spans, called the Nucleus

and the Satellite, but there are a few exceptions. For example, both arguments of the

relation Contrast are nucleus text spans, and the relation Sequence applies to more than

two text spans.

The purpose and ingredients of RST are different in many respects to the purpose and

fundamental ideas of agent understanding. Of those differences, the following ones

deserve being emphasized:

• The purpose of RST is text analysis and generation, taking into account

communicative intentions; our research has the purpose of improving the

understanding the agent develops of an observed behaviour, its actor and

environment;

• The main intentions represented in the relations of the RST theory are communicative

intentions of the speaker / writer; the intentions of the actor of the observed behaviour

(if any) are those motivating their behaviour;

• The distinction between nucleus and satellite is an important aspect of RST; this

distinction is not important for our research;

• In RST, sometimes the same text span may arbitrarily represent actions / activities or

situations; the concepts expressing the agent understanding predicate actions and/or

propositions;

• Most RST concepts are represented by binary relations; the agent understanding is

represented by relations and functions of differing arities.

Given the differences between the purpose and objects of the Rhetorical Structure Theory

and describing the agent’s understanding of an observed behaviour, its actor and

environment, we stress that we will consider the RST relations only as a source of

inspiration to extend the set of relations we previously proposed in [Botelho and al 2019].

5

RST proposes the set of relations presented in Table 1. Some of them have only

presentational purpose. Others address the subject matter of the discourse.

Table 1 – RST relations (adapted from [Mann and Thompson 1988])

Circumstance (subject matter) Antithesis and Concession (presentational)

Solutionhood (subject matter) • Antithesis

Elaboration (subject matter) • Concession

Background (presentational) Condition and Otherwise (subject matter)

Enablement and Motivation (presentational) • Condition

• Enablement • Otherwise

• Motivation Interpretation and Evaluation (subject

matter)

Evidence and Justify (presentational) • Interpretation

• Evidence • Evaluation

• Justify Restatement and Summary (subject matter)

Relations of cause (subject matter) • Restatement

• Volitional cause • Summary

• Non-volitional cause Other relations (subject matter)

• Volitional result • Sequence

• Non-volitional result • Contrast

• Purpose

Albeit the relations about the subject matter may seem more likely to be useful for the

purpose of our research, we will also analyse presentational relations.

The following sections describe the meaning of all RST relations, organizing them

according to their possible usefulness for the purpose of representing the understanding of

the agent about an observed behaviour, its actor and its environment.

The examples of all RST relations are taken from [Mann and Thompson 1988], except

when otherwise specified.

2.1.1 Alternative and sequence

The notions of action sequence and of alternative ways to handle a given problem

usefully describe agent behaviour. This section shows that RST relations Sequence and

Contrast capture those or very similar concepts.

RST Contrast presents two contrasting actions or activities, or situations that may result

of those actions or activities. The two text spans of a Contrast relationship do not present

incompatible situations. The relationship does also not present the two situations as

seemingly incompatible. However, the two situations contrast in some respect. In a sense,

as the following example shows, Contrast can be used to express alternative ways of

solving some problem:

Animals heal, but trees compartmentalize. They endure a lifetime of injury and

infection by setting boundaries that resist the spread of the invading

micro-organisms.

It can be relatively easy to understand that two approaches to solve a similar problem are

different, but it would be much more difficult to understand that they somehow contrast.

We recognize the importance of proposing relations with those two connotations (i.e.,

alternative and contrasting). However, we are not ready yet for providing an algorithm

capable of distinguishing contrast from mere difference.

RST Sequence represents a sequence of the actions or situations presented in the several

related text spans. Our approach to describe the observed behaviour captures its sequence

of states by the predicate NextState/3, which relates a given state of the considered

behaviour, the action executed in that state, and the next state, resulting of executing that

action.

6

2.1.2 Action effects and relevant achievements

Several RST relations (i.e., Solutionhood, Purpose, Enablement, Motivation, Volitional

cause, Volitional result) capture a similar notion that one or several actions may be

executed to achieve a given state of affairs.

One of the text spans of the Solutionhood relation presents a problem. The other text span

represents an action that solves the presented problem. In the following example, “to

redistribute the fillers” is a solution to the “insulation tendency to slip towards the

bottom”.

One difficulty with sleeping bags in which down and feather fillers are used as

insulation. This insulation has a tendency to slip towards the bottom. You can

redistribute the filler.

Clearly, the RST Solutionhood represents the concept that an action was or may be

executed to achieve a given state of affairs, such as a goal.

RST Purpose also captures a similar relation between two text spans. However, RST

Purpose is more accurately interpreted as a relation among behaviours than as a goal /

action relation. In the following example, “becoming as tall as possible” is the way to

enable the realization of photosynthesis:

Presumably, there is a competition among trees in certain forest

environments to become as tall as possible so as to catch much of the sun as

possible for the photosynthesis

One of the text spans of the RST relation Volitional cause presents a volitional action or a

situation that could have resulted of a volitional action. The other text span represents a

situation that could have caused the agent of the volitional action to perform it. In the

following volitional cause example, writing being impossible caused the decision to have

the typewriter serviced:

Writing has almost become impossible so we had the typewriter serviced and

I may learn to type decently after all these years.

This example may be framed as the rule If you want to learn to type decently (and the

typewriter is not working) then you must have the typewriter serviced.

RST Volitional-result is the exact symmetric of RST Volitional-cause in the sense that, in

Volitional-result, it is the nucleus text span that causes the satellite text span, while in

Volitional-cause, it is the satellite that causes the nucleus.

The RST relations Enablement and Motivation also suggest the concept that an action can

be executed to achieve a given state of affairs, but the purpose is different since both are

concerned with enabling or motivating the reader to perform a certain action.

One of the text spans of the RST Enablement represents an unrealized action (to be

performed by the reader). The other text span presents information meant to motivate the

reader to do the action. In the following RST Enablement example, the information

regarding training on jobs is presented to motivate the reader to ask for a catalogue and

order form:

Training on jobs. A series of informative, inexpensive pamphlets and books

on worker health discusses such topics as filing a compensation claim,

ionizing radiation, asbestos, and several occupation diseases. For a catalog

and order form write to WIOES, 2520 Milvia St., Berkeley, CA 95704.

This example can be cast as the rule If you want to enrol the employees in training

programs (which are important to learn about filing a compensation claim, ionizing

radiation, asbestos, and several occupational diseases) then get a catalogue and order

form from WIOES, 2520 Milvia St., Berkeley, CA 95704.

7

RST Motivation captures a similar relation between a text span that is meant to motivate

the reader to perform the action presented in the other text span.

Two related, but different, concepts are suggested by the described RST relations: the

general effects of an action, independent of specific executions, and the relevant effects of

an executed action, in the scope of a specific behaviour. These two concepts are handled

by the functions PosEffects/1 and NegEffects/1 and by the relation Achieved/3 of our

original proposal [Botelho et al 2019]. PosEffects/1 and NegEffects/1 represent the

general (positive and negative) effects of an action, independent of any specific

execution. Achieved/3 represents the relevant effects of an action executed in the scope of

a particular behaviour. We use the expression “relevant effects” to refer to the

propositions that were not true in the state in which the action was executed and became

true after the action was executed. They are relevant because they are either goals or

enable the execution of an action that was actually executed in the considered behaviour.

2.1.3 Contribution and precondition

While section 2.1.2 is focused on action effects, this section addresses different action

preconditions, which are captured by several RST relations (i.e., Condition,

Non-volitional cause, Non-volitional result).

The situation described in one of the text spans of the RST relation Condition can only be

achieved if the situation described in the other text span is achieved before. In the

following example (adapted from [Mann and Thompson 1988], but not exactly the same),

the new spouse or children receiving benefits can only happen if the employee has

completed new beneficiary designation forms:

Employees are urged to complete new beneficiary designation forms for

retirement or life insurance benefits whenever there is a change in marital

or family status. This is the only way new spouses or children may receive

benefits.

The accurate interpretation of the RST Condition requires a more detailed analysis.

Condition relates a situation, that is, a set of propositions (PropSet2) that can only be

achieved if another set of propositions (PropSet1) is achieved before. PropSet1 is the

condition for PropSet2. Implicitly, the relation assumes the existence of an (unmentioned)

action (say A1.2) that would result in the achievement of the second set of propositions.

That unmentioned action A1.2 can only be performed if the set of propositions PropSet1 is

the case. This analysis shows that RST Condition represents a relation between an

unmentioned action and the set of propositions that must be true so that the action can be

executed.

The expression non-volitional of the two RST relations Non-volitional cause and

Non-volitional result is used to express the notion of a situation that enables an action to

be executed. That is, the referred situation is not the motivation for executing the action.

Instead, the referred situation is the opportunity for its execution.

According to its definition, one of the text spans of the RST relation Non volitional cause

presents a non-volitional action or a situation that could have resulted of a non-volitional

action. The other text span represents a situation that could have caused the agent of the

non-volitional action to perform it. In the following Non-volitional cause example, being

able of mining more than necessary causes the possibility of exporting:

We have been able to mine our own iron ore, coal, manganese, dolomite, all

the materials we need to make our own steel. And because we can mine more

than we need, we’ve had plenty manganese and iron ore for export.

The action of exporting is non-volitional because it was not intended a priori; it became

an option once it was realized that more than enough manganese and iron ore was mined.

8

Being able of mining more than necessary does not cause the action. The unmentioned

goal of increasing profit causes the action of exporting. Being able of mining more than

necessary is the condition that enables exporting. However, if the company did not want

to make more money, they would not have bothered exporting.

RST Non-volitional-result is the exact symmetric of RST Non-volitional-cause in the

sense that, in Non-volitional-result, it is the nucleus text span that enables / contributes to

the satellite text span, while in Non-volitional-cause, it is the satellite that enables /

contributes to the nucleus.

The discussed RST relations suggest two different, albeit related concepts: the general

preconditions of an action, independent of specific executions, and the contribution of a

certain proposition to an executed action, in the scope of a specific behaviour. These two

concepts are handled by the function Precond/1 and the relation Contributed/3 of our

original proposal [Botelho et al 2019]. Precond/1 represents the general preconditions of

an action, independent of any specific execution. Contributed/3 represents the relevant

contribution of an observed proposition to an action executed in the scope of a particular

behaviour.

2.1.4 Incompatibility and prevention

The RST relations Antithesis and Otherwise suggest two important concepts:

incompatibility and prevention. If an agent learns that two propositions are incompatible

or that one of them prevents the other from holding in the future, it gains a richer

understanding of the environment. If the observing agent is the actor of the observed

behaviour, it may use the learned knowledge to make better decisions on how to act in

that environment.

In the RST relation Antithesis, one cannot have positive regards for both the nucleus and

the satellite. In the following example of the RST Antithesis, the lack of jobs is presented

as an antithesis of laziness.

The tragic and too-common tableaux of hundreds or even thousands of

people snake-lining up for any task with a paycheck illustrates a lack of jobs,

not laziness.

We will propose the Incompatible/2 relation to express the incompatibility of two domain

entities.

The RST relation Otherwise means that if the situation described in one of the text spans

is true, the situation described in the other text span cannot be achieved. Otherwise

captures a prevention relationship between propositions. We will add the relation

Prevents/2 to capture the idea that the occurrence of one of the domain entities will

prevent the future occurrence of another domain entity.

2.1.5 Definition / Restatement

RST relations Summary and Restatement represent different ways of expressing the same

idea or situation. RST relation Restatement holds of two text spans if one of them is a

restatement of the other. However, the two text spans must be of comparable bulk. In the

following example of the RST Restatement, the second statement expresses exactly the

same idea as the first one:

A well-groomed car reflects its owner. The car you drive says a lot about

you.

RST relation Summary holds of two text spans when one of them is a shorter restatement

of the other. In the following example of the RST Summary, improving computer

performance is a summary of improving memory and getting a big bonus in computer

performance:

9

For top quality performance from your computer, use the flexible disks known for

memory excellence. It’s a great way to improve your memory and get a big bonus

in computer performance.

The RST relations Restatement and Summary, exactly as used in RST, don’t apply to our

research goal. However, two different concepts suggested by these two RST relations are

important concepts to express the agent understanding of observed behaviour, its actor

and environment. One is the idea of alternative ways to achieve the same goal, as already

mentioned with respect to the RST relation Contrast (section 2.1.1). The other is the

concept of a proposition that is defined in terms of other propositions. In this last case, it

might be said that the defined proposition represents a shorter way of expressing the

defining set of propositions.

Defining a proposition in terms of other propositions may also capture the hierarchic

organization of the agent behaviour. For instance, “to achieve its goal, the agent ensures

that the stack is inside the closet and that the closet door is closed” is a more abstract (in

the sense of less detailed) version of “to achieve its goal, the agent ensures that block B

is on top of block C and block A is on top of block B forming a stack, that the stack is

inside the closet, and that the closet door is closed”.

In this paper, we propose the relation Defining/2 as a way of expressing that a proposition

is defined as the conjunction of other propositions. The paper provides an algorithm used

by the agent to acquire definitions of propositions from the observed behaviour, and

results of an actual implementation.

2.1.6 Concession

The RST relation Concession is well understood as a synonym for Although, for example

Although it is toxic to certain animals, evidence is lacking that it has any serious

long-term effects on human beings.

We will propose two versions of Although, based on the RST relation Concession. The

new proposals are used by the agent to express perplexity with some action. In one of the

versions, the agent also expresses the reason why the perplexing action has been

executed. Perplexity and the rational for a perplexing action represent a deep

understanding of the considered behaviour.

The two versions of the relation Although will be one of the most important aspects of

this article. Rigorous definitions and algorithms used by the agent to acquire relationships

of the family Although from the observed behaviour will be provided along with results

of an actual implementation.

2.1.7 Enabling or improving an interpretation

Three RST relations (i.e., Background, Circumstance and Interpretation) are used when

one of the text spans introduces new information that enables or improves the

understanding of the other text span.

One of the text spans of the RST relation Background provides background information

that increases the reader’s understanding of the other related text span. In the following

example of the RST relation Background, the previous Government Code presents

background information necessary for a complete understanding of the new bill that

protects public employees’ personal data:

Home addresses and telephone numbers of public employees will be

protected from public disclosure under a new bill approved by Gov. George

Deukmejian. Assembly Bill 3100 amends the Government Code, which

required that the public records of all state and local agencies, containing

10

home addresses and telephone numbers of staff, be open to public

inspection.

One of the text spans of the RST relation Circumstance sets a framework within which

the reader is intended to interpret the situation presented in the other related text span. In

the following example of the RST Circumstance, the text span that presents the Prime

Minister volunteering to work at KUSC3, while attending the Occidental College in 1970,

defines the circumstances that enable a better understanding of the statement that the P.M.

has been with KUSC longer than any other staff member:

P.M. has been with KUSC longer than any other staff member. While attending

Occidental College, where he majored in philosophy, he volunteered to work at the

station as a classical music announcer. That was in 1970.

One of the text spans of the RST relation Interpretation links the situation presented in

the other text span to a framework of ideas not involved in that text span and not

concerned with the writer’s positive regard. In the following example, the unusualness of

the decline mentioned in the second text span is related to the decline of the composite

mentioned in the other text span:

Steep declines in capital spending commitments and building permits, along with a

drop in the money stock pushed the leading composite down for the fifth time in the

past 11 months to a level 0.5% below its high in May 1984. Such a decline is highly

unusual at this stage in an expansion.

In the three RST relations, one of the text spans provides additional information that,

when related with the information presented in the other text span, allows a better

understanding of the other text span. Both relations suggest the usefulness of identifying a

bulk of possibly declarative knowledge or theory that would improve or enable the

correct understanding of the agent behaviour. In this paper, we propose the Background

relation as a way of expressing the relationship between a priori knowledge of the

domain and concepts extracted by the agent from an observed behaviour, its actor and

environment. Our research proposal explicitly tries to avoid requiring the agent to use a

priori knowledge to understand the observed behaviour. However, shall necessity arise,

the newly proposed Background relation can be used.

2.1.8 Evaluation

One of the text spans of RST Evaluation relates the situation presented in the other text

span to the degree of the writer’s positive regard towards it. The intended effect of an

evaluation relation is that the reader recognizes that one of the text spans assesses the

situation presented in the other text span and recognizes the value it assigns to it. In the

following example of the relation Evaluation, better performance and reliability is an

assessment of features of the referred disk:

Features like our uniquely sealed jacket and protective hub ring make our

disks last longer. And a soft inner liner cleans the ultra-smooth disk surface

while in use. It all adds up to better performance and reliability.

Evaluating the observed behaviour or alternative courses of action reflects a deep

understanding of what is observed. If the observing agent is the actor of the observed

behaviour, the capability to evaluate may allow the agent to improve its behaviour.

We propose the new relation Evaluation to express the agent evaluation of possible

courses of action.

3 KUSC is a classical music radio based on the University of Southern California.

11

2.1.9 Evidence and justification

Two RST relations (Evidence and Justify) are concerned with presenting information that

can be seen as evidence or justification for the presentation of other information.

In RST Evidence, one of the text spans is presented to increase the reader’s belief in the

other text span. In the following example, the second topic is presented to increase the

reader’s belief in the first topic:

1. The program published for calendar year 1980 really works

2. In only a few minutes, I entered all the figures from my 1980 tax return

and got a result which agreed with my hand calculation to the penny.

The RST relation Evidence can be cast as a condition-conclusion rule. The presented

example can be stated as the following if then rule:

If using a program requires only a short time, and the program provides a

comprehensive coverage of the target situation, and the program results are

as expected then the program really works (mostly in terms of usability).

Condition-conclusion rules can actually be interpreted as meaning that if the condition is

believed then the conclusion is also believed, that is, the conditions works as evidence for

the conclusion.

The RST relation Justify has a slightly different purpose. One of the related text spans is

used to increase the reader’s readiness to accept the writer’s right to present the other text

span. In the following example of the relation Justify, the second and third topics are

presented to increase the reader’s readiness to accept the writer’s right to present the first

topic:

1. The next music day is scheduled for July 21 (Saturday), noon-midnight

2. I’ll post more details later,

3. But this is a good time to reserve the place on your calendar

RST Justify, exactly as it stands, is not useful for our research purposes because the goal

of using the relation is to justify the writer’s right to present a certain piece of

information. A similar albeit different idea would be worth considering, the idea that a

given state of affairs (a set of propositions) justifies the performance of an action. A set of

propositions is a justification for an action if those propositions are goals the actor of the

observed behaviour wants to achieve and the action actually achieves them, or if the

propositions achieved by the action are preconditions for future, also justified, actions.

This is exactly the intent of our original relation Achieved/3, which expresses the relation

between an action and its relevant results. A result is relevant if it is a goal of the agent or

if it is a precondition of another action executed posteriorly. Achieved/3 is discussed in

section 2.1.2.

2.1.10 Elaboration

The RST relation Elaboration is used to present more details about a certain situation.

One of the text spans of RST Elaboration presents more detail to the situation presented

in the other text span. In the following example of RST Elaboration, the description of

the expected attendees and the information regarding the topics of the conference (one of

the text spans) provide additional details about the conference presented in the other text

span:

Sanga-Saby-Kursgard, Sweeden, will be the site of the 1969 International

Conference on Computational Linguistics, September 1-4. It is expected that

some 250 linguists will attend from Asia, West Europe, East Europe

including Russia, and the United States. The conference will be concerned

with the application of mathematical and computer techniques to the study of

natural languages, the development of computer programs as tools for

12

linguistics research, and the application of linguistics to the development of

man-machine communication systems.

The RST relation Elaboration suggests two different, although related concepts: (i)

describing a behaviour in more detail, and (ii) defining a proposition as a set of

propositions. This second concept, which is more superficially linked to the RST

Elaboration, has already been considered in section 2.1.5.

The first concept, namely that of describing a certain behaviour in more detail, is the

nature of complex behaviours. Complex behaviours have ultimate goals to be achieved.

Those goals are achieved through the achievement of other more specific instrumental

goals, each of which may also involve other yet more specific instrumental goals, and so

forth. Often, each goal (instrumental or not) may be fulfilled through alternative

combinations of other goals. This corresponds to the recognition of the hierarchic

structure of complex behaviour. The hierarchic nature of complex behaviour is already

captured by the relations Achieved (section 2.1.2) and Contributed (section 2.1.3),

originally proposed in [Botelho et al 2019], and Defining (section 2.1.5), presented in this

article. The possibility of alternative approaches to achieve a given state of affairs was

discussed in section 2.1.1.

2.2 Extending our original proposal

This section briefly describes the set of concepts that resulted from the analysis of the

RST relations presented in section 2.1. Then, we contrast the referred set of relations with

the relations we originally proposed in [Botelho et al 2019]. We show that several of the

RST-based concepts are captured by our original proposal and we identify those that were

not yet covered.

The RST-based concepts resulting from the analysis in section 2.1 are listed in Table 2.

Table 2 – RST-based concepts

Sequence Effects (Positive and negative effects)

Alternative Precondition

Achieved Incompatible

Contributed Prevents

Although Defining

Evaluation Background

Evidence

Sequence. An observed ordered collection of states forms a sequence in a specific

behaviour. The predicate NextState/3, directly built from the sensors of the observing

agent, captures the notion of state sequence.

Alternative. Specific behaviours B1 and B2 are alternative ways of achieving the same

results. Our original proposal does not capture this concept. For that, we would have to

observe different behaviours to handle the same problem, which we did not. This paper

will not address this possibility. We leave it for future research.

The relations Achieved and Contributed express properties of actions and propositions of

specific behaviours. The former is used to express the fact that a certain action, executed

in a certain state of a certain behaviour, achieved a certain set of relevant effects. The

latter is used to express the fact that a certain proposition, holding in a specific state of a

specific behaviour, contributed to enabling the execution of a specific action (because it is

one of its preconditions).

13

The word Although may be used to express different classes of relations. In the example

provided in the RST paper [Mann and Thompson 1988],

Although it is toxic to certain animals, evidence is lacking that it has any

serious long-term effects on human beings

the word is adequately used because of the perplexity that is caused by the fact that the

effect of some action is one for certain animals but another one for other animals.

We will restrain the use of the relation Although to express the fact that although the

specific action executed by the observed actor, in a specific state, seems to deviate it from

an apparently more favourable state, in terms of the degree of satisfaction of a given

ideality principle, it was nevertheless executed. A second version of the relation will

allow the observing agent to describe the justification it has learned for the execution of

the apparently perplexing action.

The relation Evaluation may be used by the observing agent to assign a certain evaluation

to a specific course of action or to a specific situation. In case the observer agent is the

actor of the observed behaviour, evaluating alternative courses of action will enable the

agent to choose among possible actions to be performed. Although recognizing its

importance, we do not explicitly handle the relation Evaluation. However, in section 3.1,

we discuss and formalize diverse concepts well related with Evaluation. The learned

predicates Desired/1, Neutral/1 and Undesired/1 directly evaluate their arguments

(propositions or actions). Additionally, we provide the means for the observing agent to

infer the degree to which several ideality principles are satisfied in a given state of an

observed behaviour. Given that an ideality principle reflects the way the behaviour should

unfold, determining the degree to which an ideality principle is satisfied is an implicit

evaluation of that behaviour.

The relation Evidence may be used to express the fact that a certain specific proposition is

evidence that another specific proposition is true. Although recognizing its importance,

we do not tackle the relation Evidence.

Action effects. Actions, if successfully executed, have effects on the world. We use the

functions PosEffects/1 and NegEffects/1 to represent the positive and the negative effects

of an action. The positive effects of an action are those propositions that become true

after the action is executed. The negative effects of an action are those propositions that

cease to be true after the action is executed.

Action preconditions. For an action to be executed, certain conditions must hold. We use

the function Precond/1 to represent the set of propositions that must hold for the action to

be executed.

The relation Incompatible will be used to represent the incompatibility between two

domain entities. Two entities are incompatible if they cannot occur in the same state.

The relation Prevents will be used to express the fact that one domain entity (either a

proposition or an action), once occurring in a given state of a given behaviour, prevents

the future occurrence of another entity in the same behaviour.

The relation Defining is used to represent the definition of one proposition as the

conjunction of a set of other propositions.

Finally, the relation Background can specify the a priori background knowledge used by

the agent to acquire a certain relationship between world propositions and/or actions.

After having briefly described the RST-based relations, useful for representing the agent

learned description of observed behaviour, its actor and environment, we present the

relations originally proposed in [Botelho et al 2019] with the same purpose. Several of the

RST-based relations represent the same concepts as those we have already proposed.

However, there is a significant set that was not covered in our previous research.

14

Some of the previously defined descriptions are properties of the observed entities of the

domain (Table 5, e.g., Proposition/1, Action/1 and Goal/1). The other previously

proposed descriptions relate entities of the domain (Table 4 and Table 3, e.g., Achieved/3,

Contributed/2, MustPrecede/2, PosEffects/1and NegEffects/1). In this context, domain

entities comprise actions and propositions.

The relations we have previously proposed were organized into two groups according to

whether they apply only to specific behavioural instances (Table 3, e.g., Achieved/3 and

Contributed/2) or to all behaviours of the same class (Table 4, e.g., MustPrecede/2 and

Precond/1).

Finally, some descriptions were represented as functions (e.g., PosEffects/1 and

NegEffects/1) whereas others were represented as predicates or relations (e.g.,

Achieved/3, MustPrecede/2).

We start with the relations that may be used to describe specific behaviours. Then we

move to those that apply to the whole class of behaviours. Finally, we present those

relations that predicate individual entities of the domain.

Table 3 – Descriptions that relate entities. Applicable to specific behaviours

NextState(State1, Action,

State2)

The predicate NextState/3 relates a state identifier

(State1) with the action that was executed in that

state (Action), and the resulting state (State2).

NextSate/3 is defined only for observed actions of

specific behaviours.

Achieved(State, Act, PropsSet)

The propositions in the set PropsSet constitute the

relevant effects of the action Act, executed in the

state State. Relevant in the sense that each of them is

either a goal of the actor of the observed behaviour

or one of the preconditions of an action that actually

used it in a future sate of the same behaviour.

Contributed(State, Prop, Act) Proposition Prop, true in the state State, contributed

to the execution of the action Act in the state State,

because it is one of Act’s preconditions.

Table 3 shows that RST-based relations NextState, Achieved and Contributed, which were

already included in our previous work [Botelho et al 2019].

Several concepts relating domain entities are applicable to all instances of the same class

of behaviours. For instance, the set of effects of an action describes the action, not a

specific execution of that action in a specific behaviour.

15

Table 4 – Descriptions that relate entities. Applicable to all behaviours

MustPrecede(Prop1, Prop2) In all instances of the same class of behaviours in which

Prop1 and Prop2 have occurred, Prop1 and Prop2 occur

both in the initial state or Prop1 must occur before

Prop2.

The precedence relation does not arise of Prop1 being a

precondition of any of the actions that lead from the

state in which Prop1 is true to the state in which Prop2 is

true.

Precond(Act) Precond(Act) is the set of preconditions of the action

Act, in the sense that Act can only be executed in a state

in which all of its preconditions are true.

PosEffects(Act) PosEffects(Act) is the set of positive effects of Act, that

is, the set of propositions that become true in the state

immediately after Act is executed.

NegEffects(Act) NegEffects(Act) is the set of negative effects of Act, that

is, the set of propositions that cease to be true in the

state immediately after Act is executed.

ValidityCondition(Act) ValidityCondition(Act) is the validity condition of the

action Act. The validity condition of an action specifies

the set of valid instantiations that can be applied to the

action variables.

Table 4 presents the RST-based relations Precond, PosEffects, and NegEffects, which

were already part of our previous work [Botelho et al 2019].

In addition to the relations between domain entities, we also use a set of unary relations

that represent properties of domain entities.

Table 5 – Entity properties

Proposition(Entity) Entity is a proposition

StaticProposition(Entity) Entity is a static proposition (true in all states of all

behavioural instances of the same class).

FluentProposition(Entity) Entity is a fluent proposition (true only in some states)

Action(Entity) Entity is an action.

Goal(PropsSet) The goal of the actor of the observed behaviour is the

conjunction of all propositions of the set PropsSet. That is,

each behavioural instance of the same behavioural class is

directed to achieve a state in which all propositions in

PropsSet are true.

Desired(Prop) Prop is a desired entity. A proposition is desired if it is one

of the agent’s goals.

Mandatory(Prop) Prop is a mandatory proposition in the sense that, although

it is not a goal, there has to be at least one state in the

observed behaviour, in which the proposition is true,

otherwise the actor of the observed behaviour won’t

achieve their goals. The obligation results of the

interaction of the task structure, the actor’s goals and their

capabilities.

16

Since there are no unary RST relations, none of them is similar to the previously

presented relations expressing properties of domain entities.

Some RST relations apply indistinctly to both propositions and actions. However, the

rigorous meaning of a relation depends on the nature of the entity (proposition / action) to

which it applies. One way of dealing with this problem would be to define different

versions of the same relation depending on the nature of its arguments. The other way is

to have only one version of each relation but providing a way of expressing the nature of

its arguments. Our relations Proposition/1, StaticProposition/1, FluentProposition/1 and

Action/1 are used to distinguish actions from two different kinds of propositions.

From the comparison of our original proposal with the RST-based relations identified in

this paper we recognize the desirability to extend our original proposal with the following

RST-based relations: Alternative, Although, Evaluation, Evidence, Incompatible,

Prevents, Defining, and Background. Additionally, we decided to add the unary relations

Undesired/1 and Neutral/1, which represent properties of domain entities, because they

happen to be important for the rigorous definition of the new added relations (section

3.1). Undesired(Entity) is true if the specified entity is not desired by the agent.

Neutral(Entity) means that the specified entity is neither desired nor undesired by the

agent.

Of the whole set of newly proposed relations, this paper focuses exclusively on

Undesired, Neutral, Incompatible, Prevents, Defining, Although and Background, and on

an extension of the relation Desired. In our previous work, the relation Desired/1 applied

only to propositions. Here, we extend its definition to apply to actions as well. The others

are left for future work. Section 3 describes our current proposals and achieved results.

The next section compares our choices and algorithms with related research.

3 Research approach and results

The research presented in this section consists of a set of domain independent algorithms

and sometimes axiom schemata that may be used by an agent to learn (sometimes, to

derive) descriptions of the observed behaviour, its actor and environment. The

descriptions to be acquired by the agent through observation are those identified in

section 2.2.

This research relies on some assumptions. First, the learning agent is capable of observing

the behaviours under consideration. Each behaviour is associated with a sequence of

states connected by the actions performed by its actor on the environment. Each state is a

set of propositions about the environment. The first state of each observed behaviour is

the initial state. When an action is performed in a certain state, by the actor of the

observed behaviour, the world changes from the state in which the action was executed to

the next state. Each behaviour ends when the goal of its actor is achieved. This means we

also assume that all behaviours are successful, in the sense that the goals of their actors

are achieved in the final states of their behaviours. We are aware that this is a limitation.

However, this assumption is perfectly realistic in a large class of tasks that are always

successfully performed.

The definitions and explanations that follow often rely on the notions of behavioural

class, behavioural instance, state, proposition and action. A behavioural instance is a

specific timely localized behaviour with a specific set of initial conditions. A class of

behaviours is a set of behavioural instances with the same purpose (the goal of the

behaviour’s actor), although possibly with different initial conditions or different ways of

achieving that purpose. Any behavioural instance is a sequence of actions performed by

an actor (either the same agent observing and learning from the behaviour or another

agent including the user), causing its environment to evolve through a sequence of states.

17

For convenience, states are indexed by non-negative integers, reflecting the order by

which they occur in their specific behavioural instance.

3.1 Rigorous definition of the new relations

Following, we present the rigorous definitions, and often deduction axiom schemata, for

all the new relations presented in the article. We also provide brief explanations of the

algorithms used by the agent to learn descriptions of the observed behaviours. Since the

relation Desired/1 was originally defined for propositions only [Botelho et al 2019], we

provide its new definition valid also for actions.

Desired(Entity) Entity is a desired entity. A proposition is desired if it is one of

the goals of the actor of the observed behaviour. An action is

desired if its positive effects include desired propositions but no

undesired ones, and its negative effects do not include desired

propositions.

Undesired(Entity) Entity is an undesired entity. A proposition is undesired if it

prevents the occurrence of a desired entity. An action is

undesired if its positive effects include undesired propositions.

Neutral(Entity) Entity is a neutral entity if it is not a desired entity or an

undesired entity.

Incompatible(Entity1,Entity2) Entities Entity1 and Entity2 are incompatible in the same state,

in the sense that they cannot co-occur simultaneously.

Prevents(Entity1, Entity2) The occurrence of the entity Entity1 in a given state prevents the

occurrence of entity Entity2 in any future state of the same

behaviour.

Defining(Prop, PropsSet) Proposition Prop is defined as the conjunction of all

propositions in the set PropsSet.

Although(PSet1, A, S, PSet2) The observed action (A) causes perplexity because,

although the state of the world before its execution was

more favourable for the actor of the observed behaviour

than the resulting state S, the actor actually executed it.
The propositions in PSet1 and PSet2 attest the satisfaction

degree of the ideality principle, respectively before and after the

action was executed. By convention, the ideality principle is

included in PSet1 and in PSet2.

Although(PSet1, A, S, PSet2,

Rational)

PSet1, A, S and PSet2 have exactly the same interpretation as in

Although/4.

In spite of the deviation from the ideality principle, the executed

action can be justified by Rational. The rational for the action

execution is a pair of an ideality principle and one of the

optimal (shortest) action sequences that leads the actor of the

observed behaviour to a state in which that ideality principle

(included in the Rational) is satisfied.

Background(PropsSet,

Relationship)

PropsSet is background knowledge used by the observing agent

to infer the specified Relationship.

Ideally, domain background knowledge will not be necessary to

acquire the proposed relationships. However, should that be the

case, the Background/2 relation may be used to specify the

background knowledge used to infer the relationship.

18

Desired propositions and actions: Desired/1

In [Botelho et al 2019], we have presented the definition of desired propositions. The

concept of desired actions was left undefined.

The two following deduction axiom schemata may be used to derive instances of the

Desired/1 relation.

(Goal(PSet) PPSet) Desired(P)

(Action(A)

 p (p PosEffects(A) Desired(p))

 q (q PosEffects(A) Undesired(q))

 r (r NegEffects(A) Desired(r))) Desired(A)

In the last axiom schema, PosEffects(Act) is the set of all positive effects of Act, and

NegEffects(Act) is the set of its negative effects.

The positive effects of an action are those propositions that become true immediately

after the action is executed. The negative effects are those propositions that cease to be

true after the execution. The functions PosEffects/1 and NegEffects/1 were rigorously

defined in [Botelho et al 2019].

The algorithm for determining desired actions works as a filter. It selects the observed

actions (computed in [Botelho et al 2019]) whose positive effects include at least a

desired proposition but no undesired propositions, and whose negative effects do not

include a desired proposition.

Undesired propositions and actions: Undesired/1

If a proposition prevents the future occurrence of a desired entity, then it is undesired.

This is captured by the following deduction axiom schema:

e (Desired(e) Prevents(P, e)) Undesired(P)

In which Prevents(Prop, Entity) means that, if the proposition Prop is true in a given state

of any behaviour, then the entity Entity will not occur in any future state of the same

behaviour.

Undesired actions are those that give rise to undesired propositions. The following

deduction axiom schema captures this definition.

[Action(A) p (pPosEffects(A) Undesired(p))] Undesired(A)

The computation of the set of undesired entities follows the straightforward application of

the two axiom schemata, which require the relations Prevents/1 and Desired/1 and the

function PosEffects/1.

The algorithm that computes the set of all desired propositions builds the set of

propositions P such that Prevents(P, E) and E is a desired entity.

The algorithm that computes the set of all undesired actions builds the set of actions

whose positive effects include at least one undesired proposition.

Neutral propositions and actions: Neutral/1

Neutral entities are those that are neither desired nor undesired. The following two

deduction axiom schemata capture the concept.

(FluentProposition(P) Desired(P) Undesired(P)) Neutral(P)

(Action(A) Desired(A) Undesired(A)) Neutral(A)

19

The algorithms for computing the set of neutral entities straightforwardly apply the two

axioms by means of set difference operations.

Incompatible(Entity1, Entity2)

Incompatible(Entity1, Entity2) means that entities Entity1 and Entity2 cannot occur in the

same state of the same behaviour. If Entity1 and Entity2 are propositions, they cannot hold

simultaneously. If both entities are actions, they cannot be executed in the same state. If

one of them is an action and the other is a proposition, then the action cannot be executed

in a state in which the proposition holds.

Given that static propositions are not incompatible with any other entity (given that they

are true in all states of all behaviours), whenever a proposition is mentioned, it will be a

fluent proposition.

Given that each of the two entities Entity1 and Entity2 may be a proposition or an action,

we present more detailed definitions for the cases of incompatible propositions and for

the incompatibility of a proposition and an action. The incompatibility of two actions will

not be considered because we assume the actor of the observed behaviour can only

execute an action at a time.

In any case, the Incompatible/2 relation is symmetric.

Incompatible propositions

1. Two propositions are incompatible if one of them is the negation of the other.

2. Two propositions are incompatible if, although none of them is the negation of the

other, it is possible to infer the negation of one of them (i) from the other and possibly

(ii) from background or learned domain knowledge.

The goal of our research relative to determining incompatible propositions is that the

agent learns, through observation, all pairs of propositions P1 and P2 such P1 and P2

cannot occur together. It would be possible to add the propositions that result of clause 1

to those learned pairs of propositions, but we have decided not to include negated

propositions in the states of the observed behaviour.

Incompatible proposition and action

3. A proposition is incompatible with an action if at least one of the action preconditions

is incompatible with the proposition.

Given that the incompatibility of a proposition and an action can be reduced to the

incompatibility between propositions, the goal of our research will be the learning of all

pairs of incompatible propositions. The incompatibility between an action and a

proposition will be derived by the application of the following deduction axiom schema:

[Action(A) FluentProposition(P)

 q (qPrecond(A) Incompatible(q, P))] Incompatible(P, A)

in which Precond/1 is a function that returns the set of preconditions of an action.

The algorithm for the computation of the set of all pairs of incompatible propositions,

builds the set of all pairs of fluent propositions <P1, P2>, such that P2 never occurs in a

state in which P1 occurs.

The algorithm for computing the set of all incompatible pairs of an action and a

proposition consists of the straightforward application of the presented deduction axiom

schema, which requires the set of all actions, the set of all fluent propositions, the set of

20

pairs of incompatible propositions, and the relation between actions and their

preconditions (represented by function Precond/1).

The relations Action/1 and FluentProposition/1, and the function Precond/1 were

rigorously defined in [Botelho et al 2019].

Prevents(Entity1, Entity2)

If entity Entity1 is observed in state S1, then entity Entity2 won’t occur in any state S2 after

S1. The case in which two entities cannot occur in the same state is represented by the

incompatibility relation.

Given that static propositions cannot prevent the future occurrence of another entity,

unless the other entity is impossible (which is never the case because we are dealing with

observed entities), whenever a proposition is mentioned with respect to the relation

Prevents/2, we will be talking about a fluent proposition.

If the two arguments of the Prevents/2 relation are propositions, Prevents(P1, P2) means

that, if P1 holds in a specific state, then P2 won’t hold in any future state of the same

behaviour.

If the two entities are actions, then Prevents(A1, A2) means that, if action A1 is executed in

state S1, then action A2 cannot be executed in a state S2 of the same behaviour occurring

after S1.

Being Prop a proposition and Act an action,

Prevents(Prop, Act) means that, if Prop is true in state S1, it won’t be possible to

execute Act in any state S2 of the same behaviour occurring after S1; and

Prevents(Act, Prop) means that, if Act is executed in state S1, then Prop won’t be true

in any state S2 of the same behaviour occurring after S1.

Prevents/2 is neither symmetric nor transitive.

Proposition P1 prevents proposition P2

1. Proposition P1 prevents proposition P2 if it is known, using background domain

knowledge or if it is learned by the agent from the observed behaviour

Given that we are not interested in using background domain knowledge, the goal of our

research is to learn all pairs of fluent propositions <P1, P2> such that the occurrence P1

prevents P2 from occurring afterwards, in the same behaviour.

Action Act1 prevents action Act2

2. Action Act1 prevents action Act2 if it is known, using background domain knowledge,

or if the agent learns it from the observed behaviour.

3. Action Act1 prevents action Act2 if at least one of the positive effects of Act1 is

incompatible with and prevents Act2.

The goal of our research regarding the computation of the Prevents/2 relation between

actions focuses on the application of the deduction axiom schema reflecting clause 3 of

the definition, which in turn depends on the incompatibility and the prevention relations

between a proposition and an action:

[Action(A1) Action(A2)

 p (pPosEffects(A1) Incompatible(p, A2) Prevents(p, A2))] Prevents(A1, A2)

21

Proposition Prop prevents action Act

4. Proposition Prop prevents action Act if Prop prevents at least one of the

preconditions of Act.

[FluentProposition(P) Action(A)

 q (qPrecond(A) Prevents(P, q))] Prevents(P, A)

Action Act prevents proposition Prop

5. Action Act prevents fluent proposition Prop if at least one of the positive effects of

Act is incompatible with and prevents proposition Prop.

[Action(A) FluentProposition(P)

 q (qPosEffects(A) Incompatible(q, P) Prevents(q, P))] Prevents(A, P)

The relation Prevents/2 between propositions is learned by the agent through observation.

The other cases of the relation, involving two actions or an action and a proposition, are

derived using the presented deduction axiom schemata.

For explaining the fundamental ideas behind the algorithm for computing the set of all

pairs of propositions such that one prevents the other, it is important to notice that there

are three classes of prevention:

(i) Preventions independent of the actor of the observed behaviour and its

capabilities and goals, which appear due to the nature of the world (e.g.,

Prevents(ActorAge(20), ActorAge(10)));

(ii) Preventions independent of the goals of the actor of the observed behaviour,

which appear because the actor, using its capabilities, cannot achieve certain

states after having achieved some others (e.g., Prevents(SmashedEgg(E01),

IntactEgg(E01))); and

(iii) Preventions that appear because the actor’s goals lead it to behave in such a way

that, after a certain moment in time, there are propositions that will not happen

again (e.g., Prevents(On(C, B), On(A, C))).

The algorithm has two stages. The first stage identifies preventions of the three classes.

The second stage of the algorithm receives the pairs of propositions <P1, P2> from the

first stage and removes those of the third class.

The main idea of the first stage consists of computing the pairs of propositions <P1, P2>,

such that P2 never occurs after P1 has occurred.

The main idea of the second stage consists of removing those pairs of propositions <P1,

P2>, such that it is possible to generate an action plan that achieves a state in which P2 is

true, from a state in which P1 is true. Those action plans can only be made of the actions

available to the actor of the observed behaviour. If the actor could have behaved in such a

way to achieve P2 after it has achieved P1, then P1 does not actually prevent P2.

Proposition definition

It may happen that a certain domain concept can be defined as a composition of other

domain concepts. For example, in the Blocks World, the concept that several blocks form

a stack could be expressed in terms of the concept that a block is on top of another block:

Defining(Stacked([A, B, C]), {On(A, B), On(B, C), Clear(A)})

The predicate Defining/2 can be used to express such definitions. Defining(Prop, PropSet)

means the proposition Prop is defined as the conjunction of all propositions in the set

PropSet.

22

Agents can learn definitions as the one exemplified above if they happen to have the

necessary set of sensors. It is possible to learn the mentioned definition if the agent has a

sensor for facts of the form On(block, place), Clear(place), and Stacked(stack). Those

sensors will acquire all the propositions On(A, B), On(B, C), Clear(A), and Stacked([A,

B, C]) in every state in which A, B, and C are stacked.

The algorithm we have used to learn definitions (i.e., instances of the Defining/2 relation)

relies on the following explanation.

Imagine that the agent always observes propositions P2 and P1 every time proposition P3

is observed. It could be assumed that P3 is defined in terms of P2 and P1, P3 P1P2.

However, it could also be assumed that P2 P1P3 or P1 P2P3. Nevertheless, if P1, but

not P3, were observed in a certain state, we would know that the possible definition

P1 P2P3 is not possible. And, if P2, but not P3, were observed in a certain state, then

P2 P1P3 is not the case either.

In the first stage of the algorithm, for all fluent propositions P, it builds the set of pairs

<P, CoOccurringProps> in which CoOccurringProps is the set of propositions that

always co-occur with P. The pairs <P, CoOccurringProps> for which CoOccurringProps

is the empty set are discarded.

In the second stage, the algorithm removes, from each set CoOccurringProps, the

propositions for which a definition has been found. This avoids the presence of redundant

propositions in the definitions. In the resulting set of pairs <P, Definition>, Definition is

the set of propositions whose conjunction is the definition of P.

Although/5, Although/4

Expressions as although, in spite of, albeit, despite the fact that and even though are used

in natural language to express that a state or event has occurred that causes some

perplexity. Often, those expressions also entail a certain degree of acceptance of the

perplexing occurrence because there might have been some justification for it. Such

justification, if perceived, may even eliminate or at least mitigate the caused perplexity.

We propose the relations Although/4 and Although/5 to capture some of the meanings of

such expressions as although and in spite of. As we have previously seen, those relations

were both inspired in the relation Concession of the Rhetorical Structure Theory (RST)

[Mann and Thompson 1988].

Although(PropSet1, Act, State, PropSet2, Rational) may informally be read as “The

observed action (Act) causes perplexity because, although the state of the world before its

execution was more favourable for the actor of the observed behaviour (as shown by

PropSet1) than the resulting state State (as shown by PropSet2), the actor actually

executed it. Rational is the justification for, in spite of all that, the action being executed”.

Although/4 is used exactly with the same sense as Although/5, but it does not specify a

justification for the observed action.

Although/5 example

Although({Desired(On(A, B)), On(A, B)/S1}, Move(A, B, P2), S2, {Desired(On(A, B)),

(On(A, B)/S2)}, MustPrecede(On(B, C), On(A, B)):[Move(A, B, P2), Move(B, P1, C),

Move(A, P2, B)]), which has the following informal Reading “Although, in state S1, block

A was on top of block B, which is a desired state, the actor of the observed behaviour

moved the block A from block B to position P2 implying that A ceased to be on top of B, in

state S2. However, the actor did that because, if their final goal is to be achieved, block B

must be placed on top of block C, before block A can be placed on top of B. The executed

action, moving A from B to P2, was the first action of the shortest sequence of actions that

23

allowed the actor to fulfil this principle: [Move(A, B, P2), Move(B, P1, C), Move(A, P2,

B)]”.

Although/4 example:

Although({MustPrecede(On(B, C), On(A, B)), (On(A, B)/S0)}, Move(A, C, B), S1,

{MustPrecede(On(B, C), On(A, B)), On(A, B)/S1, s (s < S1 On(B, C)/s))}), which

has the following informal reading: “Although block A can only be placed on top of B

after B is on top of C, and block A was not on top of block B in state S0, the actor of the

observed behaviour moved A from C to B leading to a state in which block A is on top of

B before B is on top of C”.

From the two examples, it is obvious that both relations Although/5 and Although/4 do

not state general properties of the whole class of behaviours. Instead, they apply only to

specific behaviours.

One of the challenges for the complete and accurate formalization of the Although

relations consists of determining the cause of perplexity that its natural language usage

entails. The causes of perplexity, in the two presented examples, are superficially

different however they share a similar principle.

In the first example, there is a desired state that is fulfilled. The cause of perplexity lies in

the fact that the actor of the observed behaviour destroys that desired state. That is, the

actor’s action removed it from an ideality.

In the second example, there is a principle according to which, block B must be on top of

block C before A can be placed on top of B. In a certain state, this principle was not at

stake because block A was not on top of B. Nevertheless, the actor of the observed

behaviour moved A to the top of B, before B is on top of C. Once more, the actor was

closer to the fulfilment of the ideality principle before it executed that action and further

away from it after it executed the action. That is the cause of perplexity.

In both cases, the perplexity is caused by the execution of an action that moves the actor

of the observed behaviour further away from fulfilling a certain ideality principle (e.g.,

Desired(On(A, B)), in the first example, and MustPrecede(On(B, C), On(A, B)), in the

second example).

Finding out that the effects of an executed action move the actor of the observed

behaviour further away from the fulfilment of an ideality principle involves a kind of

reasoning as used in deontic systems ([Hilpinen 1981][Gabbay et al 2013]). The approach

we propose for an agent to infer the causes of perplexity that feed the relationships of the

family Although, through observation, consists of handling desired states (e.g., those

resulting from relations Desired/1 and Undesired/1) and all other relations entailing

behavioural principles (e.g., MustPrecede/2 and Mandatory/1) as ideality principles, in

the sense that they should be fulfilled by the actor during its behaviour.

The other challenge, only pertaining Although/5, consists of finding the reason that

justifies the action that moved the actor further away from fulfilling an ideality principle.

Our approach consists of determining if the executed action (the action that moved the

actor further way from fulfilling the ideality principle) was enacted at the service of

another ideality principle, at least as important as the endangered one. For this approach,

it is necessary to (i) define an order relation among principles; and (ii) determining if the

executed action was enacted at the service of another principle. The first example

illustrates the application of the described approach.

The action Move(A, B, P2) moves the behaviour’s actor further away from the fulfilment

of the ideality principle Desired(On(A, B)). However, the same action was the first of a

shortest sequence of actions that lead the actor to the fulfilment of the ideality principle

MustPrecede(On(B, C), On(A, B)), which is more important than the threatened one (i.e.,

Desired(On(A, B))). We assume that an action was enacted at the service of an ideality

24

principle if that action is the first of an optimal action sequence that leads to a state in

which the principle is fulfilled. If the executed action does not belong to such an optimal

action sequence, we assume that the actor could have behaved differently. That is, it

could have maybe avoided executing the action that threatened the fulfilment of the

ideality principle.

Rigorous definition

The axiomatic rigorous definition of the relations Although/5 and Although/4 relies on the

identification of ideality principles and on the definition of relations aimed at determining

their satisfaction degree in a given state, which was inspired in deontic concepts

[Hilpinen 1981][Gabbay et al 2013].

Ideality principles

The proposed ideality principles do not specify a moment for being satisfied. A certain

behaviour is compliant with an ideality principle if the principle is fulfilled by the

behaviour. We propose the following ideality principles: Desired(P), Undesired(P),

Mandatory(P) and MustPrecede(P1, P2).

Desired(P): Proposition P is one of the goals of the actor of the observed behaviour.

Desired(P) is an ideality principle, in the sense that, ideally, the observed behaviour

should include a state in which P holds.

Undesired(P): Proposition P is undesired if it prevents the occurrence of a desired entity.

Undesired(P) is an ideality principle in the sense that, ideally, the observed behaviour

should not include a state in which the proposition holds.

Mandatory(P): Proposition P is mandatory if it is not one of the goals of the behaviour’s

actor but the observed behaviour should include a state in which P holds, if the actor’s

goals are to be achieved. Mandatory(P) is an ideality principle because, ideally, the

observed behaviour should include a state in which P holds.

MustPrecede(P1, P2): The actor of the observed behaviour will only be capable of

achieving their goals if (i) in the initial state, both P1 and P2 are true; or if (ii) proposition

P1 is true before the proposition P2 is true.

MustPrecede(P1, P2) sets an ideality because, in the sense that if P1 and P2 are not both

true in the initial state, the observed behaviour must be such that P1 is true before P2 is

true.

Before introducing the relationships representing the satisfaction degree of ideality

principles in a given state, it is necessary to present the notion of tagged propositions.

A tagged proposition is a pair P/S such that P is a proposition holding in state S (e.g.,

On(A, B)/S3 – bock A is on top of block B, in state S3) or P is a proposition independent

of a particular state (e.g., Desired(On(A, B) – the actor of the observed behaviour wants

to achieve a state in which block A is on top of block B). If TP is a tagged proposition,

then any logic or quantified proposition involving TP is also a tagged proposition, for

instance (P/S), which means that P does not hold in state S.

Ideality principle satisfaction relations

We proposed the definition of five relations expressing different degrees of ideality

principle satisfaction: fulfilled, in an indifferent state, not fulfilled, not violated, and

prevented.

25

The following represents the sequence of satisfaction relations from the one that

represents a highest degree of satisfaction (i.e., fulfilled), to the one that captures a

situation in which the ideality principle cannot be satisfied anymore (i.e., prevented):

Fulfilled > Indifferent_state > Not_fulfilled > Prevented

Additionally, we have defined the relation Not_violated which is true of a certain

principle, in case the principle is fulfilled, or in a state indifferent to the principle, or not

fulfilled (in the sense of the relation Not_fulfilled), although not prevented from being

fulfilled.

Fulfilled(Principle, State, PropSet): The ideality principle Principle is satisfied in state

State. PropSet is the smallest set of tagged propositions, including Principle, holding in

state State or before, which certify the satisfaction of the principle.

Not_fulfilled(Principle, State, PropSet): The ideality principle Principle is not satisfied in

state State, Sate is not indifferent to the principle and the principle was not prevented

from being achieved before State. PropSet is the smallest set of tagged propositions,

including Principle, true in state State or before it, that certify that the principle is not

satisfied (in the sense of the relation Not_fulfilled/3). Not_fulfilled(Principle, State,

PropSet) does not mean the same as Fulfilled(Principle, State, PropSet) because, in

states in which the principle has been violated or in states indifferent to the principle,

Fulfilled(Principle, State, PropSet) is true, but Not_fulfilled(Principle, State, PropSet) is

not. However, whenever Not_fulfilled(Principle, State, PropSet) is true,

Fulfilled(Principle, State, PropSet) is also true:

Not_fulfilled(Principle, State, PropSet) Fulfilled(Principle, State, PropSet)

Indifferent_state(Principle, State, PropSet): The state State is indifferent with respect to

the ideality principle Principle. PropSet is the smallest set of tagged propositions,

including Principle, true in state State or before it, which certify that the state is

indifferent with respect to the principle. Indifferent_state/3 is defined only for the

principle MustPrecede(P1, P2). State S is indifferent with respect to the precedence

principle MustPrecede(P1, P2) if P2 is not true in S.

Not_violated(Principle, State, PropSet): The ideality principle Principle is not violated in

the state State. PropSet is the smallest set of tagged propositions including Principle, true

in the state State or before it, which certify that the principle is not violated. A principle is

not violated in the state S if the principle is satisfied in S, if S is indifferent to the

principle, or if the principle is not satisfied in S, although not prevented from being

satisfied (in the sense of the relation Not_fulfilled).

Prevented(Principle, State, PropSet): The ideality principle Principle is not satisfied in the

state State, and it is prevented from being satisfied in any state occurring after State.

PropSet is the smallest set of tagged propositions including Principle, which certify that

the principle was prevented from being satisfied from the state State onwards. For all that

matters, even though the observed behaviour might not be complete, the principle is

doomed to be violated because it was prevented from being satisfied.

Both relations Although/5 and Although/4 identify actions, executed by the actor of the

observed behaviour, that move it further away from the satisfaction of a certain ideality

principle. Additionally, Although/5 identifies a justification for the execution of that

action. In spite the action has moved the actor further away from the satisfaction of an

ideality principle, the action was the first of an optimal action sequence that leads the

actor from the state in which it was executed to the state in which an ideality principle, at

least as important as the threatened one, is satisfied. This means that Although/5 can be

derived from Although/4.

To formalize the deduction axioms of relations Although/4 and Although/5, we first

present some prior explanations and notational conventions.

26

The relational operator IdPr (Ideality Principle) is true of ideality principles. IdPr(Pr)

means that the proposition Pr represents an ideality principle in the sense that ideally Pr

should be satisfied in one of the states of the observed behaviour.

It is necessary to define an order relation among ideality principles. If Pr1 and Pr2 are two

ideality principles, Pr1 Pr2 means that, for the actor of the observed behaviour, Pr2 is as

important as or more important than Pr1.

Prt and Prj are ideality principles. Prt (Threatened Principle) was used to represent the

ideality principle from which the actor of the observed behaviour was moved further

away by the action A it executed. Prj (Justifying Principle) is the ideality principle that

justifies the execution of the apparently perplexing action A.

{Prt} PSet is the smallest set of tagged propositions including Prt, true in the state in

which A was executed or before it, which certify a certain degree of satisfaction of Prt in

the state in which A was executed.

Dev (Deviation) is the smallest set of tagged propositions including Prt, true in the state

immediately after A was executed (S) or before it, which certify a certain degree of

satisfaction of Prt, in state S. The degree of satisfaction of Prt, in S, is less than its degree

of satisfaction in the state in which A was executed.

It is also necessary to define a temporal relation between states of an observed behaviour.

If S1 and S2 are state identifiers (of the same behaviour), S1 < S2 means that S1 occurred

earlier than S2; and S1 S2 means that S1 occurred earlier than or is the same as S2.

Finally, the symbolic structure [X|Seq] represents a sequence that starts with X and

proceeds with the possibly empty sequence Seq. That is, X is the first element of [X|Seq]

and Seq is its rest.

Deduction axiom schema for the relation Although/5:

(Although({Prt}PSet, A, S2, Dev)

 NextState(S1, A, S2)

 IdPr(Prj) Prt Prj

 ps Fulfilled(Prj, S1, ps)

 OptimumASequence(Prj, S1, [A|ASeq])

 ObservedASequence(Prj, S1, [A|ASeq]))

 Although({Prt}PSet, A, S, Dev, Prj:[A|ASeq])

The existential variable ps (proposition set) represents the set of tagged propositions

including Prj, holding in state S1 or before it, which certify that Prj would be fulfilled in

state S1 (if it actually were fulfilled, which it is not). The existential quantification over

sets of propositions does not constitute a computational problem because what counts is

whether or not the principle is fulfilled. The set of propositions certifying that the

principle is fulfilled is known a priori by the used axiom.

OptimumASequence(Pr, S, Seq) means that Seq is an optimal action sequence that, if

executed from state S, will result in a state in which the ideality principle Pr is satisfied.

ObservedASequence(Pr, S, Seq) means that Seq is the action sequence, actually executed

by the actor of the observed behaviour, from state S, resulting in a state in which Pr is

satisfied for the first time after state S.

The following deduction axiom schemata exemplify three cases in which the relation

Although/4 can be inferred because the actor of the observed behaviour executes an action

that moves it further away from the satisfaction of an ideality principle:

27

(IdPr(Pr)

 Fulfilled(Pr, S1, PSet) NextState(S1, A, S2)

 Not_fulfilled(Pr, S2, Dev)) Although(PSet, A, S2, Dev)

(IdPr(Pr)

 Indifferent_state(Pr, S1, PSet) NextState(S1, A, S2)

 Not_fulfilled(Pr, S2, Dev)) Although(PSet, A, S2, Dev)

(IdPr(Pr)

 Not_violated(Pr, S1, PSet) NextState(S1, A, S2)

 Prevented(Pr, S2, Dev)) Although(PSet, A, S2, Dev)

The first axiom applies to the cases where the perplexity is caused by the execution of an

action (executed in state S1) responsible for the transition from a state in which a certain

ideality principle is satisfied to a state in which the same ideality principle is not satisfied

(in the sense of relation Not_fulfilled). PSet is the smallest set of tagged propositions

including the principle Pr, which certify the satisfaction of Pr in state S1; and Dev (from

deviation) is the smallest set of tagged propositions including Pr that certify that Pr is not

satisfied in state S2.

The second axiom applies to cases in which the perplexity is caused by the execution of

an action responsible for the transition from a state indifferent to the ideality principle Pr

to a state in which Pr is not satisfied (in the sense of relation Not_fulfilled).

The third axiom applies to cases in which the perplexity is caused by the execution of an

action responsible for the transition from a state in which the ideality principle Pr is not

violated (implying it is not prevented from being fulfilled) to another state in which Pr is

prevented from being satisfied.

All the exemplified deduction axiom schemata rely on the determination of the degree to

which a certain ideality principle is satisfied. We have defined five degrees of satisfaction

of ideality principles: satisfied in state S (Fulfilled/3), in a state indifferent to the principle

(Indifferent_state/3), not satisfied in state S (Not_fulfilled/3), not violated in state S

(Not_violated/3) and prevented, in state S, from being satisfied in any state occurring after

S (Prevented/3). Following, we present examples of deduction axiom schemata for

deriving the state of satisfaction of a principle for the five defined degrees. The

formalization of those axioms uses the relation InitialState/1 that identifies the initial state

of the considered behaviour, and the function StateProps/1 that returns the set of

propositions o the specified state.

The antecedent of the implication of each deduction axiom used to infer the degree to

which the specified ideality principle is satisfied includes the corresponding ideality

principle. That is, the axioms may only be used to infer the degree to which an already

existing principle is satisfied. The axioms cannot be used to infer ideality principles of

which the observing agent is not yet aware. This means that the well-formedness of the

considered ideality principle does not have to be ensured by the axiom itself. For

instance, the axioms regarding the degree to which the principle MustPrecede(P1, P2) is

satisfied does not have to check whether P1 and P2 are fluent propositions or to ascertain

that P1 is not a precondition of any of the actions of the action sequence leading from the

state in which P1 (but not P2) is true to the state in which P2 is also true.

Fulfilled(Principle, State, PropsSet)

The precedence relation MustPrecede(P1, P2) is satisfied in the initial state, if both

propositions are true in the initial state.

28

(MustPrecede(P1, P2)

 InitialState(S) P1 StateProps(S) P2 StateProps(S))

 Fulfilled(MustPrecede(P1, P2), S, {MustPrecede(P1, P2), P2/S, P1/S,

 InitialState(S)})

The precedence relation MustPrecede(P1, P2) is satisfied in state S2, in which P2 is true, if

P1 but not P2 is true in a state S1 occurring before S2.

(MustPrecede(P1, P2) State(S1) State(S2)

 P2 StateProps(S2) P1 StateProps(S1) P2 StateProps(S1) S1 < S2)

 Fulfilled(MustPrecede(P1, P2), S2,

 {MustPrecede(P1, P2), P2/S2, P1/S1, (P2/S1), S1<S2})

Desired(P) is satisfied in state S, if P is true in S.

(Desired(P) State(S) PStateProps(S)))

 Fulfilled(Desired(P), S, {Desired(P), P/S})

Indifferent_state(Principle, State, PropsSet)

A state S, other than the initial one, is indifferent to the precedence principle

MustPrecede(P1, P2), if P2 does not hold in S.

(MustPrecede(P1, P2) State(S) InitialState(S) P2 StateProps(S))

 Indifferent_state(MustPrecede(P1, P2), S,

 {MustPrecede(P1, P2), InitialState(S), (P2/S)})

The initial state S is indifferent to the precedence principle MustPrecede(P1, P2), if neither

P1 nor P2 hold in S.

(MustPrecede(P1, P2) InitialState(S) P1 StateProps(S) P2 StateProps(S))

 Indifferent_state(MustPrecede(P1, P2), S,

 {MustPrecede(P1, P2), InitialState(S) , (P1/S), (P2/S)})

Not_fulfilled(Principle, State, PropsSet)

We have decided to define the relation Not_fulfilled/3, which states that a principle is not

fulfilled but it has not been prevented from being fulfilled. For the accurate definition of

the relation Not_fulfilled/3, it is convenient to use the relation PreventedProp/2, such that

PreventedProp(P, S) means that, in state S, the proposition P was prevented from

occurring in any state occurring after S. The following is the deduction axiom for

relationships of the relation PreventedProp/2, assuming that P is a fluent proposition:

q [(FluentProposition(q) State(S) q StateProps(S) Prevents(q, P))

PreventedProp(P, S)]

Notice that the above axiom implies that P was prevented in state S, but it does not

preclude the possibility that P has been prevented in a state before S. Notice also that

PreventedProp(P, S) corresponds to the tagged proposition PreventedProp(P)/S, with a

similar deduction schema:

q (FluentProposition(q) State(S) q/S Prevents(q, P))

PreventedProp(P)/S

In [Botelho et al 2019], we have decided that the precedence relation MustPrecede(P1, P2)

is trivially satisfied if P1 and P2 are both true in the initial state of the considered

behaviour. The following axiom schema presents the conditions under which a

29

precedence relation is not fulfilled (in the sense of the relation Not_fulfilled/3) in a state

other than the initial one.

[MustPrecede(P1, P2) State(S) InitialState(S) P2 StateProps(S)

 t1 (State(t1) t1 < S P1 StateProps(t1))

 t2 (State(t2) t2 < S PreventedProp(P1, t2))]

 Not_fulfilled(MustPrecede(P1, P2), S,

 {MustPrecede(P1, P2), InitialState(S), P2/S,

 t1 (t1 < S P1/t1), t2 (t2 < S PreventedProp(P1)/t2) })

The tagged proposition t1 (t1 < S P1/t1) means that there is no state t1, occurring

before state S, in which proposition P1 holds, and the tagged proposition

t2 (t2 < S PreventedProp(P1)/t2) means that there is no state t2 prior to S in which P1

has been prevented from occurring in states occurring after t2 (of the same considered

behaviour instance). For the simpler case in which the precedence relation would be

satisfied if the two propositions were true in the initial state, the deduction axiom

schemata are much simpler:

(MustPrecede(P1, P2) InitialState(S) P2 StateProps(S) P1 StateProps(S))

 Not_fulfilled(MustPrecede(P1, P2), S,

 {MustPrecede(P1, P2), InitialState(S), P2/S, (P1/S)})

(MustPrecede(P1, P2) InitialState(S) P1 StateProps(S) P2 StateProps(S))

 Not_fulfilled(MustPrecede(P1, P2), S,

 {MustPrecede(P1, P2), InitialState(S), P1/S, (P2/S)})

in which the tagged propositions of the form (P/S) mean that proposition P is not the

case in state S.

The next deduction axiom schema addresses the case in which the satisfaction degree of

the ideality principle Desired(P) is not fulfilled (implying it is also not prevented).

[Desired(P) State(S) PStateProps(S) t (State(t) t S PreventedProp(P, t))]

 Not_fulfilled(Desired(P), S, {Desired(P), (P/S),

 t (State(t) t S PreventedProp(P)/t) })

Not_violated(Principle, State, PropsSet)

Fulfilled principles, principles in states indifferent to them, and principles not fulfilled but

also not prevented are all not violated.

Indifferent_state(Pr, S, PSet) Not_violated(Pr, S, PSet)

Fulfilled(Pr, S, PSet) Not_violated(Pr, S, PSet)

Not_fulfilled(Pr, S, PSet) Not_violated(Pr, S, PSet)

Prevented(Principle, State, PropsSet)

Desired(P2) is prevented in state S from ever being fulfilled in states to come, if P2 does

not hold in S, but there is a proposition holding in S that prevents P2 from occurring after

S.

(Desired(P2) Prevents(P1, P2) State(S) P2 StateProps(S) P1 StateProps(S))

Prevented(Desired(P2), S, {Desired(P2), Prevents(P1, P2), P1/S, (P2/S)})

30

The algorithms for inferring propositions of the relations Although/4 and Although/5

directly apply the deduction axioms defined for those relations. Actually, each axiom

corresponds to a special case of the algorithm.

To derive a fact of the relation Although/4, it is necessary to determine the degree to

which a certain ideality principle is satisfied.

In the case of the first axiom of the relation Although/4, for example, the algorithm

checks if there is an ideality principle that is satisfied (Fulfilled/3) in the state S, before

the action is executed, and not satisfied (Not_fulfilled/3) in the next state.

We have proposed deduction axioms for each defined degree of satisfaction of ideality

principles (whenever applicable). In each case, the axiom provides four pieces of

information: the deduced degree of satisfaction, the principle whose degree of satisfaction

was deduced, the state of the considered behaviour in which the degree of satisfaction

was deduced, and the smallest set of tagged propositions, true in that state or before it,

that certify the deduced satisfaction degree (including the ideality principle).

It may be seen that each axiom for deriving the degree to which a certain ideality

principle is satisfied knows the smallest set of tagged propositions that certify that

satisfaction degree. The set is written along with the axiom. Likewise, the algorithm

implementing each such axiom also possesses the same information.

The deduction axioms for the relation Although/4 also depend on the relation IdPr/1,

which keeps the considered set of ideality principles. IdPr/1 is provided as input (i.e., pre-

programmed) to the used algorithms.

Following its presented axiom, the deduction of propositions of the relation Although/5

depends of the deduction of propositions of the relation Although/4, of the relation of all

considered ideality principles (IdPr/1), of the order relation reflecting the relative

importance of ideality principles to the actor of the observed behaviour, of the

determination that a principle is not satisfied, of the determination of the optimal action

sequences that satisfy a principle starting from a given state, and of the determination of

the action sequence actually executed by the actor of the observed behaviour to satisfy the

considered principle, starting from the same state.

(Although({Prt}PSet, A, S2, Dev)

 NextState(S1, A, S2)

 IdPr(Prj) Prt Prj

 ps Fulfilled(Prj, S1, ps)

 OptimumASequence(Prj, S1, [A|ASeq])

 ObservedASequence(Prj, S1, [A|ASeq]))

 Although({Prt}PSet, A, S, Dev, Prj:[A|ASeq])

Of all of these, we have only to discuss the order relation among ideality principles, and

the determination of the optimal and actual action sequences leading to the satisfaction of

a certain principle.

In the proof of concept demonstration (section 3.2), the order relation among ideality

principles was arbitrarily defined (in the sense that it was not derived of more

fundamental principles).

We have used an adaptation of an optimum path algorithm for the determination of the

optimum action sequence that satisfies a given ideality principle, starting from a specified

state. The algorithm is similar to a planning algorithm limited to producing action

sequences not longer than the number of actions executed in the considered behaviour by

its actor, since the considered state. The major adaptation of the algorithm consisted of

replacing the usual notion of goal satisfaction with the set of axioms for determining if

the considered ideality principle is satisfied.

31

The algorithm that determines the actual action sequence executed by the actor of the

observed behaviour, from the considered state until the first state in which the considered

ideality principle is satisfied, orderly traverses the observed states and applies the axioms

that determine the degree of satisfaction of the ideality principle to each visited state.

Background(PropsSet, Relationship)

The Background/2 relation may be used to specify the background domain knowledge

used by an agent to infer a given relationship between domain entities. Background/2 is

presented as a possibility. However, we preserve our strong determination of avoiding

using background domain knowledge.

In the following example, the proposition xy On(x, y) Clear(y) is the domain

background knowledge used by the agent to infer that On(A, B) is incompatible with

Clear(B). The conclusion Incompatible(On(A, B), Clear(B)) is derived from the domain

background knowledge xy On(x, y) Clear(y), from the hypothesis On(A, B), and

from the relevant clause of the definition of the relation incompatibility (Def#2).

The definition of incompatibility between propositions consists of the following two

clauses:

Def#1. Two propositions are incompatible if one is the negation of the other

Def#2. Two propositions are incompatible if, although neither is the negation of the

other, it is possible to infer the negation of one of them (i) from the other, and

possibly (ii) from background or learned domain knowledge.

Following clause Def#2, it is possible to conclude that On(A, B) is incompatible with

Clear(B):

1. xy On(x, y) Clear(y) (background knowledge)

2. On(A, B) hypothesis

3. On(A, B) Clear(B) 1 2×Universal Instantiation

4. Clear(B) 2, 3 Modus Ponens

5. Incompatible(On(A, B), Clear(B)) Def#2 and the inference of 4 from 1, 2

That is, xy On(x, y) Clear(y) is the background knowledge used by the agent to

infer Incompatible(On(A, B), Clear(B)) from On(A, B).

In this article, the agent does not use background knowledge to infer the relationships

describing the observed behaviour, its actor and environment. However, if it happens to

be necessary or otherwise desired, the Background/2 relation specifies the observing

agent’s prior background knowledge used to infer the considered relationship.

Let’s assume the agent used background domain knowledge to derive a certain

proposition Q. The following statements present the deductive process used to infer

instances of the relation Background/2.

Let be the set of beliefs the agent possesses before observing the considered behaviour.

Let be the set of beliefs the agent acquires through observation, from the moment

where the observation started until the instant of time immediately before the moment in

which the agent started inferring Q. must include propositions that could not have been

derived from , using the agent’s deductive apparatus. To express this condition, consider

the function Closure that represents the closure of a given set of propositions under the

agent’s deductive apparatus. (– Closure()) means that there are propositions in

that cannot be derived from .

32

Let be the set of propositions actually used by the agent to derive Q, using its deductive

system, ├ Q, with the restriction that each proposition in is an hypothesis, belongs to

, or belongs to , but at least one of them belongs to ().

In the referred conditions, the following deduction rule can be used to infer instances of

the Background/2 relation:

Using this inference rule and the deduction presented before, it is possible to derive

Background({xy On(x, y) Clear(y)}, Incompatible(On(A, B), Clear(B)))

(assuming the agent’s deduction system includes the relevant clause of the Incompatible

relation).

3.2 Proof of concept and discussion

The definitions and algorithms presented in sections 2 and 3.1 were demonstrated in a

simple scenario of the Blocks World. Given their independence of the domain, the

presented definitions and algorithms could have been demonstrated in other scenarios.

3.2.1 Blocks World scenario

In this version of the Blocks World, a robot moves blocks around until they are all

stacked on top of each other. Thus, the robot is the actor of the observed behaviour.

The place where the blocks will be stacked is irrelevant. There are always three blocks –

A, B and C – and four spaces on a table – P1, P2, P3 and P4. Each block may be placed on

one of the table positions or on top of any other block. The predicate Place/1 is used to

hold the places where blocks may be located. The final stack must contain the block B on

top of the block C and the block A on top of the block B.

Figure 1 – Example of a Blocks World problem

Two blocks cannot be placed on the same position therefore a block can only be moved to

a place if the place is clear. Predicate Clear/1 is true of clear places. The robot can only

move a block at a time, and only if the block to be moved does not have any other block

on top of it. The predicate On/2 is used to specify the relation between a block and the

place on which it is positioned. On(block, place) means that the specified block is

positioned on the specified place.

The states of the world contain only positive instances of the Clear/1 and On/2 predicates,

which are accessible to the observing agent. The robot’s only action, Move(block, from,

to), moves the specified block, from the specified place (from), to the specified place (to).

33

We have made some simplifications in the demonstration to be described. These

simplifications will be relaxed in future experiments. First, we assume that the observing

agent recognizes each time a final state is reached; final states are always successful.

According to the second simplification, each action produces always the same effects.

Conditional and imperfect actions were not considered.

Third, we have also assumed that the observing agent has perfect access to all relevant

aspects of the world.

All initial configurations (i.e., 120) were automatically generated and the robot had to

stack the blocks in each of them, which represents 120 instances of the same class of

behaviours. The states and the actions of each behaviour were recorded on a file. The 120

files were processed by the defined algorithms, which acquired the defined concepts and

generated explanations of the robot’s behaviours.

3.2.2 Results

In [Botelho et al 2019], we presented and demonstrated a set of relations acquired by an

agent through mere observation, with no prior knowledge of the domain. The acquired

relations describe the observed behaviour, its actor and environment.

In this paper, we have extended the originally proposed set of relations with several new

ones, many of which were inspired in the Rhetorical Structure Theory [Mann and

Thompson 1988]. This section describes the results achieved with implemented software

acting on a simple version of the Blocks World.

Our algorithms have correctly discovered the new proposed concepts: Desired actions,

Undesired/1, Neutral/1, Incompatible/2, Prevents/2, Defining/2, Although/5 and

Although/4. Background/2 was not tested.

Desired Actions: Desired(Entity) Action(Entity)

In [Botelho et al 2019] we have defined the relation Desired/1 just for propositions. Here,

we extend the concept also for actions. The presented deduction axiom and corresponding

algorithm were used to correctly derive the set of all desired actions.

Move(A, C, B) Move(A, P1, B) Move(A, P2, B) Move(A, P3, B)

Move(A, P4, B) Move(B, A, C) Move(B, P1, C) Move(B, P2, C)

Move(B, P3, C) Move(B, P4, C) Move(B, A, P3) Move(B, A, P4)

Move(C, A, P1) Move(C, A, P2) Move(C, A, P3) Move(C, A, P4)

Desired actions are those whose positive effects include desired propositions, unless they

destroy other desired propositions or give rise to undesired propositions.

Since, in the demonstrated Blocks World, there are not undesired propositions, they do

not interfere in the determination of the desired actions.

The five first presented actions are desired because they produce On(A, B), which is a

desired proposition because it is one of the robot’s goals. The following five next actions

all give rise to On(B, C), which is also a desired proposition. Finally, all other actions (as

well as Move(B, A, C), already considered) give rise to states in which Clear(A) (also a

desired proposition) holds.

There are potentially other desired actions (e.g., Move(C, A, B)) but they have not even

been observed.

34

Undesired entities: Undesired(Entity)

In the considered Blocks World scenario, there are no undesired entities (propositions or

actions). To test the presented axiom and corresponding algorithm, we have artificially

injected proposition GoalPreventingProp, which prevents the goal On(A, B) from being

achieved. The observing agent correctly learned the proposition

Prevents(GoalPreventingProp, On(A, B)), in that modified scenario. Consequently, it was

also capable of deriving Undesired(GoalPreventingProp).

Neutral propositions: FluentProposition(Entity) Neutral(Entity)

The presented deduction axioms and corresponding algorithms were used to correctly

derive the set of all neutral propositions (not desired nor undesired).

Clear(B) Clear(C) Clear(P1) Clear(P2) Clear(P3) Clear(P4)

On(A, C) On(A, P1) On(A, P2) On(A, P3) On(A, P4) On(B, A) On(B, P1)

On(B, P2) On(B, P3) On(B, P4) On(C, A) On(C, B) On(C, P1) On(C, P2)

On(C, P3) On(C, P4)

Neutral actions: Action(Entity) Neutral(Entity)

The presented deduction axioms and corresponding algorithms were used to correctly

derive the set of all neutral actions.

Move(A, B, P1) Move(A, B, P2) Move(A, B, P3) Move(A, C, P1)

Move(A, C, P2) Move(A, C, P3) Move(A, C, P4) Move(A, P1, P2)

Move(A, P1, P3) Move(A, P1, P4) Move(A, P2, P3) Move(A, P2, P4)

Move(A, P3, P2) Move(A, P3, P4) Move(A, P4, P2) Move(A, P4, P3)

Move(B, C, P2) Move(B, C, P4) Move(B, P1, P2) Move(B, P1, P3)

Move(B, P2, P3) Move(B, P3, P2) Move(B, P4, P2) Move(B, P4, P3)

Move(C, B, P1) Move(C, B, P2) Move(C, B, P3) Move(C, B, P4)

Move(C, P3, P1) Move(C, P4, P1) Move(C, P4, P2)

Given that there are no undesired actions, the neutral actions are limited to those that are

not desired.

Incompatible propositions: Incompatible(P1, P2)

The incompatibility between propositions is a symmetric relation. Following, we present

the first half of the incompatibility relation for propositions. The second half can be built

by symmetry.

(Clear(A), On(B,A)) (On(A,P3), On(A,C)) (On(B,P3), On(B,A))

(Clear(B), On(C,B)) (On(A,P3), On(A,P1)) (On(B,P3), On(B,P4))

(Clear(C), On(A,C)) (On(A,P3), On(A,P2)) (On(B,P4), On(B,A))

(Clear(C), On(B,C)) (On(A,P3), On(A,P4)) (On(C,A), Clear(A))

(Clear(P1), On(A,P1)) (On(A,P3), On(B,P3)) (On(C,A), On(A,C))

35

(Clear(P1), On(C,P1)) (On(A,P3), On(C,P3)) (On(C,A), On(B,A))

(Clear(P2), On(A,P2)) (On(A,P4), On(A,C)) (On(C,A), On(C,B))

(Clear(P2), On(B,P2)) (On(A,P4), On(A,P1)) (On(C,A), On(C,P1))

(Clear(P2), On(C,P2)) (On(A,P4), On(A,P2)) (On(C,A), On(C,P2))

(Clear(P3), On(A,P3)) (On(A,P4), On(B,P4)) (On(C,A), On(C,P3))

(Clear(P3), On(B,P3)) (On(B,C), On(A,C)) (On(C,A), On(C,P4))

(Clear(P3), On(C,P3)) (On(B,C), On(B,A)) (On(C,P1), On(A,P1))

(Clear(P4), On(A,P4)) (On(B,C), On(B,P2)) (On(C,P1), On(C,B))

(Clear(P4), On(B,P4)) (On(B,C), On(B,P3)) (On(C,P2), On(A,P2))

(Clear(P4), On(C,P4)) (On(B,C), On(B,P4)) (On(C,P2), On(B,P2))

(On(A,B), Clear(B)) (On(B,C), On(C,B)) (On(C,P2), On(C,B))

(On(A,B), On(A,C)) (On(B,P1), Clear(P1)) (On(C,P2), On(C,P1))

(On(A,B), On(A,P1)) (On(B,P1), On(A,P1)) (On(C,P2), On(C,P3))

(On(A,B), On(A,P2)) (On(B,P1), On(B,A)) (On(C,P3), On(B,P3))

(On(A,B), On(A,P3)) (On(B,P1), On(B,C)) (On(C,P3), On(C,B))

(On(A,B), On(A,P4)) (On(B,P1), On(B,P2)) (On(C,P3), On(C,P1))

(On(A,B), On(B,A)) (On(B,P1), On(B,P3)) (On(C,P4), On(A,P4))

(On(A,B), On(C,B)) (On(B,P1), On(B,P4)) (On(C,P4), On(B,P4))

(On(A,P1), On(A,C)) (On(B,P1), On(C,P1)) (On(C,P4), On(C,B))

(On(A,P2), On(A,C)) (On(B,P2), On(B,A)) (On(C,P4), On(C,P1))

(On(A,P2), On(A,P1)) (On(B,P2), On(B,P3)) (On(C,P4), On(C,P2))

(On(A,P2), On(B,P2)) (On(B,P2), On(B,P4)) (On(C,P4), On(C,P3))

Preventing relation between propositions: Prevents(Entity1, Entity2)

In the described Blocks World scenario, no proposition prevents another one from

occurring. To test the algorithm, we have artificially and randomly injected propositions

PreventingP or P, in all states of all behaviours of the same class, staring with the initial

state until the proposition PreventingP was injected. When PreventingP was injected, no

other proposition was artificially added to future states of the same behaviour. This way,

we have simulated the existence of prevention relationships between propositions:

PreventingP prevents the future occurrence of P and PreventingP.

In the described circumstances, the algorithm correctly identified the following

preventing relations: Prevents(PreventingP, PreventingP) and Prevents(PreventingP, P).

We performed yet another test in which, after proposition PreventingP has been injected

in a state, it was always injected in all states thereafter until the last state (but not

proposition P). This way, we simulated a different preventing relation. The algorithm

correctly identified the relationship Prevents(PreventingP, P) (but not

Prevents(PreventingP, PreventingP)), as expected.

36

Proposition definition: Defining(Prop, PropSet)

Since the originally described demonstration scenario is not adequate for testing the

algorithm proposed for discovering domain propositions that are defined from other more

fundamental ones, we have artificially added the proposition Stacked([A, B, C]) in all

final states of all observed behaviours (i.e., states in which On(A, B), On(B, C) and

Clear(A) are true). With this addition, the observing agent correctly identified the

definition

Defining(Stacked([A, B, C]), {On(A, B), On(B, C), Clear(A)}), in which A, B and C are

constants denoting blocks.

Perplexing actions: Although/4 and Although/5

From the newly proposed set of relations, Although/5 and Although/4 are the only that

enable describing specific behaviours. As explained in sections 2 and 3.1,

Although(PropSet1, Action, State, PropSet2) and Although(PropSet1, Action, State,

PropSet2, Rational) express the observing agent’s perplexity with the robot’s action. In

the case of Although/5, Rational provides a justification for the apparently perplexing

action.

The observing agent correctly described all cases in which the robot’s behaviour was

perplexing. However, it is impossible and useless to show the results of all actions of all

120 observed behaviours. Instead, we describe an example behavioural instance (Figure

2) and we illustrate the explanations discovered by the observing agent observer

component.

Figure 2 – Example of a behavioural instance

In the tests, we have only considered the ideality principles Desired(P), for propositions,

and MustPrecede(P1, P2). The order relation of importance among principles was

arbitrarily defined so that Desired(P) is less important than MustPrecede(P1, P2).

In this scenario, the observing agent correctly acquired the Although/4 and Although/5

descriptions of its behaviour.

Although(PSet, A, S, Dev)

Although(

 {Desired(On(A, B)), On(A, B)/S1}, Move(A, B, P2), S2,

 {Desired(On(A, B)), (On(A, B)/S2)})

Although On(A, B) is a desired proposition, and On(A, B) holds in state S1, the robot

moved the block A from the top of B to position P2, Move(A, B, P2), resulting in state S2,

37

which is further away from the satisfaction of Desired(On(A, B)) because On(A, B) does

not hold.

Although(

 {MustPrecede(On(B, C), On(A, B)), (On(A, B)/S0)}, Move(A, C, B), S1,

 {MustPrecede(On(B, C), On(A, B)), On(A, B)/S1, s [s < S1 On(B, C)/s]})

Although On(B, C) must precede On(A, B) and On(A, B) does not hold in the state S0

(i.e., S0 is indifferent to the ideality principle), the robot executed action Move(A, C, B),

resulting in state S1, in which A was placed on top of B before B has been placed on top

of C. Thus, the new state S1 is further away from the satisfaction of the ideality principle

than state S0.

Although(PSet, A, S, Dev, Rational)

Although({Desired(On(A, B)), On(A, B)/S1}, Move(A, B, P2), S2,

 {Desired(On(A, B)), (On(A, B)/S2)},

 Desired(On(B, C)):[Move(A, B, P2), Move(B, P1, C)])

Although On(A, B) is a desired proposition and On(A, B) holds in state S1, the robot

executed action Move(A, B, P2), leading to state S2, in which On(A, B) does not hold.

Nevertheless, the action Move(A, B, P2) was executed at the service of the ideality

principle Desired(On(B, C)), which is as important as the principle threatened by the

robot’s action, Desired(On(A, B)).

Although({Desired(On(A, B)), On(A, B)/S1}, Move(A, B, P2), S2,

 {Desired(On(A, B)), (On(A, B)/S2)},

 MustPrecede(On(B, C), On(A, B)):[Move(A, B, P2), Move(B, P1, C),

 Move(A, P2, B)])

Although On(A, B) is a desired proposition and On(A, B) holds in state S1, the robot

executed action Move(A, B, P2), leading to the state S2, in which On(A, B) is no longer

the case. Nevertheless, the action Move(A, B, P2) was executed to satisfy the precedence

relationship MustPrecede(On(B, C), On(A, B)), which is an ideality principle more

important than the principle threatened by the robot’s action, Desired(On(A, B)).

Descriptions of the relations Although/4 e Although/5 constitute the basis for the agent to

become astonished with the observed behaviour. Moreover, Although/5 provides a

justification for the apparently disconcerting actions.

Whereas the action Move(A, B, P2) has two possible justifications: being part of the best

ways to achieve On(B,C) and to fulfil the precedence relation principle,

MustPrecede(On(B, C), On(A, B)), the first action executed by the robot, Move(A, C, B),

is not only disconcerting because the robot becomes further away from fulfilling the

ideality principle represented by the precedence relation MustPrecede(On(B, C), On(A,

B)), but there is also no apparent reason for it. In fact, the first action of the robot is

absolutely misplaced.

4 Related literature

The purpose of our research is twofold: (i) defining a set of concepts that may be used by

an artificial agent to describe observed behaviour, its actor and environment, and (ii)

defining and implementing the set of axiom schemata and domain-independent

algorithms the agent may use to learn those concepts from scratch, relying only on

observation.

38

We start this review with a brief reference to work on behaviour or procedure description

languages. Then, we focus on literature related with more specific topics of our research,

following the same structure we have used, in the introduction, to present the main

contributions of our work, namely (i) beliefs goals and preferences, (ii) incompatibility

between propositions and/or actions, (iii) perplexity, (iv) relation definition, and (v) the

use of background knowledge.

Several languages have been proposed for describing behaviour (e.g., [Cerone 2019]

[Piller, Vincze and Kovács 2015][Wan, Wu and Wu 2009][Kelsen, Pulvermueller and

Glodt 2007][Freed and Remington 2000]). [Cerone 2019] presents a language for

cognitive modelling of human behaviour and reasoning. [Piller, Vincze and Kovács 2015]

and [Freed and Remington 2000] present languages that may be used to specify agent

behaviour. The language proposed in [Wan, Wu and Wu 2009] is used for the

specification of the behaviour of such systems as an Automatic Teller Machine (ATM).

Finally, [Kelsen, Pulvermueller and Glodt 2007] presents a language for automatic

system implementation. In all cases, the proposed languages are used as behaviour

generation languages. For instance, using BRDL (Behaviour and Reasoning Description

Language) [Cerone 2019], one can write the set of rules that specify the actions

prescribed by the represented cognitive model in the specified conditions. They are not

used to describe observed behaviour, thus they cannot be compared with our work.

Nonetheless, some constructs could be used for describing observed behaviour. Namely,

the proposal described in [Freed and Remington 2000] includes constructs useful for

uncertainty, multiple tasks and concurrent execution. Our proposal does not address any

of those problems.

User modelling: beliefs, goals, preferences and emotions. The bulk of literature more

closely related with our work describes approaches that can be used to extract the model

of the user from their behaviour (their beliefs, goals and preferences). Research on

narrative intelligence, storytelling, and interactive digital games [Harrison et al 2014]

[Riedl and Bulitko 2012] [Hendrikx et al 2013] strives to understand the user to

dynamically adapt the narrative or game options to their preferences.

Computational cognitive science, computational social science, behavioural sciences, and

the study of mixed team collaboration also have an interest in the problem of

understanding observed action as a result of goal directed behaviour. It is important to

model the way people understand observed action as if it were goal-directed [Baker, Saxe

and Tenenbaum 2009]; it is important to infer individual goals in social interactions

[Tauber and Steyvers 2011][Riordan et al 2011]; and it is also important to be capable of

segmenting individual actions and inferring their causal structure [Buchsbaum et al 2015]

(both for developing more effective artificial members of mixed collaborative teams and

for modelling the way people do it).

Following, we analyse concepts and algorithms used in player modelling and behaviour

understanding and compare them with our work.

Several approaches to player modelling in storytelling and digital games represent the

player model as a set of preferences for different game playing styles [Ramirez and

Bulitko 2014] [Thue, Bulitko and Spetch 2008], or for plot options [Yu and Riedl 2012]

[Yu and Riedl 2013].

The proposed notion of preference is in line with the concept captured by the RST

relation Evaluation. This relation could be used for representing both the preferences of

the agent and those of a hypothetical audience. In fact, the agent preferences toward

situations or alternative courses of action allows the agent to evaluate them and support

its choices. The preferences of a hypothetical audience are the basis for plot decisions in

interactive story generation systems and game style decisions in game playing settings.

In [Ramirez and Bulitko 2014] and [Thue, Bulitko and Spetch 2008], all game actions

available to the player are tagged with game playing styles. When the player choses an

39

action, if at that time the player had an available action much different from the one it

chooses, the player model (his or her preferences for all types of game playing styles) is

updated considering the chosen action and its nature. Once the player preferences are

known, a knowledge-based approach is used to map those preferences into game

management choices (e.g., players who seek out (enjoy) monster ambushes might prefer

to engage in combat).

Although we have not addressed alternative behaviours, we provided the basis for a

qualitative scale of preferences, through the relations desired, neutral and undesired,

which apply both to propositions and actions. These relations, which may be learned from

observation, could be used to define the relation evaluation inspired in the Rhetoric

Structure Theory (RST). However, this would be a three-valued scale of preferences,

which may be insufficient in some applications.

In the approach followed in [Yu and Riedl 2012] and [Yu and Riedl 2013] many players

are asked to rate the game management options after each option is taken. These ratings

are then organized as an option-preference matrix that represents player preferences over

sequences of previous story events. This is called the Prefix Based Collaborative Filtering

(PBCF) approach. This matrix is used to train a player model for players with different

preferences. The trained model is then used by the game manager to choose among

different options in each plot point.

The main disadvantage of this approach is that it is necessary to ask the player to

explicitly rate the game manager options. In our approach, we don’t need to ask anything

to the actor of the observed behaviour. Preferences (as captured by the relations desired,

neutral and undesired) are learned from the observed behaviour without any supervision.

In [Shen et al 2010], player preferences have an impact on the game dynamics. The

player preferences are acquired through data mining techniques. The paper is not specific

regarding the data mining techniques used to learn the player preferences thus we cannot

compare it with ours.

[Baker, Saxe and Tenenbaum 2009][Riordan et al 2011][Tauber and Steyvers 2011]

propose beliefs, goals and preferences (priorities) as fundamental concepts required for

understanding the agent behaviour. In [Riordan et al 2011], preference is presented as a

higher-level motive (e.g., avoiding zones with bad weather) that can be met by more

concrete alternative goals. We interpret this notion of preference as a persistent higher-

level goal as opposed to operational lower level ones. In our previous work [Botelho et al

2019], agents have beliefs (those provided by their sensors) and are capable of learning

that they have goals. The same algorithms we have proposed for an agent to discover its

goals from observation could be used to infer the user’s goals.

[Baker, Saxe and Tenenbaum 2009][Riordan et al 2011][Tauber and Steyvers 2011] use

Bayesian inverse planning for determining the beliefs and goals that may explain

observed behaviours. This approach relies on the assumption that the observed behaviour

is the result of a rational choice process in which the observed actor rationally chooses the

best action to achieve their goals. Basically, the approach consists of inverting a planning

problem in order to determine the probability that the observed actor has certain goals and

beliefs given that a certain action was observed. This approach requires previous

knowledge of the domain (probabilistic dynamics by which the observed actor moves

through the environment and about the actor’s set of possible goals). Contrarily to the

described approach, ours does not require any previous knowledge of the domain.

[Baker, Saxe and Tenenbaum 2009] presents and tests three different inverse planning

models and a fourth heuristic model in different scenario configurations. The tests reveal

that one model (in which the goals of the observed actor may change) is better for some

configurations while another one (in which the observed actor may have sub goals) is

better for other cases. This means that, in spite the fact that these two models accurately

predict the way people make inferences about explanations of the observed behaviour, the

40

approach does not model the way people switch from one way of making inferences to

the other.

[Shen et al 2010] proposes the representation of two additional concepts: Goal / Sub goal

relations, and goal transitions as a result of action sequences. As discussed in section

2.1.10, about the RST relation elaboration, goal/sub goal (or intention / sub intention)

relations arise of the hierarchic structure of complex behaviour. Goal transitions resulting

from action sequences also reflect the hierarchic structure of complex behaviour. The

relations achieved and contributed, originally proposed in our previous paper [Botelho et

al 2019], describe such hierarchic structure.

The first two of these, Achieved and Contributed, are applicable to specific behaviours.

Achieved represents the observed fact that a certain action achieved one or more of the

agent goals, or one or more preconditions of actions that were subsequently executed in

the same behaviour. Contributed represents the observed fact that a certain proposition

contributed to the execution of an action because it is one of its preconditions. Although

our previous work [Botelho et al 2019] explicitly addressed the means for an agent to

describe its own behaviour, the proposed axiom schemata and algorithms could as well be

used to describe the behaviour of some other agent, including the user.

Player emotions have also been used by drama managers to better fit their choices to the

player [Shen et al 2010]. The player emotions are acquired through the analysis of the

images provided by a camera in combination with the OCC model [Ortony, Clore and

Collins 1988], which is a knowledge-based model of emotion elicitation.

We can imagine that emotion recognition through image analysis, used in [Shen et al

2010], does not require any domain dependent knowledge (it may rely on facial

expressions that, according to Paul Ekman [Ekman 1992], are transversal across cultures

and ethnic factors).

Our work has only addressed an epistemic emotion we call perplexity. Other emotions

were not considered. The literature on epistemic emotions such as perplexity is reviewed

latter.

Incompatibility between propositions and/or actions. Using our proposals, an agent can

learn, just by observing behaviour, that two propositions and/or actions are mutually

exclusive (relation incompatible). Incompatibility between propositions or between

actions is an important information for planning algorithms; incompatibility between

actions (events) has been used in automatic story generation systems.

For instance, the well-known Graphplan algorithm [Blum and Furst 1997] creates a graph

consisting of a sequence of interleaved proposition layers and action layers. Both types of

layers contain mutual exclusion relations, either between propositions or between actions.

The algorithm uses a possibly incomplete set of rules to discover such pairs of mutually

exclusive entities. Although the algorithms we propose for an agent to learn

incompatibility between propositions or between actions are not adequate to be used in a

planning algorithm, this reveals the importance of the learned concept of incompatibility.

[Sina, Rosenfeld and Kraus 2014] describes an approach for identifying events, in a story,

that are inconsistent with available data. The algorithms proposed in [McIntyre and

Lapata 2010] ensure that the events in a generated story satisfy all applicable temporal

and mutual exclusion constraints. In [Li et al 2014] [Li et al 2013], the events in the

learned story plot graphs are also subject to temporal ordering constraints and mutually

exclusion relations. The present article considered the incompatibility between actions

(events). In previous work [Botelho et al 2019] we describe the means for an agent to

learn, by observation, that while it is trying to achieve its goal, it must reach a world state

containing a certain proposition (e.g., P1) before it reaches a world state containing

another proposition (e.g., P2). These temporal precedence constraints is represented by the

relation MustPrecede (e.g., MustPrecede(P1, P2)).

41

We also propose a stronger concept of incompatibility, captured by the relation

Prevents/2, meaning that a proposition, if true in a given state, prevents the future

occurrence of another proposition or action, or that an action, executed in a given state,

prevents the future occurrence of another action or proposition.

[Chen at al 2009] propose a similar concept of incompatibility (londex, long-distance

exclusion), which they apply to different versions of Satplan algorithm [Kautz and

Selman 1992]. The relationship londex between propositions or between actions captures

the idea that two propositions or two actions belonging to different plan steps are

mutually exclusive. Although the relation prevents, we have proposed, captures the

long-distance exclusion relation used in [Chen at al 2009], the algorithm we have used for

an agent to learn it by observation does not apply to planning. However, the use of londex

relations is evidence of the importance of our relation prevents.

Perplexity. In this paper, we provided the means for an agent to learn that a certain action

of an observed behaviour causes perplexity because it leads the actor from a certain state

of affairs to another seemingly worse state, according to some ideality principle, that is, a

principle that the actor of the observed behaviour ought to comply with (in order to

achieve its goal).

According to literature on philosophy [de Cruz 2021], social sciences [Deckert and

Koenig 2017], psychology [Vogl et al 2019] and cognitive science [McPhetres 2019],

emotions as perplexity, surprise and awe are epistemic emotions in the sense that they

motivate the person feeling them to seek the new knowledge required to understand the

cause of the emotion.

We couldn’t find research on using perplexity either as an aspect of behaviour description

or to improve a computer system’s behaviour. However, given the above literature, a

perplexed agent would be expected to initiate behaviour that would allow it to gain the

knowledge required to cope with the causes of its perplexity, for instance, by engaging in

a more exploratory mode of behaviour.

[Reizinger and Szemenyei 2020] and [Pathak et al 2017] describe reinforcement learning

approaches where the agent involves itself in exploratory behaviour.

Putting all the above together, we think that when an agent becomes puzzled or perplexed

with its own behaviour, it could use reinforcement learning approaches similar to those

described in [Reizinger and Szemenyei 2020], through which it would be capable of

overcoming the behavioural limitations that have caused it to be perplexed with its own

behaviour. This approach does not apply when the observed behaviour is not the

observing agent’s own behaviour because reinforcement learning is used by the agent to

control its own actions, not those of a different actor.

Relation definition. In this paper, we provide an algorithm that may be used by an agent

to learn proposition definitions from the observed behaviour (relation defining).

Defining(Prop, PropSet) means the proposition Prop is defined as the conjunction of all

propositions in the set PropSet. For instance, in the Blocks World, if the agent’s sensors

are sensible to the propositions On(block1, block2), Clear(block) and Stack(stack), the

algorithm learns that Stack([A, B, C]) is defined as the conjunction On(A, B) On(B,

C) Clear(C).

Although we haven’t found any research on using proposition definitions to describe the

environment of an artificial agent or to improve its behaviour, it would be possible to use

inductive logic programming [Muggleton and Raedt 1994] or decision tree learning

[Quinlan 1986] to learn an implication as the following:

On(A, B) On(B, C) Clear(A) Stack([A, B, C])4

4 Decision trees do not work with variables but A, B and C are constants denoting specific blocks.

42

Our proposal has some advantages when compared with inductive logic programming or

decision tree learning. First, while inductive logic programming and decision tree

learning are supervised learning approaches, ours is totally unsupervised. Second, in our

approach, the agent does not ask itself what is the definition of Stack([A, B, C]). The

algorithm we have proposed does not need to be told what it is looking for. It just

discovers that, within all its observations, Stack([A, B, C]) is defined as the conjunction

On(A, B) On(B, C) Clear(A) by looking at the co-occurrence of all the involved

literals and by realizing that there are states of the world that preclude alternative

possibilities such as On(A, B) being defined as the conjunction Stack([A, B, C]) On(B,

C) Clear(A).

Use of background knowledge. In this paper, we have also provided an inference rule to

be used by the agent to determine the prior background knowledge it has used to infer a

certain relationship, in addition to observations it made (i.e., a set of propositions of its

own). For instance, to infer Incompatible(On(A, B), Clear(B)) from the hypothesis On(A,

B), the agent needs the prior background knowledge xy On(x, y) Clear(y) (as

well as the definition of incompatibility). This is represented by the following

relationship:

Background({xy On(x, y) Clear(y)}, Incompatible(On(A, B), Clear(B))).

We haven’t found any research on using the relation background to describe the

environment of an artificial agent or to improve its behaviour. However, considering the

inference rule used to infer it (section 3.1), we could use an automatic theorem prover.

That’s exactly what we have done by using SWI-Prolog5 to make the necessary

inferences. The comparison of SWI-Prolog with alternative theorem provers is out of the

scope of this article.

5 Conclusions and future research

In [Botelho et al 2019], we have proposed a set of relations that the agent may use to

describe observed behaviour, its actor and environment. We put forth a set of deduction

axiom schemata and domain independent algorithms the agent uses to acquire the referred

descriptions, just by observation. Here, we have proposed a considerable extension of the

initially proposed set of relations, inspired in the Rhetorical Structure Theory (RST). We

have also presented deduction axiom schemata and corresponding domain independent

algorithms for the newly proposed relations. Finally, we have presented a proof of

concept using an implemented agent in a concrete demonstration scenario where the

agent was able to describe the observed behaviours, in terms of all the relations proposed

in this article.

In general, the capability to describe behaviour may be seen as contributing to the

currently most demanded and sought for explainable AI. And, the analysis of related

research shows that several of the concepts we propose, which can be learned and used by

the agent to describe observed behaviour, its actor and environment were also used in

other problems. This shows that our particular choices are important in specific areas.

Of the newly proposed relations, those involving more work and consideration are the

relations of the family Although, inspired in the RST relation Concession. This family of

relations empowers the agent with the capability of becoming perplexed with the

observed behaviour (either its own or that of some other agent, including the user) and,

sometimes finding an explanation for the surprising actions. The accurate definition of the

5 SWI-Prolog: https://www.swi-prolog.org/

43

Although family of relations relied on several deontic concepts, whose definition and

corresponding algorithms have been presented in this article.

Our proposal is probably the first to address perplexity as a way to describe observed

behaviour, especially the means we have proposed for an agent to identify potentially

perplexing actions, although some may be justified (using the relations Although/4 and

Although/5).

Even though the relations of the family Although already constitute an innovative and

sophisticated contribution of our work, the word “although” (and other linguistic

constructs with similar pragmatics) may be used in discourse in very different ways but

causing perplexity. In future work, we will consider other ways the construct may be

used.

From the analysis of the Rhetorical Structure Theory (RST), we propose the following

useful set of relations, which empower the agent with a richer understanding of the

observed behaviour, its actor and environment:

NextState Effects (Positive and negative effects)

Alternative Precondition

Achieved Incompatible

Contributed Prevents

Although Defining

Evaluation Background

Evidence

Most of these RST-based relations are covered in previous work. However, three RST-

based relations are yet not covered, namely Alternative, Evaluation and Evidence.

Alternative may be used by the agent to represent alternative courses of action that solve

the same problem.

Evaluation may be used by the agent to evaluate states of affairs in general and

alternative courses of action in particular, and to choose one among them. Although we

haven’t actually tackled the relation Evaluation, we could have defined it from the

relation Desired, Neutral and Undesired, which apply to propositions and actions.

Defined this way, Evaluation would represent a three-valued scale of qualitative

preferences.

Evidence could be used by the agent to represent evidence that a certain proposition is

true. The evidence corresponds to a set of propositions: Evidence(PropSet, Prop), which

may informally be read as “The propositions in the set PropSet are evidence that the

proposition Prop is true”. This would allow the agent to reason about certain

propositions, of which it may not be certain, in terms of the evidence it has observed for

them. Likewise, it could also be used by an agent to reason about uncertainty with respect

to the user.

The analysis of related literature suggests the use of the concept of optional behaviour. A

sequence of actions is optional if it can but does not have to be incorporated in the

observed behaviour. Although apparently useful for describing specific instances of

behaviours, the concept of an optional sequence of actions also constitutes a problem

because, in each state, there may be infinite many sequences of actions that lead the agent

to the same state. To avoid this infinity problem, it would only make sense to identify

optional sequences of actions among those that have actually been observed. Besides,

many if not all optional sequences of actions could be better interpreted as useless

44

(suboptimal) rather than optional because, in fact, they would not be required to achieve

the behaviour’s goals.

Our future work will address the accurate definition of the relations alternative,

evaluation and evidence and the axiom schemata and the algorithms that may be used by

the agent to acquire descriptions based on them. To learn that there are alternative courses

of action, the agent needs to observe different action sequences to solve the same problem

(same initial state and same final state).

The relation evaluation may readily be defined from the relations desired, neutral and

undesired and extended to action sequences. However, it is possible that a qualitative

scale of preferences with more than three values would be necessary in some

applications. One possibility that immediately pops into mind is to make use of the

ideality principles we have defined for the relations of the family although together with

the importance ordering we have used among them.

As for the relation evidence, we could use a statistical adaptation of the algorithm used to

learn proposition definitions (i.e., relation defining). Rather than trying to find the

propositions that always co-occur with another proposition, the algorithm would discover

the propositions that often (but not always) co-occur with the proposition they support.

We have not proposed the concept of optional event, state, or course of action, but, from

our analysis of the RST theory and the literature on automatic story-plot generation, we

recognized its importance. We will also consider the possibility and usefulness of a

restricted form of the concept of optional behaviour.

The reviewed literature revealed the importance of identifying emotions from the

observed behaviours. The only emotion we have addressed was perplexity but others are

certainly more important, especially in user modelling tasks. Another direction of future

research is to identify other emotions from the observed behaviour.

We will also work on ways for the agent to use the acquired descriptions to improve its

behaviour. For instance, when the agent has no justification for a perplexing action, it

should engage in some form of exploratory behaviour such as using curiosity-driven

reinforcement learning algorithms as those proposed in [Reizinger and Szemenyei 2019]

and [Pathak 2017].

Although the algorithms we have proposed have the advantage of being unsupervised and

not requiring any previous knowledge about the specific application domain, they rely on

the observation of the behaviours that achieve the same goal, starting from all possible

configurations of the initial state. This is a major drawback because often the agent would

need to use its acquired descriptions way before it has the chance to observe the

behaviours that achieve a certain goal for all possible initial states. It is even likely that, in

many problems, there are a huge number of initial states making it unpractical to explore

all of them. The way around this demands algorithms that would incrementally learn the

mentioned descriptions, even if only approximate ones. We believe that after some

iterations, the incrementally learned descriptions may be good enough or even the final

descriptions.

Another major drawback of our work consists of assuming that the final states of all

observed behaviours are successful states in which the pursued goals are satisfied. We

recognize that this is not a reasonable assumption for many problem classes.

Defining incremental algorithms and dropping the hypothesis that the final states of all

observed behaviour are successful will be our most important concerns for future

research. This will make our approach more robust and more widely usable.

Incremental learning will enable the agent to use its descriptions in problems in which our

approach is not yet competitive. This might be the case if the agent tries to use the learned

relations incompatible and prevents in planning algorithms.

45

6 References

 [Baker, Saxe and Tenenbaum 2009] Baker, C.L.; Saxe, R.; Tenenbaum, J.B. 2009.

Action understanding as inverse planning. Cognition, 113:329-349.

doi:10.1016/j.cognition.2009.07.005

[Barocas et al 2017] Barocas, S.; Crawford, K.; Shapiro, A.; and Wallach, H. 2017. The

problem with bias: from allocative to representational harms in machine learning

Special Interest Group for Computing, Information and Society (SIGCIS)

[Blum and Furst 1997] Blum, A.; and Furst, M. 1997. Fast planning through planning

graph analysis. Artificial intelligence. 90(1-2):281-300. DOI: 10.1016/S0004-

3702(96)00047-1

[Botelho et al 2019] Botelho, L.M.; Lopes, R.; Nunes, L.; Ribeiro, R. 2019. Software

agents with concerns of their own. Submitted to the Cognitive Science Journal

[Buchsbaum et al 2015] Buchsbaum, D.; Griffiths, T.L.; Plunkett, D.; Gopnik, A.;

Baldwin, D. 2015. Inferring action structure and causal relationships. Cognitive

Psychology, 76:30–77

[Cerone 2019] Cerone, A. 2019. Behaviour and Reasoning Description Language

(BRDL). In: Camara J.; and Steffen M. (eds) Software Engineering and Formal

Methods (SEFM 2019). Lecture Notes in Computer Science: Vol 12226. Springer,

Cham. pp 137-153. DOI: 10.1007/978-3-030-57506-9_11

[Chen at al 2009] Chen, Y.; Huang, R; Xing, Z.; and Zhang, W. 2009. Long-Distance

Mutual Exclusion for Planning. Artificial Intelligence 173(2):365–391. DOI:

10.1016/j.artint.2008.11.004

[de Cruz 2021] de Cruz, H. 2021 Perplexity and Philosophical Progress. Midwest Studies

in Philosophy 45:209-221. DOI: 10.5840/msp20219166

[Deckert and Koenig 2017] Deckert, J.C.; and Koenig, T.L. 2017. Social work perplexity:

Dissonance, uncertainty, and growth in Kazakhstan. Qualitative Social Work

18(2):163-178 DOI: 10.1177/1473325017710086

[Ekman 1992] Ekman, P. 1992. An argument for basic emotions. Cognition and Emotion,

6(3-4):169-200

[Freed and Remington 2000] Freed, M.; and Remington, R. 2000 GOMS, GOMS+, and

PDL. AAAI Technical Report FS-00-03

[Gabbay et al 2013] Gabbay, D.; Horty, J.; Parent, X.; van der Meyden, R.; van der Torre,

L. (Editors) 2013. Handbook of Deontic Logic and Normative Systems. Volume 1.

College Publications. ISBN 978-1-84890-132-2

[Ghallab, Nau and Traverso 2004] Ghallab, M.; Nau, D.; and Traverso, P. 2004.

Automated Planning: Theory and Practice. The Morgan Kaufmann Series in Artificial

Intelligence. ISBN 978-1-55860-856-6

[Harrison et al 2014] Harrison, B.; Ware, S.G.; Fendt, M.W.; Roberts, D.L. 2014. A

survey and analysis of techniques for player behavior prediction in massively

multiplayer online games. IEEE Transactions on Emerging Topics in Computing

Special Issue on MMO Technologies. DOI: 10.1109/TETC.2014.2360463

[Hendrikx et al 2013] Hendrikx, M.; Meijer, S.; van der Velden, J.; Iosup, A. 2013.

Procedural content generation for games: a survey. ACM Transactions on Multimedia

Computing, Communications, and Applications, 9(1):1-22. DOI:

10.1145/2422956.2422957

[Hilpinen 1981] Hilpinen, R. (Editor). 1981. New Studies in Deontic Logic. D.Reidel.

Dordrecht

46

[Kautz and Selman 1992] Kautz, H.A.; and Selman, B. 1992. Planning as satisfiability. In

Proceedings of the Tenth European Conference on Artificial Intelligence (ECAI

1992):359-363

[Kelsen, Pulvermueller and Glodt 2007] Kelsen, P.; Pulvermueller, E.; and Glodt, C.

2007. A Declarative Executable Language based on OCL for Specifying the Behavior

of Platform-Independent Models. Proceedings of 2007 Workshop Ocl4All: Modelling

Systems with OCL (Ocl4All 2007).

[Köchling and Wehner 2020] Köchling, A.; and Wehner, M.C. 2020. Discriminated by an

algorithm: a systematic review of discrimination and fairness by algorithmic decision-

making in the context of HR recruitment and HR development. Business Research

volume 13, pp795–848. DOI: 10.1007/s40685-020-00134-w

[Kosseim and Lapalme 2000] Kosseim, L.; Lapalme, G. 2000. Choosing Rhetorical

Structures to Plan Instructional Texts. Computational Intelligence, 16(3):408-455

[Li et al 2013] Li, B.; Lee-Urban, S.; Johnston, G.; Riedl, M. 2013. Story generation with

crowdsourced plot graphs. In Proceedings of the National Conference on Artificial

Intelligence (AAAI 2013)

[Li et al 2014] Li, B.; Thakkar, M.; Wang, Y.; Riedl, M.O. 2014. Storytelling with

Adjustable Narrator Styles and Sentiments. In Proceedings of the 2014 International

Conference on Interactive Digital Storytelling. Singapore

[Mann 1984] Mann, W.C. 1984. Discourse Structures for Text Generation. In Proceeding

of the 10th International Conference on Computational Linguistics (ACL 1984).

p367-375. DOI: 10.3115/980431.980567

[Mann and Thompson 1987] Mann, W.C.; Thompson, S.A. 1987. Rhetorical Structure

Theory: A Framework for the Analysis of Texts. IPRA (International Pragmatics

Association) Papers in Pragmatics 1:1-21

[Mann and Thompson 1988] Mann, W.C.; Thompson, S.A. 1988. Rhetorical Structure

Theory: Toward a functional theory of text organization. Text, 8(3):243-281

[Marcu 2000] Marcu, D. 2000. The Rhetorical Parsing of Unrestricted Texts: A Surface-

based Approach. Computational Linguistics, 26(3):395-448

[McIntyre and Lapata 2010] McIntyre, N.; Lapata, M. 2010. Plot induction and

evolutionary search for story generation. In Proceedings of the 48th Annual Meeting

of the Association for Computational Linguistics. p1562-1572

[McPhetres 2019] McPhetres, J. 2019. Oh, the things you don’t know: awe promotes

awareness of knowledge gaps and science interest. Cognition and Emotion

33(8):1599-1615. DOI: 10.1080/02699931.2019.1585331

[Miller 2019] Miller, T. 2019. Explanation in artificial intelligence: Insights from the

social sciences. Artificial Intelligence. Volume 267 pp. 1-38. DOI:

10.1016/j.artint.2018.07.007

[Muggleton and Raedt 1994] Muggleton, S.; and Raedt, L. 1994. Inductive Logic

Programming: Theory and methods. The Journal of Logic Programming, Volumes 19–

20, Supplement 1, Pages 629-679. DOI: 10.1016/0743-1066(94)90035-3

[Ortony, Clore and Collins 1988] Ortony, A.; Clore, G.L.; Collins, A. 1988. The

Cognitive Structure of Emotions. Cambridge University Press. Cambridge, UK.

[Pathak et al 2017] Pathak; Agrawal; Efros; Darrell 2017 Curiosity-driven Exploration by

Self-supervised Prediction. In Proceedings of the 2017 International Conference on

Machine Learning (ICML 2017), Sydney, Australia. Volume 70. pp2778–2787

47

[Piller, Vincze and Kovács 2015] Piller, I.; Vincze, D.; and Kovács, S. 2015. Declarative

Language for Behaviour Description. In Sinčák P., Hartono P., Virčíková M., Vaščák

J., Jakša R. (eds.) Emergent Trends in Robotics and Intelligent Systems. Advances in

Intelligent Systems and Computing 316. Springer. pp 103-112. DOI: 10.1007/978-3-

319-10783-7_11

[Pinhanez et al 2021] Pinhanez, C.S.; Cavalin, P.; Ribeiro, V.; Appel, A.P.; Candello, H;

Nogima, J.; Pichiliani, M; Guerra, M; de Bayser, M.G.; Malfatti, G.; and Ferreira, H.

2021. Using Meta-Knowledge Mined from Identifiers to Improve Intent Recognition

in Conversational Systems. In Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the 11th International Joint Conference

on Natural Language Processing, pages 7014–7027. August 1–6, 2021. Association

for Computational Linguistics

[Quinlan 1986] Quinlan, J.R. 1986. Induction of Decision Trees. Machine Learning

1:81-106. DOI: 10.1007/BF00116251

[Ramirez and Bulitko 2014] Ramirez, A.; Bulitko, V. 2014. Automated Planning and

Player Modelling for Interactive Storytelling. IEEE Transactions on Computational

Intelligence and AI in Games. DOI: 10.1109/TCIAIG.2014.2346690

[Reizinger and Szemenyei 2020] Reizinger, P.; and Szemenyei, M. 2019. Attention-based

Curiosity-driven Exploration in Deep Reinforcement Learning. In Proceedings of

2020 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2020). DOI: 10.1109/ICASSP40776.2020.9054546

[Riedl and Bulitko 2012] Riedl, M.O.; Bulitko, V. 2012. Interactive narrative: An

intelligent systems approach. AI Magazine, 34(1):67-77. DOI:

http://dx.doi.org/10.1609/aimag.v34i1.2449

[Riordan et al 2011] Riordan, B.; Bruni, S.; Schurr, N.; Freeman, J.; Ganberg, G; Cooke,

N.J.; Rima, N. 2011. Inferring user intent with Bayesian inverse planning: Making

sense of multi-UAS mission management. In Proceedings of the 20th Behavior

Representation in Modeling and Simulation Conference (BRIMS). Sundance, UT

[Samek et al 2019] Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; and Müller, K-

R. (Editors) 2019 Explainable AI: Interpreting, Explaining and Visualizing Deep

Learning. Lecture Notes in Computer Science book series (LNCS, volume 11700).

Lecture Notes in Artificial Intelligence book sub series (LNAI, volume 11700).

Springer, Cham. Softcover ISBN: 978-3-030-28953-9. eBook ISBN: 978-3-030-

28954-6. DOI: 10.1007/978-3-030-28954-6

[Shen et al 2010] Shen, Z.; Miao, C.; Zhang, L.; Yu, H.; Chavez, M.J. 2010. An emotion

aware agent platform for interactive storytelling and gaming. In Proceedings of the

International Academic Conference on the Future of Game Design and Technology

(Futureplay 2010). p257-258. ACM. New York, NY, USA. DOI:

10.1145/1920778.1920823

[Sina, Rosenfeld and Kraus 2014] Sina, S.; Rosenfeld, A.; Kraus, S. 2014. Generating

content for scenario-based serious games using crowdsourcing. In Proceedings of the

28th National Conference on Artificial Intelligence (AAAI 2014)

[Suresh and Guttag 2021] Suresh, H.; and Guttag, J.V. 2021. A Framework for

Understanding Sources of Harm throughout the Machine Learning Life Cycle. In the

Proceedings of the 2021 ACM Conference on Equity and Access in Algorithms,

Mechanisms, and Optimization (EAAMO 2021). Article 17. DOI:

10.1145/3465416.3483305

[Tauber and Steyvers 2011] Tauber, S.; Steyvers, M. 2011. Using inverse planning and

theory of mind for social goal inference. In Proceedings of the 33rd Annual

Conference of the Cognitive Science Society. p2480-2485

48

[Thue, Bulitko and Spetch 2008] Thue, D.; Bulitko, V.; and Spetch, M. 2008. PaSSAGE:

A demonstration of player modelling in interactive storytelling. In Procedings of the

Annual AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment (AIIDE 2008). p227-228

[Uzêda, Pardo and Nunes 2010] Uzêda, V.R.; Pardo, T.A.S.; Nunes, M.G.V. 2010. A

comprehensive comparative evaluation of RST-based summarization methods. ACM

Transactions on Speech and Language Processing, 6(4):1-20

[van der Waa et al 2021] van der Waa, J.; Nieuwburg, E.; Cremers, A.; and Neerincx, M.

2021. Evaluating XAI: A comparison of rule-based and example-based explanations.

Artificial Intelligence. Volume 291 103404. DOI: 10.1016/j.artint.2020.103404

[Vogl et al 2019] Vogl, E.; Pekrun, R.; Murayama, K.; Loderer, K.; and Schubert, S.

2019. Surprise, Curiosity, and Confusion Promote Knowledge Exploration: Evidence

for Robust Effects of Epistemic Emotions. Frontiers in Psychology 10, article 2474.

DOI: 10.3389/fpsyg.2019.02474

[Wan, Wu and Wu 2009] Wan, L.; Wu, G.; and Wu, H. 2009. BDL – Behaviour

Description Language. In Proceedings of the the International Conference on

Software, Technology and Engineering. Iscte-IUL. pp. 37-41. DOI:

10.1142/9789814289986_0008

[Yu and Riedl 2012] Yu, H.; Riedl, M. O. 2012. A sequential recommendation approach

for interactive personalized story generation. In Proceedings of the International

Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2012). p71-78

[Yu and Riedl 2013] Yu, H.; Riedl, M. O. 2013. Toward personalized guidance in

interactive narratives. In Proceedings of the International Conference of the

Foundation of Digital Games (FDG 2013)

