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Synchronization phenomena in large populations of interacting units are the subject of intense
research efforts in physical, biological, chemical and social systems. A successful approach to
the problem of synchronization is to model each member of the population as a phase oscillator.
Synchronization in the most representative model of coupled phase oscillators, the Kuramoto
model, is extensively analyzed in this review. We present a rigorous mathematical treatment,
specific numerical methods, and many variations and extensions of the original model that have
appeared in the last years. Relevant applications of the model to understanding synchronization
in different physical problems are also included.
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I. INTRODUCTION

Time plays a key role for all living beings. Their ac-
tivity is governed by cycles of different duration which
determine their individual and social behavior. Some of
these cycles are crucial for their survival. There are bio-
logical processes and specific actions that require a pre-
cise timing. Some of these actions demand a level of
expertise that only can be acquired after a long period
of training but others take place spontaneously. How do
these actions occur? Possibly through synchronization of
individual actions in a population. A few examples fol-
low. Suppose we attend a concert. Each member of the
orchestra plays a sequence of notes that, properly com-
bined according to a musical composition, elicit a deep
feeling in our senses. The effect can be astonishing or a
fiasco (apart from other technical details) simply depend-
ing on the exact moment when the sound was emitted.
In the meantime, our heart is beating rhythmically be-
cause thousands of cells synchronize their activity. The
emotional character of the music can accelerate or decel-
erate the heartbeat. We are not aware of the process,
but the cells themselves manage to change coherently,
almost in unison. How? We see the conductor moving
harmoniously her arms. Musicians know perfectly how to
interpret these movements and respond with the appro-
priate action. Thousands of neurons in the visual cortex
sensitive to specific space orientations synchronize their
activity almost immediately when the baton describes
a trajectory in space. This information is transmitted
and processed through some outstandingly fast mecha-
nisms. What more? Just a few seconds after the last
bar, the crowds filling completely the auditorium start
to applaud. At the beginning the rhythm may be in-
coherent, but the wish to get an encore can transform
incoherent applause in a perfectly synchronized one, de-
spite the different strength in beating or the location of
individuals inside the concert hall.

These examples illustrate synchronization, one of the
most captivating cooperative phenomena in nature. Syn-
chronization is observed in biological, chemical, physical
and social systems and it has attracted the interest of
scientists for centuries. A paradigmatic example is the
synchronous flashing of fireflies observed in some South
Asia forests. At night, a myriad of fireflies lay over the
trees. Suddenly, several fireflies start emitting flashes of
light. Initially they flash incoherently, but after a short
period of time the whole swarm is flashing in unison cre-
ating one of the most striking visual effects ever seen.

The relevance of synchronization has been stressed fre-
quently although it has not always been fully understood.
In the case of the fireflies, synchronous flashing may facil-
itate the courtship between males and females. In other
cases, the biological role of synchronization is still under
discussion. Thus, perfect synchronization could lead to
disaster and extinction, and therefore different species in
the same trophic chain may develop different circadian
rhythms to enlarge their probability of survival. Details
about these and many other systems, together with many
references, can be found in the recent and excellent book
by Strogatz (Strogatz, 2003).

Researches on synchronization phenomena focus in-
evitably on ascertaining the main mechanisms responsi-
ble for collective synchronous behavior among members
of a population. To attain a global coherent activity, we
need interacting oscillatory units. The rhythmical activ-
ity of each element may be due to internal processes or to
external sources (external stimuli or forcing). Even if the
internal processes responsible for rhythmicity have differ-
ent physical or biochemical origins and be very complex,
one hopes to understand the essence of synchronization
in terms of a few basic principles. What may these prin-
ciples be?

There are different ways to tackle the problem. Sup-
pose that the rhythmical activity of each unit is described
in terms of a physical variable that evolves regularly in
time. When such a variable reaches a certain thresh-
old, the unit emits a pulse (action potential for neurons)
which is transmitted to the neighborhood. Moreover, a
resetting mechanism initialize the state of the unit that
has fired. Then, a new cycle starts again. Essentially
the behavior of each unit is similar to that of an oscil-
lator. Assuming that the rhythm has a period T , it is
convenient to introduce the concept of phase, a periodic
measure of the elapsed time which can be defined in [0, 1]
without loss of generality. Essentially, the effect of the
emitted pulse is to alter the current state of the neigh-
bors by modifying their periods, lengthening or shorten-
ing them. This disturbance depends on the current state
of the oscillator receiving the external impulse, and it can
also be studied in terms of a phase-shift. The analysis
of the collective behavior of the system can be carried
out in this way under two conditions: (i) the phase-shift
provoked by an impulse is independent of the number of
impulses arriving within an interspike interval, and (ii)
the arrival of one impulse affects the period of the current
time interval but memory thereof is rapidly lost and the
behavior in future intervals is not affected.

There is another scenario in which synchronization ef-
fects have been studied extensively. Let us consider an
ensemble of nonlinear oscillators moving in a globally at-
tracting limit cycle of constant amplitude. These are
phase, or limit cycle, oscillators. We now couple them
weakly to ensure that any disturbance can not take any
one of them away from the global limit cycle. Then, only
one degree of freedom is necessary to describe the dy-
namic evolution of the system. Even at this simple level
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of description it is not easy to propose specific models.
The first scenario of pulse-coupled oscillators is perhaps
more intuitive, more direct and easier to model. However,
the discrete and nonlinear nature of pulse-coupling gives
rise to important mathematical complications. While the
treatment of just a few pulse-coupled units can be done
within the framework of dynamical systems, the descrip-
tion becomes much more complicated for a large num-
ber of such units. Proposing a model within the second
scenario of coupled limit-cycle oscillators leaves ample
room for imagination. We are forced to consider models
with continuous time and specific nonlinear interactions
between oscillators which are mathematically tractable.
Our experience says that models with the latter prop-
erty are exceptional. Nevertheless some authors have
been looking for a ‘solvable’ model of this type for years.
Winfree was the stereotype of persistent scientist (Win-
free, 1967, 1980). He realized that synchronization can
be understood as a threshold process. When the coupling
between oscillators is strong enough, a macroscopic frac-
tion of them synchronize to a common frequency. The
model he proposed was hard to solve in its full general-
ity, although a solvable version has been recently found
(Ariaratnam and Strogatz, 2001). Thus research on syn-
chronization proceeded along other directions.

The most successful attempt is due to Kuramoto (Ku-
ramoto, 1975), who analyzed a model of phase oscilla-
tors rotating at disordered intrinsic frequencies and cou-
pled through the sine of their phase differences. The
Kuramoto model is simple enough to be mathematically
tractable, yet sufficiently complex to be non-trivial. The
model is rich enough to display a large variety of synchro-
nization patterns and sufficiently flexible to be adapted
to many different contexts. This little wonder is the ob-
ject of this review. We have reviewed the progress made
in the analysis of the model and its extensions during
the last twenty years. We have also tried to cover the
most significant areas where the model has been applied,
although we realize that this is not an easy task because
of its ubiquity.

The review is organized as follows. The Kuramoto
model with mean field coupling is studied in Section II.
In the limit of infinitely many oscillators, we discuss the
characterization of incoherent, phase-locked and partially
synchronized phases. The stability of the partially syn-
chronized state, finite-size effects and open problems are
also considered. Section III deals with the noisy mean-
field Kuramoto model, resulting from adding external
white noise sources to the original model. This section
deals with the nonlinear Fokker-Planck equation describ-
ing the one-oscillator probability density in the limit of
infinitely many oscillators (which is derived in Appendix
A). We study synchronization by first analyzing the lin-
ear stability of the simple unsynchronized state called
incoherence, at which the phase of the oscillators can
have any value with the same probability. Depending on
the distribution of natural frequencies, different synchro-
nization scenarios can occur in parameter regions where

incoherence is unstable. We present a complete analysis
of these scenarios for a bimodal frequency distribution
using bifurcation theory. Our original presentation of bi-
furcation calculations uses the Chapman-Enskog method
to construct the bifurcating solutions, which is better
than the method of multiple scales for degenerate bifur-
cations and simpler than center manifold calculations.
Section IV describes the known results for the Kuramoto
model with couplings different from mean-field. They in-
clude short-range and hierarchical couplings, models with
disorder, time-delayed couplings, and models containing
external fields or multiplicative noise. Extensions of the
original model are discussed in Section V. Section VI dis-
cusses numerical solutions of the noisy Kuramoto model,
either for the system of stochastic differential equations
or for the nonlinear Fokker-Planck equation describing
the one-oscillator probability density in the limit of in-
finitely many oscillators. Applications of the Kuramoto
model are considered in Section VII. They include neu-
ral networks, Josephson junctions and laser arrays, and
chemical oscillators. These applications are often directly
inspired by the original model, share its philosophy and
represent an additional step to develop new ideas. The
last Section contains our conclusions and discusses in-
teresting open problems and hints for future work. The
Appendices are devoted to technical issues referred to in
the text.

II. THE KURAMOTO MODEL

The Kuramoto model (thereafter called KM) consists
of a population of N coupled phase oscillators, θi(t), hav-
ing natural frequencies ωi distributed with a given prob-
ability density g(ω) and whose dynamics is governed by

θ̇i = ωi +
N
∑

j=1

Kij sin(θj − θi), i = 1, . . . , N. (1)

Thus each oscillator tries to run independently at its own
frequency while the coupling tends to synchronize it to
all the others. By making a suitable choice of a rotating
frame, θi → θi − Ωt, in which Ω is the first moment of
g(ω), we can transform Eq. (1) to an equivalent system
of phase oscillators whose natural frequencies have zero
mean. When the coupling is sufficiently weak the oscilla-
tors run incoherently whereas beyond a certain threshold
collective synchronization emerges spontaneously. Many
different models for the coupling matrix Kij have been
considered such as nearest-neighbor coupling, hierarchi-
cal coupling, random long-range coupling or even state
dependent interactions. All of them will be discussed
throughout the review.

In this Section, we introduce the Kuramoto model with
mean-field coupling among phase oscillators. For this
model, synchronization is conveniently measured by an
order parameter. In the limit of infinitely many oscil-
lators, N = ∞, the modulus of the order parameter
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vanishes if the oscillators are out of synchrony, and it is
positive in synchronized states. Firstly, we present Ku-
ramoto’s calculation of oscillator partial synchronization
and its bifurcation from incoherence, a state in which the
oscillator phase takes on values on the interval [−π, π]
with equal probability. Secondly, the stability of inco-
herence is analyzed in the limit as N =∞. For coupling
constant K < Kc, incoherence is neutrally stable because
the spectrum of the operator governing its linear stability
lies on the imaginary axis. This means that disturbances
from incoherence decay similarly to the Landau damp-
ing in plasmas. For K > Kc and unimodal distributions
of oscillator intrinsic frequencies, one eigenvalue appears
and becomes positive. The partially synchronized state
bifurcates from incoherence at K = Kc, but a rigorous
proof of its stability is still missing. Lastly, finite size
effects (N < ∞) on oscillator synchronization are dis-
cussed.

A. Stationary synchronization for mean-field coupling

The original analysis of synchronization by Kuramoto
(Kuramoto, 1975, 1984) dealt with Eq. (1) in the case of
mean-field coupling, Kij = K/N > 0. Then the model
(1) can be written in a more convenient form defining the
(complex-valued) order-parameter

reiψ =
1

N

N
∑

j=1

eiθj . (2)

Here r(t) with 0 ≤ r(t) ≤ 1 measures the phase coherence
of the oscillators, and ψ(t) measures the average phase.
With this definition, Eq. (1) becomes

θ̇i = ωi +Kr sin(ψ − θi), i = 1, 2, . . . , N, (3)

and it is clear that each oscillator is coupled to the com-
mon average phase ψ(t) with coupling strength given by
Kr. The order parameter (2) can be rewritten as

reiψ =

∫ π

−π

eiθ





1

N

N
∑

j=1

δ(θ − θj)



 dθ. (4)

In the limit of infinitely many oscillators, they may be
expected to be distributed with a probability density
ρ(θ, ω, t) so that the mean (2) becomes an average over
phase and frequency, namely,

reiψ =

∫ π

−π

∫ ∞

−∞

eiθ ρ(θ, ω, t) g(ω) dθdω. (5)

This equation illustrates the use of the order parame-
ter to measure oscillator synchronization. If K → 0,
θi ≈ ωit + θi(0), the oscillators rotate at angular fre-
quencies given by their own natural frequencies, and
θ ≈ ωt in Eq. (5). Then r → 0 as t → ∞ accord-
ing to the Riemann-Lebesgue lemma, and the oscillators

are not synchronized. In the limit of strong coupling,
K → ∞, the oscillators become synchronized to their
mean phase, θi ≈ ψ, and Eq. (5) implies r → 1. For
intermediate couplings, Kc < K < ∞, part of the oscil-
lators are phase-locked (θ̇i = 0), and part are rotating
out of synchrony with the locked oscillators. This state
of partial synchronization yields 0 < r < 1, and will
be further explained below. Thus synchronization in the
mean-field KM (with N = ∞) is revealed by a non-zero
value of the order parameter. The concept of order pa-
rameter as a measure of synchronization is less useful
for models with short-range coupling. In these systems,
other concepts are more appropriate to study oscillator
synchronization: global synchronization and clustering
(Strogatz and Mirollo, 1988a,b). Global synchronization

still means that all oscillators are phase-locked: θ̇i = 0.
Clustering means that there is a finite fraction of the os-
cillators having the same frequency (frequency synchro-
nization) or, more generally, having the same average
frequency ω̃i, defined by

ω̃i = lim
t→∞

1

t

∫ t

0

θ̇i dt, (6)

while the other oscillators may be out of synchrony. In
systems with short-range coupling, more complex situa-
tions can happen. For example, the phases of a fraction of
the oscillators can change at the same speed (and there-
fore partial synchronization occurs), while different os-
cillator groups have different speeds (and therefore their
global order parameter is zero and incoherence results).
See Section IV for details.

A continuity equation for the oscillator density can be
found by noting that each oscillator in Eq. (1) moves
with an angular or drift velocity vi = ωi+Kr sin(ψ−θi).
Therefore the one-oscillator density obeys the continuity
equation

∂ρ

∂t
+

∂

∂θ
{[ω +Kr sin(ψ − θ)] ρ} = 0, (7)

to be solved together with (5), with the normalization
condition

∫ π

−π

ρ(θ, ω, t) dθ = 1, (8)

and an appropriate initial condition. The system of
equations (5) - (8) has the trivial stationary solution
ρ = 1/(2π), r = 0, corresponding to an angular dis-
tribution of the oscillators with equal probability in the
interval [−π, π]. The oscillators then may run incoher-
ently, as explained before, and therefore the trivial solu-
tion is also called the incoherent solution, or simply, in-
coherence. Let us now try to find a simple solution corre-
sponding to oscillator synchronization. In the strong cou-
pling limit, we have global synchronization (phase lock-
ing), so that all oscillators move with the same phase,
θi = ψ, which yields r = 1. For a finite coupling, we
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may have a lesser degree of synchronization with a sta-
tionary amplitude 0 < r < 1. How can we achieve this
smaller value of the amplitude? A typical oscillator mov-
ing with velocity v = ω−Kr sin(θ− ψ) will become sta-
bly locked at an angle such that: Kr sin(θ− ψ) = ω and
−π/2 ≤ (θ − ψ) ≤ π/2. All such oscillators are locked
in the natural laboratory frame of reference. Oscillators
with frequencies satisfying |ω| > Kr cannot be locked.
They rotate out of synchrony with the locked oscillators,
and their stationary density obeys vρ = C (constant) ac-
cording to Eq. (7). We have obtained a stationary state
of partial synchronization, in which part of the oscillators
are locked at a fixed phase while all others are rotating
out of synchrony with them. The corresponding station-
ary density is therefore:

ρ =

{

δ
(

θ − ψ − sin−1( ω
Kr )

)

H(cos θ), |ω| < Kr,
C

|ω−Kr sin(θ−ψ)| elsewhere.
(9)

Here H(x) = 1 if x > 0 and H(x) = 0 otherwise is
the Heaviside unit step function. Notice that we may
equivalently write ρ =

√
K2r2 − ω2 δ(ω − Kr sin(θ −

ψ))H(cos θ) for−Kr < ω < Kr. The normalization con-
dition

∫ π

−π
eiθρ(θ, ω, t) dθ = 1 for each frequency yields

C =
√

ω2 − (Kr)2/(2π).
We can now calculate the order parameter in the state

of partial synchronization by using (5) and (9):

r =

∫ π/2

−π/2

∫ ∞

−∞

ei(θ−ψ)δ
(

θ − ψ − sin−1(
ω

Kr
)
)

g(ω)dθdω

+

∫ π

−π

∫

|ω|>Kr

ei(θ−ψ)
C g(ω)

|ω −Kr sin(θ − ψ)|dθdω (10)

Let us assume that g(ω) = g(−ω). Then the symmetry
ρ(θ + π,−ω) = ρ(θ, ω) implies that the second term in
this equation is zero. The first term is simply

r =

∫

|ω|<Kr

cos
(

sin−1(
ω

Kr
)
)

g(ω) dω

=

∫ π/2

−π/2

cos θ g(Kr sin θ)Kr cos θ dθ,

that is,

r = Kr

∫ π/2

−π/2

cos2 θ g(Kr sin θ) dθ. (11)

This equation has always the trivial solution r = 0 cor-
responding to incoherence, ρ = (2π)−1. However, it also
has a second branch of solutions, corresponding to the
partially synchronized phase (9), satisfying

1 = K

∫ π/2

−π/2

cos2 θ g(Kr sin θ) dθ. (12)

This branch bifurcates continuously from r = 0 at a value
K = Kc obtained by setting r = 0 in (12), which yields

Kc = 2/[πg(0)]. This formula and the argument leading
to it were first found by Kuramoto (1975). The example
of a Lorentzian frequency distribution,

g(ω) =
γ/π

γ2 + ω2
, (13)

allows explicit calculations of the integrals we have been
finding and was already used by Kuramoto (1975). Using

Eq. (13), he found the exact result r =
√

1− (Kc/K) for
all K > Kc = 2γ.

For a general frequency distribution g(ω), an expansion
of the right side of Eq. (11) in powers of Kr yields the
scaling law

r ∼
√

8(K −Kc)

−K3
c g
′′(0)

, (14)

as K → Kc. Recall the definitions of the symbol ∼
(asymptotic) comparing two functions or one function
and an asymptotic series in the limit as ε→ 0:

f(ε) ∼ g(ε)⇔ lim
ε→0

f(ε)

g(ε)
= 1, (15)

f(ε) ∼
∞
∑

k=0

εkfk ⇔ [f(ε)−
m
∑

k=0

εkfk]¿ εm,∀m. (16)

According to (14), the partially synchronized phase bi-
furcates supercritically for K > Kc if g′′(0) < 0, and
subcritically for K < Kc if g′′(0) > 0, cf. Figs. 1(a) and
(b). Notice that Kuramoto’s calculation of the partially
synchronized phase does not indicate whether this phase
is stable, either globally or even locally.

B. Stability of solutions and open problems

1. Synchronization in the limit N = ∞

Kuramoto’s original construction of incoherent and
partially synchronized phases was purely stationary and
did not establish their stability properties. The linear
stability theory of incoherence was published by Stro-
gatz et al. (1992) and interesting work on the unsolved
problems of nonlinear stability theory has been carried
out by Balmforth and Sassi (2000).

To ascertain the stability properties of the incoherent
and partially synchronized solutions, it is better to work
with the probability density ρ(θ, ω, t). Let us explain
first what is known in the limit of infinitely many oscil-
lators described by Equations (5) - (7). The linearized
stability problem for this case is obtained by inserting
ρ = 1/(2π) + µ̃(θ, t;ω) with µ̃(θ, t;ω) = exp(λt)µ(θ, ω)
in (5) - (8), and then ignoring terms nonlinear in µ:

−ω∂µ
∂θ

+
K

2π
Re e−iθ

∫ π

−π

∫ +∞

−∞

eiθ
′

µ(θ′, ω′)

×g(ω′)dθ′dω′ = λµ, (17)
∫ π

−π

µ(θ, ω) dθ = 0. (18)
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If Reλ < 0 for all possible λ, incoherence is linearly
stable, but it is unstable if some admissible λ has pos-
itive real part. The periodicity condition implies µ =
∑∞
n=−∞ bn(ω)e

inθ, which inserted in Eq. (17) yields

(λ+ inω) bn =
K

2
(δn,1 + δn,−1) 〈1, bn〉. (19)

Here we have used that b−n = bn (A stands for the com-
plex conjugate of A), and defined the scalar product

〈ϕ,ψ〉 = 1

2π

∫ π

−π

∫ +∞

−∞

ϕ(θ, ω)ψ(θ, ω) g(ω) dω dθ. (20)

Eq. (19) shows that λn(ω) = −inω, with n =
±1,±2, . . ., belong to the continuum spectrum of the
linear stability problem, provided ω is in the support
of g(ω). In the case of an unimodal natural frequency
distribution (g(ω) is even and non-increasing for posi-
tive ω), Strogatz et al. (1992) have shown that the in-
coherent solution is neutrally stable with the previously
mentioned continuum spectrum on the imaginary axis if
K < Kc = 2/[πg(0)]. For K > Kc, a positive eigen-
value appears (Strogatz et al., 1992). Although incoher-
ence is neutrally stable for K < Kc, the linearized or-
der parameter R(t) = 〈e−iθ, µ̃(θ, t;ω)〉 decays with time.
This decay, due to phase mixing of integral superposi-
tion of modes in the continuum spectrum, is analogous
to Landau damping in plasmas (Strogatz et al., 1992).
We may understand this by solving the linearized prob-
lem with initial condition µ̃(θ, 0;ω) = 2eiθ/[π(ω2+4)]+cc
for g(ω) = [π(1 + ω2)]−1 and K = 1. The calculations
can be carried out as indicated by Strogatz et al. (1992)
and the result is

µ̃(θ, t;ω) =

(

18

ω2 + 4
− 5

2iω − 1
+

1

2− iω

)

ei(θ−ωt)

9π

+
5eiθ−t/2

9π(2iω − 1)
+

eiθ−2t

9π(2− iω) + cc, (21)

R(t) =
10

9
e−t/2 − 4

9
e−2t. (22)

(Balmforth and Sassi, 2000). The function µ̃ contains a
term proportional to e−iωt, which is non-decaying and
non-separable and it does not correspond to a normal
mode. As time elapses, this term becomes progressively
more crenellated and, through increasing cancellations,
integral averages of µ̃ decay. Besides this, Eq. (21) con-
tain two exponentially decaying terms that contribute to
the order parameter (22). If g(ω) has bounded support,
the order parameter may decay more slowly, algebraically
with time (Strogatz et al., 1992).

Numerical calculations forK < Kc show that the order
parameter r(t) of the full KM behaves similarly to that
of the linearized equation (Balmforth and Sassi, 2000).
However, the probability density ρ may develop peaks
in the (θ, ω) plane for intermediate times before decay-
ing to incoherence as t → ∞. See Fig. 6 of (Balmforth
and Sassi, 2000). For K > Kc, Balmforth and Sassi

(2000) show that the probability density evolves to a dis-
tribution that corresponds to Kuramoto’s partially syn-
chronized phase given by Eq. (9). Balmforth and Sassi
(2000) obtained this result by numerically simulating the
full KM with K > Kc. They also carried out different
incomplete exact and perturbation calculations :

• Exact solution of the KM model for g(ω) = δ(ω).

• Attempted approximation of the solution for other
frequency distributions near Kc assuming an unre-
alistic r that depends on ω.

• Regularizing the KM by adding a diffusive term to
Eq. (7), and constructing the stationary probabil-
ity density in the limit of vanishing diffusivity by
means of boundary layer methods. This regular-
ization corresponds to adding white noise forcing
terms to the KM (1). The corresponding equa-
tion for the probability density is (7) with a diffu-
sive term in its right hand side, which is called the
nonlinear Fokker-Planck equation (NLFPE). The
NLFPE will be studied in Section III.

• A mixture of multiple scales and boundary layer
ideas in the same limit of vanishing diffusivity of
the NLFPE but for K near values corresponding
to the bifurcation of synchronized states from inco-
herence.

In the small diffusivity limit of the NLFPE, D → 0+,
the calculations by Balmforth and Sassi (2000) indicate
that the probability density of the KM with unimodal
frequency distribution and K > Kc tends toward a sta-
tionary phase which is concentrated around the curve
ω = Kr sin θ for ω2 < K2r2. The peak of the probability
density is reached at

√

Kr/(2πD). It would be useful
to have consistent perturbation results for the evolution
of the probability density near bifurcation points in the
small noise limit D → 0+ of the NLFPE and also for
the KM with D = 0. Both cases are clearly different as
shown by the fact that the synchronized phase is a dis-
tribution for the case D = 0 and a smooth function for
D > 0. In particular, it is clear that Kuramoto’s partial
synchronization solution (9) (involving a delta function)
cannot be obtained by small amplitude bifurcation cal-
culations about incoherence, the laborious attempt by
Crawford and Davies (1999) notwithstanding.

Thus understanding synchronization in the hyperbolic
limit of the mean-field KM (with N → ∞) requires the
following. Firstly, a fully consistent asymptotic descrip-
tion of the synchronized phase and the synchronization
transition as D → 0+ should be found. As indicated by
Balmforth and Sassi (2000), the necessary technical work
involves boundary layers and matching. These calcula-
tions could be easier if one works directly with the equa-
tions for ln ρ, as suggested in the early paper (Bonilla,
1987). Secondly and most likely harder, the same prob-
lems should be tackled for D = 0, where the stable syn-
chronized phase is expected to be Kuramoto’s partially
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synchronized state (which is a distribution, not a smooth
function). Thirdly, the problem of proving stability of
the partially synchronized state remains open, and its
solution could lead to interesting results in Analysis as
pointed out by Strogatz (2000).

2. Finite size effects

Another way to regularize the hyperbolic problem (5)
- (8) is to study a large population of finitely many phase
oscillators, which are globally coupled to its mean field.
The analysis of this large system may shed some light
on the stability properties of the partially synchronized
state. The question can be posed as follows. What is
the influence of finite size effects on Kuramoto’s partially
synchronized state as N →∞?

One issue with kinetic equations describing popula-
tions of infinitely many elements is always that of finite
size effects. This issue was already raised by Zermelo’s
paradox, namely that a system of finitely many particles
governed by reversible classical Hamiltonian mechanics
was bound to have recurrences according to Poincare’s
recurrence theorem. Then this system would come back
arbitrarily close to its initial condition infinitely many
times. Boltzmann’s answer to this paradox was that the
recurrence times would become infinite as the number
of particles tend to infinite. Simple model calculations
illustrate the following fact. A non-recurrent kinetic de-
scription for a system of infinitely many particles ap-
proximates the behavior of a system with a large but
finite number of particles during finite time intervals, af-
ter which recurrences set in (Keller and Bonilla, 1986).

The same behavior denoting the non-commutativity of
the limits N →∞ and t→∞ is also present in the KM.
For instance, Hemmen and Wreszinski (1993) used a Lya-
punov function argument to point out that a population
of finitely many Kuramoto oscillators would reach a sta-
tionary state as t→∞. Our derivation of the NLFPE in
Appendix A suggests that fluctuations scale as N−

1
2 as

N → ∞, a scaling that, for the order parameter, is con-
firmed by numerical simulations (Daido, 1990; Kuramoto
and Nishikawa, 1987).

More precise theoretical results are given by DaiPra
and den Hollander (1996) for rather general mean field
models that include Kuramoto’s and also spin systems.
Their paper is hard to read because of the cumbersome
probabilistic notation they employ. In any case, DaiPra
and den Hollander (1996) obtain a central limit theorem
that characterizes fluctuations about the one-oscillator
probability density for N =∞ as Gaussian fields having
a certain covariance matrix and scaling as N−

1
2 . Near

bifurcation points, a different scaling is to be expected,
by analogy with Dawson’s results for related mean-field
models (Dawson, 1983). Daido (1987b, 1989) explored
this issue by dividing the oscillator phase and the order
parameter (2) in two parts: its limit as N = ∞ and a
fluctuating part (which was regarded as small). In the

equations for the phase fluctuations, only terms linear in
the fluctuation of the order parameter were retained. The
result was then inserted in (2) and a self-consistent equa-
tion for the fluctuation of the order parameter was found.
For unimodal frequency distributions, Daido found the
scaling [(Kc−K)N ]−

1
2 for the rms fluctuation of the or-

der parameter as K → Kc− (from below). For coupling
constants larger than Kc, he found that the fluctuation
of the order parameter was consistent with the scaling
(K − Kc)

− 1
8N−

1
2 as K → Kc+ (Daido, 1989). This

part of Daido’s analysis seems less reliable because the
basic state in the limit N = ∞ is Kuramoto’s partially
synchronized state and an additional ansatz on the fluc-
tuations about this state had to be made. Balmforth
and Sassi (2000) carried out numerical explorations of fi-
nite size effects and discussed how sampling the natural
frequency distribution influences the one-oscillator den-
sity. In particular, they find that sampling may give rise
to unexpected effects, such as time-periodic synchroniza-
tion even for populations with unimodal g(ω) (for which
these effects do not appear in the limit N =∞). Further
work in this area would be interesting, in particular find-
ing a formulation similar to Daido’s fluctuation theory for
the order parameter but for the one-oscillator probability
density instead.

III. THE MEAN FIELD MODEL INCLUDING WHITE

NOISE FORCES

In this Section, we analyze the mean-field KM with
white noise forcing terms, which is easier to analyze than
its zero noise limit, the usual KM. As a result, our un-
derstanding of the noisy model is more complete. In
the limit of infinitely many oscillators, the one-oscillator
probability density obeys a parabolic equation (the non-
linear Fokker-Planck equation), and not the hyperbolic
equation (7) which is harder to study. The NLFPE is
derived in Appendix A. The simplest solution of the
NLFPE is also ρ = (2π)−1, corresponding to incoherent
motion of the oscillators. Firstly, we shall study its lin-
ear stability properties and show that it is linearly stable
for sufficiently small coupling constant, unlike what hap-
pens in the KM for which incoherence is neutrally stable
if K < Kc. For values of the coupling constant above
a critical one, incoherence becomes linearly unstable as
one or more eigenvalues in the discrete spectrum of the
linearized problem acquire a positive real part. Then dif-
ferent bifurcation scenarios and phase diagrams occur de-
pending on the distribution of natural frequencies g(ω).
Synchronized phases can be constructed as they bifur-
cate from incoherence by different singular perturbation
techniques. We use a particularly powerful technique,
the Chapman-Enskog method, to study in detail these
synchronization transitions for a bimodal frequency dis-
tribution which has a very rich phase diagram.
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A. The nonlinear Fokker-Planck equation

If we add white noise forcing terms to the mean-field
KM, the result is the system of stochastic differential
equations:

θ̇i = ωi+ξi(t)+
K

N

N
∑

j=1

sin(θj−θi), i = 1, . . . , N. (23)

Here ξi are independent white noise processes with ex-
pected values

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dδ(t− t′) δij . (24)

Introducing the order parameter (4), the model equations
(23)-(24) can be written as follows:

θ̇i = ωi +Kr sin(ψ − θi) + ξi(t), i = 1, 2, . . . , N. (25)

The Fokker-Planck equation for the one-oscillator prob-
ability density ρ(θ, ω, t) corresponding to this stochastic
equation is

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂

∂θ
(vρ), (26)

v(θ, ω, t) = ω +Kr sin(ψ − θ), (27)

provided the order parameter reiψ is a known function of
time and we ignore the subscript i. In the limit N →∞
and provided all oscillators are initially independent, we
can derive Eq. (5):

reiψ =

∫ π

−π

∫ +∞

−∞

eiθρ(θ, ω, t)g(ω) dθ dω, (28)

which together with (26) constitute the NLFPE (see Ap-
pendix A for details). Notice that Equation (26) becomes
(7) if D = 0. The system (26) - (28) is to be solved with
the normalization condition

∫ π

−π

ρ(θ, ω, t)dθ = 1, (29)

the periodicity condition, ρ(θ+ 2π, ω, t) = ρ(θ, ω, t), and
an appropriate initial condition for ρ(θ, ω, 0). The nat-
ural frequency distribution g(ω) is a non-negative even
function to be considered later.

B. Linear stability analysis of incoherence

The simplest solution of the NLFPE is ρ0 = 1/(2π),
with order parameter r = 0, which represents incoher-
ent or non-synchronized motion of all oscillators. A
natural method to study how synchronized phases with
r > 0 may issue from incoherence is to analyze its
linear stability as a function of the parameters of the
model, and then construct the possible solutions bifur-
cating from it. As explained in the previous Section,

this program was already started by Kuramoto in the
hyperbolic case D = 0. In the parabolic case D > 0,
the first results were obtained by Strogatz and Mirollo
(1991). The linearized stability problem for this case
may be obtained by inserting ρ = 1/(2π)+ µ̃(θ, t;ω) with
µ̃(θ, t;ω) = exp(λt)µ(θ, ω) in (26) and (28), and then ig-
noring terms nonlinear in µ:

D
∂2µ

∂θ2
− ω∂µ

∂θ
+ K Re

(

e−iθ〈e−iθ′ , µ〉
)

= λµ, (30)
∫ π

−π

µ(θ, ω) dθ = 0. (31)

Incoherence is linearly stable if it is always Reλ < 0, and
it is unstable if some admissible λ has positive real part.
The periodicity condition implies µ =

∑∞
n=−∞ bn(ω)e

inθ,
which inserted in Eq. (30) yields

(λ+ inω + n2D) bn =
K

2
(δn,1 + δn,−1) 〈1, bn〉. (32)

Here we have used that b−n = bn, and the scalar product
(20). Similarly to the KM, the numbers

λn(ω) = −Dn2 − inω, n = ±1,±2, . . . , (33)

with ω belonging to the support of g(ω), constitute the
continuous spectrum of the linear stability problem. In
fact, a nonhomogeneous linear problem with a homoge-
neous part given by (32) cannot be solved for an arbi-
trary source term if λ = λn. Notice that the continuous
spectrum lies to the left side of the imaginary axis if
D > 0 (b0 = 0 because of the normalization condition
(31)). Then the “eigenvalues” (33) have negative real
parts (and therefore correspond to stable modes).

The case n = ±1 is special for two reasons. Firstly,
the right hand side of Eq. (32) is no longer zero and we
obtain b1 = (K/2)〈1, b1〉/(λ + iω + D). Then, provided
〈1, b1〉 6= 0, we find the following equation (Strogatz and
Mirollo, 1991):

K

2

∫ +∞

−∞

g(ν)

λ+D + iν
dν = 1. (34)

The solutions of this equation are the eigenvalues of the
linear stability problem (30) (independent of ω). Since
the continuous spectrum lies on the left half plane, the
discrete spectrum determines the linear stability of the
incoherence solution. Secondly, the NLFPE and there-
fore the linear stability equation (30) are invariant under
the reflection symmetry, θ → −θ, ω → −ω because g(ω)
is even. This implies that there are two independent
eigenfunctions corresponding to each simple solution λ
of (34):

µ1(θ, ω) =
K
2 e

iθ

D + λ+ iω
, µ2(θ, ω) =

K
2 e

−iθ

D + λ− iω . (35)

Notice that these two linearly independent eigenfunctions
are related by the reflection symmetry. When λ is real,
these eigenfunctions are complex conjugate of each other.
When λ is a multiple solution of Eq. (34), the eigenvalue
λ is no longer semisimple (Crawford, 1994).
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C. The role of g(ω): Phase diagram of the Kuramoto

model

The mean-field KM for infinitely many oscillators may
have different stable solutions (also called phases) de-
pending on the natural frequency distribution g(ω), the
values of the coupling constant K, and the diffusivity
D. Many phases appear as stable solutions bifurcating
from known particular solution that loses its stability
at a critical value of a parameter. The simplest solu-
tion of the NLFPE is incoherence, and therefore much
effort has been devoted to studying its stability proper-
ties depending on K, D and parameters characterizing
g(ω). As explained in Section II, we can always consider
that the first moment of g(ω) is zero, shifting the oscil-
lator phases if necessary. Most of the work reported in
the literature refers to even g(ω), with g(−ω) = g(ω).
In addition, if g(ω) has a single maximum at ω = 0,
we call it a unimodal frequency distribution. For gen-
eral even unimodal frequency distributions, Strogatz and
Mirollo (1991) proved that the eigenvalue equation (34)
has at most one solution, which is necessarily real and
it satisfies λ + D > 0. Explicit calculations can be
carried out for discrete (g(ω) = δ(ω)) and Lorentzian
(g(ω) = (γ/π)/(ω2 + γ2)) frequency distributions. We
find λ = −D − γ + K/2, with γ = 0 for the discrete
distribution. Clearly, incoherence is linearly stable for
points (K,D) above the critical line D = −γ+K/2, and
unstable for points below this line, cf. Fig. 1(c). In terms
of the coupling constant, incoherence is linearly stable if
K < Kc ≡ 2D + 2γ, and unstable otherwise. This con-
clusion also holds for D = 0 in the general unimodal case,
for which Strogatz and Mirollo (1991) proved Kuramoto’s
result Kc = 2/[πg(0)] (Kc = 2γ in the Lorentzian exam-
ple). In the case D = 0, the stability analysis is compli-
cated by the fact that the continuous spectrum lies on
the imaginary axis.

For even or asymmetric multimodal frequency distri-
butions, the eigenvalues may be complex (Bonilla et al.,
1992). The simple discrete bimodal distribution g(ω) =
[δ(ω − ω0) + δ(ω + ω0)]/2 has been studied extensively
(Acebrón and Bonilla, 1998; Bonilla et al., 1992, 1998b;
Crawford, 1994). In this case, Eq. (34) has two solu-

tions λ± = −D + [K ±
√

K2 − 16ω20 ]/4. The stabil-
ity boundaries for the incoherent solution can be cal-
culated by equating to zero the greatest of Reλ+ and
Reλ−. The resulting phase diagram (K,D) is depicted
in Fig. 2 (Bonilla et al., 1992). If the coupling is small
enough (K < 2D), incoherence is linearly stable for
all ω0, whereas it is always unstable if the coupling is
strong enough, K > 4D. For intermediate couplings,
2D < K < 4D, incoherence may become unstable in two
different ways. For ω0 < D, λ± are real and incoherence
is linearly stable provided K < Kc = 2D [1 + (ω0/D)2],
and unstable if K > Kc. For ω0 > D, λ± are complex
conjugate and they have zero real parts at Kc = 4D.

What happens in regions of the phase diagram where
incoherence is unstable? Typically there appear sta-

ble solutions with r > 0, which correspond to syn-
chronized phases. As discussed below, their study has
been made by means of bifurcation theory for param-
eter values close to critical lines of the phase diagram
where incoherence is neutrally stable. These analytical
results are supplemented by numerical solution of the
NLFPE far from critical lines or by numerical continua-
tion of synchronized solutions bifurcating from incoher-
ence (Acebrón et al., 2001a). Besides this, Acebrón and
Bonilla (1998) found a singular perturbation method that
describes synchronization for multimodal g(ω) arbitrar-
ily far from critical lines. The idea is to consider a g(ω)
that has m maxima located at ω0Ωl, where ω0 → ∞:
g(ω)dω ∼

∑m
l=1 αlδ(Ω − Ωl)dΩ, and then use a method

of multiple scales. The main result is that the solution
of the NLFPE splits (at lowest order) in l phases, each
obeying a NLFPE with a discrete unimodal frequency
distribution centered at Ωl and a coupling constant αlK.
Depending on the value of αlK, the lth phase is either
synchronized or incoherent. The order parameter is sum
of the order parameters of the corresponding phases, each
with weight αl. If first order terms are also included,
the results of the multiple scales method describe rather
well incoherence and oscillator synchronization for mul-
timodal frequency distributions (both with or without
reflection symmetry), even for relatively low values of
ω0 (Acebrón and Bonilla, 1998). Related work on mul-
timodal frequency distributions include (Acebrón et al.,
1998, 2001a). An interesting open problem is to gener-
alize the method of Acebrón and Bonilla (1998) so that
both the location and the width of the peaks in g(ω) are
taken into account.

D. Synchronized phases as bifurcations from incoherence,

D 6= 0

At the parameter values for which incoherence ceases
to be linearly stable, synchronized phases (stable solu-
tions of the NLFPE ρ(θ, ω, t) with r > 0) may bifurcate
from it. In this rather technical subsection, we shall con-
struct these bifurcating solution branches in the vicin-
ity of the bifurcation point by means of the Chapman-
Enskog method, as explained by Bonilla (2000). We
shall study the KM model with the discrete bimodal
natural frequency distribution, whose phase diagram is
depicted in Fig. 2. The stability boundaries in this
rich phase diagram separate regions where incoherence
is unstable to either stationary modes if ω0 < D, and
K > Kc = 2D [1 + (ω0/D)2], or to oscillatory modes if
ω0 > D, and K > Kc = 4D. The bifurcating solutions
are as follows:

1. If ω0 < D/
√
2, the synchronized phases bifurcating

from incoherence are stationary and stable. The bi-
furcation is supercritical: the synchronized phases
exist for K > Kc.

2. If D/
√
2 < ω0 < D, the bifurcation is subcritical:
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an unstable branch of synchronized stationary solu-
tions bifurcates for K < Kc, reaches a limit point
at a smaller coupling constant, and there it coa-
lesces with a branch of stable stationary stationary
solutions having larger r.

3. If ω0 > D, the synchronized phases bifurcating
from incoherence are oscillatory and have a time-
periodic order parameter. Two branches of so-
lutions bifurcate supercritically at Kc = 4D: a
branch of unstable rotating waves and a branch of
stable standing waves.

4. At the special point ω0 = D/
√
2 and Kc = 3D,

the bifurcation to stationary solutions changes from
super to subcritical. Near this point, we can ex-
tend our bifurcation analysis to describe analyti-
cally how the subcritical branch of stationary so-
lutions turns into a branch of stable solutions at a
limit point.

5. At the special point ω0 = D and Kc = 4D, which
we call the tricritical point, a line of Hopf bifurca-
tions coalesces with a line of stationary bifurcations
and a line of homoclinic orbits. The study of the
corresponding O(2)-symmetric Takens-Bogdanov
bifurcation indicates how the oscillatory branches
die at a homoclinic orbit of an unstable stationary
solution.

The Chapman-Enskog method is flexible enough to ana-
lyze all these bifurcations and, at the same time, sim-
pler than alternatives such as constructing the center
manifold (Crawford, 1994). Except at the two spe-
cial bifurcation points, the simpler method of multiple
scales explained in Appendix B yields the same results
(Bonilla et al., 1992, 1998b). The Chapman-Enskog
method (Chapman and Cowling, 1970) was originally em-
ployed by Enskog (1917) in the study of the hydrody-
namic limit of the Boltzmann equation. It becomes the
averaging method for nonlinear oscillations (Bogoliubov
and Mitropolsky, 1961), and it is equivalent to assuming
a center manifold in bifurcation calculations (Crawford,
1994).

1. Bifurcation of a synchronized stationary phase

Let ω0 < D and consider K close to its critical value
Kc = 2D [1 + (ω0/D)2]. The largest eigenvalue satisfies
λ ∼ (K −Kc)/[2(1− ω2/D2)] as K → Kc. As indicated
in Eq. (35), there are two eigenfunctions associated to
this eigenvalue, eiθ/(D + iω) and its complex conjugate.
Except for terms decaying exponentially fast in time, the
solution of the linearized stability problem at K = Kc

is therefore Aeiθ/(D + iω)+cc, where A is a constant
and cc means complex conjugate of the preceding term.
Let us now suppose that K = Kc + ε2K2, where ε is a
positive small parameter and this scaling for K will be
explained later. The probability density corresponding to

initial conditions close to incoherence will have the form
ρ ∼ (2π)−1 + εA(τ) eiθ/(D + iω)+cc. The correction to
incoherence will be close to the solution of the linearized
stability problem, but now we can assume that the com-
plex constant A varies slowly with time. How slowly?
The linearized solution depends on time through the fac-
tor eλt, and λ = O(K − Kc) = O(ε2), so that we can
assume τ = ε2t. Then the probability density can be
written as

ρ(θ, ω, t; ε) ∼ 1

2π

{

1 + ε
A(τ ; ε)eiθ

D + iω
+ cc

+

∞
∑

n=2

εn ρn(θ, t, ω;A,A)

}

∼ 1

2π
exp

{

ε
A(t; ε)eiθ

D + iω
+ cc

+

∞
∑

n=2

εn σn(θ, t, ω;A,A)

}

. (36)

The corrections to 1/(2π) can be telescoped in an ex-
ponential with small argument, which ensures that the
probability density is always positive. Typically, the ex-
ponential ansatz increases the parameter region in which
the asymptotic expansion is a good approximation to the
probability density. The functions σn and ρn are related
by the equations

σ1 = ρ1 =
A(t; ε)eiθ

D + iω
+ cc, ρ2 = σ2 +

σ21
2
,

ρ3 = σ3 + σ1σ2 +
σ31
3!
,

ρ4 = σ4 + σ1σ3 +
σ22
2

+
σ21σ2
2

+
σ41
4!
, (37)

and so on. They depend on a fast scale t corresponding to
stable exponentially decaying modes, and on a slow time
scale through their dependence on A. All terms in (36)
which decrease exponentially in time will be omitted. In
(36), the slowly varying amplitude A obeys the equation

dA

dτ
=

∞
∑

n=0

εn F (n)(A,A). (38)

The functions F (n)(A,A) are determined from the con-
ditions that ρn or σn be bounded as t→∞ (on the fast
time scale), for fixed A, and periodic in θ. Moreover, they
cannot contain terms proportional to the solution of the
linearized homogeneous problem, e±iθ/(D± iω), because
all such terms can be absorbed in the amplitudes A or A
(Bonilla, 2000). These two conditions imply that

〈e−iθ, ρn〉 = 0, n > 1. (39)

The normalization condition (29) together with (36) im-
ply

∫ π

−π

ρn(θ, t, ω;A,A) dθ = 0, n ≥ 2. (40)
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To find ρn, we substitute (36) and (38) in (26) and
(28) and use (39) to simplify the result. This yields the
following hierarchy of linear nonhomogeneous equations:

Lρ2 ≡ (∂t −D∂2θ + ω∂θ)ρ2 +Kc∂θ

{

Ime−iθ〈e−iθ′ , ρ2〉
}

= −Kc∂θ

{

ρ1Im e−iθ〈e−iθ′ , ρ1〉
}

+ cc, (41)

Lρ3 = − Kc ∂θ

{

ρ2Im e−iθ〈eiθ′ , ρ1〉
}

− K2∂θIm e−iθ〈e−iθ′ , ρ1〉
− F (0) ∂Aρ1 + cc, (42)

and so on. Clearly, ρ1 = A(t) eiθ/(D+ iω)+cc obeys the
linearized stability problem (30) with λ = 0, Lρ1 = 0
up to terms of order ε. Thus it is not obvious that each
linear nonhomogeneous equation of the hierarchy has a
bounded periodic solution. What is the necessary solv-
ability condition to ensure that the linear nonhomoge-
neous equation,

Lρn = h(θ; ρ1, . . . , ρn−1) = Qeiθ + . . . (43)

has a solution of the required features?
To answer this question, we assume that in fact (43)

has a bounded periodic solution of the form ρn = Peiθ+
. . .. Then P is given by

P =
Kc〈1, P 〉
2(D + iω)

+
Q

D + iω
, (44)

wherefrom we obtain the nonresonance condition

〈1, Q

D + iω
〉 = 0, (45)

first found by Bonilla et al. (1992). Notice that we obtain
(45) even if 〈1, P 〉 6= 0. eiθ times the term proportional to
〈1, P 〉 in (44) is a solution of Lρ = 0 and should therefore
be absorbed in the definitions of A and A. This implies
(39).

Inserting ρ1 in the right side of (41), we find

Lρ2 =
2A2

D + iω
e2iθ + cc, (46)

whose solution is

ρ2 =
A2

(D + iω)(2D + iω)
e2iθ + cc. (47)

We see that ρ1 contains odd harmonics and ρ2 contains
even harmonics (a possible θ independent term is omit-
ted in ρ2 because of the normalization condition). A
moment of reflection shows that this is true in general:
ρ2n contains harmonics ei2jθ, j = 0,±1, . . . ,±n, and
ρ2n+1 contains harmonics ei(2j+1)θ, j = −(n+ 1), . . . , n.
The nonlinearity of the NLFPE causes resonant terms
to appear in the equations for ρ2n+1, and they have

to be eliminated by the terms containing F (2n). Then
we can set F (2n+1) = 0 and we only need the scaling
K −Kc = O(ε2). The ultimate reason for these cancel-
lations is of course the O(2) symmetry of our problem:
the reflection symmetry and invariance under constant
rotations, θ → θ + α (Crawford, 1994).

Similarly, the nonresonance condition for (42) yields

F (0) = 〈1, 1

(D + iω)2
〉−1

[

2K2A

K2
c

−〈1, 1

(D + iω)2(2D + iω)
〉A |A|2

]

=
K2A

2
(

1− ω2
0

D2

) −
2
(

1− 2ω2
0

D2

)

A |A|2
(

1− ω2
0

D2

) (

4 +
ω2

0

D2

)

D
. (48)

Keeping this term in (38), we obtain dA/dτ ∼ F (0).
This reduced equation has the stationary solution |A| =
√

(K2D/4)[4 + (ω0/D)2]/[1− 2(ω0/D)2]. The order pa-
rameter corresponding to this solution is

r ∼

√

√

√

√

√

(K −Kc)D
(

4 +
ω2

0

D2

)

K2
c

(

1− 2ω2
0

D2

) , (49)

which was obtained by Bonilla et al. (1992) using a dif-
ferent procedure. The solution (49) exists for K > Kc

(supercritical bifurcation) if ω0 < D/
√
2, whereas it ex-

ists for K < Kc (subcritical bifurcation) if ω0 > D/
√
2.

The amplitude equation (38) implies that the supercriti-
cal bifurcating solution is stable and that the subcritical
solution is unstable.

We can describe the transition from super to subcriti-
cal bifurcation at ω0 = D/

√
2, Kc = 3D, by calculating

F (4) and adding it to the right hand side of (38). As
explained in Appendix C, the result is

dA

dτ
= K2

(

1− ε2K2 − 2
√
2ω2

D

)

A

−4(7K2 − 4
√
2ω2)ε

2

9D2
A |A|2 − 272ε2

171D3
A |A|4. (50)

The stationary solutions of this equation are the pos-
sible stationary synchronized phases. We see that sta-
ble phases bifurcate supercritically for K2 > 0 if K2 >
2
√
2ω2, whereas a branch of unstable stationary solutions

bifurcates subcritically for K2 < 0 if K2 < 2
√
2ω2. This

branch of unstable solutions coalesce with a branch of
stable stationary synchronized phases at the limit point
K2 ∼ −19ε2(7K2 − 4

√
2ω2)

2/612.

2. Bifurcation of synchronized oscillatory phases

The bifurcation at complex eigenvalues can be easily
described by the same method. The main difference is
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that now the different solution of the linearized problem:

ρ1 =
A+(t)

D + i(Ω + ω)
ei(Ωt+θ) + cc

+
A−(t)

D + i(Ω− ω)e
i(Ωt−θ) + cc, (51)

where Ω2 = ω20 −D2, Kc = 4D and the eigenvalues with
zero real part are λ(Kc) = ±iΩ. For the two slowly
varying amplitudes we postulate equations of the form

dA±
dτ
∼

∞
∑

n=0

ε2n F
(2n)
± (A+, A−, A+, A−). (52)

Following the method already explained, the nonreso-
nance conditions for Eq. (42), with σ1 given by Eq. (51),

yield F
(0)
+ and F

(0)
− . The corresponding amplitude equa-

tions are (Bonilla et al., 1998b)

Ȧ+ = αA+ − (β|A−|2 + γ|A+|2)A+,
Ȧ− = αA− − (β|A+|2 + γ|A−|2)A−, (53)

where ˙= d/dτ , and

α =
1

4
− iD

4Ω
, β =

D + i
D2+ω2

0

Ω

K2 (4D2 + ω20)
,

γ =
2(3D2 + 4ω20) + iD

3D2+2ω2
0

Ω

DK2 (9D2 + 16ω20)
. (54)

To analyze the vector amplitude equations (53), we shall
define the new variables

u = |A+|2 + |A−|2, v = |A+|2 − |A−|2. (55)

By using (53), we obtain the following system for u and
v:

u̇ = 2 Re α u− Re(γ + β) u2 − Re(γ − β) v2,
v̇ = 2 Re α v − 2 Re γ uv. (56)

Clearly, u = v or u = −v correspond to travelling wave
(TW) solutions with only one of the amplitudes A± being
different from zero. v ≡ 0 corresponds to standing wave
(SW) solutions: a combination of rotating and counter-
rotating travelling waves with the same amplitude. We
can easily find the phase portrait of Eqs. (56) correspond-
ing to α, β and γ given by Eqs. (54) (see Fig. 3). Up to,
possibly, a constant phase shift, we have the following
explicit solutions

A+(τ) =

√

Re α

Re γ
eiµτ , A−(τ) ≡ 0,

µ = Im α− Im γ

Re γ
Re α (57)

(or A+(τ) ≡ 0 and A−(τ) as A+(τ) above) in the case of
TW solutions, and

A+(τ) = A−(τ) =

√

2Re α

Re (γ + β)
eiντ ,

ν = Im α− Im (γ + β)

Re (γ + β)
Re α (58)

in the case of SW solutions. Notice that both SW
and TW bifurcate supercritically with ‖rSW ‖/rTW > 1.
Re(β + γ) and Reγ are both positive when K2 = 1;
whereas the square roots in (57) and (58) become pure
imaginary if K2 = −1. This indicates that the bifurcat-
ing branches cannot be subcritical. An analysis of the
phase portrait corresponding to (56) shows that the SWs
are always globally stable, while the TWs are unstable.
Such result was first pointed out by Crawford (1994).

3. Bifurcation at the tricritical point

At the tricritical point, K = 4D, ω0 = D, a branch
of oscillatory bifurcating phases coalesces with a branch
of stationary bifurcating phases and a branch of homo-
clinic orbits, in a O(2)-symmetric Takens-Bogdanov bi-
furcation point. Studying the bifurcations in a vicin-
ity of this point tells us how the stable and unstable
branches of oscillatory phases, SW and TW respectively,
end as the coupling is changed. Analyzing transitions
at the tricritical point is a little more complicated be-
cause it requires changing the assumptions on the am-
plitude equation (Bonilla, 2000; Bonilla et al., 1998b).
First of all, at the tricritical point, 〈1, (D + iω)−2〉 =
Re(D + iD)−2 = 0. This innocent looking fact implies
that the term −F (0)∂Aρ1 on the right side of (42) does
not appear in the nonresonance condition and therefore
using the same ansatz as in Eqs. (36) and (38) will not
deliver an amplitude equation. Secondly, the oscillatory
ansatz (51) breaks down too because Ω = 0 at the tricrit-
ical point, and the factor multiplying A− is simply the
complex conjugate of the factor multiplying A+. Thus
there is only one independent complex amplitude and we
are back to Eq. (36) How do we extricate ourselves from
this predicament?

To succeed, we must recognize that there is a basic slow
time scale in this region different from τ . The eigenvalues
with largest real part are

λ = −D +
K

4
+ i

√

ω20 −
(

K

4

)2

= iε

√

2D

(

ω2 −
K2
4

)

+
K2ε

2

4
+O(ε3)

and its complex conjugate, provided K − 4D = K2ε
2,

ω0 − D = ω2ε
2 with ω2 > K2/4. Therefore the time

dependent factors eλt appearing in the solution of the
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linearized problem indicate that disturbances about in-
coherence vary on a slow time scale T = εt near the
tricritical point. This leads to the following Chapman-
Enskog ansatz:

ρ(θ, ω, t; ε) =
1

2π

{

1 + ε
A(T ; ε)

D + iΩ
eiθ + cc

+

4
∑

j=2

εjρj(θ, t, T ;A,A) +O(ε5)







, (59)

d2A

dT 2
= F (0)(A,A) + εF (1)(A,A) +O(ε2).(60)

The equation for A is second order [not first order as
(38)] because resonant terms appear at O(ε3) for the first
time, and they are proportional to ATT = d2A/dT 2. F (0)

and F (1) are calculated in Appendix D. The resulting
amplitude equation is

ATT −
D

2
(K2 − 4Ω2)A−

2

5
|A|2A =

ε

(

K2
2
AT −

23

25D
|A|2AT −

1

5D
(|A|2A)T

)

+O(ε2), (61)

Equation (61) has the scaled normal form studied by
Dangelmayr and Knobloch (1987) [cf. their equations
(3.3), p. 2480]. Following these authors, we make the
substitution

A(T ; ε) = R(T ; ε)eiφ(T ;ε) (62)

in Eq. (61), separate real and imaginary parts, and obtain
the perturbed Hamiltonian system

RTT +
∂V

∂R
= ε

(

K2
2
− 38

25D
R2
)

RT ,

LT = ε

(

K2
2
− 28

25D
R2
)

L. (63)

Here L = R2φT is the angular momentum, and

V ≡ V (R) =
L2

2R2
− D

4
(K2 − 4ω2)R

2 − R4

10
(64)

is the potential. This system has the following special
solutions:

(i) The trivial solution, L = 0, R = 0, which corre-
sponds to the incoherent probability density, ρ =
1/2π. Such solution is stable for K2 < 0 if ω2 > 0
and for (K2 − 4ω2) < 0 if ω2 < 0.

(ii) The steady-states (SS), L = 0, R = R0 =
√

5D
(

ω2 − K2

4

)

> 0, which exists provided that

ω2 > K2/4. This solution is always unstable.

(iii) The travelling waves (TW), L = L0 =

R20

√

2D
(

ω2 − 19
56K2

)

> 0, R = R0 =
5
2

√

DK2

14 > 0,

which exist provided that K2 > 0 and ω2 >
19K2/56; these solutions bifurcate from the triv-
ial solution at K2 = ω2 = 0. When ω2 = 19K2/56,
the branch of TWs merges with the steady-state
solution branch. This solution is always unstable.

(iv) The standing waves (SW), L = 0, R = R(T )
periodic. Such solutions have been found explic-
itly in Section 5.1 of (Dangelmayr and Knobloch,
1987). The SWs branch off the trivial solution at
K2 = ω2 = 0, exist for ω2 > 11K2/19 > 0, and
terminate by merging with a homoclinic orbit of
the steady-state (ii) on the line ω2 = 11K2/19
[see equation (5.8) of (Dangelmayr and Knobloch,
1987)]. This solution is always stable.

All these results are depicted in Fig. 4 below, which
corresponds to Fig. 4, IV-, in the general classifica-
tion (stability diagrams) reported in (Dangelmayr and
Knobloch, 1987), p.267. The bifurcation diagram near
the tricritical point for ω0 > D fixed is depicted in
Fig. 5. Notice that it agrees with the information speci-
fied above.

Note that equation (59) yields, to leading order,

ρ(θ, ω, t; ε) ∼ 1

2π

[

1 + ε
Rei(φ+θ)

D + iω
+ cc

]

, (65)

and hence, from (28), reiψ ∼ εRe−iφ/(2D). It follows
that r ∼ R/(2D) and ψ ∼ −φ, which shows that, es-
sentially, the solution A(T ; ε) to equation (61) coincides
with the conjugate of the complex order parameter [de-
fined by (28)]. For this reason, in Fig. 5 the ordinate
can be either R or r. In Fig. 6, we have depicted the
global bifurcation diagram which completes that shown
in Fig. 5 of (Bonilla et al., 1992).

In closing, the Chapman-Enskog method can be used
to calculate any bifurcations appearing for other fre-
quency distributions and related NLFPEs. As discussed
in Section II.B, nontrivial extensions are needed in the
case of the hyperbolic limit, D → 0+.

IV. VARIATIONS OF THE KURAMOTO MODEL

We have seen during the preceding section how the
long-range character of the coupling interaction in the
KM allows to obtain many analytical results. Yet, one
might ask how far the results there obtained do extend
beyond the mean-field limit in finite dimensions. Also
one might wonder how synchronization effects in the KM
are modified by keeping long-range interactions but in-
cluding additional sources of quenched disorder, multi-
plicative noise or time-delayed couplings. Unfortunately,
many of the analytical techniques developed in the pre-
ceding section hardly cover many of these new topics. In
particular, the treatment of short-range couplings (oscil-
lators embedded in lattice with nearest-neighbor inter-
actions) presents formidable difficulties both at the an-
alytical and numerical level that challenges our current
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understanding of the mechanisms behind the emergence
of synchronization. The next sections are devoted to dis-
cuss several of these new cases. It is not exaggerated to
say that our knowledge is still quite poor in many of these
cases and that major work remains to be done.

A. Short-range models

A natural extension of the KM discussed in Sec. III in-
cludes short-range interaction effects (Daido, 1988; Sak-
aguchi et al., 1987; Strogatz and Mirollo, 1988a,b). Ku-
ramoto and coworkers (Sakaguchi et al., 1987) have con-
sidered the case where oscillators occupy the sites of a d-
dimensional cubic lattice and interactions occur between
nearest neighbors,

θ̇i = ωi +K
∑

(i,j)

sin(θj − θi) (66)

where the pair (i, j) stands for nearest-neighbor oscilla-
tors and the ωi are independent random variables chosen
according to the distribution g(ω). Compared to the KM
(23) the coupling parameter K has not to be scaled by
the total number of oscillators. However, convergence of
the model (66) in the large d limit requires K to scale
like 1/d. Although the model can be extended to include
stochastic noise (i.e. at finite temperature) most of the
work on this type of models has been done at T = 0.
Solving the short-range version of the KM is a hopeless
task (except for special cases such as one dimensional
models -see below- or Cayley-tree structures) due to the
difficulty to incorporate the randomness in any sort of
renormalization-group analysis. In short-range systems
one usually distinguishes between different synchroniza-
tion regimes. Global synchronization, which implies that
all the oscillators are in phase, is rarely seen except for
K ∝ N → ∞. Phase locking or partial synchroniza-
tion is observed more frequently. It denotes the situation
where a local ensemble of oscillators verify θ̇i = const,
∀i. A weaker situation concerns clustering or entrain-
ment. Usually this term refers (although sometimes it
has been used in the sense of phase locking) to the case
where a finite fraction of the oscillators have the same
average frequency ω̃i defined by,

ω̃i = lim
t→∞

θi(t)

t
(67)

There is no proof that such a limit exists. However, if
it does not exist, synchronization is not possible what-
soever. The condition of clustering is less stringent than
phase locking, therefore it is expected that its absence
precludes the existence of phase locking. Note, that the
previous definitions do not exhaust all possible types of
synchronized stationary solutions, such as for instance,
the existence of moving traveling wave structures. The
concept of synchronization (global or partial) is different
form the concept of phase coherence introduced in the

context of the KM in Section 2, see equation (2). Phase
coherence is a stronger condition than synchronization as
it assumes that all phases θi are clustered around a given
unique value and so are their velocities θ̇i. The contrary
is not necessarily true, as phases can change at the same
speed (synchronization takes place) while having com-
pletely different values (incoherence). Coherence seems
less general than synchronization as the former bears con-
nection to the type of ferromagnetic ordering present in
the KM. Although this type of ordering is expected to
prevail in finite dimensions synchronization seems more
appropriate to discuss oscillator models with structural
disorder built in.

For short-range systems one would like to understand
several questions such as,

• The existence of a lower critical dimension above
which any kind of entrainment is possible. In par-
ticular, it is relevant to prove the existence of phase
locking and clustering for large enough dimension-
ality and the differences between both types of syn-
chronization.

• The topological properties of the entrained clusters
and the possibility to define a dynamical correlation
length describing the typical length scale of these
clusters.

• The existence of an upper critical dimension above
which the synchronization transition is of the mean-
field type.

• The resulting phase diagram in the presence of
thermal noise.

In (Sakaguchi et al., 1987) the authors have proposed
some heuristic arguments showing that any type of en-
trainment (global or local) can occur only for d ≥ 2. This
conjecture is supported by the absence of entrainment in
one dimension. Strogatz and Mirollo (1988a,b) however,
have shown that no phase locking can occur at any finite
dimension. As phase locking occurs in mean-field the-
ory this result suggests that the upper critical dimension
in the model is infinite. Particularly interesting results
are obtained in one dimension (a chain of oscillators). In
this case, and for the case of a normal distribution of
natural frequencies ωi, it can be proven that the proba-
bility of phase locking vanishes for N → ∞ and is only
finite if K ∼

√
N . The same result can be obtained for

any distribution (not necessarily Gaussian) of indepen-
dently distributed natural frequencies, the proof consists
of showing that the probability of phase locking is related
to the probability that the height of a Brownian bridge 1

1 A Brownian bridge is defined as a Brownian motion described
by n moves of length xi extracted from a given probability dis-
tribution and where the end-to-end distance l(n) =

∑n
i=1 xi is

constrained to have a fixed value for a given number n of steps.



15

is not larger than a maximal amount which depends on
the parameter K and the mean value of the frequency
distribution. However, one of the most interesting re-
sults in these studies is the use of block renormalization
group arguments to show whether clustering can occur in
finite dimensions. Nearly at the same time, Strogatz and
Mirollo (1988a,b) and Daido (1988) have presented a sim-
ilar argument but leading to slightly different yet com-
patible conclusions. In (Strogatz and Mirollo, 1988a,b)
the goal is to calculate the probability P (N,K) that a
cubic region S containing a finite fraction αN (α < 1)
of the oscillators can be entrained into a single common
frequency. Following to (Strogatz and Mirollo, 1988a,b)
let us assume the macroscopic cluster S to be divided
into cubic subclusters Sk of side l, the total number of
subclusters being Ns = αN/ld which is of order N . For
each subcluster k the average frequency Ωk and phase Θk
are defined as follows,

Ωk =
1

ld

∑

i∈Sk

ωi ; Θk =
1

ld

∑

i∈Sk

θi (68)

Summing (66) over all oscillators contained in each sub-
cluster Sk we get,

Θ̇k = Ωk +
K

ld

∑

(i,j)∈∂Sk

sin(θj − θi) (69)

where the sum in the r.h.s runs over all links (i, j) crossing
the surface ∂Sk delimiting the region Sk. Because the
sine function is bounded and there are 2dld−1 terms in
the surface this implies,

|Θ̇k − Ωk| ≤
2dK

l
(70)

If S is a region of clustered oscillators around the fre-
quency ω̃ then, after time averaging, the limit (67) gives
|ω̃ − Ωk| ≤ 2dK

l for all 1 ≤ k ≤ Ns. Because the Ωk
are uncorrelated random variables, the probability that
such a condition is simultaneously satisfied for all Ns

oscillators is pNs (p being the typical probability that
|ω̃ − Ωk| ≤ 2dK

l is satisfied for a given oscillator). This
probability is therefore exponentially small with the num-
ber of subclusters Ns ∼ O(N),

P (N,K) ∼ N exp(−cN) (71)

where c is a constant and the multiplicative factor N
in front of the exponential arises from the number of all
possible ways the cluster S can be embedded into the lat-
tice. Therefore, the probability vanishes in any dimen-
sion in the large population limit. This proof assumes
that entrained clusters have a compact structure (such
as a cubical shape). However, this must not be neces-
sarily true. Had the clusters a non-compact shape (such
as space filling sponges or lattice animal -tree like- struc-
tures) then the proof would not hold anymore (since the
number of subclusters Ns must not necessarily scale like

1/ld). Therefore this result does not preclude the exis-
tence of macroscopic entrainment in non-compact clus-
ters.

This result does not seem to be necessarily in contra-
diction with a very similar argument reported by Daido
(1988) who has shown the existence of a lower critical
dimension dl depending upon the tails of a category of
frequency distributions g(ω). For

g(ω) ∼ |ω|−α−1 |ω| À 1 (72)

then normalization requires α > 0. Moreover, Daido
considers that α ≤ 2 for distributions with an infinite
variance, the limiting case α = 2 corresponding to the
case of a distribution with finite variance (such as the
Gaussian distribution). The argument by Daido uses a
similar block decimation procedure as outlined in eqs.
(68,69), however he concludes differently than Strogatz
and Mirollo (1988a,b). Having defined the subcluster or
block frequencies Ωk and phases Θk in (68), Daido shows
that only for d < α/(α−1), and in the l→∞ limit, (70)
converges to the fixed point dynamical equation,

Θ̇k = Ωk ∀k (73)

showing that no clustering can occur for 0 < α ≤ 1 in any
dimension, however for 1 < α ≤ 2 macroscopic entrain-
ment should be observed for dimensions above dl =

α
α−1 .

For the Gaussian case, α = 2 and entrainment occurs
above dl = 2 as suggested also in (Sakaguchi et al., 1987).
Numerical evidence in favor of a synchronization transi-
tion in d = 3 (Daido, 1988) does not appear much com-
pelling. Overall the issue about the correct value of the
upper critical dimension remains yet open.

The KM in an ultrametric tree has been also consid-
ered (Lumer and Huberman, 1991, 1992). The authors
consider a general version of the model (66) where N os-
cillators sit in the leaves of a hierarchical tree of branch-
ing ratio b and L levels, see Figure 7. The coupling be-
tween oscillators Kij is not uniform but depends on their
ultrametric distance lij , i.e. the number of levels in the
tree separating the leaves from its common ancestor,

Kij = Kd(lij) (74)

where d(x) is a monotonically decreasing function of the
distance. The existence of a proper thermodynamic limit
requires, for d(x) in the large L,N limits,

N
∑

i=1

Kij = K , ∀j (75)

For a given value of K, as the ultrametric distance lij in-
creases, entrainment fades away, however as K increases
more and more levels tend to synchronize. Therefore,
this model introduces in a simple way the clusterization
of synchronization, thought to be relevant in the percep-
tion problem at the neural level (see Sec. VII.A). The
simplest function d(x) that incorporates such effects is
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an exponential decay d(x) ∼ 1/ax, where the coupling
strength decreases by a factor a at consecutive levels. It
can be shown (Lumer and Huberman, 1992) that a cas-

cade of synchronization events occurs whenever b ≥ a α
α−1

where α is defined by (72). In that regime the model
displays a nice devil staircase behavior when plotting the
synchronization parameter as a function of K, character-
istic of the emergent differentiation in the response of the
system to an external perturbation. Other topologies
of connections beyond the simple cubic lattice structure
have been also considered. In (Niebur et al., 1991b) the
authors analyze spatial correlation functions in a square
lattice of oscillators with nearest-neighbor, Gaussian (i.e.
the intensity of the interaction between two sites de-
cays with their distance according to a Gaussian law)
and sparse connections (each oscillator is coupled to a
small and randomly selected subset of neighbors). Over-
all, they find that entrainment is greatly enhanced with
sparse connections. Whether this result is linked to the
supposed non-compact nature of the clusters is yet to be
seen.

An intermediate case between the long range KM and
its short-range version (66) is when the couplings among
oscillators decay as a power law 1/rα of their mutual dis-
tance r. The intensity of the coupling is then properly
normalized in such a way that the interaction term in
(66) remains finite in the large population limit. For
the normalized case and in one dimension it has been
shown (Rogers and Wille, 1996) that a synchronization
transition occurs if α < αc(K) with αc(Kc) = 2/[πg(ω =
0)]) corresponding to the KM (see paragraph just after
formula (11)). It is found that α < 2 is required for a
synchronizing transition to occur at finite K, the same
condition is found for one-dimensional (1D) Ising and XY
models to have a finite-temperature transition. For the
non-normalized case results are more interesting (Mar-
odi et al., 2002) as they show a transition in the popu-
lation size (rather than in the coupling constant K) for
α < d. In that case, if the population is allowed to grow
above a critical value Nc(K,α < d), synchronization oc-
curs. The relevance of this result stems from the fact that
large enough three dimensional populations of oscillators,
interacting through a signal whose intensity decays like
1/r2 (e.g. sound or light), can synchronize whatever the
value of the coupling K.

Before finishing this overview of short-range models
let us mention that the complexity of the phenomenon of
synchronization in two-dimensions has been emphasized
in another study by Kuramoto and coworkers (Sakaguchi
et al., 1988) where they study a model where the cou-
pling function has been slightly modified to account for
an enhancement of the oscillator frequencies upon their
interaction,

θ̇i = ωi +K
∑

(i,j)

(

sin(θj − θi − α) + sin(α)
)

(76)

with −π2 ≤ α ≤ π
2 . Note that this is a non-variational

model, i.e. the interaction term does not correspond to

the gradient of a two-body potential. The effect of the
parameter α is to decrease the entrainment between os-
cillators that have different natural frequencies, giving
rise to a higher value of the critical coupling. Notably
this model has been found to describe synchronization
of Josephson junctions arrays (see (153) and ensuing
discussion). The parameter α has an interesting effect
already in the non-disordered model ωi = 0 (for α = 0
this is the XY model) where neighboring phases inside
a vortex can differ a lot, thereby inducing an increase
in the local frequency. The vortex acts as a pacemaker
enhancing entrainment in the surrounding medium.

B. Models with disorder

The standard Kuramoto model has already disorder
built in. However one can include additional disorder in
the coupling among the oscillators. Daido has considered
the general mean-field model (Daido, 1992b),

θ̇i = ωi +
∑

(i,j)

Kij sin(θj − θi +Aij) + ξi(t) (77)

where the couplings Kij are Gaussian distributed,

P (Kij) =
N√
2πK2

exp
(

−
NK2

ij

2K2

)

(78)

the frequencies are distributed according to a distribution
g(ω) and ξ is a Gaussian noise. The Aij are real valued
numbers that lie in the range [−π, π] and stand for po-
tential vector differences between sites which amount to
random phase shifts 2. The interest of this model lies in
the fact that frustration, a new ingredient beyond disor-
der, is introduced. Frustration implies that the reference
oscillator configuration that makes vanish the coupling
term in (77) (i.e. the second term in the r.h.s of (77))
is incoherent, i.e. θi − θj 6= 0. This is due to the com-
peting nature of the different terms involved in that sum
that contribute with either a positive or a negative sign.
This makes the reference configuration extremely hard to
find using available optimization algorithms. Compared
to the non disordered models, few studies have been de-
voted to the disordered case, however they are very in-
teresting as they seem to display synchronization to a
glassy phase rather than a ferromagnetic-like one. More-
over, as structural disorder tends to be widespread in
many physical systems, disordered models do not seem

2 Indeed the potential vector terms Aij appearing in (79) can be
thought as the difference of quenched potential vector values
Aij = Ai − Aj . As ~H = ∇ × ~A the circulation of the potential
vector along an elementary plaquette or loop must be propor-
tional to the value external field

∑

(i,j)∈2
Aij ∝ | ~H|. In mean-

field models there are loops of all possible lengths, the constraint
cannot be satisfied for all plaquettes, so the Aij are quenched
variables usually taken from a random distribution.
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to be less relevant to real oscillator systems than their
ordered counterparts.

1. Disorder in the coupling: the oscillator glass model

The model (77) with disorder in the couplings Kij

and Aij = 0 has been the subject of some recent
works (Daido, 1987a, 1992b, 2000; Stiller and Radons,
1998, 2000). It is given by the expression,

θ̇i = ωi +
∑

(i,j)

Kij sin(θj − θi) + ξi(t) (79)

where the Kij are given by (78). For ωi = 0 this is the
XY spin-glass model (Kirkpatrick and Sherrington, 1978;
Sherrington and Kirkpatrick, 1975) introduced to mimic
the behavior of frustrated magnets. It is well known
that XY spin-glass model has a transition at a critical
noise intensity Dc = 1 from a paramagnetic (D > Dc)
to a spin-glass phase (D < Dc). In the presence of fre-
quencies a synchronization transition is expected to occur
from an incoherent to a synchronized glassy phase. The
most complete study (yet with contradictory results, see
below) has been done without noise and for a normal fre-
quency distribution g(ω) in two different works, one by
Daido (1992b), the other by Stiller and Radons (1998).
Daido (1992b) has performed a detailed numerical anal-
ysis of the distribution p(h) of the local field hj acting
on each oscillator defined by,

p(h) =
1

N

N
∑

j=1

δ(h− hj) (80)

hj =
1

K

N
∑

l=1

Kjl exp(iθl) (81)

Daido shows how p(h) crosses, as the value of K is in-
creased, from a pure Gaussian distribution (with its max-
imum located at h∗ = 0) over a non-Gaussian function
whose value h∗ (where the maximum is located) becomes
positive. This establishes the value of the critical cou-
pling as Kc ' 8.

Glassy systems are known for their characteristic slow
relaxational dynamics leading to phenomena such as ag-
ing in correlations and response functions and violations
of the fluctuation-dissipation theorem (Crisanti and Ri-
tort, 2003). Synchronization models are expected to show
similar non-equilibrium relaxation phenomena (albeit ag-
ing is not expected to occur in the stationary state). In
particular, Daido also considered the order parameter,

Z(t) =
1

N

N
∑

j=1

exp(iθj(t)) (82)

showing that Z(t) decays exponentially with time in the
incoherent phase (K < Kc) and as a power law of time

in the synchronized phase. These results have been con-
tested in a subsequent work by Stiller and Radons (1998)
who have considered the analytical solution of the dy-
namics of the same model but using the path integral for-
malism of Martin-Siggia-Rose to reduce the N -oscillator
problem to a single oscillator problem with some corre-
lated noise. The resulting dynamical equations can be
self-consistently solved by using the approach developed
by Eisfeller and Opper for the Sherrington-Kirkpatrick
model (Eissfeller and Opper, 1978). The advantage of
this method is that one directly gets dynamical results
in the infinite-size limit. The disadvantage is that the
time required to solved the dynamics up toM time steps
grow as M2, therefore less than M = 1000 time steps
can be typically solved. Stiller and Radons (1998) have
suggested that a power law for Z(t) is not observed above
Kc ∼ 8, however the results they report in favor of their
claim are questionable. In particular Stiller and Radons
dynamic calculations reach only time scales much smaller
than those reached by Daido using Brownian simulations
(see Sec. VI.A) who reaches times of order of 100 Monte
Carlo steps. It is difficult to sustain a discussion on the
asymptotic behavior of Z(t) with the short timescales
considered in both works. This issue has raised some con-
troversy (Daido, 2000; Stiller and Radons, 2000) which
has not been yet settled. Although Stiller and Radons
conclude that theirs and Daido results might be com-
patible after all, the discrepancies turn out to be serious
enough to question the validity of the results of one of
the two works. Indeed, there is a discrepancy between
the critical value Kc derived in both works from mea-
surements in the stationary regime. Stiller and Radons
have introduced the equivalent of the Edwards-Anderson
parameter q̃ for the XY case,

q̃ = lim
t→∞

lim
N→∞

lim
t0→∞

ReC(t0, t0 + t) , (83)

where C(t, s) is the two-times complex-valued correlation
function

C(t, s) =
1

N

N
∑

j=1

exp(i(θ(t)− θ(s))) . (84)

The order of the limits in (83) is important: the t0 →∞
limit assures that the stationary regime is reached first,
the N → ∞ limit ensures ergodicity breaking and the
t → ∞ limit measures the equilibrium order within one
ergodic component. Measurements of q̃ reveal a neat
transition around Kc = 24 (Fig.3 in (Stiller and Radons,
1998)), nearly three times larger than the value reported
by Daido (Fig. 2 in (Daido, 1992b)). The origin of this
discrepancy is unknown to us. Further work is needed to
resolve this question.

Before finishing this section let us mention that the
study of the model (79) with site disordered couplings
has been considered by Bonilla et al. (1993) for the
KM with interactions of the Van Hemmen type Kij =
K0

N + K1

N (ξiηj+ηiξj) where ξi, ηi are random independent
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identically distributed quenched variables that may take
values ±1 with probability 1/2. The model is exactly
solvable so the resulting phase diagram can be analyti-
cally computed. These authors find, depending on the
ratio between K0 and K1, several phases: incoherence,
synchronization, spin-glass phase and mixed phase where
oscillators are partially coherently synchronized and par-
tially in phase opposition.

2. The oscillator gauge glass model

The oscillator gauge glass model has been seldom stud-
ied. We quote it here for completeness. It corresponds
to the model (77) where Kij = K/N and frustration
arises solely from the random phase shifts Aij ∈ [−π, π]
(see footnote 2). Note that this term by itself is enough
to induce frustration. For instance, if Aij = 0 or π with
probability 1/2 then this model coincides with the previ-
ous oscillator glass model where Kij = ±1 with identical
probability. In general, for non-disordered models (in the
absence of natural frequencies), and in the absence of an
external magnetic field, the vector potential components
around a plaquette add to zero. In the presence of a
field this term is an integer number times the value of
the quantized flux, therefore the present oscillator gauge
glass model in two-dimensions can be seen as a simplified
version of overdamped Josephson junctions arrays. We
limit ourselves to mention a study (Park et al., 1998) of
the phase diagram of the oscillator gauge glass model by
mapping it to an equilibrium gauge glass model where
the stationary states are taken as the equilibrium states
of the corresponding Boltzmann system. However, as has
been already explained in Sec. VI.C, this approach does
not guarantee a full characterization of the stationary
solutions.

C. Time-delayed couplings

One of the most natural and well motivated exten-
sions of the KM concerns the analysis of time-delayed
coupling between oscillators. In biological networks, elec-
tric signals propagate along neural axons at a finite ve-
locity. Thus delays due to transmission are natural el-
ements in any theoretical approach to information pro-
cessing. Time delays can change substantially the dy-
namical properties of coupled systems. In general, the
dynamic behavior becomes much richer and in occasions
even surprising. One might think that time delays tend
to break or difficult coherence in populations of inter-
acting units, but this is not always the rule of thumb.
An important example has been the focus of intense re-
search in the last years: synchronization in chaotic sys-
tems. It has been proved that a delayed coupling is the
key element to anticipate and control the time evolution
of coupled chaotic oscillators by synchronizing their dy-
namics (Pikovski et al., 2001; Voss, 2001). In excitable

systems the situation is quite similar. It has been re-
ported that delayed couplings can favor the existence of
rapid phase-locked behavior in networks of integrate and
fire oscillators (Gerstner, 1996).

How important are time delays for a population of cou-
pled phase oscillators? This depends on the ratio of the
time delay to the natural period of a typical oscillator.
In general, the delay should be kept if the transmission
time lag is much longer than the oscillation period of a
given unit, (Izhikevich, 1998). On the other hand, the
delay can be neglected if it is comparable to the period
of the oscillators.

Let us start by discussing the dynamic properties of
short-range coupled Kuramoto models with time delayed
couplings (Nakamura et al., 1994; Niebur et al., 1991a;
Schuster and Wagner, 1989):

θ̇i(t) = ωi + ξi(t) +
K

N

∑

j

sin(θj(t− τ)− θi(t)). (85)

Here the sum is restricted to nearest neighbors and τ
is a constant time delay. In this model, each oscillator
interacts with its neighbors in terms of the phase that
they had at the time they sent a synchronizing signal.

In a simple system of two oscillators, Schuster and
Wagner (1989) found the typical fingerprint of delays in
several relevant differences between this model and the
standard KM. In the case τ = 0, one synchronization
state is stable. However, for non-zero delays and given
values of τ and K, there are multiple stable solutions of
Eq. (85) with more than one synchronization frequency
and different basins of attraction. In a remarkable appli-
cation, this model has been used recently to explain the
experimentally observed oscillatory behavior of a unicel-
lular organism (Takamatsu et al., 2000).

Keeping in mind these results, it is not difficult to
imagine what will happen for large ensembles of oscil-
lators. In a 1D system, Nakamura et al. (1994) have
shown that complex structures emerge spontaneously for
N →∞ . They are characterized by many stable coexist-
ing clusters, each formed of a large number of entrained
units, oscillating with different frequencies. These struc-
tures have also been observed for a distribution of time-
delays (Zanette, 2000). Another peculiarity of the model
has been observed for large coupling intensity and large
delays. In this regime, the system exhibits frequency sup-
pression resulting from the existence of a large number
of metastable states. In two dimensions, Niebur et al.
(1991a) have shown that the system evolves towards a
state with the lowest possible frequency, selected from
all the possible solutions of (85) for given values of K
and τ . More recently, Jeong et al. (2002) have shown
that distance-dependent time delays induce various spa-
tial structures such as spirals, traveling rolls or more com-
plex patterns. They also analyze their stability and the
relevance of initial conditions to select these structures.

The mean-field model has been studied theoretically by
analyzing the corresponding NLFPE (Choi et al., 2000;
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Luzyanina, 1995; Yeung and Strogatz, 1999). Similarly
to the case of short-range coupling, the delay gives rise
to multistability even for identical oscillators and with-
out external white noise. The phase diagram (K, τ) con-
tains regions where synchronization is a stable solution of
the dynamic equations, other regions where coherence is
strictly forbidden, and still others where coherent and in-
coherent states coexist. The existence of all these regimes
has been corroborated by simulations (Kim et al., 1997b;
Yeung and Strogatz, 1999). The same qualitative behav-
ior has been found for non trivial distributions of fre-
quencies. As in the standard KM, in noisy systems there
is a critical value of the coupling Kc, above which the
incoherent solution is unstable. Kc depends on the dis-
tribution of frequencies, the noise strength and the delay.
Choi et al. (2000); Yeung and Strogatz (1999) have car-
ried out a detailed analysis of the bifurcation at Kc for
the NLFPE corresponding to Eq. (85). Kori and Ku-
ramoto (2001) have studied the same problem for more
general phase oscillator models.

D. External fields

A natural extension of the original KM is to add ex-
ternal fields, which gives rise to a much richer dynamic
behavior. External fields can model the external current
applied to a neuron so as to describe the collective prop-
erties of excitable systems with planar symmetry. For
other physical devices, such as Josephson junctions, a
periodic external force can model an oscillating current
at the junctions.

The Langevin equation governing the dynamics of the
extended model is

θ̇i = ωi + ξi(t) +
K

N

N
∑

j=1

sin(θj − θi) + hi sin θi (86)

Shinomoto and Kuramoto (1986) studied the case hi =
h ∀i. They analyzed the NLFPE associated to (86)
and found two different regions of the phase diagram: a
region of time-periodic physical observables, and a region
of stable stationary synchronized states.

Sakaguchi (1988) replaced the last term in Eq. (86)
by h sin(θi − ωf t), where ωf is the frequency of the ex-
ternal force. Notice that by defining ψi = θi − ωf t, we
again obtain Eq. (86) for ψi, but with natural frequen-
cies ωi−ωf . Therefore the time-periodic external force is
equivalent to modifying the statistical properties of the
distribution g(ω). In general, there will be a competition
between forced entrainment and mutual entrainment. If
the strength of h is large, the oscillators tend to be en-
trained with the external force. On the other hand if
h is small there will be a macroscopic fraction of the
population mutually entrained displaying a synchronous
collective motion whose frequency is the mean natural
frequency of the population.

Arenas and Pérez-Vicente (1994a) studied the phase
diagram of a KM with a distribution of random fields
f(h). They solved the NLFPE through a generating func-
tional of the order parameters, and found analytical ex-
pressions thereof, which fully agreed with numerical sim-
ulations. Provided f(h) is centered at h = 0, they found a
phase transition between an incoherent state with r = 0
and a synchronized state, which is similar to the tran-
sition in the static model or in the model of identical
oscillators (Arenas and Pérez-Vicente, 1993)). The only
difference is that the critical Kc is larger. This is reason-
able because larger values of the coupling constant are
necessary to counteract the effect of rotation caused by
the distribution of frequencies. When the distribution of
fields is not centered in the origin there is an effective
force which makes r 6= 0 (r ∝ 〈h〉 for small K/D and
for 〈h〉 ¿ 1) for any value of the ratio K/D, thereby
precluding phase transitions, just as in the static case.

Provided
∫

hf(h)dh 6= 0, densities having time-
dependent solutions with nonzero order parameters (Are-
nas and Pérez-Vicente, 1994a; Sakaguchi, 1988; Shi-
nomoto and Kuramoto, 1986). Acebrón and Bonilla
(1998) studied these solutions using the two-timescale
asymptotic method mentioned in Section III.C. The
probability density splits into independent components
corresponding to different peaks in the multimodal dis-
tribution of frequencies. Each density component evolves
towards a stationary distribution in a comoving frame ro-
tating with the frequency corresponding to the appropri-
ate peak in g(ω). Thus the overall synchronous behavior
can be determined by studying synchronization of each
density component (Acebrón and Bonilla, 1998).

Inspired by biological applications, Frank et al. (2000)
analyze the behavior of phase oscillators in presence of
forces which derive from a potential with various Fourier
modes. They study in detail the transition from inco-
herence to phase locking. Finally, Coolen and Pérez-
Vicente (2003) have studied the case of identical oscil-
lators with disordered couplings and subject to random
pinning fields. This system is extremely frustrated and
several spin-glass phases can be found. The equilibrium
properties of the model depend on the symmetries of the
pinning field distribution and on the level of frustration
due to the random interactions between oscillators.

E. Multiplicative noise

To end this section, we shall discuss the effect of multi-
plicative noise on the collective properties of phase oscil-
lators. As far as we know, there have been two different
approaches to this problem.

Park and Kim (1996) have studied the following rather
complex version of the KM:

θ̇i = ωi +
K + σηi(t)

N

N
∑

j=1

sin(θj − θi) + h sin(νθi). (87)
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Here ηi is a zero-mean delta-correlated Gaussian noise
with unit variance, σ measures the intensity of the noise
and ν is an integer. The phase oscillators in this model
are subject to an external pinning force and therefore
they represent excitable units. Thus Eq. (87) describes
the effect of multiplicative noise on a population of ex-
citable units. Through analytical and numerical stud-
ies of the NLFPE, Park and Kim (1996) have found the
phase diagram of the model (h, σ) for different values of
ν. For identical oscillators, there are new phases in which
two o more stable clusters of synchronized oscillators can
coexist. This phenomenology is strictly induced by the
multiplicative noise, without having to include time de-
lays or high Fourier modes in the coupling.

Kim et al. (1997a, 1996) have supplemented Eq. (87)
with additive noise. Surprisingly, the additive noise tends
to suppress the effects triggered by the multiplicative
noise, such as the bifurcation from one-cluster phase to
the two-cluster state. The new phase diagram exhibits
very rich behavior with interesting nonequilibrium phe-
nomena such as reentrant transitions between different
phases. The interesting physics induced by the combi-
nation of both types of noise inspired Kim et al. (1997c)
to propose a new mechanism for noise-induced current in
systems under symmetric periodic potentials.

Reimann et al. (1999) tackled the problem from a dif-
ferent standpoint. They considered the standard mean-
field equation (23) with a non-equilibrium Gaussian noise
characterized by

< ξi(t) >= 0, < ξi(t)ξj(t
′) >= 2D(θi)δijδ(t−t′), (88)

where D(θ) = D0 + D1 cos(θ) and D0 ≥ D1 ≥ 0.
The authors consider only one Fourier mode to make
their analysis simpler, and study the particular choice
D0 = D1 = Q/2. Under these conditions, for identi-
cal oscillators and for arbitrarily weak coupling, time-
dependent oscillatory synchronization appears for a cer-
tain value of the ratio K/Q, via spontaneous symmetry
breaking. By means of numerical simulations, the au-
thors also study the effect of multiplicative noise in sys-
tems with short-range coupling. In this case, even more
complex behaviors including hysteretic phenomena and
negative mobility are found.

Recently and only for identical oscillators, Kostur et al.
(2002) have studied Eq. (86) for hi = −1 ∀i with both
additive and symmetric dichotomic noise. For the lat-
ter noise, they found a complex phase diagram with five
different regions: incoherence, bistability, phase locking,
hysteretic phenomena and an oscillatory regime.

V. BEYOND THE KURAMOTO MODEL

Many generalizations of the KM have been proposed to
analyze synchronization phenomena in more complex sit-
uations. Firstly, periodic coupling functions that contain
more harmonics than the simple sine function considered

by Kuramoto have been proposed. Secondly, there are
oscillator models described by two angles (tops models)
or by a phase and an amplitude (amplitude oscillators).
Lastly, the dynamics of the KM is changed if phase os-
cillators have inertia, making synchronization harder but
facilitating spontaneous phase oscillations.

A. More general periodic coupling functions

An immediate generalization of the mean-field KM is

θ̇i = ωi +
K

N

N
∑

j=1

h(θj − θi), (89)

where h(θ) is a general coupling function of period 2π,
and the intrinsic oscillator frequencies ωi are distributed
with probability density g(ω) as usual. By shifting all
phases, θ → θ + Ωt, and selecting Ω appropriately, we
can set

∫∞

−∞
ωg(ω)dω =

∫ π

−π
h(θ)dθ = 0, without loss of

generality. What can we say about oscillator synchro-
nization in this more general context?

A particularly successful theoretical approach is due to
Daido (1992a, 1993a,b, 1994, 1995, 1996a,b), who gen-
eralized Kuramoto’s ideas on the order parameter and
the partially synchronized state. Let us assume that
the oscillators are phase-locked with a common frequency
ωe(t) = ψ̇. Let us suppose that there exist the following
order parameters

Zj ≡ Xj+ ıYj = lim
t→∞

1

N

∑

k

exp{ıj[θk(t)−ψe(t)]}. (90)

If the coupling function is expanded in Fourier series as

h(θ) =

∞
∑

j=1

(

hsj sin(jθ) + hcj cos(jθ)
)

(91)

=
∞
∑

j=−∞

hje
ıjθ,

then a simple calculation shows that we can write Eq.
(89) in the following form:

θ̇i = ωi −KH(θi − ψe(t)), (92)

provided we define the order function H as

H(ψ) ≡ −
∞
∑

j=−∞

hjZje
−ıjθ

=

∞
∑

j=1

{

(hsjXj − hcjYj) sin(jψ)

−(hcjXj + hsjYj) cos(jψ)
}

. (93)

Note the similarity of Eq. (92) to Kuramoto’s expres-
sion (3). Assuming that H(ψ) has only one maximum
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and one minimum in the interval −π ≤ ψ ≤ π, Daido de-
rives a self-consistent functional equation for H (Daido,
1992a) 3. This equation always has the trivial solution
H(ψ) = 0, which corresponds to incoherent behavior of
the oscillators. Nontrivial solutions describe synchro-
nized states of the oscillator population. Furthermore,
one expects that, for sufficiently large K, the onset of
mutual entrainment is a bifurcation of a non trivial or-
der function from incoherence. Keeping in mind this
framework Daido has considered several particular cases
(Daido, 1992a, 1993a,b). If the Fourier series of the
coupling function contains only odd harmonics, there is
spontaneous synchrony above the following critical Kc

Kc =
2

πg(ωe)hs1
. (94)

This shows that Kc depends on the first harmonic but
does not depend on the higher modes. Notice that the
KM belongs to this family of models (in fact h(θ) = sin θ)
and (94) is consistent with the results given in Section II.
The bifurcation to the synchronized state is supercritical
provided g′′(ωe) < 0 and hs1 > 0. These results are con-
firmed by numerical simulations.

Daido (1994) has elaborated a bifurcation theory of the

order function, whose L2 norm, ‖H‖ ≡
√

∫ π

−π
H(ψ)2dψ,

as a function of the coupling constant K can be repre-
sented in a bifurcation diagram. Near the critical cou-
pling, ‖H‖ ∝ (K−Kc)

β , which defines the critical expo-
nent β. It turns out that the KM describes the scaling
behavior of a reduced family of phase oscillators for which
β = 1/2, whereas β = 1 for the vast majority of cou-
pling functions (Daido, 1994, 1996b). This fact suggests
the existence of different classes of universality. Craw-
ford (1995) confirmed most of these findings by means of
standard bifurcation theory, while Balmforth and Sassi
(2000) have given a simple mode-coupling explanation of
the different scalings in an example with hs1 = 1, hs2 = σ,
as the only non-zero harmonics.

The previous theory can be generalized to order func-
tions having several peaks in the interval (−π, π) (Daido,
1995, 1996a). In this case, the oscillators may choose
among different coexisting phase-locking states, and their
resulting dynamical behavior is more complex than in the
standard situation, in which only one type of entrain-
ment is possible (Daido, 1996a). If the order function
has more than one local maximum and a local minimum,
then there is an overlap region with at least two branches
for which H ′(ψ) > 0. Oscillators whose frequency lies in
the overlap region may synchronize to the phase of one
stable branch depending on their initial condition. The
number of possible such states is exponentially large and

3 Actually, Daido assumes that h(θ) has period 1, and therefore
his formulas refer to the interval (0, 1) instead of the interval
(−π, π) used in this paper.

the entropy per oscillator is an appropriate order param-
eter characterizing the corresponding macroscopic state
(Daido, 1996a).

Works by other authors confirm the predictions of the
order function formalism. For instance, Hansel et al.
(1993b) considered coupling functions with two Fourier
modes and a free parameter that controls the attrac-
tive/repulsive character of the interaction between os-
cillators. Besides the usual states typical of the KM, the
incoherent state and the synchronized state, they found
more complex dynamical situations for appropriate val-
ues of the control parameter. For instance, there were
switching two-cluster states connected by heteroclinic or-
bits. Each cluster contained a group of phase-locked os-
cillators running at a common frequency. Other studies
discussing a large variety of clustering behavior for cou-
pling functions having a large number of Fourier modes
are (Golomb et al., 1992; Okuda, 1993; Tass, 1997).

Bonilla et al. (1998a) have studied singular coupling
functions such as h(θ) = δ′(θ), δ(θ), sign(θ), etc. that
have infinitely many nonvanishing Fourier modes. They
show that the dynamics of these models can be exactly
solved using the moment approach discussed in Section
VI.C. Consider the generating function for the moments,

ρ̂(x, y, t) =
1

2π

∞
∑

k=−∞

∞
∑

m=0

exp(−ikx)y
m

m!
Hm
k (t), (95)

Hm
k (t) =

1

N

N
∑

j=1

exp[ikθj(t)]ω
m
j .

Its time evolution satisfies

∂ρ̂

∂t
= − ∂

∂x

[

v(x, t) ρ̂
]

+ T
∂2ρ̂

∂x2
− ∂2ρ̂

∂x∂y
, (96)

where the drift velocity v(x, t) is defined as

v(x, t) = −K
∞
∑

n=−∞

hnH
0
−n exp(inx). (97)

The moment-generating function and the one-oscillator
probability density are related by

ρ̂(x, y, t) =

∫ ∞

−∞

eyωρ(x, ω, t)g(ω) dω (98)

Interestingly Bonilla et al. (1998a) noticed that, for par-
ticular couplings and for g(ω) = δ(ω) [then ρ̂ = ρ(x, t)],
it is possible to map synchronization into other physical
problems. For instance for h(θ) = δ′(θ), (96) becomes

∂ρ

∂t
= K

∂

∂x

(

ρ
∂ρ

∂x

)

+ T
∂2ρ

∂x2
(99)

which is used to describe porous media. It can be shown
that in this case the incoherent solution is stable and
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therefore entrainment between oscillators is not allowed.
For h(θ) = δ(θ), (96) becomes the Burgers equation

∂ρ

∂t
= 2Kρ

∂ρ

∂x
+ T

∂2ρ

∂x2
(100)

and synchronization is possible only at zero temperature.
Finally for h(θ) = sign(θ), it is possible to reduce the
equation for ρ to a pair of coupled nonlinear partial dif-
ferential equations. Their stationary solutions can be
calculated explicitly in terms of elliptic functions, and
therefore the bifurcation diagram can be constructed an-
alytically for all K. In this case, multiple solutions bi-
furcate from incoherence for different values of the cou-
pling constant. Let us also mention that these authors
establish a link between their approach and Daido’s order
function.

One-dimensional chains of phase oscillators with near-
est neighbor interactions (and also beyond nearest neigh-
bors) and arbitrary coupling function have been also
studied recently (Ren and Ermentrout, 2000). Given the
complexity of the problem these authors have studied
general properties of the model such as the conditions
required to ensure the existence of phase locking solu-
tions. Numerical examples are provided to confirm the
theoretical predictions.

B. Tops models

The KM deals with interacting units that behave as
oscillators that are described by a unique variable, their
phase. However, it is not difficult to imagine other situ-
ations where the variables that mutually interact are not
oscillators but classical spins described by the azimuthal
and polar angles. In Ritort (1998) the tops model (TM)
has been introduced and its phase diagram solved in the
mean-field case.

Although the name “top” is a misnomer (tops are de-
scribed by three Euler angles, rather than only two) it
maybe more appropriate than the more correct “spin”
term in order to avoid confusion with the overwhelm-
ing variety of spin models already existing in the litera-
ture. The TM could have experimental relevance when-
ever precession motion is induced by an external pertur-
bation acting upon the orientational degrees of freedom
of a system. It can describe synchronized responses of liv-
ing units (such as bacteria) endowed with orientational
magnetic properties or complex resonance effects in ran-
dom magnets or NMR.

The model consists of a population of N spins {~σi, 1 ≤
i ≤ N (of unit length) that precess around a given orien-
tation n̂i at a given angular velocity ωi. Larmor preces-
sion of spin i is therefore described by a vector ~ωi = ωin̂i.
Moreover the spins in the population mutually interact
trying to align in the same direction. The TM equations
of motion are

~̇σi = ~ωi × ~σi −
K

N

N
∑

j=1

∂E(~σi, ~σj)
∂σi

+ ~ηi(t) (101)

where K is the coupling constant and E(~σi, ~σj) is the
two-body energy term that rotational invariance sym-
metry requires to be a function of the scalar product
~σi ~σj , the simplest case corresponding to the linear form
E(~σi, ~σj) = ~σi ~σj . Natural frequencies ~ωi are chosen from
a distribution P ( ~ωi). The term ~ηi(t) is a Gaussian noise
of zero mean and variance equal to 6T , the factor 6 arising
from the three degrees of freedom. As it stands (101)
is not yet well defined as the unit length of the vector
~σi is not constant, as can be seen by multiplying both
sides of the equation by ~σi. To avoid this problem it
is convenient to project the spins onto the surface of a
sphere of unit radius. This requires the introduction of
the azymuthal θi ∈ [0, π] and polar angles φi ∈ [0, 2π),
~σi = (cos(φi) sin(θi), sin(φi) sin(θi), cos(θi)). The main
difficulty in this procedure arises from the noise term that
has to describe Brownian motion over a spherical surface
(see for instance (Coffey et al., 1996)). Working in spher-
ical coordinates requires also that the natural frequency
vectors ~ωi have to be specified in terms of their modulus
ωi, their azymuthal and polar angles (µi, λi). Note at
this point that three variables enter into the description
of the disordered units, rather than only one variable (i.e.
the natural frequency ωi) in the KM. This complexity of
the TM over the KM is compensated by the richness of
the orientational synchronization effects captured in the
former. The resulting equations of motion are,

θ̇i = −KFθ(θi, φi, ~m) + ωiGθ(θi, φi, λi, µi) + ξθi ,(102)

φ̇i sin θi = −KFφ(θi, φi, ~m) + ωiGφ(θi, φi, λi, µi)(103)

+ξφi ,

where Fθ, Fφ, Gθ, Gφ are functions easily inferred by
transforming the first two-terms in the r.h.s. of (101) to

spherical coordinates and ~m = 1
N

∑N
i=1 ~σi is the average

magnetization that plays the role of the order parame-
ter in the TM just like the parameter r in the KM (see

equation (2) in Sec. II). The noises ξθi , ξ
φ
i are Gaussian

correlated with variance 2T and average T cot(θi) and 0
respectively.

The solution of the TM poses additional mathemat-
ical difficulties compared to the KM, however most of
the calculations can be done working in the appropriate
framework and for the simplest disordered case. In (Ri-
tort, 1998) calculations have been presented in the sole
presence of orientational disorder where ωi = ω ∀i, the
natural frequency distribution is then given by a function
p(µ, λ). Maybe the easiest approach to solve the model
is to use the moment representation (see Sec. VI.C) by
introducing the following set of moments,

Mpq
lm =

1

N

N
∑

i=1

Ylm(θi, φi)Ypq(µi, λi). (104)

This formulation allows for a simple analysis of both
the stationary solutions and their stability in the (K̃ =
K/T, ω̃ = ω/T ) plane, as well as providing with an ef-
ficient method to numerically investigate the dynamics
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in the N →∞ limit. Several axially symmetric disorder
distributions where p(µ, λ) ≡ p(µ) have been investigated
in (Ritort, 1998): a) Antiferromagnetically oriented pre-
cessing frequencies with p(µ) = 1

4π δ(µ− 0)+ 1
4π δ(µ−π),

b) precessing orientations lying in the XY plane, p(µ) =
1
2π δ(µ − π

2 ) and c) isotropic disorder p(µ) = 1
4π . While

case a) corresponds to a purely relaxational model (the
mean-field antiferromagnet) displaying a single synchro-

nization transition at K̃ = 3, models b) and c) show more
complex dynamical behavior. For instance, in case c) it

is found that the incoherent solution is stable for K̃ < 3,
unstable for K̃ > 9 and stable in the region 3 < K̃ < 9
if ω̃2 > (12K̃ − 36)/(9 − K̃) yielding a rich pattern of
dynamical behaviors.

More work needs yet to be done on the TM, specially
interesting would be an experimental verification of ori-
entational entrainment in magnetic systems or magne-
tized living cells where non-linear effects are introduced
by the inertial effects induced by the Larmor precession
of magnetic moments in a field.

C. Synchronization of amplitude oscillators

A population of weakly coupled limit-cycle oscilla-
tors is well-described by the KM because each oscillator
reaches its limit cycle in a time which is small in com-
parison with the time the oscillators take to interact with
one another. On the other hand, as the inter-oscillator
coupling increases, both time scales become of the same
order. Then the oscillator amplitudes, and not only their
phases, are affected by their interaction. In this case, we
need a more complete model.

Similarly to the KM, one can consider different classes
of coupling between the oscillators: nearest neighbors
[also called diffusive] coupling (Bar-Eli, 1985), random
coupling between each oscillator and an arbitrary num-
ber of neighbors (Satoh, 1989) , and “all-to-all” [global]
coupling (Ermentrout, 1990; Matthews et al., 1991;
Matthews and Strogatz, 1990). Incidentally, it should
be observed that in several papers the term “diffusive
coupling” is used to refer to “all-to-all” coupling instead
of to nearest neighbor interaction. In fact, only the latter
coupling corresponds to the discretized Laplace operator.

In this section, we shall discuss amplitude models sub-
ject to a global interaction only. So far, many more
results are known for these simpler models. A widely
studied case is the following system of linearly coupled
oscillators, each being near a supercritical Hopf bifurca-
tion:

żj = (1− |zj |2 + i ωj) zj +
K

N

N
∑

i=1

(zi − zj), (105)

for j = 1, . . . , N . Here zj is the position of the jth os-
cillator in the complex plane, ωj is its natural frequency
selected from a given distribution, g(ω), and K is the
coupling strength. In the general case, the Hopf normal

form also contains a term proportional to i|zj |2zj (Craw-
ford, 1991), which has been omitted in Eq. (105) for the
sake of simplicity.

The oscillators in Eq. (105) are characterized by two
degrees of freedom (e.g., the amplitude and phase). Thus,
the behavior is richer than that of phase oscillators gov-
erned by the KM. In particular, amplitude death and
chaosmay appear in some range of parameters character-
izing the oscillator populations, such as coupling strength
and natural frequency spread (Matthews and Strogatz,
1990). When both amplitudes and phases vary in time,
all the oscillator amplitudes may die out: |zj | = 0 for
every j. This behavior is called “amplitude death” or
“oscillator death”, which occurs when: (i) the coupling
strength is of the same order as the attraction to the limit
cycle, and (ii) the frequency spread is sufficiently large
(Ermentrout, 1990). In biological systems, this may be
responsible for the loss of rhythmicity.

Apparently, Yamaguchi and Shimizu (1984) were the
first to derive the model equation (105). They considered
a system of weakly globally coupled Van der Pol oscilla-
tors, that included white noise sources. Bonilla et al.
(1987) also analyzed Eq. (105) (with noise) for a popula-
tion of identical oscillators. They studied the nonlinear
Fokker-Planck equation for the one-oscillator probabil-
ity density, and found a transition from incoherence to
a time-periodic state via a supercritical Hopf bifurcation
(Bonilla et al., 1988).

A comprehensive analysis for Eq. (105) can be found
in (Matthews et al., 1991; Matthews and Strogatz, 1990;
Mirollo and Strogatz, 1990). The phenomenon of am-
plitude death and its stability regions have been ana-
lyzed in (Mirollo and Strogatz, 1990), in terms of the
coupling strength and the spread of natural frequencies.
In the same paper it was also shown that an infinite sys-
tem gives a good description of large finite systems. In
(Matthews et al., 1991; Matthews and Strogatz, 1990), a
detailed study of all possible bifurcations occurring in Eq.
(105) has been presented, discussing locking, amplitude
death, incoherence, and unsteady behavior (Hopf oscil-
lations, large oscillations, quasiperiodicity, and chaos).
In (Matthews et al., 1991), the earlier contributions by
Shiino and Francowicz (1989) and by Ermentrout (1990)
were surveyed. By means of a self-consistent equation,
Shiino and Francowicz (1989) established the existence of
partially locked solutions and of amplitude death states,
but they did not study analytically their stability. On the
other hand, Ermentrout (1990) was probably the first to
point out the phenomenon of amplitude death, and to
study analytically its stability for certain frequency dis-
tributions and values of the coupling.

Recently, Monte and D’ovidio (2002) have revisited the
dynamical behavior of this model, considering particu-
larly the time evolution of the order parameter. They
use an expansion, valid in the limit of strong coupling
and narrow frequency spread, whatever the size of the
population may be. Their study is based on an arbitrary
assumption that truncates the hierarchy yielding the or-
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der parameter, but it recovers qualitatively several known
features of amplitude oscillators. However, this analysis
does not reveal amplitude death, due to the limitation
on the frequency spread.

D. Kuramoto model with inertia

The dynamics of the oscillators in the KM is over-
damped, and therefore it may miss important features
present in a population of coupled mechanical oscillators.
By including the effects of inertia, Eqs. (25) are trans-
formed in the following system of second order stochastic
differential equations:

mθ̈i + θ̇i = Ωi +K r sin(ψ − θi) + ξi(t), (106)

for i = 1, . . . , N . Now Ωi represents the natural fre-
quency of the ith oscillator, while θ̇i = ωi is the instanta-
neous frequency. Adding inertia to the noisy KM makes
it possible to achieve both phase and frequency synchro-
nization, something that it is not possible in the origi-
nal overdamped KM (Acebrón et al., 2000; Acebrón and
Spigler, 1998). The physical motivation for adding inertia
to the KM comes from the work by Ermentrout (1991)
on the synchronous flashing of southeast Asia fireflies,
and on alterations of circadian cycles in mammalians.
Ermentrout (1991) introduces an adaptive effect of the
firing frequency in the KM, as the simplest model for
synchronous firing with small phase lags, in the following
way:

θ̇i = ωi, ω̇i =
Ωi − ωi
m

+
K

m

N
∑

j=1

Hij(θj − θi), (107)

for i = 1, . . . , N . Tanaka et al. (1997a,b) have con-
sidered the case of a mean-field, sinusoidal coupling,
Hij(θj − θi) = N−1 sin(θj − θi), which yields Eq. (106)
without white noise sources. In this noiseless case, an
extension of the analysis of Section II shows that inertia
may cause bistability between incoherence and a partially
synchronized state, which appears via a subcritical bifur-
cation from incoherence (Tanaka et al., 1997a,b).

The analysis of the noisy model (106) proceeds as in
Section III. Firstly, in the limit of infinitely many oscil-
lators, the corresponding NLFPE for the one-oscillator
probability density is (Acebrón and Spigler, 1998):

∂ρ

∂t
=

D

m2

∂2ρ

∂ω2
− 1

m

∂

∂ω
[
(

− ω +Ω+Kr sin(ψ − θ)
)

ρ]

−ω∂ρ
∂θ

(108)

(cf. Appendix A for a formal derivation in the case of the
KM). Here the order parameter is given by,

reiψ =

∫ +∞

−∞

∫ π

−π

∫ +∞

−∞

eiθρ(θ, ω,Ω, t) g(Ω)dΩdθdω,(109)

where g(Ω) is the natural-frequency distribution. As in
the NLFPE for the KM, initial value and 2π-periodic
boundary conditions with respect to θ should be pre-
scribed. Moreover, a suitable decay of ρ(θ, ω,Ω, t) as
ω → ±∞ is required. The initial profile ρ(θ, ω,Ω, 0)

should be normalized,
∫ +∞

−∞

∫ 2π

0
ρ(θ, ω,Ω, 0)dθ dω = 1.

Secondly, we find the stationary angle-independent in-
coherent solution:

ρ0(ω,Ω) =
1

2π

√

m

2πD
e−

m
2D
(ω−Ω)2 . (110)

The linear stability of this solution can be analyzed by
following the same procedure as for the KM in Section
III. We set ρ = ρ0 + eλtµ(θ, ω,Ω) and find an eigenvalue
equation for µ. Then µ is written as a Fourier series in
the phase θ, and we obtain a hierarchy of integrodiffer-
ential equations for the Fourier coefficients. ¿From this
hierarchy, Acebrón et al. (2000) obtained the following
eigenvalue problem:

1 =
K emD

2

∞
∑

p=0

(−mD)p
(

1 + p
mD

)

p!

×
∫ +∞

−∞

g(Ω) dΩ

λ+D + iΩ+ p
m

. (111)

Note that this equation reduces to the eigenvalue equa-
tion for the KM in the limit of vanishing inertia m→ 0.
The critical coupling, K = Kc, can be found setting
Reλ = 0, and the solution branches bifurcating from in-
coherence depend on the natural frequency distribution
g(Ω), and the parameters D and m.

For the unimodal frequency distribution, g(Ω) = δ(Ω),
all stationary probability densities have the form

ρs(θ, ω) =

√

m

2πD
e−

m
2D
ω2 e

K
D
r cos(ψ−θ)

∫ π

−π
e
K
D
r cos(ψ−θ)dθ

, (112)

where

r ei ψ =

∫ π

−π

∫ +∞

−∞

ei θ ρs(θ, ω) dω dθ. (113)

Clearly, the integral over ω in (113) can be calculated
immediately, and the resulting equation for the order pa-
rameter is exactly the same one as in the case of the KM.
Hence the order parameter of all the stationary states
and the critical value of the coupling constant are the
same ones as in the KM. In other cases, inertia changes
the KM results. For a Lorentzian frequency distribution
g(Ω) = (ε/π)/(ε2 +Ω2), the critical coupling is

Kc = 2ε(mε+ 1) +
2(2 + 3mε)

2 +mε
D +O

(

D2
)

, (114)

in the limit as D → 0+. Kuramoto’s value, Kc =
2(D + ε), is recovered if m = 0. Since the critical cou-
pling increases with m, inertia makes synchronization
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harder to achieve. For the bimodal frequency distribu-
tion, g(Ω) = [δ(Ω − Ω0) + δ(Ω + Ω0)]/2, the stability
diagram is depicted in Fig. 8. Again, increasing inertia,
the noise strength D or the frequency spread ε stabilizes
incoherence, thereby making it more difficult to achieve
a stationary synchronized state.

For a general frequency distribution, and inspired by
the linear stability analysis of incoherence, we can expand
the probability density in an orthonormal basis formed
by normalized parabolic cylinder functions ψn(ω):

ρ(θ, ω,Ω, t) =

(

2πD

m

)− 1
4

e−
mω2

4D

∞
∑

n=0

cn(θ,Ω, t)ψn(ω).(115)

The coefficients cn are 2π-periodic functions of the angle
and obey a hierarchy of coupled partial differential equa-
tions (Acebrón et al., 2000). Retaining a suitable number
of such coefficients, a number that decreases as the mass
decreases, we can close the hierarchy and analyze the so-
lutions branching off incoherence.

Both supercritical and subcritical bifurcations may oc-
cur, depending on the value of m. This contrasts with
the noisy KM, in which bifurcations from incoherence
are always supercritical if the frequency distribution is
unimodal. For a Lorentzian frequency distribution, Fig.
9 shows that a crossover from supercritical to subcriti-
cal bifurcation always occurs if the inertia is sufficiently
large. For a bimodal natural frequency distribution, bi-
furcations to stable time-periodic (standing wave) syn-
chronized solutions occur, just as in the KM of Section
III (Acebrón et al., 2000). Thus, inertia seems to sta-
bilize incoherence, making synchronization more difficult
to achieve, and it may also ‘harden’ the synchronization
transition from a supercritical to subcritical bifurcation.

An interesting point of the previous discussion is that
the closure assumption to few terms works better for
small inertia. This observation can be made precise by
analyzing Eq. (106) in the limit of small inertia. Pro-
vided the diffusive term is of the same order as the term
multiplying m−1 (the hyperbolic limit), a Chapman-
Enskog method yields the NLFPE for the KM plus its
first-order corrections due to inertia (Bonilla, 2000). Sim-
ilar results were obtained earlier by Hong et al. (1999b)
who used an arbitrary closure assumption, thereby omit-
ting relevant terms that the systematic Chapman-Enskog
procedure provides (Bonilla, 2000).

Other investigators of the KM with inertia, add time-
periodic forcing or time-delayed terms. Hong et al.
(1999a) considered the equations without white noise
terms:

mθ̈i + θ̇i = Ωi +K r sin(ψ − θi) +Ai cos(Ωt),(116)

for i = 1, . . . , N . Here Ω is the frequency of external
driving, and Ai is its amplitude, which may be random.
They found that inertia suppresses synchronization and
stabilizes incoherence, similarly to the model with Ai =
0 studied by Tanaka et al. (1997a,b). Moreover, only
oscillators locked to the external driving contribute to

the collective synchronization in the KM (Choi et al.,
1994). If inertia is added, both unlocked oscillators and
those locked to the external driving force contribute to
the collective synchronization.

The main effect of adding inertia and time-delays to
the KM is the emergence of spontaneous phase oscil-
lations without an external driving force (Hong et al.,
2002). These oscillations tend to suppress synchroniza-
tion, and their frequency decreases if time-delay and in-
ertia decrease. Hong et al. (2002) describe the phase dia-
gram of the time-delayed KM with inertia, and the effects
of inertia, time delay and coupling constant on the in-
stability boundaries separating incoherence and synchro-
nized states. For any finite values of inertia and time
delay, the synchronized state changes from stationary
to oscillatory as the coupling becomes sufficiently large.
However, we know that the amplitude of the oscillators
becomes relevant for strong couplings, which calls for ad-
ditional research of this limit.

Another promising research venue concerns the
stochastic resonance phenomena (Bulsara and Gam-
maitoni, 1996; Gammaitoni et al., 1998). Hong and Choi
(2000) have studied noise-induced resonance and syn-
chronization in systems of globally coupled oscillators
with finite inertia.

VI. NUMERICAL METHODS

A. Simulating finite size oscillator populations

1. Numerical treatment of stochastic differential equations

In this Section, we review general ideas about the
numerical treatment of stochastic differential equations.
More details can be found in the review papers by Platen
(1999) and Higham (2001), and in the book by Kloeden
and Platen (1999).

An autonomous stochastic differential equation (SDE)
has the form

dX(t) = f(X(t))dt+ g(X(t))dW(t), (117)

X(0) = X0, 0 < t ≤ T,

which should be considered as an abbreviation of the in-
tegral equation

X(t) = X0 +

∫ t

0

f(X(s))ds+

∫ t

0

g(X(s))dW(s), (118)

for 0 < t ≤ T . Here f is a given n−dimensional vec-
tor function, g is a given n × n matrix valued function,
and X0 represents the initial condition. W(t) denotes
an m−dimensional vector whose entries are independent
standard scalar Brownian motion (Wiener process), and
the second integral on the right-hand side of Eq. (118)
should be intended as a stochastic integral in the sense
of Itô. Recall that the formal derivative, dW/dt, of the
Brownian motion is the so-called white noise. The solu-
tion X(t) to Eq. (117) or (118) is an n−dimensional
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stochastic process, that is an n−dimensional random
variable vector for each t. When g = 0 the problem
becomes deterministic and then Eq. (117) is an ordinary
differential equation.

The simplest numerical scheme to compute the solu-
tion to Eq. (117) is the natural generalization of the
Euler method, that here takes on the form

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)∆Wj , (119)

for j = 1, . . . ,M . Here ∆Wj = (Wj −Wj−1) and Xj

represents an approximation of X(tj), tj = j∆t, and
∆t = T/M . As it is well known, the Brownian incre-
ments Wj −Wj−1 are random variables distributed ac-
cording to a Gaussian distribution with zero mean and
variance ∆t. Therefore, Eq. (117) can be solved gen-
erating suitable sequences of random numbers. As for
the error one encounters in approximating solutions to
Eq. (117), there are two different types, depending on
whether one is interested in obtaining either the paths
or the moments. In the literature, these are referred to
as strong and weak approximations, respectively. In the
strong schemes, one should estimate the error

εs = E(|X(T )−XM |), (120)

which provides a measure of the closeness of the paths
at the end of the interval. In the weak scheme, instead,
one is interested only in computing moments or other
functionals of the process X(t). For instance, the error
in the first moment is given by

εw = E(X(T ))− E(XM ). (121)

Note that estimating the latter is less demanding. It can
be shown that the Euler scheme is of order 1/2, that
is εs = O(∆t1/2) as a strong method, but of order 1,
(εw = O(∆t)) as a weak method. Higher order methods,
however, do exist, for instance the stochastic generaliza-
tion of the Heun method,

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)∆Wj , (122)

Xj = Xj−1 +
1

2

[

f(Xj−1) + f(Xj)
]

∆t

+
1

2

[

g(Xj−1) + g(Xj)
]

∆Wj , j = 1, . . . ,M,(123)

and others based on the stochastic Taylor formula, e.g.
the Taylor formula of order 3/2, which for the scalar case,
reads (Kloeden and Platen, 1999),

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)∆Wj

+
1

2
g(Xj−1)g

′(Xj−1)
[

(∆Wj)
2 −∆t

]

+
(∆t)2

2

[

f(Xj−1)f
′(Xj−1) +

1

2
(g(Xj−1))

2f ′′(Xj−1)

]

+ f ′(Xj−1)g(Xj−1)∆Zj + [f(Xj−1)g
′(Xj−1)

+
1

2
(g(Xj−1))

2g′′(Xj−1)

]

[∆t∆Wj −∆Zj ]

+
1

2

[

g(Xj−1)(g
′(Xj−1))

2 + (g(Xj−1))
2g′′(Xj−1)

]

×
[

1

3
(∆Wj)

2 −∆t

]

∆Wj , (124)

where ∆Zj are random variables distributed according
to a Gaussian distribution with zero mean, variance
(∆t)3/3, and correlation E(∆Wj∆Zj) = (∆t)2/2. Us-
ing the Heun method to compute paths (strong scheme),
the error can be shown to be εs = O(∆t), while the
corresponding weak scheme is O(∆t2). If can be proved
that the path computation based on such a formula is
εs = O(∆t3/2), and O(∆t3) as a weak scheme.

2. The Kuramoto model

The KM for N globally coupled nonlinear oscillators
with white noise sources is governed by the system of
stochastic differential equations (23) and (24). This sys-
tem can be solved numerically by the methods described
in the previous subsection (Acebrón and Spigler, 2000;
Sartoretto et al., 1998). In Fig. 10, plots of the am-
plitude of the order parameter as a function of time,
obtained using Euler, Heun, and Taylor of order 3/2,
are compared. The reference solution is provided solving
the nonlinear Fokker-Planck equation (26) - (27) with
a spectral (thus extremely accurate) method (Acebrón
et al., 2001b). Experiments were conducted for increas-
ing values of N , showing that results stabilize already for
N = 500.

In the thermodynamic limit (N → ∞), the average
over the distribution function of the entire oscillator pop-
ulation is the same as the average of θi(t) over all the re-
alizations of the noise. To obtain the latter, we consider
a sufficiently large number of oscillators, N . Numeri-
cal simulations show that a few hundred oscillators are
enough, cf. Fig. 11. In Fig. 12, the amplitude of the or-
der parameter for N oscillators, rN (t), is compared with
its limiting value as N → ∞. This figure shows that
∆rN = |rN − r| ∝ N−1/2, as N increases.

B. Simulating infinitely many oscillators

In this subsection, we discuss finite differences and
spectral numerical methods to solve the NLFPE (26) -
(27), which we shall rewrite as

∂ρ

∂t
= D

∂2

∂θ2
− ω∂ρ

∂θ
− I[ρ] ∂ρ

∂θ
+ J [ρ] ρ, (125)

where

I[ρ] =

∫ +∞

−∞

∫ π

−π

g(ω) sin(φ− θ)ρ(φ, ω, t) dφdω,

J [ρ] =

∫ +∞

−∞

∫ π

−π

g(ω) cos(φ− θ)ρ(φ, ω, t) dφdω. (126)
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1. Finite differences

If we use forward differences in time and centered dif-
ferences in the angle, we obtain the following explicit
finite-difference scheme for the NLFPE:

ρn+1i = ρni +D
∆t

∆θ2
(

ρni+1 − 2ρni + ρni−1
)

−ω ∆t

2∆θ

(

ρni+1 − ρni−1
)

− ∆t

2∆θ
I[ρni ]

(

ρni+1 − ρni−1
)

+ J [ρni ] ρ
n
i , (127)

with i = 1, . . . , imax, n = 0, 1, . . . , nmax. Here ρni is an
approximation to ρ(i∆θ, n∆t, ω), and initial and bound-
ary data are prescribed. The parameter ω in (127) should
be selected in the support of the natural frequency dis-
tribution, g(ω). Except for discrete distributions, the
integral terms I[ρni ] and J [ρni ] involve integration over
the frequencies, and a quadrature formula should be
chosen according to the specific form of g(ω). For in-
stance, Acebrón et al. (2000) have used successfully the
Gauss-Laguerre quadrature in the case of a Lorentzian
frequency distribution.

If we use an explicit scheme, the size of the time step
has to be kept sufficiently small due to stability reasons.
Using an implicit finite-difference scheme, such as Crank-
Nicholson’s (Acebrón and Bonilla, 1998; Bonilla et al.,
1998b), we can in principle increase the time step (for a
given ∆θ). The trouble is that our problem is nonlin-
ear, and therefore we need to implement an additional
iterative procedure at each time step to find ρn+1i . This
reduces in practice the time step to rather small values, as
illustrated by numerical experiments. In Fig. 13, the an-
alytical solution corresponding to the case g(ω) = δ(ω),

ρ0(θ) =
eK r0 cos(ψ0−θ)

∫ π

−π
dθ eK r0 cos(ψ0−θ)

, (128)

where

r0 e
i ψ0 =

∫ π

−π

dθ eiθρ0, (129)

is compared with the results of the numerical solution
computed by either implicit finite differences or by a spec-
tral method. Note that insertion of Eq. (128) into (129)
yields a nonlinear equation for r0 and ψ0, whose solution
can be computed to very high accuracy by the Brent
method (Press et al., 1992).

2. Spectral method

Since the one-oscillator probability density ρ is 2π-
periodic in θ, a suitable spectral numerical method to
solve the NLFPE is to write ρ as a Fourier series and in-
tegrate the resulting differential equations for the Fourier
coefficients (Sartoretto et al., 1998; Shinomoto and Ku-
ramoto, 1986). This spectral method is very efficient,

and the Fourier series converges exponentially fast as the
number of harmonics increases (Fornberg, 1996).

Inserting

ρ =
∞
∑

n=−∞

ρn(t, ω) e
i n θ,

ρn(t, ω) =
1

2π

∫ π

−π

ρ e−i n θ dθ, (130)

in the NLFPE leads to the following system of infinitely
many ordinary differential equations

ρ̇n = −n2D ρn − i n ω ρn

−nK
2

[

ρn+1

∫ ∞

−∞

ρ−1g(ω)dω − ρn−1
∫ ∞

−∞

ρ1g(ω) dω

]

,

n = 0,±1,± . . . . (131)

For each frequency ω in the support of g(ω), Eqs. (131)
are truncated after a suitable number of harmonics ρn.
The resulting system is then solved accurately by using
a high-precision scheme, such as a variable-step Runge-
Kutta-Felhberg routine (Press et al., 1992), as done by
Acebrón et al. (2001a).

If we want to obtain the order parameter but not the
density, it is better to use a different Fourier series ex-
pansion for ρ (Acebrón and Bonilla, 1998):

ρ(θ, t, ω) =
1

2π

N
∑

j=1

[Rj cos(j(ψ − θ)) + Ψj sin(j(ψ − θ))] ,

(132)
where

Rn(ω, t) =

∫ π

−π

cos(n(ψ − θ)) ρ dθ,

Ψn(ω, t) =

∫ π

−π

sin(n(ψ − θ)) ρ dθ. (133)

To obtain differential equations for Rn and Ψn, we take
their time derivatives, use the NLFPE, and simplify the
result using integration by parts. We obtain

Ṙn = −n2DRn + nωΨn +
nKr

2
(Rn−1 −Rn+1)

−ndψ
dt

Ψn,

Ψ̇n = −n2DΨn − nωRn +
nKr

2
(Ψn−1 −Ψn+1)

+n
dψ

dt
Rn,

r
dψ

dt
=

∫ +∞

−∞

ωR1(ω, t)g(ω) dω, (134)

where

r(t) =

∫ +∞

−∞

R1(ω, t) g(ω) dω,

0 =

∫ +∞

−∞

Ψ1(ω, t) g(ω) dω. (135)
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Further simplification results if g(ω) is an even function.
Then R1 is also even in ω, and therefore the last equation
in (134) yields dψ/dt = 0. Comparison of Eqs. (130) and
(132) shows that

ρn =
1

2π
(Rn + iΨn) e

−inψ. (136)

The hierarchy of equations for the real and imaginary
parts of ρn is somewhat more involved than (134) because
it contains the real and imaginary parts of the integrals
∫ +∞

−∞
ρ1(t, ω) g(ω) dω. The numerical integration of (134)

is faster than that of (131).
The spectral method (131) has been analyzed by

Acebrón et al. (2001b), who obtained explicit bounds for
the space derivatives. These bounds play a role in esti-
mating the error term in the Fourier expansion, whose
L2 norm satisfies:

‖εN (θ, t, ω)‖ ≤
√

Cp

(N + 1)p
. (137)

Here Cp is an estimate for the pth-derivative of ρ with
respect to θ andN is the number of harmonics kept in the
Fourier series for the oscillator density. In practice, Cp
depends on the initial data and it increases rapidly with

the parameter (K/D)
∫ +∞

−∞
g(ω) dω. Then large values

of the coupling constant K and small noise strength D
require a large number of harmonics, as illustrated in Fig.
13. In Fig. 14, |ρn| is plotted as a function of n for several
values of K.

In Fig. 15, we depict the global L2-error as a function
of N , with N = 1/∆θ. This Figure shows that the spec-
tral method outperforms the finite difference method.
The CPU time needed to implement the spectral method
with N = 12 harmonics was approximately 25 times
smaller than using finite differences with ∆θ = 0.04,
∆t = 10−4.

3. Tracking bifurcating solutions

Beyond bifurcation points, stationary or oscillatory
solution branches can be constructed by means of nu-
merical continuation algorithms. These algorithms track
both stable and unstable solutions, but it is trivial to
asign stability to bifurcating branches by means of the
bifurcation calculations presented in Section III.D or to
carry out a direct simulation of the NLFPE to decide
the issue. We have used the numerical continuation code
AUTO (Doedel, 1997) to follow bifurcating branches in
the system of nonlinear deterministic ordinary differen-
tial equations provided by the previously discussed spec-
tral method. As a sample, Fig. 16 shows a bifurcation
diagram for the NLFPE with unimodal frequency distri-
bution. More elaborate pictures corresponding to mul-
timodal frequency distributions are shown in (Acebrón
et al., 2001a).

C. The moments approach

Pérez-Vicente and Ritort (1997) have proposed an al-
ternative derivation of the NLFPE for the mean-field KM
to that in Appendix A. The advantage of this approach
is three-fold: 1) it provides an efficient way to numeri-
cally solve the mean-field equations in the large N limit
free of finite-size effects, 2) it provides a simple proof
that the stationary solutions of the dynamics are not
Gibbsian and therefore they cannot be derived within
a Hamiltonian formalism (Park and Choi, 1995), and 3)
it can be used as a ground basis to include fluctuations
beyond mean-field in the framework of certain approxi-
mate closure schemes. The idea of the approach relies in
the rotational symmetry of the KM, θi → θi + 2π. The
most general set of observables invariant under these lo-
cal transformations are,

Hm
k (t) =

1

N

N
∑

j=1

exp(ikθj(t))ω
m
j (138)

where k,m are integers with m ≥ 0. Note that Hm
k (t) =

(Hm
−k(t))

∗. Under the dynamics (23), these observables
do not fluctuate in the large N limit, i.e. are both re-
producible (i.e. independent of the realization of noise)
and self-averaging (independent of the realization of the
random set of ωi

4). The set of observables (138) closes
the dynamics in the limit N → ∞ after averaging over
the noise,

∂Hm
k

∂t
= −kK

2
(Hm

k+1H
0
−1−Hm

k−1H
0
1 )−k2DHm

k +ikHm+1
k .

(139)
The order parameter of Eq. (4) has been introduced in
(139) through the relation H0

1 = r exp(iψ). Equation
(139) leads immediately to the NLFPE (26) - (27) in
terms of the one-oscillator probability density,

ρ(θ, ω, t) g(ω) =
1

N

N
∑

j=1

δ(θj(t)− θ)δ(ωj − ω)

=
1

2π

∫ ∞

−∞

ρ̂(θ, is, t) e−isωds, (140)

with the definition,

ρ̂(θ, s, t) =
1

2π

∞
∑

k=−∞

∞
∑

m=0

exp(−ikθ)s
m

m!
Hm
k (t). (141)

The solution of the hierarchy (139) requires the specifica-
tion of the initial conditions Hm

k (t = 0) where the values
of Hm

0 = ωm =
∫

ωmg(ω)dω are solely determined by the
frequency distribution g(ω). The equations can be solved

4 Of course the specific set of natural frequencies must be consid-
ered as typical (the non-disordered choice ωi = ω is excluded).
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using standard numerical integration schemes. For many
purposes a Heun scheme suffices (see Sec. VI.A). A max-
imum number of moments needs to be considered, usu-
ally several tens of moments are enough. The method
is particularly adapted to models where m takes a fi-
nite number of values. For instance, in the bimodal case
(section III.C) the set of moments Hm

k splits into two
subsets H+

k and H−k corresponding to the case where m
is even or odd respectively. In this case the number of
moments that have to be integrated is considerably re-
duced. Moreover, to reduce boundary effects, periodic
boundary conditions within the set of moments are im-
plemented. If k runs from −L up to L then there are
2L+1 possible values for the integer k. For periodic con-
ditions we have Hm

L+1 = (Hm
−L)

∗ and Hm
−L−1 = (Hm

L )∗.

At any time H0
1 = r exp(iψ) sets the time evolution of

the synchronization parameter r. In Figures 17, 18 and
19 we show some results obtained for the simple discrete
bimodal distribution with L = 100 and only two values
of m: H+

k and H−k . The initial condition corresponds
to θi = 0 in all cases. Figures 17 and 18 illustrate the
evolution of the real and imaginary parts of the order
parameter H0

1 = r exp(iψ) for parameter values in the
incoherent and synchronized regimes respectively. After
the transients have died down, Fig. 19 shows the parame-
ter r(t) in the oscillatory synchronized phase. The results
obtained with the method of moments are compared with
those given by a Brownian simulation.

The moment formalism allows us to prove that the
stationary distribution is not Gibbsian. It has been
shown (Hemmen and Wreszinski, 1993) that the follow-
ing Hamiltonian

H = −K
N

∑

1≤i<j≤N

[cos(θi − θj)− ωiθi] (142)

is a Lyapunov function for finite N , whose minima de-
scribe completely phase-locked states at T = 0. Later, by
the usual arguments of equilibrium statistical mechanics,
this Lyapunov function has been employed to character-
ize stationary states of the KM in the thermodynamic
limit, either at zero or finite temperature (Park and Choi,
1995). Pérez-Vicente and Ritort (1997) have objected
that this last result applies to Gibbsian states, but not
to general stationary states. In (142) we have to assume
that −π < θi < π for H to be a univalued function. As
the Langevin equation

θ̇i = −
∂H
∂θi

+ ξi (143)

leads to the NLFPE (cf. AppendixA), this may suggest
that indeed (142) has all the properties of an energy func-
tion. In fact, it is well known that the stationary distribu-
tion of (143) is Gibbsian only if the probability currents
across the boundaries θi = −π, π vanish. Only in this
case, the stationary one-oscillator probability density is
described by the equilibrium distribution obtained from
(142). In the general case, Appendix E shows that the

moments of the Gibbsian equilibrium distribution func-
tion are not stationary (Pérez-Vicente and Ritort, 1997).
Moreover, the Hamiltonian (142) is not a Lyapunov func-
tion because it is not bounded from below although it
decays in time. Only at T = 0 and finite N , the lo-
cal minima of (142) correspond to globally synchronized
solutions.

The moment approach has been extended to other
models such as random tops (Sec. V.B) and synchro-
nization models without disorder (Sec. V.A). It provides
an alternative and equivalent way of clarifying some dy-
namical aspects of synchronization models (Aonishi and
Okada, 2002).

VII. APPLICATIONS

The outstanding adaptability and remarkable appli-
cability of the KM makes it suitable to be studied in
many different contexts ranging from physics to chem-
istry. Here, we present some of the most relevant exam-
ples discussed in the literature along the last years but
certainly its potential use is still growing and new appli-
cations will be considered in the future.

A. Neural networks

Perception: an old fascinating and unsolved neuro-
physiological problem that has attracted the attention
of many neuroscientists for decades. The basic and fun-
damental task of sensory processing is to integrate stim-
uli across multiple and separate receptive fields. Such a
binding process is necessary to create a complete repre-
sentation of a given object. Perhaps, the most illustra-
tive example is the visual cortex. Neurons that detect
features are distributed over different areas of the visual
cortex. These neurons process information from a re-
stricted region of the visual field, and integrate it through
a complex dynamical process that allow us to detect ob-
jects, separate them from the background, identify their
characteristics, etc. All these tasks give rise to cognition
as their combined result.

What kind of mechanisms might be responsible for the
integration of distributed neuronal activity? There is a
certain controversy around this point. It is difficult to
find a good explanation using exclusively models which
encode information only from the levels of activity of in-
dividual neurons (Softky and Koch, 1993). There are
theories which suggest that the exact timing in a se-
quence of firing events is crucial for certain perception
tasks (Abeles, 1991). On the other hand it has been ar-
gued (Tovee and Rolls, 1992) that long time oscillations
are irrelevant for object recognition. Notice that oscil-
lations and synchrony need to be distinguished. Cells
can synchronize their responses without experimenting
oscillatory discharges and conversely responses can be
oscillatory without being synchronized. The important
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point is the correlation between the firing pattern of si-
multaneously recorded neurons. In this context, the idea
that global properties of stimuli are identified through
correlations in the temporal firing of different neurons
has gained support from experiments in the cat primary
visual cortex showing oscillatory responses coherent over
large distances and sensitive to global properties of stim-
uli (Eckhorn et al., 1988; Gray et al., 1989). Oscillatory
response patterns reflect organized temporal structured
activity that is often associated with synchronous firing.

These experimental evidences have motivated an in-
tense theoretical research looking for models able to dis-
play stimulus dependent synchronization in neuronal as-
semblies. It would be a formidable task to enumerate
and discuss all of them because mainly concern popula-
tions of integrate-and-fire neurons which are beyond the
scope of this review. Here we will focus exclusively on
studies where the processing units are modeled as phase
oscillators. At this point, let us mention that there are
two different theoretical approaches. The first line of rea-
soning is very biologically oriented trying as a main goal
to reproduce, at least qualitatively, experimental results.
The second is more formal and is connected with associa-
tive memory models of attractor neural networks which
have been matter of extensive study in the last years.

1. Biologically oriented models

Phase oscillators can be used as elementary units in
models of neural information processing. We can accept
this fact as a natural consequence of the previous discus-
sion but it is desirable to look for solid arguments sup-
porting this choice. In order to describe the emergence of
oscillations in a single column of the visual cortex, Schus-
ter and Wagner (1990a,b) have proposed a model of ex-
citatory and inhibitory neurons. The main ingredients
of the model are: (i) a non-homogeneous spatial distri-
bution of connections. Neurons are densely connected at
a local scale but sparsely on a larger scale. This com-
bination of short and long range couplings gives rise to
the existence of local clusters of activity. (ii) the activity
of the neurons is measured in terms of their mean-firing
rate. For sufficiently weak coupling, it is possible to de-
scribe the dynamics of the whole population in terms of
a single mean-field equation. Except for a more complex
form of the effective coupling between units, this equa-
tion is analogous to that governing the evolution of the
phase for a limit-cycle oscillator. In the case of the model
by Schuster and Wagner (1990a,b), the coupling strength
depends on the activity of the two coupled clusters, and
this remarkable feature is the key to reproduce stimulus-
dependent coherent oscillations.

Sompolinsky and coworkers refined and extended the
previous idea in a series of papers (Grannan et al.,
1993; Sompolinsky et al., 1990, 1991). They proposed
a similar model with more elaborated inter-neuron cou-
pling (synapses), in which many calculations can per-

formed analytically. They consider a KM with effec-
tive coupling between oscillators given by Kij(r, r

′) =
V (r) W (r, r′) V (r′), where V denotes the average level
of activity of the pre and postsynaptic cell and W (r, r′)
the specific architecture of the connections. To be more
precise, W (r, r′) has two terms, one describing strong
interactions between neurons in the same cluster (with
large overlapping receptive fields) and another describing
the weak coupling between neurons in different clusters
(without common receptive fields). In addition, neurons
respond to a preferred orientation as they do in certain
regions of the visual cortex. With all these ingredients,
the model displays a extremely rich range of behaviors.
Their results agree remarkably well with experiments,
even to small dynamic details, which has established this
research as a reference for similar studies. It provides a
mechanism to link and segment stimuli that span multi-
ple receptive fields through coherent activity of neurons.

The idea of reducing the complexity of neuron dynam-
ics to simplified phase-oscillator equations has been very
fruitful in different contexts. For instance, in order to
model the interaction of the septo-hippocampal region
and cortical columns, Kazanovich and Borisyuk (1994)
analyzed a system of peripheral oscillators coupled to a
central oscillator. Their goal was to understand the prob-
lem of attention focusing. Depending on the parameters
of the model, they found different patterns of entrain-
ment between groups of oscillators. Hansel et al. (1993a)
studied phase-locking in populations of Hodgkin-Huxley
neurons interacting through weak excitatory couplings.
They used the phase reduction technique to show that
in order to understand synchronization phenomena one
must analyze the effective interaction between oscillators.
They found that, under certain conditions, weak excita-
tory coupling leads to an effective inhibition between neu-
rons due to a decrease in their firing rates. A little earlier,
Abbott (1990) had carried out a similar program using a
piece-wise linear FitzHugh-Nagumo dynamics (Fitzhugh,
1961) instead of the Hodgkin-Huxley equations. As in
previous models, a convenient reduction of the original
dynamical evolution led to a simplified model where neu-
rons can be treated as phase oscillators.

More recently, Seliger et al. (2002) have discussed
mechanisms of learning and plasticity in networks of
phase oscillators. They studied the long time proper-
ties of the system by assuming a Hebbian-like princi-
ple. Neurons with coherent mutual activity strengthen
their synaptic connections (long-term potentiation) while
they weaken their connections (long-term depression) in
the opposite situation. The slow dynamics associated
to the synaptic evolution gives rise to multistability, i.e,
coexistence of multiple clusters of different sizes and fre-
quencies. The work by Seliger et al. (2002) is essentially
numerical. More elaborate theoretical work can be car-
ried out provided neurons and couplings evolve on widely
separated times scales, fast for neurons and slow for cou-
plings. An example is the formalism developed by Jongen
et al. (2001) for a XY spin-glass model. Further work in
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this direction is desirable.

2. Associative memory models

The field of neural networks has experienced a remark-
able advance during the last 15 years of the last cen-
tury. One of the main contributions is the seminal pa-
per published by Hopfield (1982), which is the precur-
sor of the current studies in computational neuroscience.
He discovered that a spin system endowed with suitable
couplings can exhibit an appealing collective behavior
which mimicks some basic functions of the brain. To
be more precise, Hopfield considered a system of for-
mal neurons modelled as two-state units, representing
the active and passive states of real neurons. The inter-
actions between units (synaptic efficacies) followed Heb-
bian learning (Hebb, 1949). The resulting model exhibits
an interesting phase diagram with paramagnetic, spin-
glass and ferromagnetic phases, the latter having effec-
tive associative-memory properties. The dynamics of the
Hopfield model is a heat-bath Montecarlo process gov-
erned by the Hamiltonian

H = −
∑

i<j

JijSiSj (144)

where S represents the two states of the neuron (±1)
and the couplings Jij represent the synaptic strength be-
tween pairs of neurons. The latter is given by a Hebbian
prescription

Jij =
1

N

p
∑

µ=1

ξµi ξ
µ
j , (145)

where each set ξµi represents a pattern to be learnt. Hop-
field showed that the configurations ξµi are attractors of
the dynamics: if the initial state is in the basin of attrac-
tion of a given pattern (partial information about a given
memory), the system evolves toward a final state having
a large overlap with this learnt configuration. This evo-
lution mimics a typical associative memory process.

Typical questions concern the number of patterns that
can be stored into the system (in other words, the amount
of information that can be processed by the model), the
size of the basin of attraction of the memories, the ro-
bustness of the patterns in front of noise as well as other
minor aspects. Usually, all these issues are tackled ana-
lytically by means of a standard method in the theory of
spin glasses: the replica approach (Mezard et al., 1987).
It is not the goal of this review to discuss the technique,
simply to give the main results. The number of patterns
p that can be stored scales with the size of the system
(number of neurons N) as p ≈ 0.138N . Therefore the
storage capacity defined as the ratio α = p

N is 0.138. A
detailed analysis of the whole phase diagram α − T can

be found in many textbooks (Amit, 1989; Hertz et al.,
1991; Peretto, 1992).

The conventional models of attractor neural networks
(ANN) characterize the activity of the neurons through
binary values, corresponding to the active and non-active
state of each neuron. However in order to reproduce
synchronization between members of a population, it is
convenient to introduce new variables which provide in-
formation about the degree of coherence in the time re-
sponse of active neurons. This can be done by associ-
ating a phase to each element of the system, thereby
modelling neurons as phase oscillators. A natural ques-
tion is whether large populations of coupled oscillators
can store information after a proper choice of the matrix
Jij , as in conventional ANN. Cook (1989) considered a
static approach (no frequencies) where each unit of the
system is modelled as a q-state clock and the Hebbian
learning rule (145) is used as a coupling. Since the Jij
are symmetric, it is possible to define a Lyapunov func-
tion whose minima coincide with the stationary states
of (144). Cook solved the model by deriving mean-field
equations in the replica-symmetric approximation. In the
limit q → ∞ and zero temperature, she found that the
stationary storage capacity of the network is αc = 0.038,
much smaller than the storage capacity of the Hopfield
model (q=2), αc = 0.138, or the model with q=3 where
αc = 0.22. Instead of fixing the couplings Jij , Gerl et al.
(1992) posed the question of estimating the volume oc-
cupied in the space of couplings Jij by those obeying
the stability condition ξµi

∑

j Jijξ
µ
j > κ ≥ 0. By using a

standard formalism due to Gardner (1988), they found
that, in the optimal case and for a fixed stability κ, the
storage capacity decreases as q increases, and that the
information content per synapse grows if κ scales as q−1.
Although this final result seems promising, it has serious
limitations given by the size of the network (since N > q)
and also because the time required to reach the station-
ary state is proportional to q, as corroborated by Kohring
(1993). Other models with similar features display the
same type of behavior (Noest, 1988).

In the same context, the first model of phase oscillators
having an intrinsic frequency distribution was studied by
Arenas and Pérez-Vicente (1994b). These authors con-
sidered the standard KM dynamics discussed in previous
sections with coupling constants given by

Jij =
K

N

p
∑

µ=1

cos(ξµi − ξ
µ
j ) (146)

where K is the intensity of the coupling. This form pre-
serves the basic idea of Hebb’s rule adapted to the sym-
metry of the problem. Now the state of the system, de-
scribed by a N-dimensional vector whose i-th component
is the phase of i-th oscillator, is changing continuously in
time. However, this is not a problem. If there is phase-
locking, the differences between the phases of different
oscillators remain constant in time. Then it is possible to
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store information as a difference of phases between pairs
of oscillators, which justifies the choice of the learning
rule given in (146). Thus if the initial state is phase-
locked with one of the embedded patterns, the final state
will also have a macroscopic correlation with the same
pattern at least for small p.

In the limit of α → 0, Arenas and Pérez-Vicente
(1994b) showed that the degree of coherence between the
stationary state and the best retrieved pattern is

m = 〈
∑∞
−∞

(−1)n

ω2+D2n2 In(βm)In−1(βm)
∑∞
−∞

(−1)n

ω2+D2n2 I2n(βm)
〉ω. (147)

Here m is analogous to the order parameter r defined in
previous sections, In is the modified Bessel functions of
the first kind and of order n, β = J

2D and <>ω means an
average over the frequency distribution. In contrast with
conventional models of ANN which, in the limit α → 0,
have a positive overlap below the critical temperature, in
this model phase locking can be destroyed if the distri-
bution of frequencies is sufficiently broad. From a linear
analysis of (147) it is straightforward to show that there
is no synchronization if

∫ ∞

−∞

g(ω)

( ω
2

D2 + 1)
dω < β−1. (148)

Similarly, Hong et al. (2001) found that, for zero temper-
ature and for a Gaussian distribution of frequencies of
width σ, a retrieval state can only exist above a critical
coupling Kc/σ. The quality of the retrieval depends on
the amount of stored patterns. Their numerical simula-
tions show a rather complex time evolution towards the
stationary state. An analysis of the short-time dynamics
of this network was performed in (Pérez-Vicente et al.,
1996) .

The situation is more complex for networks which store
an infinite number of patterns (finite α). There have been
some attempts to solve the retrieval problem through a
standard replica-symmetry formalism (Park and Choi,
1995). However, as it has been already discussed in Sec-
tion VI.C, there is no Lyapunov function in such a limit.
Therefore, other theoretical formalisms are required to
elucidate the long-time collective properties of associa-
tive memory models of phase oscillators.

The long-time properties of networks of phase oscil-
lators without a Lyapunov function have been success-
fully determined by the so-called self-consistent signal-to-
noise analysis (SCSNA) (Shiino and Fukai, 1992, 1993).
To apply this formalism it is necessary to have infor-
mation about the fixed-point equations describing the
equilibrium states of the system. To be more precise,
the method relies on the existence of TAP-like equa-
tions (Thouless et al., 1977) which, derived in the context
of spin-glasses, have been very fruitful in more general
scenarios. These equations relate the equilibrium time-
average of spins (phase oscillators) to the effective local

field acting on them. In general, the effective and the
time-averaged local fields are different, and their differ-
ence is the Onsager reaction term. This reaction term can
be computed by analyzing the free energy of the network.
Once the TAP equations are available, the local field is
split in ‘signal’ and ‘noise’ parts. Then the SCSNA yields
expressions for the order parameters of the problem and
the (extensive) number of stored patters is determined as
a result. This method has been applied by different au-
thors. For the standard Hebbian coupling given in (145),
Aonishi (1998); Aonishi et al. (2002); Uchiyama and Fu-
jisaka (1999); Yamana et al. (1999); Yoshioka and Shiino
(2000) found special associative memory properties for
some particular frequency distributions. For instance, in
absence of noise and for a discrete three-mode frequency
distribution Yoshioka and Shiino (2000) observed the ex-
istence of two different retrieval regions separated by a
window where retrieval is not possible. In the ω−α phase
diagram, for sufficiently low temperature, one finds a
non-monotonic functional relationship. This remarkable
behavior, direct consequence of having non-identical os-
cillators, is not observed in standard models of ANN. In
the right limit, one recovers the results given by Arenas
and Pérez-Vicente (1994b); Cook (1989).

There are complementary aspects of phase-oscillator
networks that are worth studying. For instance, how
many patterns can be stored in networks with diluted
synapses (Aoyagi and Kitano, 1997; Kitano and Aoy-
agi, 1998) or with sparsely coded patterns (Aoyagi, 1995;
Aoyagi and Nomura, 1999)? So far, these analysis have
been carried out for systems with identical oscillators,
so that a static approach can be used. The main re-
sult is that a network of phase oscillators is more robust
against dilution than the Hopfield model. On the other
hand, for low levels of activity (sparse coded patterns)
the storage capacity diverges as 1

a log a for a→ 0(a is the

level of activity) as in conventional models of ANN. It
is an open problem to analyze the effect of an intrinsic
frequency distribution on the retrieval properties of these
networks.

B. Josephson junctions and laser arrays

Besides the extensive development that synchroniza-
tion models, in particular the KM, has undergone, an-
other track has been followed over the recent years. In
fact, several applications to Physics and Technology have
been explored in detail, most important the case of super-
conducting Josephson junctions arrays and that of laser
arrays. Even though a few other physical applications
have been found, such as that to isotropic gas of os-
cillating neutrinos (Pantaleone, 1998), beam steering in
phased arrays (Heath et al., 2000), and nonlinear antenna
technology (Meadows et al., 2002), below we discuss at
some length the first two subjects mentioned above. The
main purpose in these applications is, in fact, synchro-
nizing a large number of single elements, in order to in-
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crease the effective output power. As is well known, the
KM provides perhaps the simplest way to describe such
a collective behavior, and it has been shown that the dy-
namics of Josephson junctions arrays (Wiesenfeld, 1996)
as well as that of laser arrays (Kozireff et al., 2000, 2001;
Vladimirov et al., 2003) can be conveniently mapped into
it.

1. Josephson junctions arrays

Josephson junctions are superconductive devices capa-
ble of generating high frequency voltage oscillations, typ-
ically in the range 1010-1012 Hz (Duzer and Turner, 1999;
Josephson, 1964). They are natural voltage-to-frequency
transducers. Applications to both analog and digital elec-
tronics have been made, to realize amplifiers and mixers
for submillimetric waves, to detect infrared signals from
distant galaxies, and within SQUIDs (Superconducting
Quantum Interference Devices) as very sensitive magne-
tometers.

A large number N of interconnected Josephson junc-
tions may let cooperate in such a way to achieve a large
output power, because the power is proportional to V 2,
which turns out to be proportional to N 2, provided that
all members oscillate in synchrony. Moreover, the fre-
quency bandwidth decrease as N−2 (Duzer and Turner,
1999). Networks of Josephson junction arrays coupled in
parallel lead to nearest neighbors (that is diffusive) cou-
pling, and more precisely to sine-Gordon discrete equa-
tions with soliton solutions. On the other hand, Joseph-
son junction arrays connected in series through a load
exhibit “all-to-all” (that is global) coupling (Wiesenfeld
et al., 1996). Moreover, the latter configuration can be
transformed into a KM.

The model equations are

~Cj
2e

φ̈j +
~

2e rj
φ̇j + Ij sinφj + Q̇ = IB , j = 1, . . . , N,(149)

for the junctions, and

LQ̈+RQ̇+
1

C
Q =

~
2e

N
∑

k=1

φ̇k (150)

for the load circuit (see Fig. 20). Here φ is the difference
between the phases of the wave functions associated with
the two superconductors, Q is the charge, Ij the critical
current of the jth junction, and Cj and rj its capaci-
tance and resistance respectively, and IB the “bias cur-
rent”, while R, L, and C denote resistance, inductance,
capacitance of the load circuit.

Note that the load does provide a global coupling, and
when Q̇ = 0 all the junctions work independently. In
such a case, assuming for simplicity Cj ≈ 0, and IB > Ij ,
the jth element will undergo oscillations at its natural
frequency

ωj =
2erj

~

(

I2B − I2j
)1/2

. (151)

It was shown in (Swift et al., 1992; Wiesenfeld, 1996;
Wiesenfeld et al., 1996, 1998), that in case of weak cou-
pling and disorder, by a suitable averaging procedure,
Eqs. (149), (150) can be mapped into the Kuramoto

model. Assumptions amount to taking Q̇/Ij (which sizes
the coupling among the junctions) sufficiently small, and
the rj ’s and Ij ’s, and thus the ωj ’s are about the same.
For definiteness, let ε be a parameter sizing the discrep-
ancies among the rj ’s, the Ij ’s, and thus among the ωj ’s,

as well as the size of the coupling, Q̇. Moreover, the in-
ternal capacitances are considered negligible (Cj ≈ 0).
We first introduced the “natural” angles θj ’s, defined by

θj =
2ωj~
2erj

1
√

I2B − I2j
arctan





Ij − IB tan
φj
2

√

I2B − I2j



 , (152)

termed natural because when the coupling Q̇ is set to
zero, they describe uniform rotations, while the φj ’s do
not. Using such transformation, Eq. (149) becomes

θ̇j = ωj +
K

N

N
∑

k=1

sin(θk − θj + α), (153)

to order O(ε), after averaging over the fast scale. Here
K and α depend on the Josephson parameters rj , Ij ,
IB , R, L, and C. Strictly speaking the model equa-
tion (153) represents a generalization of the classical Ku-
ramoto model, because of the presence of the param-
eter α 6= 0 (see section IV.B)). This case was stud-
ied in (Sakaguchi and Kuramoto, 1986; Sakaguchi et al.,
1987), where it was observed that α > 0 gives rise to a
higher value of the critical coupling (for a given frequency
spread), and a lower number of oscillators are involved
in the synchronization.

In (Heath andWiesenfeld, 2000; Sakaguchi andWatan-
abe, 2000) it was pointed out that, in general, the model
equation of the Kuramoto type in Eq. (153) does not
explain the operation of Josephson junction arrays de-
scribed by Eq.s (149), (150) in certain regimes. In fact,
both physical and numerical experiments on the latter
equations show the existence of hysteretic phenomena
(Sakaguchi and Watanabe, 2000), which were not found
in the model equations (153). This puzzle was resolved
by Heath and Wiesenfeld, who recognized that a more
appropriate averaging procedure needed to be used. Do-
ing that, a model formally similar to that in Eq. (153)
was found, the essential difference being that now K and
α depend on the dynamical state of the system.

When the capacitances are assumed to be nonzero, say
Cj = C0 6= 0, in (Sakaguchi and Watanabe, 2000) hys-
teresis and multi-stability were found within the frame-
work provided by equations (149), (150). Proceeding
as above and considering a sufficiently small values of
C0, again a Kuramoto-type phase model like that in Eq.
(153) was found, where now K and α depends also on
C0. A result is that the nonzero capacitance facilitates
the mutual synchronization.
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At this point, we should stress that the essential pa-
rameter distinguishing the two regimes of negligible and
non negligible capacitance is given by the McCumber pa-
rameter, β = 2eIcr

2C/~. Depending on the properties of
the Josephson junction (r, Ic, and C), β can vary in the
broad range 10−6-107 (Duzer and Turner, 1999).

In (Filatrella et al., 2000) a model for a large number
of Josephson junctions coupled to a cavity was consid-
ered. They were able to reproduce the experimental re-
sults such as the synchronization behavior reported in the
experiments conducted in (Barbara et al., 1999). Even
though such experiments concerned two-dimensional ar-
rays of Josephson junctions, they found qualitatively no
differences with respect to the case of one-dimensional
arrays (Filatrella et al., 2001). In any case, they derived
the modified KM,

θ̇j = ωj +
1

Na

Na
∑

i=1

Na
N
Ki sin(θi − θj + α), (154)

where Ki takes two possible values, depending on
whether the ith oscillator is frequency-locked or not
(higher if locked), and Na is the number of the “ac-
tive oscillators”. In these studies, the capacitances of
the Josephson junctions are nonzero (underdamped os-
cillators), and the bias current is taken to be such that
each junction is in the hysteretic regime. Depending on
the initial conditions, the junctions may work in each of
the two ensuing possible states, characterized by zero or
nonzero voltage. When the junctions work in the latter
case (that is when the phases are time variable (??)), the
oscillators are called “active”. The model in Eq. (154)
was derived in a similar way as that in Eq. (153), that
is by a suitable averaging method. These authors also
predicted that some overall hysteretic behavior should
be observed under certain circumstances, a feature that
could not be observed in the experiments conducted in
(Barbara et al., 1999).

Daniels et al. (Daniels et al., 2003) showed that the
RSJ equations describing a ladder array of overdamped
(zero capacitance), different (with disordered critical cur-
rents) Josephson junctions can be taken into a Kuramoto-
type model. Such a model exhibits the usual sinusoidal
coupling, but the coupling mechanism is of the nearest
neighbor type. This mapping was realized by a suitable
averaging method upon which the fast dynamics of the
RSJ equations is integrated out, the slow scale being over
which the neighboring junction synchronizes. The effect
of thermal noise on the junctions has also been consid-
ered, finding a good quantitative agreement between the
RSJ model and locally coupled KM, where a noisy term
has been added. However, the noise term appearing now
in the KM has not been obtained from the RSJ noisy
model by the aforementioned transformation procedure,
which fact raises doubt on the general applicability of
this result. Locally coupled KM like this are analyzed in
some more details in Sec. IV.A.

In closing, we mention another application that,
strictly speaking, falls within the topic of the Josephson

junctions arrays. A network of superconducting wires
provides an additional example of exact mean-field sys-
tems (Park and Choi, 1997). Such a network consists of
two sets of parallel superconducting wires, mutually cou-
pled by Josephson junctions at each crossing point. It
turns out that each wire only interacts with the half of
the other, namely with those perpendicular to it, which
fact realizes a semiglobal coupling. It was found that the
model equations consists of two sets of coupled phase
oscillators equations,and under special conditions, these
equations reduce to the classical KM equation.

2. Laser arrays

The idea of synchronizing laser arrays of various kinds,
analyzing their collective behavior, is a sensible subject
of investigation, in both respects, technological and theo-
retical. In fact, on one hand, entrainment of many lasers
results in a large output power from a high number of
low power lasers. Moreover, when the lasers are phase-
locked, a coherent high power can be concentrated in
a single-lobe far-field pattern (Vladimirov et al., 2003).
On the other hand, this setting provides an additional
example of a physical realization of the Kuramoto phase
model. Actually, there are few other generalizations of
the KM, that have been obtained in this field.

It has been observed in the literature that solid-state
laser arrays and semiconductor laser arrays behave dif-
ferently, due to the striking differences in their typical
parameters. In fact, for solid-state lasers the linewidth
enhancement factor is about zero, and the upper level flu-
orescence lifetime, measured in units of photon lifetime,
is about 106, while for semiconductor lasers they are re-
spectively about 5 and 103. It follows that they exhibit
a quite different dynamical behavior.

Concerning the kind of coupling among lasers, both
local and global coupling have been considered over the
years (Li and Erneux, 1993; Silber et al., 1993). As one
can expect, globally coupled lasers act more efficiently
when one wants to attain stationary synchronized (i.e.
in-phase) states. Global coupling is usually obtained by
means of an optical feedback given by an external mirror.

A widely used model, capable of describing the dynam-
ical behavior of coupled lasers, is given by the so-called
Lang-Kobayashi equations (Lang and Kobayashi, 1980;
Wang and Winful, 1988; Winful and Wang, 1988), which
have been obtained using the Lamb’s semiclassical laser
theory. They are

dEj
dt

= iδjEj + (1 + iα)
ZjEj
τp

+ i
κe−iω tD

N

N
∑

k=1

Ek(t− tD), (155)

dZj
dt

=
1

τc

[

Pj − Zj − (1 + 2Zj)|Ej |2
]

, (156)

where Ej denotes the jth laser dimensionless electric field
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envelope, Zj the excess free carrier density (also called
gain of the jth laser), ω = N−1

∑

k ωk is the average
frequency in the array, δj = ωj − ω is the frequency
mismatch, α is the linewidth enhancement factor, κ is
the feedback rate. Other parameters are tD, the exter-
nal cavity roundtrip time (thus, ωtD is the mean opti-
cal phase-shift between emitter and feedback fields), and
τp ≈ 10−12 s and τc ≈ 10−9 s which are, respectively,
the photon lifetime and the free carrier lifetime. The pa-
rameter Pj represents the excess pump above threshold
(Vladimirov et al., 2003). For instance, assuming that
the Zj ’s are given, the first equation in Eq. (156) is rem-
iniscent of the amplitude KM (see section V.C), but with
time delay.

When the coupling is realized through an external mir-
ror located at the Talbot distance of order of 1 mm, the
time delay, tD, can be neglected. Instead, when the array
and the feedback mirror is much larger, the time delay
is important and should be taken into account. This
was done in (Kozireff et al., 2000, 2001). Here, the syn-
chronization of a semiconductor laser array with a wide
linewidth α was studied, writing out Ej = |Ej |eiΦj , and
obtaining an asymptotic approximation for the Φj ’s from
the third-order phase equation

d3Φj
ds3

+ ε
d2Φj
ds2

+ (1 + 2εΩj)
dΦj
ds

= ε∆j

+εK σ(s− sD) sin[ξ(s− sD)− Φj(s)], (157)

where the scaled time s = ΩRt (sD = ΩRtD), ΩR =
√

2P/τcτp,P = N−1
∑

j Pj , has been introduced. The

parameters appearing in Eq. (157) are: ε = (2P +

1)
√

τp/2Pτc, , Ωj = (Pj/P − 1)/ε, ∆j = δjτc/(1 + 2P ),
K = ακτc/(1+2P ). σ and ξ are amplitude and phase of
the complex-valued order parameter

σ(s) eiξ(s) =
1

N

N
∑

k=1

ei(Φk(s)−ωtD). (158)

More details can be found in (Vladimirov et al., 2003).
Note that Eq. (157) represents a generalization of the

KM equation reducing to it but with delay, when the sec-
ond and third order derivatives are neglected (see Section
IV.C). Neglecting only the third order derivative the Ku-
ramoto model with inertia is recovered (see Section V.D).
In (Kozireff et al., 2000, 2001; Vladimirov et al., 2003),
it was shown that the time delay induces and may be
used to control phase synchronization in all dynamical
regimes.

In (Oliva and Strogatz, 2001), where the interested
reader can find additional references concerning this sub-
ject, large array of globally coupled solid-state lasers with
randomly distributed natural frequencies, have been in-
vestigated. Based on previous work on lasers (Braiman
et al., 1995; Jiang and McCall, 1993; Kourtchatov et al.,
1995), as well as on general amplitude oscillator models,
Oliva and Strogatz considered a simplified form of the
Lang-Kobayashi equations, where the gain dynamics was

adiabatically eliminated. The resulting model equation
is

dEj
dt

=

(

1 + P

1 + |Ej |2
− 1 + iωj

)

Ej

+
K

N

N
∑

k=1

(Ek − Ej), j = 1, . . . , N. (159)

Note that this is indeed an amplitude model, similar to
the Kuramoto amplitude model studied in Section V.C.
Analytical results, such as stability boundaries of a num-
ber of dynamical regimes have been obtained, showing
the existence of such diverse states as incoherence, phase
locking, and amplitude death (when the system stops las-
ing).

C. Charge density waves

A model, akin to the KM, has been introduced to
describe the dynamical behavior of charge-density-wave
transport in quasi-one-dimensional metals and semicon-
ductors in (Marcus et al., 1989; Strogatz et al., 1988,
1989). The subject of charge-density wave in such mate-
rials has been extensively studied over the years by many
authors, too many to mention. Generalities on such topic
are beyond the scope of this review, and the interested
readers is referred to the references appearing in (Mar-
cus et al., 1989; Strogatz et al., 1988, 1989). However the
dynamical system of coupled oscillators,

θ̇i = E + h sin(αi − θi) +
K

N

N
∑

j=1

sin(θj − θi) (160)

has been proposed in (Strogatz et al., 1988) to model
charge-density wave transport in switching samples. This
model generalizes the well-known Fisher’s model, in that
a periodic coupling among the oscillators replaces a lin-
ear coupling term. Others than the Fisher model, system
(160) is capable to explain a number of phenomena that
were observed in the experiments. The Fisher model,
as well as the present one, describe the collective dy-
namics of coupled oscillators subject to random pinning
impurities, αi. In the present model, pinning transition,
hysteretic behavior, switching between pinned and slid-
ing states, as well as a delay in the onset of sliding in
the vicinity of the threshold can be observed when an
external field, E, acts upon the system.

The pinning term h sin(αi − θi) forces the phase θi to
stick at the random value αi. The applied field E, as
well as the coupling term, has an opposite effect. In fact,
the pinning term pushes to static disorder arrangements,
while the field tends to drive the θi’s at constant angular
velocities. On the other hand, the coupling mechanism
tries to synchronize the entire system.

As one can expect, when E/h and K/h are small in
Eq. (160), the pinning states dominate and the oscilla-
tors become static and pinned at the random phases αi.
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When E/h increases, keeping fixed K/h, such a pinned
state loses stability, giving rise to a steady-state solution.
This occurs, however, only at certain depinning thresh-
old, which has been evaluated analytically in (Strogatz
et al., 1989). The bifurcations of system (160) have been
studied as a function of the parameters E/h and K/h.
One of the findings was that the pinning transition is
discontinuous and moreover it is hysteretic. Both, dis-
continuous and hysteretic behavior have been observed
experimentally in certain charge-density wave systems.

We should notice that system (160) can be cast into a
KM affected by external field and disorder at the same
time. In fact, setting Θi = θi−αi in Eq. (160), we obtain

Θ̇i = E − h sinΘi +
K

N

N
∑

j=1

sin(Θj −Θi +Aij), (161)

where Aij = αj − αi. Clearly, h sinΘi plays the role of
an external field (see Sec. ??), and the Aij ’s represent
disorder (see Sec. IV.B).

D. Chemical oscillators

The existence of oscillations in chemical reactions
is well-known. The Belousov-Zhabotinsky reaction is
paradigmatic and models such as the Brusselator and
the Oregonator have been invented to understand its
properties. These models are described in terms of a
few coupled nonlinear reaction-diffusion equations, which
can have time-periodic solutions and give rise to differ-
ent spatio-temporal patterns for appropriate parameter
values.

The relation between chemical oscillators and phase
oscillator models has been matter of discussion for many
years. In 1975, Marek and Stuchl (1975) coupled two
Belousov-Zhabotinsky reaction systems with different pa-
rameters, and hence different periodic oscillations. Each
reaction occurred in a separate stirred tank reactor, and
both reactors could exchange matter through the com-
mon perforated wall. They observed phase locking if
the oscillation frequencies in the two reactors were close.
For large frequency differences, the coupled system had
long intervals of slow variation in the phase difference
separated by rapid fluctuations over very short intervals.
These observations were qualitatively explained by Neu
(1979). He considered two identical planar limit-cycle
oscillators that were linearly and weakly coupled. In ad-
dition, one oscillator had a small imperfection of the same
order as the coupling. A singular perturbation analysis
showed that the phase difference between the oscillators
evolved according to an equation reminiscent of the KM.
Its analysis revealed phase locking and rhythm splitting
(Neu, 1979). Neu (1980) extended this idea to popula-
tions of weakly coupled identical chemical oscillators. If
we add small imperfections to the oscillators, the result-

ing model equations are

ẋi = F (xi, yi) +
ε

N

∑

j

[K(dij)xj + λi f(xi, yi)],

ẏi = G(xi, yi) +
ε

N

∑

j

[K(dij) yj + λi g(xi, yi)]. (162)

If ε = 0, we have N identical coupled oscillators having
a stable T -periodic limit cycle given by

xi = X(t+ ψi), yi = Y (t+ ψi), i = 1, . . . , N.(163)

dij = qj−qi is the spatial displacement between the oscil-
lators and λi is a random imperfection parameter. Neu’s
analysis yields the following equation for the evolution of
the phases in the slow time scale τ = εt:

dψi
dτ

=
1

N

∑

j

K(dij)P (ψj − ψi) + λiβ. (164)

Here P is a T -periodic function determined from the ba-
sic limit cycle solution (163) that satisfies P ′(0) = 1.
β is a parameter (Neu, 1979). If X = cos(t + ψ),
Y = sin(t+ψ), P (θ) = sin θ. Then Eq. (164) is essentially
the KM. Neu (1980) analyzed synchronization in the case
of identical oscillators (λi = 0) for both mean-field and
diffusive coupling in the limit of infinitely many oscilla-
tors. His method involves finding an evolution equation
for the time integral of the order parameter. This equa-
tion can be solved in particular cases and it provides
information on how the oscillators synchronize as time
elapses (Neu, 1980).

Thus the KM describes weakly coupled chemical os-
cillators in a natural way, as already discussed by Bar-
Eli (1985); Kuramoto (1984), and worked out by other
authors later. Following previous experiments on two-
coupled stirred-tank reactors, Yoshimoto et al. (1993)
have tried to test frustration due to disorder in oscillation
frequencies in a system of three coupled chemical reac-
tors. Previous studies in systems of two coupled stirred
tank reactors have shown that, depending on the coupling
flow rate, different synchronization modes emerged spon-
taneously: in-phase mode, anti-phase mode and phase-
death mode. Yoshimoto et al. (1993) interpreted their
experiment involving three reactors by using the numeri-
cal solutions of Kuramoto-type equations for phase oscil-
lators with asymmetric couplings. Their numerical solu-
tions exhibit different combinations of the previous three
modes, as well as new complex multistable modes whose
features depend on the level of asymmetry in the interac-
tion between oscillators. More recently, Kiss et al. (2002)
have confirmed experimentally the existence of all these
patterns and a number of other predictions of the KM by
using an array of 64 nickel electrodes in sulfuric acid.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have extensively reviewed the main
features of the Kuramoto model, which has been most
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successful in understanding and explaining synchroniza-
tion in large populations of phase oscillators. The sim-
plicity of the KM allows a rigorous mathematical analy-
sis, at least for the case of mean-field coupling. Still, the
long-time behavior of the KM is highly non-trivial, dis-
playing a large variety of synchronization patterns. Fur-
thermore, the model can be adapted so as to explain
synchronization behavior in many different contexts.

Throughout the paper we have mentioned different
open lines that deserve special attention. Let us sum-
marize some of them. For the mean-field KM, the re-
cent work by Balmforth and Sassi (2000) raises interest-
ing questions to be tackled in the future. At zero noise
strength D = 0, a stability analysis of the partially syn-
chronized phase and a rigorous description of the syn-
chronization transition are needed. The necessary work
in this direction is expected to be technically hard.

Much more work is needed to understand synchroniza-
tion in the KM with nearest-neighbor coupling. Recent
work by Zheng et al. (1998) on the 1D case has shown
that phase slips and bursting phenomena occur for cou-
plings just below threshold. This is not surprising. It is
well-known that spatially discrete equations with (over-
damped or underdamped) dynamics are models for dis-
locations and other defects that can either move or be
pinned. Among these models, we can cite the 1D Frenkel-
Kontorova model (Braun and Kivshar, 1998; Carpio and
Bonilla, 2001, 2003b) or the chain oscillator models for
2D edge dislocations (Carpio and Bonilla, 2003a). The
latter is exactly the 2D KM with asymmetric nearest-
neighbor coupling and zero frequency on a finite lattice.
A constant external field acts on the boundary and is re-
sponsible for depinning the dislocations if it surpasses
a critical value. For these models, there are analyti-
cal theories of the depinning transition, and the effects
of weak disorder on the transition are also understood.
Perhaps this methodology could be useful to understand
synchronization or its failure in the nearest-neighbor KM.
It is also interesting to analyze the entrainment proper-
ties of large populations of phase oscillators connected in
a scale-free network or in a small-world network. Per-
haps new clustering properties or multistability phenom-
ena will come out in a natural way.

We have discussed extensions of the Kuramoto model
to new scenarios. More work is needed to understand
the stability properties of synchronized phases in models
with general periodic couplings, or models with inertia
and time delay.

We hope that the extensive discussion of the KM in this
review can help finding new applications of the model.
For the applications discussed here, Josephson junction
arrays with non-zero capacitances need to be understood
better given their common occurrence in real systems.
More careful singular perturbation methods should yield
more general, yet tractable models of the Kuramoto type.
On the other hand, quantum noise in the form of spon-
taneous emission and shot noise is important for certain
laser systems (Wieczorek and Lenstra, 2003). Examining

the role of the noise in these systems suggests a new re-
search line. Concerning biological applications, it would
be interesting to investigate in depth adaptive mecha-
nisms that go beyond the standard learning rules dis-
cussed in this review.

Finally, models of phase oscillators different from those
discussed in this review must be explored. In this con-
text, recent works on the Winfree model (Ariaratnam
and Strogatz, 2001) and on circadian clocks (Daido, 2001)
open paths worth pursuing.
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APPENDIX A: Path integral derivation of the nonlinear

Fokker-Planck equation

For the sake of completeness, we present a derivation
of the NLFPE (26) satisfied by the one-oscillator prob-
ability density, together with Eq. (28) for the order pa-
rameter. Our derivation follows the ideas in (Bonilla,
1987), adapted to the case of the noisy KM. It is some-
what technical but it has one important advantage over
other derivations: it shows that, in the limit as N →∞,
the p-oscillator probability density factorizes in the prod-
uct of p one-oscillator densities for all t > 0, provided all
oscillators are statistically independent at time t = 0.
This result of propagation of molecular chaos is usually
assumed in other simpler derivations that close a hierar-
chy of equations for p-oscillator densities (Crawford and
Davies, 1999).

To derive the NLFPE, we first write down the path in-
tegral representation of the N -oscillator probability den-
sity ρN (t, θ, ω) corresponding to the system of stochastic
equations (23). ρN is equal to a product of δ(θi(t) −
Θi(t; ξ)), averaged over the joint Gaussian distribution
for the white noises ξi(t) and over the initial distribution
of the oscillators. Θi(t; ξ)) are the solutions of Eqs. (23)
for a given realization of the noises. We have

ρN (t, θ, ω) = 〈
∏

t

N
∏

j=1

δ[θi(t)−Θi(t; ξ)]〉ξ,θ0

= 〈
∏

t

N
∏

j=1

δ

(

ωj + ξj(t)Im
K

N

N
∑

k=1

ei(θk−θj) − θ̇j
)

×det
(

Re
K

N

N
∑

k=1

ei(θk−θj)(δkj − 1)− d

dt

)

〉ξ,θ0 . (A1)

We now transform this expression by using that the
delta functions are the Fourier transforms of unity,
∏

t δ(fj) =
∫

exp[
∫ t

0
iΨjfjdt]DΨj(t), and the Gaussian
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average 〈exp[
∫ t

0
iΨjξjdt]〉ξ = exp[−2D

∫ t

0
Ψ2jdt]. The re-

sult is:

ρN (t, θ, ω) =

∫ ∫ ∫ θ(t)=θ

θ(0)=θ0

exp







∫ t

0

N
∑

j=1

[

−2DΨ2j

+iΨj

(

ωj + Im
K

N

N
∑

k=1

ei(θk−θj) − θ̇j
)

+
1

2
Re
K

N

N
∑

k=1

ei(θk−θj)(δjk − 1)

]

dt

}

DΨ(t)Dθ(t)

N
∏

i=1

[ν(θi0, ωi)dθi0],(A2)

after transforming the functional determinant as indi-
cated in (Bausch et al., 1976; Dominicis and Peliti, 1978;
Phythian, 1977) and averaging over the initial conditions.
In (A2), θ = θ1, . . . , θN are the oscillators angles and
Ψ = Ψ1, . . . ,ΨN are their conjugate variables in phase
space. ρN is 2π-periodic in each of its phase arguments
θj . We have assumed that the initial data are indepen-

dent identically distributed, ρN (0, θ, ω) =
∏N
j=1 ν(θj , ωj)

(molecular chaos assumption). In addition, the normal-
ization constant in the path integral will be omitted.
If we are interested in one-time averages for systems
of infinitely many oscillators, we should study the one-
oscillator probability density ρ(θ, ω, t) such that

ρ(θ1, ω1, t) = lim
N→∞

∫

ρN (t, θ, ω)

N
∏

i=2

[g(ωi)dωidθi], (A3)

To analyze this function, we notice that the exponential
in (A2) contains double sums such as:

N
∑

j=1

Ψ̃j cos θj

N
∑

k=1

sin θk =
1

2











N
∑

j=1

(Ψ̃j cos θj + sin θj)





2

−





N
∑

j=1

Ψ̃j cos θj





2

−





N
∑

j=1

sin θj





2





, (A4)

and others of a similar form. Here Ψ̃j = iΨj . Notice
that we can rid of the squares of the sums in the previous
formulas by using the Gaussian path integrals:

∫

exp







−
∫ t

0



Nϕ2 + i
√
2Kϕ

N
∑

j=1

Aj



 dt







Dϕ(t)

= exp











− K

2N

∫ t

0





N
∑

j=1

Aj





2

dt











,(A5)

∫

exp







−
∫ t

0



Nϕ2 +
√
2Kϕ

N
∑

j=1

Aj



 dt







Dϕ(t)

= exp











K

2N

∫ t

0





N
∑

j=1

Aj





2

dt











.(A6)

Insertion of Eqs. (A2) and (A4) - (A6) in (A3) yields

ρ(θ, ω, t) = lim
N→∞

∫

eA(θ,ω,t;ϕ)
(

〈eA〉θ,ω
)N−1

Dϕ(t),(A7)

eA =

∫ ∫ ∫ θ(t)=θ

θ(0)=θ0

exp

{

−
∫ t

0

[

2DΨ2 + Ψ̃(θ̇ − ω)

+ϕ21 + i
√
2Kϕ1Ψ̃ cos θ + ϕ22 + ϕ23 + i

√
2Kϕ2 sin θ

+
√
2Kϕ3(Ψ̃ cos θ + sin θ) + . . .

]

dt
}

DΨ(t)Dθ(t)ν(θ0, ω)dθ0, (A8)

〈eA〉θ,ω =

∫ ∫

eAg(ω)dωdθ. (A9)

In Eq. (A8), we have denoted by + . . . six terms of the
same type as the three specified ones. The integrals over
ϕ(t) in Eq. (A7) can be approximated by the saddle point
method with the results that

δ

δϕk
ln〈eA〉θ,ω = 0, (A10)

for k = 1, . . . 9. For the three terms specified in Eq. (A8),
Eq. (A10) yields

ϕ1 = −i
√

K

2
〈Ψ̃ cos θ〉, ϕ2 = −i

√

K

2
〈sin θ〉,

ϕ3 = −i (ϕ1 + ϕ2), (A11)

where

〈A〉 =
∫

A exp(. . .)DΨ(t)Dθ(t)ν(θ0, ω)dθ0g(ω)dωdθ
∫

exp(. . .)DΨ(t)Dθ(t)ν(θ0, ω)dθ0g(ω)dωdθ
, (A12)

and the exponential is as that in the integrand in Eq.
(A8). After we insert (A11) in this exponential and
substitute the result in (A12), we find that the terms

containing ϕk (k = 1, 2, 3) become −K〈Ψ̃ sin θ〉 cos θ −
K〈cos θ〉Ψ̃ sin θ. The denominator in Eq. (A12) can be
set to be 1 defining appropriately the path integral so
that 〈1〉 ≡ 1. We have 〈Ψ̃ sin θ〉 = δ〈1〉/δ〈cos θ〉 = 0. The
other functions ϕk can be determined similarly and we
obtain

ρ(θ, ω, t) =

∫ ∫ ∫ θ(t)=θ

θ(0)=θ0

expA(Ψ, θ;ω, t)

DΨ(t)Dθ(t)ν(θ0, ω)dθ0, (A13)

A(Ψ, θ;ω, t) = −
∫ t

0

{

2DΨ2 + iΨ[θ̇ − ω

−Kr sin(ψ − θ)] + Kr

2
cos(ψ − θ)

}

dt, (A14)

reiψ = 〈eiθ〉 =
∫ ∫

eiθρ(θ, ω, t)g(ω)dωdθ.(A15)
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This is the path integral representation of the solution
of the NLFPE satisfying ρ(θ, ω, 0) = ν(θ, ω). Thus the
one-oscillator density satisfies the NLFPE in the limit as
N → ∞ (Bonilla, 1987). The same method can be used
to show propagation of molecular chaos: The p-oscillator
probability density satisfies

ρp(θ1, ω1, . . . , θp, ωp, t) = lim
N→∞

∫

ρN (t, θ, ω)

×
N
∏

i=p+1

[g(ωi)dωidθi] =

p
∏

j=1

ρ(θj , ωj , t), (A16)

provided the oscillators are independent and identically
distributed initially and (N − p)→∞ (Bonilla, 1987).

APPENDIX B: Calculating bifurcations for the NLFPE by

the method of multiple scales

Let us explain this method in the simple case of bifur-
cations to stationary synchronized phases and comment
on its relation to the Chapman-Enskog method. In this
case, there exist two time scales, t (fast time scale) and
τ = ε2t ∼ (K−Kc)t/K2 (slow time scale). The choice of
the slowly-varying time scale is motivated as in Section
III.D, and (K − Kc) = O(ε2) because the equation for
ρ3 is the first equation of the hierarchy derived below to
display resonant terms. We assume

ρ(θ, ω, t; ε) ∼ 1

2π

[

1 +

∞
∑

n=1

εnρn(θ, ω, t, τ)

]

, (B1)

and insert this asymptotic expansion in (26) - (29),
thereby obtaining the hierarchy of linear equations

Lρ1 = 0,

∫ π

−π

ρ1dθ = 1, (B2)

Lρ2 = −Kc∂θ

{

ρ1Im e−iθ〈e−iθ′ , ρ1〉
}

+ cc,
∫ π

−π

ρ2dθ = 0, (B3)

Lρ3 = − Kc ∂θ

{

ρ2Im e−iθ〈e−iθ′ , ρ1〉

+ ρ1Im e−iθ〈e−iθ′ , ρ2〉
}

− ∂τρ1 + cc−K2∂θIm e−iθ〈e−iθ′ , ρ1〉,
∫ π

−π

ρ3dθ = 0, (B4)

and so on. The solutions of (B1) and of (B2) are

ρ1 =
A(τ) eiθ

D + iω
+ cc, (B5)

ρ2 =
A2

(D + iω)(2D + iω)
e2iθ + cc

+
B(τ) eiθ

D + iω
+ cc, (B6)

respectively. A(τ) and B(τ) are slowly-varying ampli-
tudes to be determined later. Inserting (B5) and (B6) in
(B4) and using the nonresonance condition (45), we ob-
tain dA/dτ = F (0), with F (0)given by Eq. (48). Thus
to leading order, the method of multiple scales and
the Chapman-Enskog method yield the same amplitude
equation. However, for a more complicated bifurcation,
such as the degenerate transition described by Eq. (50),
the method of multiple scales still yields dA/dτ = F (0),
and a linear nonhomogeneous equation for the amplitude
B(τ). The reason for these unphysical results is that the
method of multiple scales has the following limitation:
All terms in the reduced equations provided by the method
of multiple scales are of the same order. Eq. (50) can still
be derived from these two equations by an ad hoc ansatz,
as done by Bonilla et al. (1998b) in the case of the tri-
critical point. Note that Eq. (39) implies that B(τ) = 0
if we use the Chapman-Enskog method.

APPENDIX C: Calculation of the degenerate bifurcation to

stationary states near ω0 = D/
√
2

Here we calculate F (2)(A,A) needed to describe the
transition from supercritical to subcritical bifurcations
at the parameters ω0 = D/

√
2, Kc = 3D. The solution

of Eq. (42) is

ρ3 =
eiθ

D + iω

[

K2A

Kc
− F (0)

D + iω
− A |A|2

(D + iω)(2D + iω)

]

+cc +
3A3ei3θ

(D + iω)(2D + iω)(3D + iω)
+ cc. (C1)

The additional equations in the hierarchy that we need
are:

Lρ4 = −Kc∂θ

{

ρ3Im e−iθ〈e−iθ′ , σ1〉
}

− K2 ∂θσ1Im e−iθ〈e−iθ′ , σ1〉 − F (0) ∂Aρ2 + cc,(C2)

Lρ5 = −Kc∂θ

{

ρ4Im e−iθ〈e−iθ′ , σ1〉
}

− F (2) ∂Aσ1 + cc

−F (0) ∂Aρ3 + cc−K2 ∂θ
{

ρ2Im e−iθ〈e−iθ′ , σ1〉
}

. (C3)

The solution of Eq. (C2) is

ρ4 =
Aei2θ

(D + iω)(2D + iω)

[

3K2A

Kc

−2F (0)
(

1

D + iω
+

1

2D + iω

)

− 2A |A|2
2D + iω

×
(

1

D + iω
+

3

3D + iω

)]

+ cc

+
12A4ei4θ

(D + iω)(2D + iω)(3D + iω)(4D + iω)
+ cc. (C4)
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The task of finding F (2) is simplified by noticing that,
near the degenerate point, ω0 = D/

√
2 + ε2ω2, which

yields

F (0) = K2

(

1 +
2
√
2ε2ω2
D

)

A+
16
√
2ε2ω2

9D2
A |A|2,(C5)

up to O(ε4) terms. Then we only need to calculate F (2)

at ω0 = D/
√
2 to have an amplitude equation with terms

up to order O(ε4) in (38). We have to insert ρn, n =
1, . . . , 4 in the right side of (C3) and use the nonresonance
condition for the resulting equation (in which we can set
F (0) = K2A). We find

F (2) = −K
2
2

D
A− 28K2

9D2
A |A|2 − 272

171D3
A|A|4. (C6)

Up to O(ε4) terms, the amplitude equation (50) follows
by inserting (C5) and (C6) in (38).

APPENDIX D: Calculation of the bifurcation at the

tricritical point

Insertion of Eq. (59) in (26) and (28) leads to the mod-
ified hierarchy

Lρ2 = −Kc∂θ

{

σ1Im e−iθ〈e−iθ′ , σ1〉
}

− AT e
iθ

D + iω
+ cc, (D1)

Lρ3 = −Kc ∂θ

{

ρ2Im e−iθ〈eiθ′ , σ1〉
}

−K2∂θIm e−iθ〈e−iθ′ , σ1〉 − ∂T ρ2 + cc, (D2)

Lρ4 = −Kc∂θ

{

ρ3Im e−iθ〈e−iθ′ , σ1〉

+ω2σ1Im eiθ〈eiθ′ , σ1〉′
}

−K2 ∂θσ1Im e−iθ〈e−iθ′ , σ1〉 − ∂T ρ3 + cc. (D3)

with Kc = 4D. Here we have defined

〈ϕ,ψ〉′ = 1

2π

∫ π

−π

∫ +∞

−∞

ϕ(θ, ω)ψ(θ, ω) g′0(ω) dω dθ,

g′0(ω) =
1

2
[δ′(ω + ω0)− δ′(ω − ω0)], (D4)

We have not yet used Eq. (60). Its use will lead to a
correction in (D2) and (D3). The second term in (D1)
has the same form as σ1, but it is not resonant because
〈1, (D + iω)−2〉 = 0 at the tricritical point. The solution
of (D1) is

ρ2 =

[

A2e2iθ

(D + iω)(2D + iω)
− AT e

iθ

(D + iω)2

]

+ cc. (D5)

We now insert this solution in Eq. (D2) and use the
ansatz (60) because ∂T ρ2 contains a factor ATT in a truly
resonant term. (Recall that it is at this point that the
routine Chapman-Enskog ansatz (38) fails to deliver a
resonant term). Notice that the ansatz (60) adds the
term F (1)eiθ/(D+ iω)2+cc to the right side of Eq. (D3).
The nonresonance condition for (D2) yields

F (0) =
D

2
(K2 − 4ω2)A+

2

5
|A|2A. (D6)

The solution of Eq. (D2) is

ρ3 =

[

K2 − 4ω2
4D(D + iω)

A+
F (0)

(D + iω)3

− A|A|2
(D + iω)2(2D + iω)

]

eiθ + cc

−
AAT

(

1
D+iω + 1

2D+iω

)

(D + iω)(2D + iω)
e2iθ + cc

+
A3e3iθ

(D + iω)(2D + iω)(3D + iω)
+ cc. (D7)

By applying the nonresonance condition to the right side
of Eq. (D3) we obtain

F (1) =
K2
2
AT −

(

|A|2A
)

T

5D
− 23

25D
|A|2AT . (D8)

Insertion of Equations (D6) and (D8) into (60) yields the
sought amplitude equation (61).

APPENDIX E: Stationary solutions of the Kuramoto model

are not equilibrium states

In this Appendix we show how the stationary solutions
of the KM are not equilibrium states of the model defined
by the Hamiltonian defined in (142). Following (Pérez-
Vicente and Ritort, 1997) the equilibrium value of the
moments (138) Emk corresponding to (142) can be easily
computed,

Emk = Fmk e
ikθ = eikθ

∫ π

−π

dωg(ω)ωm
Jωk (

Kr
T )

Jω0 (
Kr
T )

(E1)

θ being an arbitrary phase. The functions Jωk (x) are of
the Bessel type,

Jωk (x) =

∫ π

−π

dφ exp(ikφ+ x cos(φ) + βωφ) (E2)

and β = 1/T . Inserting the equilibrium values of the
moments Emk into (139) yields,

(∂Hm
k

∂t

)

Hm
k
=Em

k

= ikvm exp(ikθ) (E3)

with

vm = T exp(
Kr

T
)

∫ π

−π

dωg(ω)
ωm
(

exp( 2πωT )− 1
)

Jω0 (
Kr
T )

(E4)
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Stationarity of the equilibrium solution requires that vm
vanishes. In the simple case of a symmetric distribu-
tion g(ω) = g(−ω) it can be proven that v2m = 0, ∀m.
However odd moments do not vanish. The temperature
dependence of v2m−1 can be analytically computed in the

high-temperature limit (v2m−1 = ω2m + O(β3)) as well

as in the low-temperature limit (v2m−1 = ω2m +O(T )),
Interestingly, even in the zero-temperature limit (where a
stability analysis reveals that the synchronized solution
is neutrally stable, see section Sec. II.B) the absolute
minima of H are not stationary configurations of the dy-
namics. This shows that the assumption that the station-
ary solutions at T = 0 are local minima of H in (142)
does not hold. For a symmetric frequency distribution
where v0 = 0 (and therefore both H0

k = hk -see defini-
tion after (139)- and the synchronization parameter r are
stationary) this result does not guarantee that the Boltz-
mann distribution P eq({θi}) ∝ exp(−βH({θi})) (which
depends on the whole set of moments Hm

k ) is stationary
as well.
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FIG. 5 Bifurcation diagram (K,R) near the tricritical point
for ω0 > D fixed. K∗ is the coupling at which a subcritical
branch of stationary solutions bifurcates from incoherence.
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FIG. 6 Global bifurcation diagram including all stationary
solution branches.

FIG. 7 A hierarchical tree with N = 9 two-level (L = 2)
oscillators having branching ratio b = 3. The distance lij be-
tween two oscillators is given by the number of levels between
them and their closest common ancestor. In this example,
l12 = l46 = l78 = 1 and l15 = l58 = 2.
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FIG. 8 Discrete bimodal frequency distribution: Stability di-
agram of incoherence in the parameter space (Ω0, K) for dif-
ferent mass values and D = 1.
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FIG. 9 Stationary solution, lorentzian frequency distribution
with spread ε. The line separates the region in parameter
space (m, ε) on which the transition to the synchronized state
is either sub- or a super-critical. The dotted line denotes the
analytical solution obtained using cn, n = 0, 1, 2, while the
solid line shows the solution computed numerically.
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FIG. 10 Comparison between the numerical solution of the
nonlinear Fokker-Planck equation using the spectral method
with 40 harmonics and the numerical solution of the stochastic
differential equations obtained with three different numerical
schemes: Euler, Heun, and 3/2 Taylor. Here the time step is
∆t = 0.1. The population comprises N = 50000 oscillators
with the same frequency (ωi = 0); K = 4 and D = 1.
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FIG. 11 Comparison between the numerical solution of the
nonlinear Fokker-Planck equation using the spectral method
with 40 harmonics and the numerical solution of the stochastic
differential equations for N = 500 and N = 5000. Simulations
haven been performed with a 3/2 Taylor scheme with a time
step ∆t = 0.1. Parameters are the same as in Fig. 10.
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FIG. 12 Fluctuations of the order parameter as a function of
the number of oscillators, N , with respect to a mean value
given by limN→∞rN . We have used a log-log plot in which
dots are the computed values of ∆rN , whereas the dashed line
represents the corresponding mean square regression. The
simulations have been performed using the 3/2 Taylor scheme
with ∆t = 0.01. Parameters are the same as in Fig. 10.
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FIG. 13 Numerical simulations by finite differences (with
∆θ = 0.04, ∆t = 10−4), spectral method (with 2,4,8 har-
monics), and the analytical stationary solution. Parameters
are K = 3, D = 1, and g(ω) = δ(ω).
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FIG. 14 The coefficients |ρn(∞, ω)| corresponding to the sta-
tionary solution are shown for various coupling strength pa-
rameters, K. The frequency distribution here is g(ω) = δ(ω),
and the diffusion constant D = 1.
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FIG. 15 Global L2-error as function of ∆θ, orN , forK = 4, 8.
Here g(ω) = δ(ω).
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FIG. 16 Bifurcation diagram for the unimodal frequency distri-

bution, g(ω) = δ(ω), calculated by using N = 4 and N = 12 har-

monics in the spectral method. Dotted and solid lines correspond

to unstable and stable solutions, respectively.
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FIG. 17 Dynamical evolution of the order parameter H0
1 =

r exp(iψ) for the KM with the discrete bimodal frequency
distribution and D = 1/2 and K = 1. Incoherence is stable
for these parameter values. The trajectory is represented in
the complex plane (ReH0

1 , ImH
0
1 ).
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FIG. 18 Same as in Fig. 17 for D = 0.05 and K = 1. A sta-
ble oscillatory synchronized phase exists for these parameter
values.
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FIG. 19 Time evolution of r for the parameter values D = 2.5
and K = 1/4, for which the KM with a discrete bimodal
frequency distribution has a stable oscillatory synchronized
phase. The solid line has been obtained by means of the
moments method described in the text, and the dots result
from a single run of a Brownian simulation with N = 50000
oscillators.
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FIG. 20 Schematic circuit showing ideal Josephson junctions
(each denoted by a cross) connected in series coupled through
an RLC load. IB is the bias current.


